苏科版八年级数学上册勾股定理章节知识点

合集下载

苏科版八年级数学上册勾股定理章节知识点

苏科版八年级数学上册勾股定理章节知识点
例5:如图,在我国沿海有一艘不明国际的轮船进入我国还与,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
题型六 探索性问题
例6:我国估计《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究下两类特殊的勾股数:
题型三 运用勾股定理的逆定理进行说理
例3:如图,在△ABC中,AB=13cm,BC=10cm,中线AD=12cm,试说明△ABC是等腰三角形
题型四 运用勾股定理的逆定理确定两直线的位置关系
例4:如图,在△ABC中,D为BC的中点,AB=5,AD=6,AC=13,试说明AD与AB的位置关系
题型五运用勾股定理的逆定理解决实际问题
题型六 运用方程思想解题
例6:一个直角三角形的一条直角边长为5cm,另一条直角边比斜边短1cm。求它的斜边长。
题型七 分类讨论题
例7:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的周长.
【误区警示】
误点1 不能用图形面积表示代数式之间的数量关系,导致出现错误
例1:如图是由四个相同的直角三角尺拼接成的图形,设三角尺的直角边长分别为 ,则这两个图形能验证的等式是( )
A.4组 B.3组 C.2组 D.1组
【典例展示】
题型一 判断三角形的形状
例1:已知△ABC的三边长分别为 ,且满足 ,则△ABC是( )
A.以 为斜边的直角三角形 B.以b为斜边的直角三角形
C.以c为斜边的直角三角形 D.非直角三角形
题型二 运用勾股定理的逆定理进行计算
例2:如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求DC的长

2.江苏数学八年级上册知识整理:勾股定理

2.江苏数学八年级上册知识整理:勾股定理

江苏数学八年级上册知识整理:勾股定理一.基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC∆中,90∠=︒,则c,Cb=,a)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

(定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三角a b c形三边长a,b,c满足222+=,那么以a,b,c为三边的三角形是直角三角形,a c b但是b为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

6:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222+=中,a,a b cb,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等勾股定理练习一.填空题:1. 在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S△ABC=________。

苏科版八年级数学上册 勾股定理单元复习 3

苏科版八年级数学上册   勾股定理单元复习 3

A BCa b c弦股勾【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。

常用关系式 由三角形面积公式可得:AB ·CD=AC ·BC 2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中为斜边。

3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如;;;;8,15,17等 ③用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)如果三角形的三边长a 、b 、c 满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );(2)若c2=a2+b2,则△ABC 是以∠C 为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c 为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°∠A+∠B=90°(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°可表示如下: BC =AB∠C=90°c 3,4,56,8,105,12,137,24,25n 221,2,1n n n -+2,n ≥n 2221,22,221n n n n n ++++n 2222,2,m n mn m n -+,m n >m n ⇒⇒21(3)直角三角形斜边上的中线等于斜边的一半。

八年级上册第一章《勾股定理》复习要点

八年级上册第一章《勾股定理》复习要点

八年级上册第一章《勾股定理》复习要点知识点一:勾股定理要点:⑴•勾股定理:直角三角形两直角边的平方和等于斜边的平方如果直角三角形的两条直角边分别为a、b,斜边为c,那么,a2 +b2 =c2,(2).历史文化:勾股定理在西方文献中又称毕达哥拉斯定理。

我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边为弦。

⑶格式:a=8 b=15 解:由勾股定理得c2 =a2 +b2=82+152=64+225=289•/ C>0 ••• C=17【典例精析】1•一架2.5m长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.7m •那么梯子的顶端距墙脚的距离是( )•(A)0.7m (B)0.9m (C)1.5m (D)2.4m2•如图,为了求出湖两岸A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160m, BC长128m ,则AB长________________ m.3•利用四个全等的直角三角形可以拼成如图所示的图形, 这个图形被称为弦图•从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积. 因而c2= +•化简后即为c2= __________ •知识点二:直角三角形的判别要点;*如果三角形三边长为a、b、c, c为最长边,只要符合a2 +b2 =c2,这个三角形是直角三角形。

(勾股定理逆定理,是直角三角形的判别条件)【典例精析】1、在下列长度的各组线段中,能组成直角三角形的是( )A.5、6、7B.1 、4、9C.5 、12、13D.5、11、122、满足下列条件的厶ABC不是直角三角形的是(A.b2=c2- a2B.a : b : c=3 : 4 : 5C. / C=Z A-Z BD. / A:/ B:/C=12: 13 : 1553、三角形的三边长分别是15, 36, 39,这个三角形是______ 三角形。

4、将直角三角形的三条边同时扩大4倍后,得到的三角形为()A.直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5•有两棵树,一棵高6米,另一棵高2米, 两树相距5米•一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?知识点三:勾股定理的综合应用【典例精析】1、如图1- 1,在钝角VABC 中,CB = 9, AB = 17, AC = 10, AD BC 于D,求AD 的长。

勾股定理(3个考点清单+16种题型解读)(原卷版)—2025学年八年级数学上学期期中考点(苏科版)

勾股定理(3个考点清单+16种题型解读)(原卷版)—2025学年八年级数学上学期期中考点(苏科版)

勾股定理(3个考点清单+16种题型解读)【清单01 勾股定理】1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+. 在应用勾股定理时要注意它的变式:abb ac a c b b c a c b a 2)(22222222222-+=-=⇒-=⇒=+;2.勾股定理的验证方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中221()42ABCD S a b c ab =+=+´正方形,所以222c b a =+.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中221()42ABCD S c b a ab =-+´正方形,所以222c a b =+.方法三:如图(3)所示,将两个直角三角形拼成直角梯形. 2()()112222ABCD a b a b S ab c +-==´+梯形 ,所以222c b a =+.【清单02 勾股定理的逆定理】1.勾股定理的逆定理:如果一个三角形的三边长分别为a,b,c ,且a 2+b 2=c 2,那么这个三角形是直角三角形.2. 勾股数满足关系a2+b2=c2的三个正整数a,b,c称为勾股数。

