【冲刺卷】八年级数学下期末一模试题(带答案)

合集下载

【冲刺卷】八年级数学下期末一模试卷(带答案)

【冲刺卷】八年级数学下期末一模试卷(带答案)

【冲刺卷】八年级数学下期末一模试卷(带答案)一、选择题1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘383940414243米)数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.中位数C.众数D.方差2.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 3.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形4.下列计算正确的是()A.2(4)-=2B.52=3÷⨯D.62=3-C.52=105.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)6.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-67.如图,菱形中,分别是的中点,连接,则的周长为()A.B.C.D.8.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD9.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数C .中位数D .方差10.如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是( )A .B .C .D .11.正方形具有而菱形不一定具有的性质是( ) A .对角线互相平分 B .每条对角线平分一组对角 C .对边相等 D .对角线相等12.如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax bkx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩二、填空题13.如图,在ABC V 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC V 中再添加一个条件为__________.14.在函数4x y -=中,自变量x 的取值范围是______. 15.将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.16.化简24的结果是__________.17.在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.18.函数x____.19.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试 面试 体能 甲 83 79 90 乙 85 80 75 丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用. 20.已知3a b +=,2ab =a bb a的值为_________. 三、解答题21.如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.22.如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠. (1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.23.求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的ABC ∆和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹; (2)据此写出已知,求证和证明过程.24.设a 8x =-b 3x 4=+c x 2=+(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.3.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.4.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.5.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.6.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.7.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.8.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B9.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

八年级下册数学期末冲刺卷(一)

八年级下册数学期末冲刺卷(一)

