混凝土回弹与碳化深度图文稿

合集下载

c35混凝土强度回弹值与碳化深度

c35混凝土强度回弹值与碳化深度

c35混凝土强度回弹值与碳化深度c35混凝土强度回弹值与碳化深度之间存在一定的关系。

回弹值是指使用回弹锤测试混凝土表面弹性反馈的数值,反映了混凝土的硬度和抗压能力。

而碳化深度是指混凝土中碳酸盐溶液浸泡后,二氧化碳逐渐渗入混凝土中,导致混凝土中钙化合物发生碳化反应,形成碳化层的深度。

一般来说,混凝土的强度回弹值与碳化深度呈负相关关系。

当混凝土的碳化深度增加时,混凝土中的钙化合物被二氧化碳侵蚀,导致混凝土的抗压能力降低,从而使得混凝土的强度回弹值减小。

相反,如果混凝土的碳化深度较小,钙化合物没有受到明显的碳化侵蚀,混凝土的抗压能力相对较高,强度回弹值也相对较大。

然而,需要注意的是,强度回弹值和碳化深度并不是直接的线性关系,而是受到多种因素的影响。

除了碳化深度外,混凝土的配合比、水灰比、水泥品种等也会对强度回弹值产生影响。

此外,测定强度回弹值和碳化深度都需要进行专门的实验测试,通过实验数据的比对和分析,才能得出具体的结论。

总之,了解混凝土的强度回弹值和碳化深度之间的关系,有助于评估混凝土结构的质量和耐久性,以
及制定相应的维护和修复措施。

但具体的数值关系还需根据实际情况进行实验研究和分析。

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响混凝土的碳化是混凝土所受到的一种化学腐蚀。

空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。

水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。

碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。

可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。

影响混凝土碳化速度的因素是多方面的。

首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。

因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。

混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。

回弹仪测混凝土强度及碳化深度测定

回弹仪测混凝土强度及碳化深度测定

回弹仪测水泥混凝土强度及碳化深度的测定1. 在测定过程中对回弹值有怀疑或进行构件测试前后,情况之一应对回弹仪进行回弹仪率定。

对龄期超过3个月的硬化混凝土,应测定混凝土表层碳化深度进行回弹值修正;2. 选择测区:测区表面应清洁、干燥、平整,避开位于混凝土内保护层附近设置的钢筋,测区面积不小于200mm ×200 mm ,每个测区宜测定16个测点,相邻两测点的间距不小于3cm 测点距路边缘或接缝的距离不小于5cm ,将一块混凝土板作为一个试样,每个试样的测区数不宜少于10个,相邻两测区的间距不宜大于2m ;3. 将回弹仪的弹击杆顶住混凝土表面,轻压仪器,使按钮松开,弹击杆徐徐伸出,并使挂钩挂上弹击锤;4. 手持回弹仪对混凝土表面缓慢均匀施压,待弹击锤脱钩,冲击弹击杆后,弹击锤即带动指针向后移动到达一定位置,指针刻度线在刻度尺上的示值即为该点的回弹值;5. 使用上述方法在混凝土依次读数并记录回弹值,如条件不利于读数,可按下按钮,锁住机芯,将回弹仪移至他处读数,准确至1个单位;6. 使用完毕后将弹击杆压入仪器内,经弹击后按下按钮锁住机芯,待下一次使用;7. 对龄期超过3个月的混凝土,回弹值测量完毕后用合适工具在测区表面形成直径约15 mm 的孔洞(其深度稍大于混凝土碳化深度),然后用吸耳球吹去孔洞中粉末,并立即用1%酚酞酒精溶液洒在孔洞内壁边缘处,当已碳化与未碳化界限清楚时(未碳化部分变成紫红色),用游标卡尺测量已碳化与未碳化交界面至混凝土表面的垂直距离1-2次,该距离即为混凝土的碳化深度值,每次测读精确至0.5mm ;8. 计算:去掉3个最大值及3个最小值,将其余10个回弹值按式10i s N N ∑=求出,当回弹仪非水平方向测定时,应根据回弹仪轴线与水平方向的角度将测得的数据根据公式N=进行修正,+N s∆N计算非水平方向测定的回弹修正值。