常见的勾股数有:(1)3,4,5;(2)6,8,10;(3)9,12,15;(4)5,12,13;(5)8,15,17;(6)7,24,25;【清单03 勾股定理的应用】1、已知直角三角形的任意两条边长,求第三边;2、用于解决带有平方关系的证明问题;3、与勾股定理有关的面积计算;4、勾股定理在实际生活中的应用.【考点题型一勾股定理的证明方法】【例1】勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端,下面四幅图中不能证明勾股定理的是()A.B.C.D.【变式1-1】勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端,下面四幅图中能证明勾股定理的是()A.②③B.①②③C.①②③④D.②③④【变式1-2】如图,阴影部分是由4个三边分别为a、b、c(c为斜边)的直角三角形拼出中间的小正方形.利用等面积法,通过两种方法计算小正方形的面积可以验证勾股定理.小正方形的面积除可以表示为()2a b -外,还可以表示为: ;【变式1-3】把两个全等的直角三角形拼成如图所示的形状,使点A ,E ,D 在同一条直线上,利用此图的面积表示式可以得到一个关于a ,b ,c 的代数恒等式,则这个恒等式是.【变式1-4】用图1所示的四个全等的直角三角形可以拼成图2的大正方形.请根据信息解答下列问题:(1)请用含a ,b ,c 的代数式表示大正方形的面积.方法1:______.方法2:______.(2)根据图2,求出a ,b ,c 之间的数量关系.(3)如果大正方形的边长为10,且14a b +=,求小正方形的边长.【考点题型二 以弦图为背景的计算题】【例2】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.它是由四个全等的直角三角形和一个小正方形拼成的大正方形(如图所示),若大正方形的面积是29,小正方形的面积是9,设直角三角形较长直角边为b ,较短直角边为a ,则22b a -的值是( )A .7B .14C .21D .28【变式2-1】如图是“赵爽弦图”,由4个全等的直角三角形拼成的图形,若大正方形的面积是52,小正方形的面积是4,设直角三角形较长直角边为b ,较短直角边为a ,则a b +的值是( )A .8B .9C .10D .11【变式2-2】如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,小正方形的面积为6,则大正方形的面积为 .【变式2-3】如图,是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的一个大正方形,若图中大正方形ABCD 的面积为34,直角三角形较短的直角边长AH 为3,则中间小正方形EFGH 的面积为.【变式2-4】阅读下列材料,并完成相应的任务:小明在经过八年级上册的知识学习后,发现用不同的方式表示同一图形的面积不仅可以得到整式的乘法公式,还可以用来证明勾股定理,我们把这种方法称为等面积法,这是一种重要的数学方法.如图1,这是我国汉代数学家赵爽证明勾股定理时创制的一幅“勾股圆方图”,后人称之为“赵爽弦图”,它由4个全等的直角三角形和1个小正方形组成AB c BE a AE b ===,,,.任务一:如图1,请用它验证勾股定理.任务二:如图1,若315b a c -==,,求Rt ABE V 的面积.任务三:如图2,在Rt ABC △中,90ACB Ð=°,CD 是AB 边上的高,43AC BC ==,,请直接写出CD 的长.【考点题型三 勾股数问题】【例3】下列各组数据为勾股数的是( )A B .1C .5,12,13D .2,3,4【变式3-1】勾股定理最早出现在《周髀算经》:“勾广三,股修四,弦隅五”,观察下列勾股数:3,4,5;5,12,13;7,24,25;¼这类勾股数的特点如下:勾为奇数,弦与股相差1,柏拉图研究了勾为偶数,弦与股相差2的一类勾股数,如:6,8,10;8,15,17;¼若此类勾股数的勾为2(0m m >,m 为正整数),则弦是(结果用含m 的式子表示)( )A .21m +B .21m -C .22m +D .23m +【变式3-2】观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41…,请你写出具有以上规律的第⑥组勾股数为 .【变式3-3】如图是一株美丽的“勾股树”,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积分别为3,2,2,5,则正方形G 的面积为 .【变式3-4】阅读材料:勾股定理222a b c +=本身就是一个关于a 、b 、c 的方程,我们知道这个方程有无数组解,满足该方程的正整数解(),,a b c 通常叫做勾股数组,关于勾股数组的研究我国历史上有非常辉煌的成就,根据《周髀算经》记载,在约公元前1100年,人们就已经知道“勾广三、股修四、径隅五”(古人把较短的直角边称为勾,较长的直角边称为股,而斜边则为弦),即知道了勾股数组()3,4,5.类似地,还可以得到下列勾股数组:()5,12,13,()7,24,25,()9,40,41,…,等等,这些数组也叫做毕达哥拉斯勾股数组,上述勾股数组的规律,可以用下面表格直观表示:勾股数组各数组的和和的另一表示法和与最小数的差股弦3,4,51234´1239-=912-912+5,12,133056´30525-=2512-2512+7,24,255678´56749-=4912-4912+观察分析上述勾股数组,可以看出它们具有如下特点:特点1:最小的勾股数的平方等于另两个勾股数的和;特点2:______.…回答问题:(1)请你再写出上述勾股数组的一个特点:______;(2)如果n 表示比1大的奇数,则上述勾股数组可以表示为(),,n ;(3)请你证明(2)中的三个式子是勾股数组.【考点题型四 用勾股定理解三角形】【例4】如图,ABC D 中,90ACB Ð=°,3BC =,4AC =,点D 是AB 的中点,将ACD D 沿CD 翻折得到ECD D ,连接AE ,BE ,则线段BE 的长等于( )A .75B .32C .53D .2【变式4-1】如图,在ABC V 中,AB AC =,120A Ð=°,分别以点A 和C 为圆心,以大于12AC 的长度为半径作弧,两弧相交于点P 和点Q ,作直线PQ 分别交BC ,AC 于点D 和点E .若3CD =,则AB 的长为( )A .5B .C .6D .8【变式4-2】把两块同样大小的含45°角的三角尺,按如图方式放置,其中一块三角尺的锐角顶点与另一块的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上,若AB =,则CD =.【变式4-3】如图,在ABC V 中,,4,AB AC BC DEF ==△的周长是8,AF BC ^于点,F BE AC ^于点E ,且点D 是AB 的中点,则AF 等于 .【变式4-4】定义:如果三角形有两个内角的差为60°,那么这样的三角形叫做“准等边三角形”.【理解概念】(1)顶角为120°的等腰三角形 “准等边三角形”.(填“是”或“不是”)【巩固新知】(2)已知ABC V 是“准等边三角形”,其中35A Ð=°,90C Ð>°.求B Ð的度数.【解决问题】(3)如图,在Rt ABC △中,90ACB Ð=°,30A Ð=°,1BC =D 在AC 边上,若BCD △是“准等边三角形”,直接写出BD 的长.【考点题型五 勾股定理与网格问题】【例5】如图,在33´的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,AD 为ABC V 的高,则AD 的长为( )A B C D 【变式5-1】如图,44´方格纸中小正方形的边长为1,A ,B 两点在格点上,要在图中格点上找到点C ,使得ABC V 的面积为2,满足条件的点C 的个数为( )A .2个B .4个C .6个D .7个【变式5-2】如图,在每个小正方形的边长为1的网格中,ABC V 的顶点A ,B ,C 均在格点上.(1)线段AB 的长等于 ;(2)请在如图所示的网格中,用无刻度的直尺,作出点A 关于直线BC 的对称点A ¢,并简要说明点A ¢的位置是如何找到的(不要求证明) .【变式5-3】“在ABC V 中,AB 、BC 、AC ”小明同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC V (即ABC V 三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC V 的高,而借用网格就能计算出它的面积,我们把上述求ABC V 面积的方法叫做构图法.(1)直接写出图1中ABC V 的面积 ;(2)若DEF V (0)a >,且DEF V 的面积为23a ,写出它的第三条边长 (试运用构图法在图2的每个小正方形的边长为a 的网格中画出符合题意的DEF V ).