期末冲刺卷 数学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 一组数据4,5,7,7,8,6的中位数和众数分别是( ) A. 7,7 B. 7,6.5 C. 6.5,7 D. 5.5,72. 已知a<b ,则下列不等式不成立的是( ) A. a-5<b-5 B. 2a<2b C. -3a>-3b D.33a b>3. 在平面直角坐标系中,将点A (-3,2)向右平移3个单位长度后的坐标是( ) A.(-6,2) B.(0,2) C.(-3,-1) D.(-3,5)4. 用下列一种正多边形瓷砖铺设地面,不能镶嵌整个平面的图形是( ) A. 正六边形 B. 正五边形 C. 正四边形 D. 正三角形5. 下列命题中,真命题是( ) A. 有两边相等的平行四边形是菱形 B. 对角线垂直的四边形是菱形 C. 四个角相等的菱形是正方形 D. 两条对角线相等的四边形是矩形6. 用反证法证明“若22x y ≠,则x y ≠”时,应首先假设( ) A.x y > B.x y = C.x y < D. x y =7. △ABC 为等边三角形,点D 在线段BC 上,且∠BAD=20°,则∠ADC 的度数是( ) A. 40° B. 60° C. 80° D. 100°8. 从整式2400,2x ,2x y −中任意选取两个分别作为分子和分母,则能构成分式的个数为( ) A. 6个 B. 5个C. 4个D. 3个9. 如图,在△ABC 中,点D ,E 分别为AB ,AC 中点,将线段BD 绕点B 旋转到BC 边上,点D 的对应点为点F.若DE=4cm ,BD=3cm ,则CF 的长度为( )A. 1cmB. 3cmC. 4cmD. 5cm10. 不等式组22233x a x b −≤−> 的解集如图所示,则代数式(a+2)(b-1)的值为( )A. -4B. 0C. 4D. 6二、填空题:本大题共5小题,每小题3分,共15分.11. 五边形的外角和为_____°.12.在函数5y =+中,自变量x 的取值范围是_____.13. 定理“平行四边形的对角相等”的逆命题是__________.14. 如图,在Rt △ABC 中,∠C=90°,∠B=30°,分别以点A 和B 为圆心,以大于12AB 的长度为半径作弧,两弧交于点M 和N ,过点M 和N 作直线分别交AB ,BC 于点D ,E.若CE=2,则 BE 的长度为_____.15. 如图,四边形ABCD 是平行四边形,∠B=120°,CD=CB=4,点E 为BC 的中点,连接AE ,点F 为线段AE 上的一个动点,连接DF ,则线段DF 长度的最小值为_____.三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解不等式组:2642123x xx x +>+ +≥ .17. 先化简,再求值:2221111a a a a a −+ −÷ +−,其中2023a =.18. 如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-1,1),B (-3,1),C (-1,4).(1)若把△ABC向上平移1个单位,再向右平移5个单位得到△A'B'C',在图中画出A'B'C',将△A'B'C'看成由△ABC经过一次平移得到的,则这一平移的距离是_____;(2)画出△ABC绕着点B顺时针旋转90°后得到的△A1BC1;(3)画出△ABC关于原点中心对称的△A2B2C2;点P是线段AB的中点,写出点P关于原点中心对称的对应点P'的坐标_____.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 如图,在□ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为点E,F,AC平分∠DAE.(1)若∠AOE=55°,求∠ACB的大小;(2)求证:AE=CF.20. 某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元,为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?21. 整体代换作为一种数学思想方法在代数式化简求值中比较常用. 例如:已知3mn =,4m n +=−,求代数式22m n mn +的值. 解:223412m n mn mn m n +=+=×−=−()(). 请仿照上面的方法求解下面的问题:(1)已知:2xy =−,26x y −=,求代数式322344x y x y xy −+的值;(2)边长为a ,b (a>b )的长方形的周长为16,面积为15,求代数式33a b ab −的值.五、解答题(三):本大题共2小题,每小题12分,共24分.22. 经调研发现,目前市场上有A ,B 两种类型的笔记本比较畅销.某超市计划最多投入6900元购进A ,B 两种类型的笔记本共500本,其中B 型笔记本的进货单价比A 型笔记本的进货单价多3元;用2400元购进A 型笔记本与用3000元购进B 型笔记本的数量相同. (1)求A ,B 两种类型笔记本的进货单价;(2)若A 型笔记本每本的售价定为16元,B 型笔记本每本的售价定为20元,该超市计划购进A 型笔记本m 本,两种类型的笔记本全部销售后可获利润为y 元. ①请直接写出y 与m 之间的函数关系式为:__________; ②该超市如何进货才能获得最大利润?