回弹值准确至0.1;9.混凝土强度推算按上述所得结果查T0954-2表;。

混凝土构件碳化深度与回弹强度检测分析

混凝土构件碳化深度与回弹强度检测分析

成分 水化硅酸钙 水化铝酸钙
p H值 1 0 . 4 1 1 . 4 3
பைடு நூலகம்
成分 氢氧化钙 水 化硫铝 酸钙
p l { 值 1 2 . 2 3 1 0 . 1 7
一一
无邑
。 。 。 一
鬃 红色
占 = o
髓色

碳化 降低混凝 土孑 L 隙液的 C a ( O H ) 浓度 , 当C a ( 0 H ) 浓度降至水 化 硅酸钙 、 水化铝酸钙等水泥水化物稳定所需 浓度限值以下时 , 水泥水化 物就会分解 , 放出C a O以维持溶液 的[ O H一 1 浓度 , 继续 下去就将导致 水 化物晶体变成胶体 , 降低混凝土构件 强度 。混凝 土构件强度降低 , 混凝 土表面硬度相应降低 , 从而混凝土构件的回弹值也相应的降低 。 3 _ 3 过量碳化使混凝土构件 回弹值急剧下降 碳化使 混凝 土收缩 、 胀裂 , 同时混凝 土碳化 生成 的 C a C O , 使 混凝 土变脆。混凝土收缩 、 胀裂使混凝 土表面松散 , 在 回弹过程 中吸收部分 弹击能量 , 降低 回弹读数值 。碳化增 加混 凝土收缩 , 使混凝土表面发生 做裂纹 , 为各种 侵蚀解 质( 如C O ) 进入 混凝土 内部提供条 件 , 加速 混凝 土碳化 , 昆凝土表面状况直线下 降 , 从 而使回弹值加剧下降。混凝土构 件回弹值下降 , 碳化深度增加 , 从而使混凝土回弹推定值大幅下 降。 3 . 4混凝土碳化对 钢筋耐久性的影响 混凝土碳化 使混凝 土的碱度降低 , 碳化后 , 完全碳化 区的 p H 值由 1 2 左右降到 9 以下 , 钢筋 表面的钝化膜可能发生破坏 , 使混凝 土失 去对 钢筋的保护作用 而导致钢筋锈蚀 。大气中 C O 与混凝土 中碱性物 质的 作用过程是 一个复杂 的多相物理化学 反应 。它是 在气相 、 液相 和固相 中进行 的连续过 程。混凝 土的碳化 由表及 里 , 空气 中的 C O 首先扩 散 到混凝土内部的毛细管孔 隙中与水泥水化产 生的氢氧化钙 和水化硅酸 钙等水化产 物相互作用 形成碳酸钙 , 使 混凝土 的碱度逐渐降低 。当碳 化层 达到钢筋后 , 便会破坏钢筋 的钝化膜层 , 其 周同若 存在发生电化腐 蚀 所必需 的水 分和氧气 或某些有害成 分时 , 混凝 土中的钢筋将产 生锈 蚀, 体积膨胀 , 呈多孔疏松状态 , 极易透气 和吸水 , 因此加剧 了钢筋 的锈 蚀 。钢筋锈蚀 产生 的体积 膨胀 , 由于内部应力 的作用 使混凝土产生 裂 缝, 甚至产生混凝 土表层崩落。 4 . 结 语 } 昆凝土碳化是一个非常复杂 的化学物理反应过程 。其碳 化速度受 环境温度 、 湿度、 养护 条件及水泥 品种 、 水灰 比等各种因素影 响。适 量 的碳化 有助 于改善混 凝土 的部分机 能 , 使 回弹读 数得到一 定的提 高。 但是当碳化过量 , 由于混凝土 收缩 、 胀 裂等原 因 , 加剧混凝土的碳化 , 从 而对混凝土 的强度 和耐久性形成破坏性 的影 响。回弹检测法作为混凝 土强度现 场快速检测方 法 , 有其快 速 、 高效 的优点 , 但 同时也存在 局限 性。 只有深 入理解碳化 的机理及 回弹测试 的原理 , 才能准确 的判 断混