【变式5-4】问题背景:在ABC V 中,AB 、BC 、AC 辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC V (即ABC V 三个顶点都在小正方形的顶点处),如图1所示,这样不需求ABC V 的高,借用网格就能计算出它的面积.(1)请将ABC V 的面积直接填写在横线上______;(2)在图2中画DEF V ,使三边DE 、EF 、DF ,DEF V 的形状,说明理由.【考点题型六 勾股定理与折叠问题】【例6】如图,在Rt ABC △中,90C Ð=°,4AC =,3BC =,把Rt ABC △沿BD 折叠,使点C 落在AB 边的点E 处,则AD 的长为( )A .1.5B .2.5C .3D .5【变式6-1】如图,三角形纸片ABC 中,90BAC Ð=°,2AB =,3AC =.沿过点A 的直线将纸片折叠,使点B 落在边BC 上的点D 处;再折叠纸片,使点C 与点D 重合,若折痕与AC 的交点为E ,则AE 的长是( )A .56B .76C .136D .135【变式6-2】如图,有一张Rt ABC △的纸片AB ,两直角边4AC =,8BC =,现将Rt ABC △折叠,使点B 与点A 重合,得到折痕MN ,则ACM △的面积为.【变式6-3】如图,已知在Rt ABC △中,901216ABC AB BC Ð=°==,,,点D 是边BC 上的任意一点,以AD为折痕翻折ABD △,使点B 落在点E 处,连接EC ,当DEC V 为直角三角形时,BD 的长为 .【变式6-4】(1)在ABC V 中,13AB =,15AC =,过点A 作直线BC 的垂线,垂足为D .(i )如图1,若14BC =,求线段AD 的长;(ii )若12AD =,求线段BC 的长.(2)如图2,在ABC V 中,5,AB AC ==A 作直线BC 的垂线,交线段BC 于点D .将ABD △沿直线AB 翻折后得到对应的ABD ¢△,连接CD ¢,若4=AD ,求线段CD ¢的长.【考点题型七 判断三边能否构成直角三角形】【例7】在ABC V 中,已知A B C ÐÐÐ,,的对边分别是a b c ,,.下列条件不能判断ABC V 是直角三角形的是( )A .222a c b -=B .C A B Ð=Ð-ÐC .::5:12:13a b c =D .::3:4:5A B C ÐÐÐ=【变式7-1】下面三角形中是直角三角形的有( )①三角形三内角之比为1:2:3; ②三角形三内角之比为3:4:5;③三角形三边之比为1:2:3; ④三角形三边之比为3:4:5.A .1个B .2个C .3个D .4个【变式7-2】如图,在ABC V 中,513AB AC BC ==,,边上的中线6AD =,BC 的长度为 .【变式7-3】如图,已知ABC V 中,26AB =,24AC =,10BC =,D 是AB 的中点,连接CD ,则CD 的值为 .【变式7-4】如图,ABC V 中,E 为AB 边上的一点,连接CE 并延长,过点A 作AD CE ^,垂足为D ,若7AD =,20AB =,15BC =,24DC =.(1)试说明B Ð为直角;(2)记ADE V 的面积为1S ,BCE V 的面积为2S ,则21S S -的值为 .【考点题型八 利用勾股定理的逆定理求解】【例8】如图,已知ABC V 中,AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,点M ,N为垂足,若32BD =,2DE =,52EC =,则AC 的长为( )A B C D .【变式8-1】如图,在四边形ABCD 中,3AB =,2BC =,1CD =,AD 90BCD Ð=°,则四边形ABCD 的面积为( )A .1+B .1+C .1+D .1【变式8-2】如图,P 是等边三角形ABC 内的一点,且4PA =,3PB =,5PC =,以BC 为边在ABC V 外作BQC BPA V V ≌,连接PQ ,则APB Ð的度数为 .【变式8-2】如图,在ABC V 中,AC 和BC 的垂直平分线1l 和2l 分别交AB 于点D 、E ,若3AD =,4DE =,5EB =,则ABC V 的面积等于 .【变式8-4】如图,在四边形ABCD 中,90,1,3B BC AC DA CD Ð=°====,(1)证明:ACD V 是直角三角形;(2)求四边形ABCD 的面积.【考点题型九 勾股定理逆定理的实际应用】【例9】小数同学向东走5米,沿另一个方向又走了12米,再沿着第三个方向走了13米回到原地,那么小数同学向东走5米后所走的方向是( )A .向北B .向南C .向西D .向南或向北【变式9-1】甲,乙两艘客轮同时从港口O 出发,甲客轮沿北偏东30°的方向航行600m 到达点A 处,乙客轮在同一时刻到达距离港口800m 的点B 处,若A ,B 两点间的距离为1000m ,则乙客轮的航行方向可能是( )A .南偏东60°B .南偏西60°C .北偏西30°D .南偏西30°【变式9-2】海面上有两个疑似漂浮目标.A 舰艇以12海里/时的速度离开港口O ,向北偏西50°方向航行;同时,B 舰艇在同地以16海里/时的速度向北偏东一定角度的航向行驶,如图所示,离开港口5小时后两船相距100海里,则B 舰艇的航行方向是 .【变式9-3】一个零件的形状如图所示,按规定这个零件中A Ð与DBC Ð都应为直角,工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件 符合要求吗?(填“是”或“否”)(2)这个四边形的面积为 .【变式9-4】如图,在一条东西走向的河的一侧,有一村庄C ,河边原有两个取水点A 、B ,其中AB AC =,由于某种原因,由C 到A 的路已经不通,该村为方便村民取水,决定在河边新建一个取水点H (A 、H 、B 在同一条直线上), 并修建一条路CH , 测得3CB =千米, 2.4CH =千米, 1.8HB =千米,(1)问CH 是不是村庄C 到河边最近的一条路?请通过计算加以说明;(2)求原来的路线AC 的长.【考点题型十 勾股定理的简单应用】【例10】《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵大风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部四尺远,问竹子折断处离地有多高?( )A .4.2尺B .4.5尺C .5.2尺D .5.5尺【变式10-1】如图是楼梯的一部分,若2AD =,1BE =,3AE =,一只蚂蚁在A 处发现C 处有一块糖,则这只蚂蚁吃到糖所走的最短路程为( )A B .3C D .【变式10-2】荡秋千是中国古代北方少数民族创造的一种运动.小亮想利用所学的勾股定理的知识测算公园里一架秋千的绳索AB 的长度.如图.他发现秋千静止时,秋千踏板离地面的垂直高度1m BC =,将踏板往前推送,使秋千绳索到达D 的位置,测得推送的水平距离为6m ,即6m DE =.此时秋千踏板离地面的垂直高度3m DF =.那么,绳索的长度为 m .AB=【变式10-3】某医院入口的正上方A处装有红外线激光测温仪(如图所示),测温仪离地面的距离 2.4BC=米),测温仪自动显示体温,则人头顶离测温仪的米,当(身高1.2m)人体进入感应范围内时(即 1.6距离AD的长为米.【变式10-4】如图,一个梯子AB长25米,顶端A靠在墙AC上(墙与地面垂直),这时梯子下端B与墙角C距离为7米.(1)求梯子顶端A与地面的距离AC的长;AE=,求梯子的下端B滑动的距离BD的长.(2)若梯子的顶端A下滑到E,使4【考点题型十一判断汽车是否超速】【例11】M 城气象中心测得台风中心在M 城正北方向240km 的P 处,以每小时45km 的速度向南偏东 30°的 PB 方向移动,距台风中心 150km 的范围内是受台风影响的区域,则 M 城 受台风影响的时间为( )小时.A .4B .5C .6D .7【变式11-1】如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为( )A .12秒B .16秒C .20秒D .24秒【变式11-2】如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A 处的正前方30m 的C 处,过了5s 后,测得小汽车与车速检测仪间的距离为50m ,则这辆小汽车的速度是 m /s .【变式11-3】如图,有两条公路、ON 相交成30°角,沿公路OM 方向离O 点160米处有一所学校A ,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心,100米为半径的圆形区域内都会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大.若已知重型运输卡车P 沿道路ON 方向行驶的速度为36千米/时,则对学校A 的噪声影响最大时卡车P 与学校A 的距离是 米;重型运输卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间是 秒.