最大利润是多少元?23. 在等边△ABC 中,AB=6,点D 是射线CB 上一点,连接AD.(1)如图1,当点D 在线段CB 上时,在线段AC 上取一点E ,使得CE=BD ,求证:AD=BE ; (2)如图2,当点D 在CB 延长线上时,将线段AD 绕点A 逆时针旋转角度0(0°<θ<180°)得到线段AF ,连接BF ,CF.①当AF 位于∠BAC 内部,且∠DAF 恰好被AB 平分时,若BD=2,求CF 的长度;②如图3,当θ=120°时,记线段BF与线段AC的交点为G,猜想DC与AG的数量关系,并说明理由.参考答案一、选择题1-5:CDBBC6-10:BCCDA二、填空题11. 360 12. 2x ≥13. 对角相等的四边形是平行四边形 14. 415.三、解答题(一)16. 解:2642123x x x x +>++≥ ① ② 由①得3x <, 由②得2x ≥−,∴该不等式组的解集为23x −≤<.17. 解:原式=()2211121a a a a a a +−⋅+−+ =()()()211111a a a a +−−⋅++ =11a −−. 当2023a =时,原式=11202312022−=−−.18.(1 (2)见下图(3)见下图,(2,-1)四、解答题(二)19.(1)解:∵AE ⊥BD ∴∠AEO =90° ∵∠AOE =55°∴∠EAO=90°-∠AOE =35° ∵AC 平分∠DAE ∴∠OAD=∠EAO=35° ∵四边形ABCD 为平行四边形 ∴AD ∥BC∴∠ACB=∠OAD=35°(2)证明:∵四边形ABCD 是平行四边形 ∴AO=CO∵AE ⊥BD , CF ⊥BD ∴∠AEO =∠CFO =90° 在△AEO 和△CFO 中,AEO CFO EOA FOC AO CO ∠=∠∠=∠ =∴△AEO ≌△CFO. ∴AE=CF.20. 解:(1)设这项工程的规定时间是x 天,根据题意得:11101513x x x +×+=解得:30x =.经检验,30x =是原分式方程的解. 答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:11122.530330 ÷+=×(天) 则该工程施工费用是:22.5×(6500+3500)=225000(元) 答:该工程的费用为225000元.21. 解:(1)∵()3223224444x y x y xy xy x xy y−+=−+()22xy x y =−又∵2xy =−,26x y −=∴32232442672x y x y xy −+=−×=−.(2)由题意可知,()216a b +=,15ab = ∴8a b += 又∵()()222484154a b a b ab −=+−=−×=∵a b > ∴2a b −=∵()()()3322a b ab ab a b ab a b a b −=−=−+∴331528240a b ab −=××=.五、解答题(三)22. 解:(1)设A 型笔记本的进货单价是x 元,则B 型笔记本的进货单价是3x +()元, 根据题意得:240030003x x =+ 解得:12x =,经检验:12x =是原方程的解, ∴315x +=.答:A ,B 两种类型笔记本的进货单价分别为12元和15元.(2)①2500y m =−+②∵计划最多投入6900元购进A ,B 两种类型的笔记本共500本, ∴()12155006900m m +−≤ 解得:200m ≥, 在2500y m =−+中, ∵10−<,∴y 随m 的增大而减小.∴当200m =时,y 取最大值,且最大值为2002500 2300y =−+=(元).答:该超市购进200本A 型笔记本和300本B 型笔记本可获得最大利润,且最大利润是2300元.23.(1)证明:∵△ABC 为等边三角形,∴AB=BC ,∠ABC=∠BCA=60°,即∠ABD=∠BCE. 又∵BD=CE , ∴△ABD ≌△BCE. ∴AD=BE.(2)①解:如图所示,过点F 作FH ⊥BC 于点H ,∵∠DAF恰好被AB平分,∴∠DAB=∠FAB.又∵AD=AF,AB=AB,∴△ABD≌△ABF.∴BD=BF=2.且∠ABF=∠ABD=180°-∠ABC=120°. ∴∠FBC=∠ABF-∠ABC=60°.∴∠BFH-90°-∠FBC=30°.∴112BH BF==∴HF==∴CH=BC-BH=5.∴CF=.②DC=2AG;理由如下:如图所示,在AC上截取一点N,使得AN=BD,连接BN,FN.∵∠DAF=120°,∠BAC=60°,∴∠BAD+∠NAF=∠DAF-∠BAC=60°.∵∠BAD+∠BDA=∠ABC=60°,∴∠NAF=∠BDA.又∵AD=AF,∴△ABD≌△FNA.∴AB=FN,∠ABD=∠ANF=120°.∴BC=FN,∠FNG=180°-∠ANF=60°. ∴∠FNG=∠ACB.∴FN//BC.∴四边形BCFN为平行四边形.∴NG=GC∵DC=DB+BC,∴DC=AN+AC=AN+AN+NG+GC=2AN+2NG=2AG.。