回弹法测混凝土强度碳化深度

回弹法测混凝土强度碳化深度

回弹法测混凝土强度碳化深度混凝土在建筑中真是无所不能,它像个不知疲倦的“劳模”,默默地支撑着我们的房子、桥梁和道路。

然而,混凝土虽然看似坚不可摧,也有它的小秘密。

比如,混凝土的强度和碳化深度就像我们人体的体检一样,定期检查是必须的。

那么,怎么检查呢?这就要用到一种叫做“回弹法”的神奇工具了。

1. 回弹法的基本概念说到回弹法,别被名字吓到,它其实是一种相当简单但很有用的方法。

回弹法,就像给混凝土测个体温一样,通过测试混凝土表面的回弹值,来判断它的强度。

这种方法就像用橡皮筋弹墙壁,我们看回弹的力度,就能知道墙壁的“硬度”了。

说白了,混凝土的表面越硬,回弹值越高,混凝土的强度也就越大。

2. 回弹法的操作步骤2.1 准备工作在开始之前,我们得做足准备工作。

首先,要把混凝土表面弄干净,免得灰尘、油污这些小鬼搞破坏。

接着,找个回弹仪,这就像我们用的体温计一样,不过它测的是混凝土的“硬度”。

用前最好检查一下仪器是否正常,就像检查体温计是否有电一样,确保测出来的结果靠谱。

2.2 测试过程测试时,把回弹仪的测头紧贴在混凝土表面,轻轻按下。

别急,这里可得小心操作。

回弹仪会在混凝土表面发出一股力量,然后测量回弹的高度。

这个过程就像弹钢琴一样,需要手法细腻。

每个测试点的回弹值记录下来,然后用公式计算混凝土的强度。

记得要在不同位置测试,确保数据的准确性。

3. 碳化深度的检测碳化深度也是混凝土健康的一个重要指标。

简单来说,碳化是指混凝土中的碳酸钙逐渐被二氧化碳侵蚀的过程。

这就像咱们皮肤的老化一样,需要定期检查。

检测碳化深度的方法有很多,但最常见的还是用化学试剂来测量。

涂抹试剂在混凝土表面,等几分钟后,再看颜色的变化,这样就能知道碳化的深度了。

3.1 检测过程首先,选择混凝土表面的几个点,涂上专门的碳化试剂。

涂抹时要均匀,像在涂口红一样,不要遗漏。

然后静待片刻,观察颜色变化。

通常,试剂会变成不同的颜色,来表示不同的碳化深度。

混凝土回弹仪回弹值以及碳化深度的测量方法

混凝土回弹仪回弹值以及碳化深度的测量方法

混凝土回弹仪回弹值以及碳化深度的测量方法在我国的建筑工程里,混凝土结构是我们最常见的一种建筑结构。

我们的楼房、桥梁、公路等都是混凝土结构,而我们想要去测试这些混凝土结构的抗压强度,那么我们就要用到混凝土回弹仪了。

因为混凝土回弹仪是现场检测用的最广泛的混凝土抗压强度无损检测仪器。

接下来我们来了解下混凝土回弹仪回弹值以及碳化深度的测量方法。

混凝土回弹仪回弹值以及碳化深度的测量方法一、混凝土回弹仪回弹值的测量1、检测时,回弹仪的轴线应始终垂直于结构或构件的检测面,缓慢施压,准确度数,快速复位。

2、测点宜在测区内均匀分布,相邻两点的净距离不宜小于2cm;测点距外露钢筋、预埋件的距离不宜小于3cm。

测点不应分布在气孔或外露石子上,同一点只能弹一次。

每一测区记录16个回弹值,每一测点的回弹值精确到1。

二、混凝土回弹仪碳化深度的测量1、回弹值测量完毕后,在有代表性的位置上测量混凝土的碳化深度值,测点数不应小于构件测区数的30%,取其平均值为该构件每测区的碳化深度值。