【变式11-4】“为了安全,请勿超速”.如图,一条公路建成通车,在某路段MN 上限速60千米小时,为了检测车辆是否超速,在公路MN 旁设立了观测点C ,从观测点C 测得一小车从点A 到达点B 行驶了5秒,已知60CBN Ð=°,200BC =米,AC =米.(1)请求出观测点C 到公路MN 的距离;(2)此车超速了吗?请说明理由.1173»»..)【考点题型十二 选址使两地距离相等】【例12】23.某地区要在公路AB 上建一个蔬菜批发厂E ,使得C ,D 两村庄到E 的距离相等,已知18km AB =,9km DA =,15km CB =.DA AB ^于点A ,CB AB ^于点B ,则AE 的长是( )A .10kmB .11kmC .12kmD .13km【变式12-1】如图,高速公路上有A ,B 两点相距10km ,C ,D 为两村庄,已知4km DA =,6km CB =.DA AB^于A ,CB AB ^于B ,现要在AB 上建一个服务站E ,使得C ,D 两村庄到E 站的距离相等,则EB 的长是( ).A .4kmB .5kmC .6kmD km【变式12-2】如图,商场(点M )距公路(直线l )的距离(MA )为3km ,在公路上有一车站(点N ),车站距商场(NM )为4km ,公交公司拟在公路上建一个公交车站停靠站(点P ),要求停靠站到商场与到车站的距离相等,则停靠站到车站的距离(NP )的长为 .【变式12-3】为了解决 A 、B 两个村的村民饮水难,计划在笔直的河边l 修建一个水泵站,为节约经费,该水泵站与两村的水管线总长力求做到最短,已知 A 村到河边的距离为 1km ,B 村到河边的距离为 2km ,AB=4km ,则水管线最短要 km(结果保留根号).【变式12-4】如图,小区A 与公路l 的距离200AC =米,小区B 与公路l 的距离400BD =米,已知800CD =米.(1)政府准备在公路边建造一座公交站台Q ,使Q 到A 、B 两小区的路程相等,求CQ 的长;(2)现要在公路旁建造一利民超市P ,使P 到A 、B 两小区的路程之和最短,求PA PB +的最小值,求出此最小值.【考点题型十三 求最短路径问题】【例13】如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( )A B .13cm C .12cm D .17cm【变式13-1】如图所示,圆柱底面半径为4cm π,高为18cm ,点A ,B 分别是圆柱两底面圆周上的点,且A ,B 在同一母线上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为( )A .24cmB .30cmC .18cmD .27cm【变式13-2】在一个长14cm ,宽8cm 的长方形纸片上,如图放置一根正三棱柱的木块,它的侧棱平行且大于纸片的宽AD ,它的底面边长为1cm 的等边三角形,一只蚂蚁从点A 处到点C 处的最短路程是 cm .【变式13-3】如图,透明圆柱形容器(容器厚度忽略不计)的高为13cm ,底面周长为12cm ,在容器内壁离容器底部7cm 的A 处有一饭粒,此时一只蚂蚁正好在容器外壁且距离容器上沿2cm 的点B 处,则蚂蚁吃到饭粒需爬行的最短路径长度是 cm .【变式13-4】数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.【思想应用】(1)已知a ,b 均为正实数,且2a b +=+解决此问题:如图,2AB =,1AC =,2BD =,CA AB ^,DB AB ^,点E 是线段AB 上的动点,且不与端点重合,连接CE ,DE ,设AE a =,BE b =.①用含a 的代数式表示CE =________,用含b 的代数式表示DE =________.________.【类比应用】(2+【考点题型十四 勾股定理中的最值问题】【例14】如图,Rt ABC △中,2AC BC ==,点D ,E 分别是AB ,AC 的中点,在CD 上找一点P ,使PA PE+最小,则这个最小值是( )A .2B .CD 【变式14-1】如图,∠AOB=45°,∠AOB 内有一定点P ,且OP=8.在OA 上有一动点Q ,OB 上有一动点R .若△PQR 周长最小,则最小周长是( )A .8B .C .16D .【变式14-2】某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ¢,连接A B ¢,则A B ¢与直线l 的交点即为P ,且PA PB +的最小值为A B ¢.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC V 中,90,2,C AC BC E Ð=°==是AB 的中点,P 是BC 边上的一动点,则PA PE+的最小值为 ;(2)几何拓展:如图3,ABC V 中,2,30AC A =Ð=°,若在AB 上取一点M ,则2CM AM +的值最小值是 .【变式14-3】数形结合是数学的重要思想和解题方法,如:“当012x <<时,的最小值”可看作两直角边分别为x 和2的Rt ACP V 分别是12x -和3的Rt BDP V 的斜边长.于是将问题转化为求AP BP +的最小值,如图所示,当AP 与BP 共线时,AP BP +为最小.请你解决问题:当04x <<的最小值是 .【变式14-4】如图,在ABC V 中,90BAC Ð=°,4AB AC ==,D 是BC 边上一点,连接AD ,以AD 为直角边向右作等腰直角三角形ADE ,其中=90DAE а.(1)连接CE ,求证:ABD ACE ≌△△.(2)当BD 为何值时,ADE V 的周长最小.【考点题型十五 勾股定理的动点问题】【例15】如图,在ABC V 中,2,,AB BC AO BO P ===是射线CO 上的动点,60AOC Ð=°,则当PAB V 是直角三角形时,AP 的长为( )A B C D 【变式15-1】如图,在ADF Ð边DA 上有一点B ,6DB =,22.5ADF Ð=°,E ,C 分别是边DF 和DA 上的动点,则BE EC +的最小值是( )A .B .6C .D .3【变式15-2】如图.在Rt ABC △中.90,306C A BC Ð=°Ð=°=,.若点P 是边AB 上的一个动点,以每秒3个单位的速度按照从A B A --运动,同时点C 以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动,在运动过程中,设运动时间为t ,若BPQ V 为直角三角形,则t 的值为【变式15-3】如图,ABC V 中,90C Ð=°,8AC =cm ,6BC =cm ,BD 平分ABC Ð,动点M 从点A 出发,以每秒2cm 的速度沿边AB BC ®匀速运动,连接DM ,当ADM V 是以AD 为腰的等腰三角形时,点M 的运动时间为 秒.【变式15-4】如图,在ABC V 中,90B Ð=°,8AB =,10AC =,P ,Q 是ABC V 边上的两个动点,其中点P 从点A 开始沿A B ®方向运动,且速度为每秒1个单位长度;点Q 从点B 开始沿B C A ®®方向运动,且速度为每秒2个单位长度.它们同时出发,设出发的时间为t 秒.根据以上信息,解答下列问题.(1)求BC 的长.(2)当t 为何值时,点P 在边AC 的垂直平分线上.(3)当点Q 在边CA 上运动时,是否存在t 的值,使BCQ △为等腰三角形?若存在,请直接写出t 的值;若不存在,请说明理由.【考点题型十六 勾股定理的综合】【例16】如图,在等边ABC V M 在线段AB 上,2AM =,1B M =,则以线段AM ,BM ,CM 的长为边组成的三角形面积为( )A B C .34D .1【变式16-1】如图,在ABC V 中,3,5,7AB AC BC ===.E F 、分别为BC CA 、上的动点,且BE CF =,连接AE BF 、,则AE BF +的最小值为( )A B C .6D【变式16-2】在Rt ABC △中,Rt C Ð=Ð,8AC =,4BC =,以AB 为边在ABC V 外作等腰直角ABD ,连接CD ,则CD 长为 .【变式16-3】如图,在ABC V 中,D 为BC 边上一点,连接AD ,将△ABD 沿AD 折叠至ABC V 所在平面内,得到ADE V ,AE 与BC 交于点F ,连接CE ,若AD CE ,120BAC AFC Ð=Ð=°,2AC =AB 的长为【变式16-4】已知ABC V 中,AB AC =.(1)如图1,在ADE V 中,若AD AE =,且DAE BAC Ð=Ð,求证:CD BE =;(2)如图2,在ADE V 中,若60ÐаDAE BAC ==,且CD 垂直平分AE ,3AD =,4CD =,求BD 的长;(3)如图3,在BCD △中,45CBD CDB Ð=Ð=°,连接AD ,若45CAB Ð=°,求AD AB 的值.。