【冲刺卷】初二数学下期末第一次模拟试卷及答案

【冲刺卷】初二数学下期末第一次模拟试卷及答案

【冲刺卷】初二数学下期末第一次模拟试卷及答案一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a 2.若点P 在一次函数的图像上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限3.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元4.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒5.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .6.下列计算正确的是( ) A .2(4)-=2B .52=3-C .52=10⨯D .62=3÷7.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差8.如图(1),四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒1个单位长度的速度,按A →B →C →D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图(2)所示,当P 运动到BC 中点时,△APD 的面积为( )A .4B .5C .6D .7 9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5C .7D .5或710.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定11.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .12.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .5二、填空题13.化简24的结果是__________. 14.观察下列各式:221111++=1+1212⨯, 221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律, 计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 15.已知实数a 、b 在数轴上的位置如图所示,则化简222()a b b a +--的结果为________16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.17.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.18.如图,直线1y kx b =+过点A(0,2),且与直线2y mx =交于点P(1,m),则不等式组mx > +kx b > mx -2的解集是_________19.已知3a b +=,2ab =a bb a的值为_________. 20.已知一直角三角形两直角边的长分别为6cm 和8cm ,则第三边上的高为________.三、解答题21.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下: 甲 10 6 10 6 8 乙79789经过计算,甲进球的平均数为8,方差为3.2. (1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?22.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出). 根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.23.如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.(1)求证:AF⊥DE;(2)求证:CG=CD.24.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF求证:四边形BECF是平行四边形.25.如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是矩形;(2)连接DE交BC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:首先由2(2)a -,即可将原式化简,然后由1<a <2,去绝对值符号,继而求得答案. 详解:∵1<a <2,2(2)a -(a-2), |a-1|=a-1,2(2)a -(a-2)+(a-1)=2-1=1. 故选A .点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.C解析:C 【解析】 【分析】根据一次函数的性质进行判定即可. 【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限, 又点P 在一次函数y=-x+4的图象上, 所以点P 一定不在第三象限, 故选C. 【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b :当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.3.C解析:C 【解析】 【分析】根据加权平均数的定义列式计算可得. 【详解】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元), 故选:C . 【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.4.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90° 即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5.B解析:B 【解析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,>,<,00∴-k k=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.6.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.7.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

【冲刺卷】八年级数学下期末第一次模拟试卷(含答案)

【冲刺卷】八年级数学下期末第一次模拟试卷(含答案)

【冲刺卷】八年级数学下期末第一次模拟试卷(含答案)一、选择题1.n 的最小值是( )A .4B .5C .6D .72.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形B .菱形C .正方形D .平行四边形3.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B4.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米D .26厘米,26厘米5.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形6.下列结论中,错误的有( )①在Rt △ABC 中,已知两边长分别为3和4,则第三边的长为5;②△ABC 的三边长分别为AB ,BC ,AC ,若BC 2+AC 2=AB 2,则∠A =90°; ③在△ABC 中,若∠A :∠B :∠C =1:5:6,则△ABC 是直角三角形; ④若三角形的三边长之比为3:4:5,则该三角形是直角三角形; A .0个 B .1个C .2个D .3个7.如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是( )A .B .C .D .8.如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A .23B .1C .32D .29.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .610.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .11.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .512.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题13.如图,在ABC V 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC V 中再添加一个条件为__________.14.在函数4x y -=x 的取值范围是______. 15.已知13y x =-+,234y x =-,当x 时,12y y <. 16.已知函数y =2x +m -1是正比例函数,则m =___________.17.如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.18.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= . 19.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若DQ =2QC ,BC =3,则平行四边形ABCD 周长为_____.20.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____.三、解答题21.计算:0221218(2020)()(21)2π-+---+-.22.如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙底端C 的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B 将向左滑动多少米?23.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD 的形状,并说明理由.24.如图,一个长5m 的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为4m ,如果梯子的顶端A 沿墙下滑1m 至C 点. (1)求梯子底端B 外移距离BD 的长度; (2)猜想CE 与BE 的大小关系,并证明你的结论.25.如图,将□ABCD 的对角线BD 向两个方向延长至点E 和点F ,使BE=DF ,证:四边形AECF 是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】因为63n 是整数,且63n =273n ⨯=37n ,则7n 是完全平方数,满足条件的最小正整数n 为7. 【详解】∵63n =273n ⨯=37n ,且7n 是整数; ∴37n 是整数,即7n 是完全平方数; ∴n 的最小正整数值为7. 故选:D . 【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ⋅=,除法法则b ba a=.解题关键是分解成一个完全平方数和一个代数式的积的形式.2.C解析:C 【解析】 【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形. 【详解】 解:、、、分别是、、、的中点,,,EH=FG=BD,EF=HG=AC,四边形是平行四边形,,,,,四边形是正方形,故选:C.【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.3.C解析:C【解析】【分析】根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D 是否是直角三角形.【详解】A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;B、∵32+42=52,∴△ABC为直角三角形;C、∵∠A:∠B:∠C=9:12:15,151807591215C︒︒∠=⨯=++,故不能判定△ABC是直角三角形;D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选C.【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.4.D解析:D【解析】【分析】【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm 考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念5.D解析:D 【解析】 【分析】由(a-b )(a 2-b 2-c 2)=0,可得:a-b=0,或a 2-b 2-c 2=0,进而可得a=b 或a 2=b 2+c 2,进而判断△ABC 的形状为等腰三角形或直角三角形. 【详解】解:∵(a-b )(a 2-b 2-c 2)=0, ∴a-b=0,或a 2-b 2-c 2=0, 即a=b 或a 2=b 2+c 2,∴△ABC 的形状为等腰三角形或直角三角形. 故选:D . 【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.6.C解析:C 【解析】 【分析】根据勾股定理可得①中第三条边长为5∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确. 【详解】①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确. 故选C . 【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.解析:C 【解析】 【分析】根据m 、n 同正,同负,一正一负时利用一次函数的性质进行判断. 【详解】解:①当mn >0时,m 、n 同号,y =mnx 过一三象限;同正时,y =mx+n 经过一、二、三象限,同负时,y =mx+n 过二、三、四象限;②当mn <0时,m 、n 异号,y =mnx 过二四象限,m >0,n <0时,y =mx+n 经过一、三、四象限;m <0,n >0时,y =mx+n 过一、二、四象限; 故选:C . 【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.8.B解析:B 【解析】 【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论. 【详解】∵将△CBE 沿CE 翻折至△CFE , ∴∠F=∠B=∠A=90°,BE=EF , 在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ), ∴FH=AE ,GF=AG , ∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ∴DH=x+2,CH=6-x , ∵CD 2+DH 2=CH 2, ∴42+(2+x )2=(6-x )2, ∴x=1, ∴AE=1, 故选B . 【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C10.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.【点睛】本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.11.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质. 12.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.二、填空题13.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则14.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式解析:x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得.【详解】解:根据题意,知4010xx-≥⎧⎨+≠⎩,解得:x≥4,故答案为x≥4.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.15.【解析】【分析】根据题意列出不等式求出解集即可确定出x的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x>7解得:x故答案为:解析:74 >.【解析】【分析】根据题意列出不等式,求出解集即可确定出x的范围.【详解】根据题意得:-x+3<3x-4,移项合并得:4x>7,解得:x74 >.故答案为:7 4 >16.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y=2x+m-1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.17.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是x,另一组数据11,13,15,x+10,18的平均数是x+10,∵22222 (1)(3)(5)()(8)5x x x a x x-+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222 (1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.18.5【解析】试题分析:∵四边形ABCD是矩形∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质解析:5。