当碳化深度极差大于2时,应在每一测区测量碳化深度值。

2、碳化深度的测量,可采用适当的工具在测区表面形成直径15mm的孔洞,其深度应大于混凝土的碳化深度。

孔洞中的粉末和碎屑应清除干净,并不能使用水清洗。

用1%的酚酞酒精溶液滴在孔内壁边缘处,已碳化的混凝土颜色不变,未碳化的混凝土变为红色,当已碳化和未碳化界线清楚时,用深度测量工具测量已碳化混凝土的深度,测量不应小于3次,取平均值,精确至0.5mm。

以上的内容就是混凝土回弹仪回弹值以及碳化深度的测量方法,混凝土回弹仪的使用是获取混凝土质量和强度的最快速、最简单和最经济的测试方法。

这也很大测度上提高了建筑物的质量。

混凝土回弹法强度测定方法步骤课件PPT

混凝土回弹法强度测定方法步骤课件PPT
测时构件混凝土的龄期 。
二、混凝土回弹操作
1、待检验构件的确认 4. 1. 2由于回弹法测试具有快速,简便的特点。能在
短期内进行较多数量的检测。 以取得代表性较高的总体混凝土强度质量。故作此 规定。原规定按批进行检测的构件抽检数量不得少 于同批构件总数的 30%且测区数量不得少于 100 个 但是对于 较小的构件只需布置 5 个测区。如果 强调不少于 100 个测区的话,则被测构件数量 过 大 ,因此将其改为构件数量不得少于 10 件
碳化深度:因混凝土本身呈碱性,而碳化后呈酸性,故我们利用 酚酞溶液遇碘变色的性质来测定混凝土的碳化深度。
碳化深度
碱性物质变 成分红色
酸性不变色
三、碳化深度的测定
2、碳化深度试剂的配制 酚酞:酒精=1:99
三、碳化深度的测定
3、碳化深度测试点的处理
1、采用适当的工具在混凝土 表面形成直径15mm的孔洞, 其深度应大于碳化深度。 2、清除孔洞中的粉末及碎屑。
a、当结构或构件测区数少于10个时。
4、测区宜选在构件的两个对称可测面上,也可选择在一个可测面上,且应均匀分布。
四、强度数据修订及强度确认
b、当构件使用的是泵送混凝土时还需对强度换算值进行修订。
回弹仪率定试验宜在干燥、室温为5~35℃的条件下进行。
公式:fcu,e=fccu,min 10.
1、用碳化深度测量专用卡尺测量粉色 与未变色交界线到混凝土构件表面的距
混凝土回弹法强度测定方法步骤
混凝土回弹法强度测定方法步骤
目录
一、回弹前准备 二、混凝土回弹操作 三、碳化深度测定 四、强度数据修订及强度确认 五、注意事项
一、回弹前准备
1、回弹仪的几个基础技术指标数据
一、回弹前准备

混凝土碳化深度及对回弹影响.docx

混凝土碳化深度及对回弹影响.docx

混凝土碳化深度及对回弹影响混凝土的碳化是混凝土所受到的一种化学腐蚀。

空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO 2=CaCO 3+H2O。

水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O 3 和Fe3O 4,称为钝化膜(碱性氧化膜)。

碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。

可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。

影响混凝土碳化速度的因素是多方面的。

首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2 的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na 2SO 4 及少量Mg 2+时,石灰的溶解度就会增加,如水中含有Ca(HCO 3)2 的Mg(HCO 3) 2 对抵抗溶出侵蚀则十分有利。