八年级数学上册 3.3 勾股定理的简单应用知识点解读素材 (新版)苏科版

八年级数学上册 3.3 勾股定理的简单应用知识点解读素材 (新版)苏科版

《勾股定理的简单应用》知识点解读知识点1 确定几何体上的最短路线(重点)【例1】有一圆柱形油罐,如图(左)已知油罐的周长是12米,高AB是5米,要以A点环绕油罐建梯子,正好到A点的正上方B点,问梯子最短需多少米?解析将圆柱的侧面展开,展开图如图(右),是一个矩形,用勾股定理求出AB就是最短路程.答案如图,已知AC=12米(周长),BC=5米(高),∠ACB=90°,∴AB2=AC2+BC2=122+52=169=132,∴AB=13(m),即梯子最短需13米.变式练习:一只蚂蚁如果沿长方体的表面从A点到B点,那么沿哪条路线爬行最近?你能帮它找出来吗?如图(1)所示,长方体的长为15 cm,宽为10 cm,高为20 cm,点B与点C的距离为5 cm.答案将两侧面展开,由点A先爬到E点,再爬到B点,路程最短.点拨将两侧面展开,如图(2)所示,连接AB,则AB2=202+152=625.将侧面与上地面展开,如图(3)所示,连接AB,则AB2=102+252=725.警示:有很多学生想不到去比较两个路程的远近而直接转化为求AB的距离.知识点2 利用三角形三边的关系判断垂直(重点)【例2】有一块四边形地ABCD,如图,∠B=90°,AB=4 m,BC=3 m,CD=12 m,DA=13m,求该四边形地ABCD的面积解析连接AC,将四边形地ABCD分为△ABC和△ACD是解题关键.答案连接AC,∵AB=4 m BC=3 m,根据勾股定理得 AC=5 m.又∵AC2+CD2=AD2,∴∠ACD=90°,即△ACD是直角三角形.∴S△ABC=3×4÷2=6(m2),S△ACD=5×12÷2=30(m2).四边形ABCD的面积= S△ABC+ S△ACD=36(m2).警示:有些学生会把本图看成一个梯形去求,那就错了,因为∠B AD不一定是直角.2。

苏科版八年级数学上册第3章“勾股定理知识点与典型题

苏科版八年级数学上册第3章“勾股定理知识点与典型题

初二(上)第3章勾股定理知识点与典型题(复习经典)1、勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方∵∴例1:(1)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm,正方形A、B、C的面积分别是8 cm2、10 cm2、14 cm2,则正方形D的面积是_______cm2.(2)如图,已知1号、4号两个正方形的面积为为7,2号、3号两个正方形的面积和为4,则a,b,c 三个方形的面积和为(3)如图,阴影部分是以直角三角形的三边为直径的半圆,两个小半圆的面积和为100.则大的半圆面积是__________.例2:(1)在Rt△ABC中,∠A=90°,∠B=45°,AB=3,则AC=_______.BC=______.(2)在Rt△ABC中,∠B=90°,∠C=30°,AB=3,则AC=_______.BC=______.(3)在Rt△ABC中,∠C=90°,AC:AB=3:4,AB=25,则AC=_______.BC=______.(4).在Rt△ABC中, AB=6,AC=8,则BC= .例3:(1)如图,已知AB=13,BC=14,AC=15,AD⊥BC于D,求AD长.(2)已知△ABC中,AB=13,AC=15,AD⊥BC,且AD=12,求BC的长.AB C例4:(1)在Rt △ABC 中,∠A =90°,∠B =45°,BC =6, 求AC 和BC .(2)在Rt △ABC 中,∠B =90°,∠C =30°,BC =3,求AB 和AC .(3)若直角三角形中,一斜边比一直角边大2,且另一直角边长为6,求斜边的长.(4)等腰三角形ABC 的面积为12,底上的高AD 为4,求它的腰长(5)等腰三角形的周长是20 cm ,底边上的高是6 cm ,求它的面积.例5:(1)在△ABC 中,∠C =90°,AB =6,BC =8,DE 垂直平分AB ,求BE 的长.(2)在△ABC 中,∠C =90°,AB =6,BC =8,AE 平分∠CAE ,ED ⊥AB,求BE 的长.(3)如图,折叠长方形纸片ABCD ,是点D 落在 边BC 上的点F 处,折痕为AE ,AB=CD=6, AD=BC=10,试求EC 的长度.EACBEACB2、勾股定理的逆定理:一个三角形中,如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形∵∴例1:每个小正方形的边长为1.(1)求ΔABC的面积(2)判断ΔABC的形状例2:如图,在四边形ABCD中,AB=3 cm,AD=4 cm,BC=13 cm,CD=12 cm,∠A=90°,求四边形ABCD的面积.例3:如图,在△ABC中,CD是AB边上的高,AD=9,BD=1,CD=3试问:△ABC是直角三角形吗?为什么?例4:如图,在△ABC中,AB=17 cm,BC=16 cm,BC边上的中线AD=15 cm,求AC3、勾股数:常见勾股数有:3、、;5、、;6、、;7、、;8、、;9、、;AB C例:下列命题中,是假命题的是( ).A .在△ABC 中,若∠B =∠C =∠A ,则△ABC 是直角三角形 B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠A :∠B :∠C =3:4:5,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形4、补充:①长方体盒子内最长的线段=d ;②长方体盒子外小虫爬行的最短路线=d ;圆柱体盒子内最长的线段=d圆柱体盒子外小虫爬行的最短路线=d两条路线比较:其一、AC+BC 即高+直径其二、例2:底面周长为12,高为8的圆柱体上有一只小蚂蚁要从点A 爬到点B ,则蚂蚁爬行的最短距离是( ). A .10 B .8 C .5D .4例3:某开发区有一空地ABCD ,如图所示,现计划在空地上种草皮,经测量,∠B =90°,AB =3m ,BC =4 m ,AD =12 m ,CD =13 m ,若每种植1平方米草皮需要100元,问总共需要投入多少元?5、勾股定理的应用例1:(1)一轮船以16 km /h 的速度从港口A 出发向东北方向航行,另一轮船以12km /h 的速度同时从港口出发向东南方向航行,那么离开港口A2h 后,两船相距BAABACBBCA(2)一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5 m,消防车的云梯最大升长为13 m,则云梯可以达到该建筑物的最大高度是(3)一棵树在离地面9m处断裂,树的顶部落在离底部12 m处,树折断之前有_______m.例2:如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为7m,梯子的顶端B到地面的距离为24 m,现将梯子的底端A向外移动到A',使梯子的底端A'到墙根O的距离等于15 m.同时梯子的顶端B下降至B',那BB'等于( )A.3m B.4 m C.5 m D.6 m课后练习1:如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影)。