【冲刺卷】八年级数学下期末模拟试卷(带答案)

【冲刺卷】八年级数学下期末模拟试卷(带答案)

【冲刺卷】八年级数学下期末模拟试卷(带答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥2.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A .4B .3C .2D .13.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形4.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60 B .平均数是21C .抽查了10个同学D .中位数是505.4133的结果为( ). A .32 B .23C 2D .26.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.37.计算12(75+313﹣48)的结果是()A.6B.43C.23+6D.128.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)9.二次根式()23-的值是()A.﹣3B.3或﹣3C.9D.310.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A.平均数B.中位数C.众数D.平均数与众数11.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若AFDV的周长为18,ECFV的周长为6,四边形纸片ABCD的周长为()A.20B.24C.32D.4812.如图,已知△ABC中,AB=10 ,AC=8 ,BC = 6 ,DE是AC的垂直平分线,DE交AB于点D ,交AC于点E ,连接CD ,则CD的长度为()A.3B.4C.4.8D.5二、填空题13.如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.14.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)15.函数y =21xx -中,自变量x 的取值范围是_____. 16.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.17.如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.18.若一个多边形的内角和是900º,则这个多边形是 边形.19.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.22.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)点O运动到何处且△ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)23.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.24.为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图); (2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?25.如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN .(1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 2.C解析:C 【解析】【分析】 【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C .考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.3.C解析:C 【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形, 故选:C . 【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.4.B解析:B 【解析】 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选:B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.5.D解析:D 【解析】 【分析】根据二次根式的除法法则进行计算即可. 【详解】原式2===. 故选:D. 【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.6.D解析:D 【解析】 【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【详解】解:由题意可知:中间小正方形的边长为:-a bQ 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-=2()25169a b ∴-=-=3a b ∴-= 故选:D 【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.7.D解析:D 【解析】 【分析】 【详解】12===.故选:D.8.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.9.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩….【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.10.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.11.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.12.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.二、填空题13.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出F G即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE1【解析】【分析】首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.14.=【解析】【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积△MBK 的面积=△QKB 的面积△PKD 的面积=△NDK 的面积进而求出答案【详解】解:∵四边形ABCD 是矩形四边形MBQK 是矩形四边形解析:= 【解析】 【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK 的面积,进而求出答案. 【详解】解:∵四边形ABCD 是矩形,四边形MBQK 是矩形,四边形PKND 是矩形, ∴△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK 的面积,∴△ABD 的面积﹣△MBK 的面积﹣△PKD 的面积=△CDB 的面积﹣△QKB 的面积=△NDK 的面积, ∴S 1=S 2. 故答案为:=. 【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.15.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y =中自变量x 的取值范围是x ﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x ≠1 【解析】 【分析】根据分式有意义的条件即可解答. 【详解】 函数y =21xx -中,自变量x 的取值范围是x ﹣1≠0,即x ≠1, 故答案为:x ≠1. 【点睛】本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.16.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 17.2【解析】【分析】根据平行四边形的性质可得出AD ∥BC 则∠AEB =∠CBE 再由∠ABE =∠CBE 则∠AEB =∠ABE 则AE =AB 从而求出DE 【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD ∥BC ,则∠AEB =∠CBE ,再由∠ABE =∠CBE ,则∠AEB =∠ABE ,则AE =AB ,从而求出DE .【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠CBE ,∵∠B 的平分线BE 交AD 于点E ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.18.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.19.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m ∠C=90°∴AB=2BC=4m∴AC=解析:2+23【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴2223-=m,AB BC∴3(m).故答案为:3【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.20.y=6+03x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即y=6+03x考点:一次函数的应用解析:y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题21.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.22.(1)猜想:OE=OF ,理由见解析;(2)见解析;(3)见解析.【解析】【分析】(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【详解】(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠CO E=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.【点睛】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.23.(1)剩余木料的面积为6dm2;(2)2.【解析】【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(2)估算322的大小,结合题意解答即可.【详解】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为2dm和2dm,∴剩余木料的面积为(2﹣2)×2=6(dm2);(2)4<2<4.5,12<2,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条,故答案为:2.【点睛】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.24.(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.【解析】【分析】(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;(2)计算出甲乙两人的方差,比较大小即可做出判断;(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.【详解】(1)根据折线统计图得乙的射击成绩为2,4,6,8,7,7,8,9,9,10, 则平均数为1(24687789910)710⨯+++++++++=(环),中位数为7.5环, 方差为22222221(27)(47)(67)(87)(77)(77)(87)10⎡-+-+-+-+-+-+-⎣222(97)(97)(107) 5.4⎤+-+-+-=⎦.由图和表可得甲的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7环.则甲第8次成绩为710(967627789)9⨯-++++++++=(环).所以甲的10次成绩为2,6,6,7,7,7,8,9,9,9,中位数为7环,方差为22222221(97)(67)(77)(67)(27)(77)(77)10⎡-+-+-+-+-+-+-⎣222(97)(87)(97)4⎤+-+-+-=⎦.补全表格如下:甲、乙射击成绩统计表平均数(环)中位数(环) 方差 命中10环的次数 甲7 4 0 乙 7 5.4 1(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出.(3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,乙只有第5次射击比第4次射击少命中1环,且命中1次10环,而甲第2次比第1次第4次比第3次、第5次比第4次、第9次比第8次命中环数都低,且命中10环的次数为0,即随着比赛的进行,乙的射击成绩越来越好,故乙胜出.【点睛】本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.25.(1)证明见解析;(2)AM=1.理由见解析.【解析】【分析】【详解】解:(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,NDE MAEDNE AME DE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△NDE≌△MAE(AAS),∴ND=MA,∴四边形AMDN是平行四边形;(2)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵平行四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.【点睛】本题考查矩形的判定;平行四边形的判定;菱形的性质.。