因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。

混凝土碳化破坏的防治 , 对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响混凝土的碳化是混凝土所受到的一种化学腐蚀。

空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。

水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。

碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。

可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。

影响混凝土碳化速度的因素是多方面的。

首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。

因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。

混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。

回弹法检测混凝土强度_图文

回弹法检测混凝土强度_图文





• 标准动能29.43J

• 率定:63(2)
• 天津建筑公司
返回目录
23
3、检测技术
一、 一般规定 (一)采用回弹法检测混凝土强度时,宜具有下列资料:
1 工程名称、设计单位、施工单位;
2 构件名称、数量及混凝土类型(是否泵送)、强度等
级; 3 水泥安定性,外加剂、掺合料品种;混凝土配合比等。 4 施工模板、混凝土浇筑、养护情况及浇筑日期等; 5 必要的设计图纸和施工记录;
6 检测原因。 (4.1.1条)
24
3、检测技术
一、 一般规定 (二)检测前后回弹仪的率定 回弹仪在工程检测前后,应在钢砧上作率定试验,并应符合
本规程第3.1.3条的规定。 (原3.2.3条,现4.1.2条) (三)检测类别 单个构件检测; 批量检测——对于混凝土生产工艺、强度等级相同,原材料
、配合比、养护条件一般一致且龄期相近的一批同类构件 的检测应采用批量检测。
缺陷的混凝土结构或构件的检测(规程1.0.2条)。(表面 遭受火灾、冻伤、受化学物质侵蚀或内部有缺陷等)。现 在有单位和学者进行研究。 缺点3:影响因素多(水泥品种、骨料粗细、骨料粒径、 配合比、混凝土碳化等;龄期、模板、泵送、高强等)
6
1 概述
1.3 各国使用情况
目前已知应用该项技术的国家; • 美国:ASTMC805;A • 英国:BS1881;C • 德国:DIN1408;C • 罗马尼亚;C • 前苏联:GOCT10180;C • 欧洲:RILEM;C • 日本:无损手册;B • 中国:JGJ/T 23-2011;C • A—均质性;B—辅助手段;C—推定抗压强度;
检测类别和样本最小容量