苏科版八年级上册第3章勾股定理知识点总结(复习)课件

苏科版八年级上册第3章勾股定理知识点总结(复习)课件

展开图:
A
20
3
2
3
2
3
2
C
B
A
20
23
B
8.展开思想
例3.如图,长方体的长为15cm,宽为10cm,高为20cm, 点B离点C 5cm,一只蚂蚁如果要沿着长方体的表面从点 A爬到点B,需要爬行的最短距离是多少?
展开图: 5cm
DC B
B DC
20cm 20cm
A 10cm 15cm
A 10cm
8.展开思想
买最长的 吧!
快点回家,好 用它凉衣服。
糟糕,太 长了,放 不进去。
如果电梯的长、宽、高分别是1.5米、1.5米、2.2米, 那么,能放入电梯内的竹竿的最大长度大约是多少米?
2.2米 2.2米
1.5米
8.展开思想
A
C
D 1.5米 B BC2 = CD2 + BD2
= 1.52 + 1.52 = 4.5
三角形是___直__角____三角形(按角分类填写)
3. 原命题与逆命题
互逆命题: 两个命题中, 如果第一个命题的题设是第二个
命题的结论, 而第一个命题的结论又是第二个命题 的题设,那么这两个命题叫做互逆命题.
如果把其中一个叫做原命题, 那么另一个叫做 它的逆命题.
互逆定理: 如果一个定理的逆命题经过证明是真命题, 那
8
x
15
y
25
24
1.勾股定理
如果直角三角形的两条直角边长分别为a,b, 斜边长为c,那么a2+b2=c2.
勾股定理的主要应用: (2)已知直角三角形的一边与另两边的关系,求直 角三角形的另两边;
练习:

苏教版八年级数学上册《勾股定理》课件(共34张PPT)

苏教版八年级数学上册《勾股定理》课件(共34张PPT)
……
132=b+c
请你结合该表格及相关知识,求出b、c的值.
即b=
,c=
例5、如图,四边形ABCD中,AB=3,
BC=4,CD=12,AD=13, ∠B=90°,求四 边形ABCD的面积
D
13
A
12 3┐
B4 C
变式 有一块田地的形状和尺寸 如图所示,试求它的面积。
A
4
13
5
B
3

C
12
D
例6、假期中,王强和同学到某海岛上去玩 探宝游戏,按照探宝图,他们登陆后先往 东走8千米,又往北走2千米,遇到障碍后 又往西走3千米,在折向北走到6千米处往 东一拐,仅走1千米就找到宝藏,问登陆点 A 到宝藏埋藏点B的距离是多少千米?
例1、如图,一块直角三角形的纸片,两 直角边AC=6㎝,BC=8㎝。现将直角边 AC沿直线AD折叠,使它落在斜边AB上, 且与AE重合,求CD的长.
A
6
6E x
4
x 8-x C
D D
第8题图
B
练习:三角形ABC是等腰三角形
AB=AC=13,BC=10,将AB向AC方向
对折,再将CD折叠到CA边上,折痕CE,
AB2=2.22+X2=9.34
AB≈3米
练习:一种盛饮料的圆柱形杯,测得内部底面 半径为2.5㎝,高为12㎝,吸管放进杯里, 杯口外面至少要露出4.6㎝,问吸管要做多 长?
1、通过这节课的学习活动你有哪些收获? 2、对这节课的学习,你还有什么想法吗?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 书籍是屹立在时间的汪洋大海中的灯塔。

苏科版八年级上册 勾股定理单元复习

苏科版八年级上册 勾股定理单元复习

【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。

常用关系式 由三角形面积公式可得:AB ·CD=AC ·BC 2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中为斜边。

3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如;;;;8,15,17等 ③用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)如果三角形的三边长a 、b 、c 满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );(2)若c2=a2+b2,则△ABC 是以∠C 为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c 为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°∠A+∠B=90°(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°可表示如下: BC =AB∠C=90°c 3,4,56,8,105,12,137,24,25n 221,2,1n n n -+2,n ≥n 2221,22,221n n n n n ++++n 2222,2,m n mn m n -+,m n >m n ⇒⇒21A BCa b c弦股勾(3)直角三角形斜边上的中线等于斜边的一半。

八年级数学上册勾股定理知识点

八年级数学上册勾股定理知识点

八年级数学上册勾股定理知识点
八年级数学上册的勾股定理主要包括以下几个知识点:
1. 勾股定理的基本原理:勾股定理指出,在直角三角形中,直角边的平方之和等于斜
边的平方。