【冲刺卷】初二数学下期末第一次模拟试卷含答案

【冲刺卷】初二数学下期末第一次模拟试卷含答案

【冲刺卷】初二数学下期末第一次模拟试卷含答案一、选择题1.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60B.平均数是21C.抽查了10个同学D.中位数是502.计算12(75+313﹣48)的结果是()A.6B.43C.23+6D.123.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.4.如图,菱形中,分别是的中点,连接,则的周长为()A.B.C.D.5.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米 D .26厘米,26厘米 6.若一个直角三角形的两边长为12、13,则第三边长为( )A .5B .17C .5或17D .5或7.二次根式()23-的值是( ) A .﹣3B .3或﹣3C .9D .38.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定9.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .10.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .8011.如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax bkx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩12.如图,四边形ABCD 是菱形,∠ABC =120°,BD =4,则BC 的长是( )A .4B .5C .6D .43二、填空题13.如图,在ABC V 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC V 中再添加一个条件为__________.14.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)15.已知函数y =2x +m -1是正比例函数,则m =___________.16.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .17.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.18.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 .19.如图:长方形ABCD 中,AD=10,AB=4,点Q 是BC 的中点,点P 在AD 边上运动,当△BPQ 是等腰三角形时,AP 的长为___.20.已知3a b +=,2ab =a bb a的值为_________. 三、解答题21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.22.2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下:甲:1,9,7,4,2,3,3,2,7,2乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表:班级平均数众数中位数方差甲43乙6 3.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;(2)你认为哪个班同学寒假读书情况更好,写出理由.23.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.24.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.25.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.2.D解析:D【解析】【分析】【详解】===.12故选:D.3.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.4.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.5.D解析:D 【解析】 【分析】 【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm 考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念6.D解析:D 【解析】 【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论. 【详解】当12,13为两条直角边时, 第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D . 【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.7.D解析:D 【解析】 【分析】本题考查二次根式的化简,2(0)(0)a a a a a ⎧=⎨-<⎩….【详解】2(3)|3|3-=-=.故选D . 【点睛】本题考查了根据二次根式的意义化简.2a a ≥02a a ;当a ≤02a a .8.B解析:B【解析】 【分析】由矩形ABCD 可得:S △AOD =14S 矩形ABCD ,又由AB=15,BC=20,可求得AC 的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果. 【详解】连接OP ,如图所示:∵四边形ABCD 是矩形, ∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20,∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12.∴点P 到矩形的两条对角线AC 和BD 的距离之和是12. 故选B . 【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.9.A解析:A 【解析】 【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,所以函数图象是A.故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.10.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.11.D解析:D【解析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32 xy=-⎧⎨=-⎩.故选D.【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题13.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则14.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK 的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD是矩形四边形MBQK是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.15.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y=2x+m-1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.16.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长= AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.17.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30解析:3.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示.连接HC、DF,且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°∴△DCF是等边三角形,∠DFC=∠FDC=60°∴∠EFD=∠ADF=30°,HF=HD∴HC是FD的垂直平分线,∠FCH=∠DCH=12∠DCF=30°在Rt△HDC中,HD=DC·tan∠3∵正方形ABCD的边长为3∴HD=DC·tan∠DCH=3×tan30°33试题点评:构建新的三角形,利用已有的条件进行组合.18.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC再根据菱形的周长公式列式计算即可得解【详解】∵EF分别是ABAC 的中点∴EF是△ABC的中位线∴BC=2EF=2×3=6∴菱解析:【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6,∴菱形ABCD 的周长=4BC=4×6=24.故答案为24.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.19.2或25或3或8【解析】【分析】【详解】解:∵AD=10点Q 是BC 的中点∴BQ=BC=×10=5如图1PQ=BQ=5时过点P 作PE⊥BC 于E 根据勾股定理QE=∴BE=BQ﹣QE=5﹣3=2∴AP=B解析:2或2.5或3或8.【解析】【分析】【详解】解:∵AD=10,点Q 是BC 的中点,∴BQ=12BC=12×10=5, 如图1,PQ=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,QE=2222543PQ PE -=-=,∴BE=BQ ﹣QE=5﹣3=2,∴AP=BE=2;②如图2,BP=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,2222543PB PE -=-=,∴AP=BE=3;③如图3,PQ=BQ=5且△PBQ 为钝角三角形时,BE=QE+BQ=3+5=8,AP=BE=8,④若BP=PQ ,如图4,过P 作PE ⊥BQ 于E ,则BE=QE=2.5,∴AP=BE=2.5.综上所述,AP 的长为2或3或8或2.5.故答案为2或3或8或2.5.【点睛】本题考查等腰三角形的判定;勾股定理;矩形的性质;注意分类讨论是本题的解题关键.20.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运 解析:322【解析】【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.【详解】 a b ab ab b a = ()a b ab +, ∵3a b +=,2ab =, ∴原式3232⨯; 32.【点睛】本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.三、解答题21.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF(AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.22.统计图补全见解析 (1)12 (2)乙班,理由见解析【解析】【分析】根据平均数、众数、中位数、方差的概念填表(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解; (2)根据方差的性质进行判断即可.【详解】甲组的众数是2,乙组中位数是45 4.52+= 乙组的平均数:()2663165254104+++++++++÷=甲组的方差:()()()()()()()()()()222222222214947444243434247424 6.610-+-+-+-+-+-+-+-+-+-=补全统计表如下:403012⨯=%(人)故估计读6本书的同学大概有12人;(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学.【点睛】本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.23.△ABD 为直角三角形,理由见解析.【解析】【分析】先在△ABC 中,根据勾股定理求出2AB 的值,再在△ABD 中根据勾股定理的逆定理,判断出AD ⊥AB,即可得到△ABD 为直角三角形.【详解】解:△ABD 为直角三角形理由如下:∵∠C =90°,AC =3,BC =4,. ∴222222435AB CB AC =+=+=∵52+122=132222AB AD BD ∴+=,90BAD ∴∠=︒24.-11x +,-14. 【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x xxx x x+-+-=1﹣21xx++=121x xx+--+=-11x+,当x=3时,原式=﹣131+=-14.25.3cm.【解析】【分析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴6=∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.【点睛】本题考查翻折变换(折叠问题);矩形的性质;勾股定理;方程思想的应用.。

【冲刺卷】八年级数学下期末第一次模拟试题(附答案)

【冲刺卷】八年级数学下期末第一次模拟试题(附答案)