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响混凝土的碳化是混凝土所受到的一种化学腐蚀。

空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。

水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。

碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。

可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。

影响混凝土碳化速度的因素是多方面的。

首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。

因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。

混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。

回弹法测混凝土强度碳化深度

回弹法测混凝土强度碳化深度

回弹法测混凝土强度碳化深度1. 引言大家好,今天我们要聊一个看似复杂但其实挺有趣的话题——混凝土的回弹法测量。

说到混凝土,很多人都会觉得这是一块不折不扣的“大石头”,不容易理解。

其实,混凝土是建筑中不可或缺的材料,简单来说,它就是把水泥、沙子、石子和水混合后,经过硬化变成的一种坚固物质。

混凝土在建筑中的作用就像是“基础”,所以它的强度和稳定性是非常重要的。

你想啊,家里的楼房、办公楼、桥梁,甚至那座看起来“稳如磐石”的大坝,都是靠混凝土撑起来的呢。

那么,怎样才能知道这些混凝土的质量是否合格呢?这就得用到一种叫做回弹法的测量技术啦。

2. 回弹法的基本概念2.1 什么是回弹法?回弹法,顾名思义,就是通过“回弹”来判断混凝土的强度。

这方法有点像弹簧床上的小弹簧,弹簧越硬,弹回来的力量就越大。

在混凝土上,我们用的是一种回弹仪,它的原理就像小弹簧一样,通过一个冲击力,把它按在混凝土上。

然后,仪器会测量这个冲击力的“回弹”程度。

回弹力越强,说明混凝土的强度就越高。

这种方法就像是给混凝土做体检,看看它的“健康状况”。

2.2 为什么要测碳化深度?混凝土强度的测试还不止这些,碳化深度的测量也是至关重要的。

你可以把碳化看作是混凝土的一种“老化现象”。

时间一长,混凝土表面会和空气中的二氧化碳发生反应,产生碳酸钙,这个过程叫做碳化。

碳化虽然可以让混凝土变得更加坚固,但如果过度碳化,就会影响混凝土的强度和耐久性。

就像是人的皮肤如果长时间暴露在阳光下,也会变得干燥粗糙一样。

因此,我们需要通过回弹法来测量碳化的深度,以确保混凝土的使用寿命。

3. 回弹法测碳化深度的操作步骤3.1 准备工作在使用回弹法之前,我们需要做一些准备工作。

首先,选择合适的回弹仪,这个仪器看起来像一个长长的棒子,前端有个小冲击器。

其次,要确定测量的位置。

一般来说,我们会选择混凝土表面的不同区域来测量,以确保数据的准确性。

记住,测量前要清理好混凝土表面的灰尘和污垢,就像你去做体检前要洗净手一样。

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响混凝土的碳化是混凝土所受到的一种化学腐蚀。

空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。

水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。

碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。

可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。

影响混凝土碳化速度的因素是多方面的。

首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。

因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。

混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响混凝土的碳化是混凝土所受到的一种化学腐蚀。

空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。

水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。

碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。

可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。

影响混凝土碳化速度的因素是多方面的。

首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。

因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。

混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混凝土回弹与碳化深度集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)
应该是“混凝土碳化作用”,是指碳酸气或含碳酸的水与混凝土中氢氧化钙作用生成碳酸钙的反应,正确地说,应是“碳酸化作用”,可是在国内已有通称“碳化作用”的习惯。