即a^2+b^2=c^2(其中a、b为直角边,c为斜边)。

2. 判断直角三角形:可以通过勾股定理判断一个三角形是否为直角三角形。

如果一个
三角形的边长满足勾股定理的条件,那么就可以说明它是一个直角三角形。

3. 求解直角三角形的边长:已知一个直角三角形的两个边长,可以利用勾股定理求解
第三个边长。

例如,若已知两直角边的长度为a和b,则斜边的长度c =√(a^2+b^2)。

4. 勾股定理的应用:勾股定理广泛应用于几何推理和问题解决中。

例如,可以利用勾
股定理计算倾斜的直线的斜率、判断是否存在直角、计算三角形的面积等。

5. 勾股定理的推导和证明:在学习勾股定理时,通常也会涉及到对定理的推导和证明。

可以利用几何图形或代数方法进行推导和证明,加深对勾股定理的理解。

以上是八年级数学上册勾股定理的主要知识点。

通过学习这些知识点,可以掌握并应
用勾股定理解决直角三角形相关的问题。

苏教版八上数学3-4单元知识点梳理

苏教版八上数学3-4单元知识点梳理
2、勾股定理的逆定理——常用于判断三⻆形的形状: 理解: (1)确定最大边(不妨设为 c)。 (2)若 c2=a2+b2,则△ABC 是以∠ C 为直⻆的三⻆形。
(3)若 a2+b2<c2,则此三⻆形为钝⻆三⻆形(其中 c 为最大边)。 (4)若 a2+b2>c2,则此三⻆形为锐⻆三⻆形(其中 c 为最大边)。 (5)难点:运用勾股定理立方程解决问题。
第三章 勾股定理
一、基本定义 1、勾:直⻆三⻆形较短的直⻆边
2、股:直⻆三⻆形较⻓的直⻆边
3、弦:斜边
二、勾股定理 1、定理:
直⻆三⻆形两直⻆边 a,b 的平方和等于斜边 c 的平方,即 a2+b2=c2。
三、勾股定理的逆定理 1、定理:
如果三⻆形的三边⻓ a,b,c 有关系 a2+b2=c2,那么这个三⻆形是直 ⻆三⻆形。
2、四舍五入法: 取近似值的方法——四舍五入法。
十、科学记数法 1、定义: 把一个数记为科学计数法。
十一、实数和数轴 1、每 一 个 实 数 都 可 以 用 数 轴 上 的 点 来 表 示 ;反 过 来 ,数 轴 上 每 一 个 点 都 表 示一个实数。
2、实数与数轴上的点是一一对应的关系。
六、实数定义与分类 1、无理数:无限不循环小数叫做无理数。
理解:常⻅类型有三类
(1)开方开不尽的数:如
等。
(2)有特定意义的数:如圆周率π,或化简后含有π的数,如π+8 等。 (3)有特定结构的数:如 0.1010010001……等;(注意省略号)。
2、实数:
有理数和无理数统称为实数。 3、实数的分类: (1)按定义来分
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里 面的。 3、实数的运算律:

苏科版八年级上册第3章 勾股定理知识点总结

苏科版八年级上册第3章 勾股定理知识点总结

第3章勾股定理知识结构:勾股定理1.勾股定理(1)直角三角形中两直角边的平方和等于斜边的平方(2)勾股定理的验证-------用拼图法,借助面积不变的关系来证明(3)应用1.在直角三角形中已知两边求第三边2.在直角三角形中已知两边求第三边上的高2.勾股定理的逆定理1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形(2)勾股数1.满足a2+b2=c2的三个正整数a,b,c称为勾股数2.常见的勾股数(1)3,4,5(2)5,12,13(3)8,15,173.应用(1)勾股定理的简单应用求几何体表面上两点间的最短距离解决实际应用问题(2)勾股定理逆定理的应用---------判定某个三角形是否为直角三角形3.1勾股定理一、求网格中图形的面积求网格中图形的面积,通常用两种方法:“割”或“补”。

二、勾股定理直角三角形两条直角边的平方和等于斜边的平方。

拓展延伸:(1)勾股定理揭示的是直角三角形的三边关系,所以必须注意“在直角三角形中”这一前提。

(2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把所求线段转化为某一直角三角形的边,然后利用勾股定理求解。

三、勾股定理的验证运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。

3.2勾股定理的逆定理一、勾股定理的逆定理如果三角形的三边长分别为a,b,c且a2+b2=c2,那么这个三角形是直角三角形。

注意:(1)还没确定一个三角形是否为直角三角形时,不能说“斜边”“直角边”。

(2)不是所有的c都是斜边,要根据题意具体分析。

当满足a2+b2=c2时,c是斜边,它所对的角是直角。

勾股定理与勾股定理的逆定理之间既有区别,又有联系,如下表所示:二、勾股数满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。

详解:(1)如:32+42=52,所以3,4,5是一组勾股数,常见的勾股数有3,4,5;5,12,13;6,8,10等。

八年级上册数学勾股定理知识点

八年级上册数学勾股定理知识点

八年级上册数学勾股定理知识点八年级上册数学勾股定理知识点1.勾股定理的内容:假如直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾最短的边、股较长的直角边、弦斜边。

勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:假如三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大一样倍数后,仍为勾股数.常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。

4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:假设一个直角三角形三边的.长分别是三个连续的自然数,那么这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,那么它的三边长分别为解析:可知三边长度为6,8,10,那么周长为24例2:直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,那么斜边为5 第二种情况:当斜边长度为4时,一条直角边为3,那么另一边为根号7《点评》此题是一道易错题目,同学们应该认真审题!例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的选项是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C初中数学的方法和技巧多做主要是指做习题,学数学一定要做习题,并且应该适当地多做些。

做习题的目的首先是纯熟和稳固学习的知识;其次是初步启发灵敏应用知识和培养独立考虑的才能;第三是融会贯穿,把不同内容的数学知识沟通起来。

在做习题时,要认真审题,认真考虑,应该用什么方法做?能否有简便解法?做到边做边考虑边总结,通过练习加深对知识的理解。

必需要有错题本说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。

苏科版八年级上册数学勾股定理知识点

苏科版八年级上册数学勾股定理知识点

苏科版八年级上册数学勾股定理知识点知识点勾股定理:直角三角形两直角边的平方和等于斜边的平方,即如果直角三角形的两直角边长分别为a,b,斜边长为c,那么asup2;+bsup2;=csup2;(勾股定理公式)直角三角形性质定理:1.直角三角形两直角边a,b的平方和等于斜边c的平方。

即asup2;+bsup2;=csup2;。

2.在直角三角形中,两个锐角互余。

3.在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。

4.直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

5.在直角三角形中,如果有一个锐角等于30deg;,那么它所对的直角边等于斜边的一半。

其逆定理也成立,即在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30deg;。

7.直角三角形直角上的角平分线与斜边的交点D则BD:DC=AB:AC课后练习1.如果Rt△的两直角边长分别为k2-1,2k(kgt;1),那么它的斜边长是()A、2kB、k+1C、k2-1D、k2+12.已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121B.120C.90D.不能确定4.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或33勾股定理知识点的全部内容就是这些,更多的精彩内容请点击初二数学知识点栏目了解详情,预祝大家在新学期可以更好的学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1勾股定理【知识点梳理】一、格点图形的面积在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们把每个小正方形的顶点称为格点,以格点为顶点的图形称为格点图形.利用网格可以求出格点图形的面积. 例1:如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.图中的四边形ABCD 就是一个“格点多边形”,求四边形ABCD 的面积.二、勾股定理直角三角形两条直角边的平方和等于斜边的平方.若把直角三角形的两条直角边和斜边分别记为c b a 、、(如图3.1.1),则222c b a =+例2:在Rt △ABC 中,∠C=90°.(1)如果AC=3,BC=4,那么AB= (2)如果AB=25,BC=24,那么AC=三、勾股定理的验证勾股定理的推导方法有很多种,到目前为止,能够验证勾股定理的方法有近500种.课本上是利用图形的“截、割、补、拼”来说明表示相同图形面积的代数式之间的恒等关系,既具有严密性,又具有直观性.例3:如图,分别以边长分别为c b a 、、(c 为斜边)的直角三角形的3边为边向外作三个正方形拼成如图所示的图形,是利用面积知识验证勾股定理.四、勾股定理的应用勾股定理揭示了直角三角形中三条边之间的数量关系,只要知道直角三角形中任意两条边的长度就可以求出第三条边的长度.例4:如图,滆湖有A 、B 两点,从与BA 方向成直角的BC 方向上的点C 处测得CA=13米,CB=12米,求AB 长.【典例展示】题型一格点图形中的距离问题例1:如图,每个小方格的边长为1,A、B、C都在小方格的顶点上,则点B到AC所在直线的距离为题型二运用勾股定理求直角三角形的边长例2:如图,在Rt△ABC中,∠C=90°.AD平分∠CAB,DE⊥AB于点E,若AC=6,BC=8,求:(1)DE的长;(2)△ADB的面积.题型三折纸中勾股定理的运用例3:如图,四边形ABCD是一张边长为9的正方形,将其沿MN折叠,使点B落在边CD上的点B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5 B.2 C.2.25 D.2.5题型四运用勾股定理进行说理例4:如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC的中点,BE与DF、DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2-GE2=EA2.题型五 探索规律例5:如图,OP=1,过点P 作PP 1⊥OP 且PP 1=1,得OP=2;再过点P1作P 1P 2⊥OP 1且P 1P 2=1,连接OP 2,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=4;…依此法继续作下去,得OP 2014= .题型六 运用方程思想解题例6:一个直角三角形的一条直角边长为5cm ,另一条直角边比斜边短1cm 。