【冲刺卷】八年级数学下期末第一次模拟试题(附答案)一、选择题1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差2.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)3.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒4.计算4133÷的结果为( ). A .32 B .23C .2D .25.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .36.下列计算正确的是( ) A .2(4)-=2 B .52=3-C .52=10⨯D .62=3÷7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵8.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .89.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形10.如图(1),四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒1个单位长度的速度,按A →B →C →D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图(2)所示,当P 运动到BC 中点时,△APD 的面积为( )A .4B .5C .6D .711.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限12.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .5二、填空题13.如图,在ABC V 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC V 中再添加一个条件为__________.14.函数y =21xx -中,自变量x 的取值范围是_____. 15.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.16.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.17.如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.18.如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为____________.19.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.20.A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.三、解答题21.计算:(.22.如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠. (1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.23.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中a=1+2,b=1﹣2.24.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,形如2a b ±,如果你能找到两个数m 、n ,使22m n a +=,且mn b =,则2a b ±可变形为2222()m n mn m n m n +±=±=±,从而达到化去一层根号的目的.例如:22232212221(2)212(12)-=+-=+-⨯⨯=-1221=-=-仿照上例完成下面各题: 填上适当的数:1263743-+25.在平面直角坐标系中,一次函数y=kx+b (k ,b 都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y 的取值范围;(2)已知点P (m ,n )在该函数的图象上,且m ﹣n=4,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数. 故选C .点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.A解析:A 【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为 (-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.3.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90° 即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.4.D解析:D 【解析】 【分析】根据二次根式的除法法则进行计算即可. 【详解】原式2===. 故选:D. 【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.5.D解析:D 【解析】 【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【详解】解:由题意可知:中间小正方形的边长为:-a bQ 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-=2()25169a b ∴-=-=3a b ∴-= 故选:D 【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.6.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.7.D解析:D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.8.D解析:D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.9.D解析:D【解析】【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.10.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.11.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选C.12.A解析:A【解析】【分析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.二、填空题13.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则14.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y=中自变量x的取值范围是x﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x≠1【解析】【分析】根据分式有意义的条件即可解答.【详解】函数y=21xx中,自变量x的取值范围是x﹣1≠0,即x≠1,故答案为:x≠1.【点睛】本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.15.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.16.【解析】在Rt△ABC 中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7解析:【解析】在Rt△ABC 中,AB=5米,BC=3米,∠ACB=90°, ∴AC=224AB BC -=∴AC+BC=3+4=7米.故答案是:7.17.3【解析】【分析】根据折叠的性质只要求出DN 就可以求出NE 在直角△CEN 中若设CN=x 则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN 的长【详解】设CN=x 则DN=8-x 由折叠的性解析:【解析】【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,而EC=BC=4,在Rt△ECN中,由勾股定理可知,即整理得16x=48,所以x=3.故答案为:3.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.18.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.19.【解析】试题解析:∵由题意可知AQ是∠DAB的平分线∴∠DAQ=∠BAQ∵四边形ABCD是平行四边形∴CD∥ABBC=AD=3∠BAQ=∠DQA∴∠DAQ=∠DAQ∴△AQD 是等腰三角形∴DQ=AD解析:【解析】试题解析:∵由题意可知,AQ 是∠DAB 的平分线,∴∠DAQ =∠BAQ .∵四边形ABCD 是平行四边形,∴CD ∥AB ,BC =AD =3,∠BAQ =∠DQA ,∴∠DAQ =∠DAQ ,∴△AQD 是等腰三角形,∴DQ =AD =3.∵DQ =2QC ,∴QC =12DQ =32, ∴CD =DQ +CQ =3+32=92, ∴平行四边形ABCD 周长=2(DC +AD )=2×(92+3)=15. 故答案为15.20.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a 千米/小时乙车的速度为b 千米/小时解得∴AB 两地的距离为:80×9=72解析:【解析】【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时,60x =80(1+10%)(x+2﹣9),解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题21.7-2【解析】【分析】 利用平方差公式和完全平方公式计算即可.【详解】 原式==7﹣2. 【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.22.(1)12;(2)5【解析】【分析】(1)先证明△ABD 是等腰三角形,再根据三线合一得到AE BD ⊥,利用勾股定理求得AE 的长;(2)利用三角线的中位线定理可得:12EF CD =,再进行求解. 【详解】解:(1)13AD AC CD =-=∴AB AD =∵AE 平分BAC ∠,∴5,EB ED AE BD ==⊥ 根据勾股定理,得2212AE AD DE =-= (2)由(1),知EB ED =,又∵FB FC =, ∴152EF CD ==. 【点睛】 考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.23.原式=2a b a b-=+ 【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】 原式=()()222a ab b a a a b a b -+⨯+-=()()()2·a b a a a b a b -+- =a b a b-+, 当a=1+2,b=1﹣2时,原式=12121212+-+++-=2. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.24.①67-,67-,76-;②5.【解析】【分析】①直接利用完全平方公式将原式变形进而得出答案;②直接利用完全平方公式将原式变形进而得出答案.【详解】先阅读下列材料,再解决问题:①填上适当的数:21324267267(67)6776-=+-⨯⨯=-=-=-②解:原式22223(3)233(2)(3)223=+-⨯⨯+++⨯22(33)(23)=-++33235=-++=【点睛】本题主要考查了二次根式的性质与化简,正确应用完全平方公式时关键是记住公式形式,把握公式特征.25.(1) ﹣4≤y <6;(2)点P 的坐标为(2,﹣2) .【解析】【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【详解】设解析式为:y=kx+b ,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质。

【冲刺卷】八年级数学下期末第一次模拟试卷(附答案)

【冲刺卷】八年级数学下期末第一次模拟试卷(附答案)

【冲刺卷】八年级数学下期末第一次模拟试卷(附答案)一、选择题1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘383940414243米)数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.中位数C.众数D.方差2.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.4.如图,菱形中,分别是的中点,连接,则的周长为()A.B.C.D.5.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差6.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.88.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线互相垂直的四边形D.对角线相等的四边形9.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.-2B.﹣1+2C.﹣1-2D.1-210.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD11.直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C7D.5712.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A .6B .12C .24D .不能确定二、填空题13.如图,BD 是△ABC 的角平分线,DE∥BC,交AB 于点E ,DF∥AB,交BC 于点F ,当△ABC 满足_________条件 时,四边形BEDF 是正方形.14.若3的整数部分是a ,小数部分是b ,则3a b -=______.15.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.16.如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___17.已知0,0a b <>,化简2()a b -=________18.如图,如果正方形ABCD 的面积为5,正方形BEFG 的面积为7,则ACE △的面积_________.19.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.20.已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.三、解答题21.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由 参赛者 推荐语 读书心得 读书讲座 甲 87 85 95 乙94888822.如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.23.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品. (1)请写出此车间每天获取利润y (元)与x (人)之间的函数关系式; (2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?24.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5tB <组:0.51tC <„组:1 1.5tD <„组: 1.5t …请根据上述信息解答下列问题: (1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据: 成绩x 人数 部门 40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲 011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格) 分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.B解析:B【解析】【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.4.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.5.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