碳化作用通常是指C02气体的作用,它不会直接引起混凝土性能的劣化,经过碳化的水泥混凝土,表面强度、硬度、密度还能有所提高。

混凝土碳化作用的机理,即:碳化过程乃是外界环境中的C02通过混凝土表层的孔隙和毛细孔,不断地向内部扩散的过程。

混凝土的碳化一定要有水分存在。

若在毛细孔的孔壁上附着一层含有Ca(OH)2的水膜,则碳化就从带水膜的毛细孔壁开始。

当环境的相对湿度为50--60%时,碳化的反应最快,可是当孔隙全部为水分所充满时,也会妨碍CO 2的扩散。

CO2扩散的深度,通常用来作为评价混凝土抗碳化性能的技术参数,因为表面暴露在大气之中的混凝土,无论如何都免不了被碳化,只是碳化速度和抑制碳化进展的能力不同而已。

碳化对混凝土的不利影响:混凝土碳化后强度硬度有所提高,但由于碳化一般均在结构表面,深度不大,故对整体结构强度影响不大。

但是混凝土碳化后会产生体积收缩,当收缩应力超过混凝土表面抗拉强度时,会在表面产生裂缝。

潮湿空气进入裂缝使裂缝处的混凝土碳化收缩,继而使裂缝向混凝土内部发展。

当裂缝穿透混凝土保护层到达
钢筋时,由于混凝土碱性降低,湿气锈蚀钢筋,锈蚀严重时会胀裂保护层,加速锈蚀进程,最终有可能影响结构安全。

耐久性良好的混凝土应该具有一定的抗拉强度、良好的抗渗透性能及良好的体积稳定性。

砼碳化指砼中的Ca(OH)2与空气中CO2或水中溶的CO2或其它酸性物质反应变成CaCO3而失去碱性的过程。

砼的碳化值指砼自表面的碳化深度。

它是钢筋保层厚度的依据。

当砼失去碱性环境,钢筋就易锈蚀膨胀并胀裂砼,最终削弱砼对钢筋的握裹力,导至钢筋砼构件的破坏。

混凝土回弹与碳化深度
综述:碳化深度过深会降低混凝土的碱性,影响结构的耐久度。

碳化就是混凝土中的Ca(OH)2和空气中的CO2反应生成CaCO3和水的过程。

碳化深度主要与水灰比和周围环境有关。

一般说来,水泥用量一定的时候,水灰比越大,碳化越快。

当水灰比一定的时候,水泥用量越少,碳化越快。

从碳化的定义我们可以看出如果水泥用量多的话,混凝土中的Ca(OH)2就多碱性就越强,越不容易碳化。

还有就是周围的环境,CO2的浓度及湿度。

非常潮湿和非常干燥的时候,混凝土都不易碳化。

太湿可以隔离CO2与Ca(OH)2的反映,太干CO2无法结合到水生成H2CO3(碳酸),混凝土也不会碳化。

回弹检测混凝土强度是以混凝土的表面硬度来推断混凝土强度的.碳化会增大混凝土表面硬度,所以回弹判定其强度时需要检测碳化深度进行修正。

一、混凝土碳化机理及原因
1、混凝土碳化机理拌和混凝土时,硅酸盐水泥的主要成份CaO水化作用后生成Ca(OH)2,它在水中的溶解度低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液外,大部分以结晶状态存在,成为孔隙液保持高碱性的储备,它的PH值为12.5~13.5。

空气中的CO2气体不断地透过混凝土中未完全充水的粗毛细孔道,气相扩散到混凝土中部分充水的毛细孔中,与其中的孔隙液所溶解的Ca(OH)2进行中和反应。

反应产物为CaCO3和H2O,CaCO3溶解度低,沉积于毛细孔中。

该反应式为:Ca (OH)2+CO2→CaCO3↓+H2O
反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔隙液的PH值降为8.5~9.0时,这层混凝土的毛细孔中才不再进行这种中和反应,此时即所谓“已碳化”。

确切地说,碳化应称为碳酸盐化。

另外,凡是能与Ca(OH)2进行中和反应的一切酸性气体,如SO2、SO3、H2S以至于气相HCI等,均能进行上述中和反应,使混凝土碱度降低,故混凝土碳化应广义地称为“中性化”。

混凝土表层碳化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩散,更深入地进行碳化反应。

2、混凝土碳化原因?混凝土的主要成分有水泥、粗细骨料、水以及外加剂。

水泥掺与混凝土的拌合中,水泥中主要成分是CaO,经水化作用后生成Ca(OH)2 ,混凝土的碳化,是指混凝土中的Ca(OH)2与空气中的
CO2起化学反应,生成中性的碳酸盐CaCO3 。

未碳化的混凝土呈碱性,混凝土中钢筋保持钝化状态的最低(临界)碱度是PH值为11.5,碳化后的混凝土PH值为8.5~9.5。

碳化使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,使混凝土对钢筋的保护作用减弱。

当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。

钢筋锈蚀后,锈蚀产生的体积比原来膨胀2~4倍,从而对周围混凝土产生膨胀应力,锈蚀越严重,铁锈越多,膨胀力越大,最后导致混凝土开裂形成顺筋裂缝。

裂缝的产生使水和CO2得以顺利的进入混凝土内,从而又加速了碳化和钢筋的锈蚀。

二、影响混凝土碳化的因素影响混凝土碳化的因素有环境因素、原材料因素、施工操作因素等。

铜陵地区空气污染较重,空气中二氧化硫含量较多,酸雨也较多,是影响混凝土质量的主要原因,另外影响混凝土碳化的因素还有如下几点。

1 、环境条件?因为碳化是液相反应,十分干燥的混凝土即一直处于相对湿度低于25%空气中的混凝土很难碳化;在空气湿度50%~75%的大气中,不密实的混凝土最容易碳化;但在相对湿度95%的潮湿空气中或在水中的混凝土反而难以碳化,这是因为混凝土含水时透气性小,碳化慢;在湿度相同时,风速愈高、温度愈高,混凝土碳化也愈快;混凝土碳化速度与空气中CO2浓度的平方根成正比。