求它的斜边长。

题型七 分类讨论题例7:在△ABC 中,AB=15,AC=13,高AD=12,求△ABC 的周长.【误区警示】误点1 不能用图形面积表示代数式之间的数量关系,导致出现错误例1:如图是由四个相同的直角三角尺拼接成的图形,设三角尺的直角边长分别为)(b a b a >、,则这两个图形能验证的等式是( )A .(a+b )2-(a-b )2=4abB .(a 2+b 2)-(a-b )2=2abC .(a+b )2-2ab=a 2+b 2D .(a+b )(a-b )=a 2-b 2误点2 不能正确把握勾股定理的内涵,导致出现错误例2:已知Rt △ABC 的两边长为3、4,求第三边长的平方.§3.2勾股定理的逆定理【知识点总结】一、勾股定理的逆定理如果三角形的三边长分别为c b a 、、,且222c b a =+,那么这个三角形是直角三角形. 例1:如图,判断图中的三角形是否是直角三角形?为什么?二、勾股数满足关系222c b a =+的3个正整数c b a 、、称为勾股数.利用勾股数可以构造直角三角形. 例2:分别以下列四组数为一个三角形的三边长:①6、8、10;②5、12、13;③8、15、17;④7、8、9.其中能构成直角三角形的有( )A.4组B.3组C.2组D.1组【典例展示】题型一 判断三角形的形状例1:已知△ABC 的三边长分别为c b a 、、,且满足0641615)17(22=+-+-+-c c b a ,则△ABC 是( )A.以a 为斜边的直角三角形B.以b 为斜边的直角三角形C.以c 为斜边的直角三角形D.非直角三角形题型二 运用勾股定理的逆定理进行计算例2:如图,在△ABC 中,D 为边BC 上的一点,AB=13,AD=12,AC=15,BD=5,求DC 的长题型三 运用勾股定理的逆定理进行说理例3:如图,在△ABC 中,AB=13cm ,BC=10cm ,中线AD=12cm ,试说明△ABC 是等腰三角形题型四 运用勾股定理的逆定理确定两直线的位置关系例4:如图,在△ABC 中,D 为BC 的中点,AB=5,AD=6,AC=13,试说明AD 与AB 的位置关系题型五 运用勾股定理的逆定理解决实际问题例5:如图,在我国沿海有一艘不明国际的轮船进入我国还与,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?题型六 探索性问题例6:我国估计《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究下两类特殊的勾股数:(1)通过观察完成下面两个表格中的空格(以下a 、b 、c 为Rt △ABC 的三边,且a <b <c ):(2)我们发现,表一中a 为大于l 的奇数,此时b 、c 的数量关系是;表二中a 为大于4的偶数,此时b 、c 的数量关系是 ;(3)一般地,对于表一,用含a 的代数式表示b= ;对于表二,用含a 的代数式表示b= ;(4)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,l2,13”与表二中的“10,24,26”恰好也成倍数关系….请直接利用这一规律计算:在Rt △ABC 中,当a=53,b=54时,斜边c 的值.【误区警示】误点1 不能正确理解勾股定理的逆定理,导致出现错误例1:已知一个三角形的三边长为a=5,b=13,c=12,这个三角形是直角三角形吗?误点2 思维定势误判直角,导致出现错误例2:在△ABC 中,∠A 、∠C 、∠C 的对边分别是a 、b 、c ,且2))((c b a b a =-+,则( )A.∠A 为直角B.∠C 为直角C.∠C 为直角D.不是直角三角形§3.3勾股定理的简单应用【知识点总结】一、运用勾股定理解决实际问题在运用勾股定理解决实际问题时,应该构造直角三角形,然后把直角三角形的某些边表示出来,最后利用勾股定理解决实际问题例1:如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少为多少米?若楼梯宽为3米,每平方米需要70元,则这块地毯需要多少元?二、运用勾股定理的逆定理解决实际问题如果三角形的三边长为c b a 、、满足222c b a =+,那么这个三角形是直角三角形,这是根据三角形 三边长之间的数量关系来判定一个三角形是直角三角形的方法.例2:如果是某农民建房时挖地基的平面图,按标准应为长方形,挖完后他测量了一下,发现:AB=DC=8m ,AD=BC=6m ,AC=9m ,请你运用所学知识帮他检验一下挖的是否合格?【典例展示】题型一 折纸中的数学问题例1:如图,将长为10cm 、宽为8cm 的长方形ABCD 沿着折线AE 折叠,使长方形的一个顶点D 落在边BC 上的点D ′处,求这条折线AE 的长(精确到0.1cm )题型二 生活中的数学问题例2:欲将一根长为129cm 的木棒放在长、高、宽分别为120cm 、40cm 、30cm 的木箱中,能放进去吗?例3:如图,A 、B 、C 、D 是四个小镇,它们之间(除B 、C 外)都有笔直的公路相互连接,公共汽车行驶于城镇之间,其票价与路程成正比.已知各城镇间的公共汽车票价如下:A-B:10元,A-C:12.5元,A-D:8元,B-D:6元,C-D:4.5元,为了B、C之间交通方便,在B、C之间建成笔直的公路,请按上述标准计算出B、C之间公共汽车的票价为多少元?题型三体现方程思想的问题例4:如图,某人欲横渡一条河,由于水流的影响,实际上岸地点A偏离欲到达地点B有50米远,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度BC为多少米?题型四体现数学建模思想的问题例5:如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?例6:如图,小亮将升旗的绳子拉倒旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉倒距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m题型五跨学科渗透题例7:如图,A、B两点都与平面镜相距4米,且A、B两点相距6米,一束光线由点A射向平面镜反射之后恰巧经过B点,求B点到入射点的距离.题型六推理说明题2,试说明△ABC是直角三角形.例8:如图,在△ABC中,CD⊥AB于点D,DB=CD•AD题型七操作性问题例9:如图,在4×4的正方形网格中,每个小正方形的边长都是1,线段AB和CD分别是图中1×3的两个长方形的对角线,显然AB∥CD。

请你用类似的方法作出过点E且垂直于AB的直线,并说明理由.【误区警示】误点不能运用恰当的数学模型解决问题,导致出现错误例如图,有两棵树,一棵高6米。

另一棵高2米,两树两句3米。

一只鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?。

相关文档
最新文档