2 、水泥品种? 一般说来,普通硅酸盐水泥要比早强硅酸盐水泥碳化稍快,掺混合材的水泥碳化速度更快,混合材掺量越大,碳化速度越
快。

掺用优质减水剂或加气剂,可以大大改善混凝土的和易性,减小水灰比,制成密实的混凝土,使碳化减慢。

尤其是加气减水剂,由于抗冻性提高,可以大大改善钢筋混凝土建筑物的耐久性。

3 、骨料种类?混凝土中的骨料本身一般比较坚硬、密实,总的说来,天然砂、砾石、碎石比水泥浆的透气性小,因此混凝土的碳化主要通过水泥浆体进行。

但是,在轻混凝土中,由于轻质骨料本身气泡多,透气性大,所以能通过骨料使混凝土碳化。

一般说来,轻混凝土比普通混凝土碳化快,需要掺用加气剂或减水剂来减缓它的碳化速度。

4 、水灰比?混凝土的碳化速度与它的透气性有很密切的关系,混凝土的透气性越小,碳化进行越慢。

水灰比小的混凝土由于水泥浆的组织密实,透气性小,因而碳化速度就慢。

同理,单位水泥用量多的混凝土碳化较慢。

5 、浇筑与养护质量
密实的混凝土表层孔隙很小,易从潮湿的空气中吸取水分而充满水,故不易碳化;欠密实的混凝土表层中大孔隙内无水,CO2可以由气相扩散到充满水的毛细孔隙而完成碳化。

所以越是密实的混凝土其抗碳化能力越高。

混凝土浇筑与养护质量是影响混凝土密实性的一个重要因素。

如果混凝土浇筑时不规范,特别是振捣不密实,以及养护方法不当、养护时间不足时,就会造成混凝土内部毛细孔道粗大,且大多相互连通,严重时会引起混凝土再现蜂窝、裂缝等缺陷,使水、空气、侵蚀性化学物质
沿着粗大的毛细孔道或裂缝进入混凝土内部,从而加速混凝土的碳化和钢筋腐蚀。

混凝土结构工程施工质量验收规范中规定:在混凝土试件强度评定不合格及结构实体检验中,可采用非破损或局部破损的检测方法,按国家现行有关标准的规定对结构构件中的混凝土强度进行推定。

常用的有回弹法、超声回弹综合法、钻芯法、后装拔出法等,其中最常用的是回弹法。

而回弹法中碳化深度对混凝土强度的推定值影响很大。

碳化是一个缓慢发展的过程,在进行混凝土结构及构件强度的检验时,为取得比较准确的混凝土的实际强度,应在28d后尽早进行,即在未碳化或碳化程度很小时进行。

三、混凝土碳化的防治
1、在使用时合理选用水泥品种。

对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;对矿渣水泥和粉煤灰水泥要控制掺量,普通水泥掺粉煤灰,可以在水泥用量不变的情况下,再外掺粉煤灰取代部分砂子,或同时掺用粉煤灰的减水剂,即采用“双掺”的技术措施,这样可以提高混凝土的抗碳化能力。

2、选好合适的配合比,适量的外加剂,控制细骨料、粉料用量。

分析骨料的性质,如抗酸性骨料与水,水泥的作用对混凝土的碳化有一定的延缓作用。

对于使用江砂的地方,砂的级配不合理,粉料较多,更应选择合适的配合比,控制水灰比。

科学地搅拌和运输,及时地养护,以
减少渗流水量和其它有害物的侵蚀,确保混凝土的密实性。

混凝土的密实度也是保证工程质量的关键因素。

3、碳化后的混凝土构件还可采用涂刷环氧基液的方法,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如用溶化的沥青涂抹。

对碳化深度较大的,可凿除混凝土松散部分,洗净进入的有害物质,将混凝土衔接面凿毛,用环氧砂浆或细石混凝土填补,最后以环氧基液做涂基保护。

相关文档
最新文档