【冲刺卷】八年级数学下期末模拟试题带答案

【冲刺卷】八年级数学下期末模拟试题带答案

【冲刺卷】八年级数学下期末模拟试题带答案一、选择题1.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7B .6C .5D .42.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o ,则AB 的长为( )A .3B .4C .43D .53.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C4.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.55.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元6.已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A.1B.2C.3D.47.下列计算正确的是()A2(4)-=2B52=3C52=10D62=3 8.已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A.3±B.3C.3-D.无法确定9.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大10.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米11.如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A .23B .1C .32D .212.下列各组数,可以作为直角三角形的三边长的是( ) A .2,3,4B .7,24,25C .8,12,20D .5,13,15二、填空题13.如果二次根式4x -有意义,那么x 的取值范围是__________.14.如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.15.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.16.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .17.已知实数a 、b 在数轴上的位置如图所示,则化简222()a b b a +--的结果为________18.如图,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若4AE =,6AF =,且□ABCD 的周长为40,则□ABCD 的面积为_______.19.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____. 20.已知3a b +=,2ab =a bb a的值为_________. 三、解答题21.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A 、B 、C 三个等级,其中相应等级的得分依次记为A 级100分、B 级90分、C 级80分,达到B 级以上(含B 级)为优秀,其中8(2)班有2人达到A 级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C 级的人数为_______人; (3)小明同学根据以上信息制作了如下统计表:平均数(分) 中位数(分) 方差 8(1)班 m 90 n 8(2)班919029请分别求出m 和n 的值,并从优秀率和稳定性方面比较两个班的成绩;22.如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.23.已知:2y -与x 成正比例,且2x =时,8y =. (1)求y 与x 之间的函数关系式; (2)当3y <时,求x 的取值范围.24.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH ⊥AE ,垂足为点H ,延长BH 交CD 于点F ,连接AF . (1)求证:AE=BF .(2)若正方形边长是5,BE=2,求AF 的长.25.计算:()2483276-÷【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 【详解】∵等腰三角形ABC 中,AB =AC ,AD 是BC 上的中线, ∴BD =CD =12BC =3, AD 同时是BC 上的高线, ∴AB =22AD BD +=5.故它的腰长为5. 故选C.2.B解析:B 【解析】 【分析】由四边形ABCD 为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB 为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO 为60°,据此即可求得AB 长. 【详解】∵在矩形ABCD 中,BD=8,∴AO=12AC , BO=12BD=4,AC=BD , ∴AO=BO ,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.3.C解析:C【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.4.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.5.C解析:C【解析】【分析】根据加权平均数的定义列式计算可得.【详解】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元),故选:C.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.6.B解析:B【解析】由图象可得2535kk<⎧⎨>⎩,解得5532k<<,故符合的只有2;故选B.7.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.8.C解析:C【解析】【分析】根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±3,因为k-3≠0,所以k≠3,即k=-3.故选:C.【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.9.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.10.D解析:D【解析】【分析】【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念11.B解析:B 【解析】 【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论. 【详解】∵将△CBE 沿CE 翻折至△CFE , ∴∠F=∠B=∠A=90°,BE=EF , 在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ), ∴FH=AE ,GF=AG , ∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ∴DH=x+2,CH=6-x , ∵CD 2+DH 2=CH 2, ∴42+(2+x )2=(6-x )2, ∴x=1, ∴AE=1, 故选B . 【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.12.B解析:B 【解析】试题解析:A 、∵22+32≠42,∴不能构成直角三角形; B 、∵72+242=252,∴能构成直角三角形; C 、∵82+122≠202,∴不能构成直角三角形; D 、∵52+132≠152,∴不能构成直角三角形. 故选B .二、填空题13.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根解析:x≥4【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可.详解:由题意得,x−4⩾0,解得,x⩾4,故答案为x⩾4.点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.14.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.15.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ 再在直角三角形AQC中求出CQ得出BC=40+解析:40403+【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x=4033+.即该船行驶的速度为404033+海里/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.16.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.17.0【解析】【分析】根据数轴所示a<0b>0b-a>0依据开方运算的性质即可求解【详解】解:由图可知:a<0b>0b-a>0∴故填:0【点睛】本题主要考查二次根式的性质和化简实数与数轴去绝对值号关键在解析:0【解析】【分析】根据数轴所示,a<0,b>0, b-a>0,依据开方运算的性质,即可求解.【详解】解:由图可知:a<0,b>0, b-a>0,222()()0a b b a a b b a a b b a--+--=-+-+=故填:0【点睛】本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a>0,即|b-a|=b-a.18.48【解析】∵▱ABCD的周长=2(BC+CD)=40∴BC+CD=20①∵AE⊥BC于EAF⊥CD于FAE=4AF=6∴S▱ABCD=4BC=6CD整理得BC=CD②联立①②解得CD=8∴▱ABC解析:48【解析】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC 于E ,AF⊥CD 于F ,AE=4,AF=6,∴S ▱ABCD=4BC=6CD ,整理得,BC=32CD②, 联立①②解得,CD=8,∴▱ABCD 的面积=AF ⋅CD=6CD=6×8=48.故答案为48.19.方差【解析】【分析】设原数据的众数为a 中位数为b 平均数为方差为S2数据个数为n 根据数据中的每一个数都加上1利用众数中位数的定义平均数方差的公式分别求出新数据的众数中位数平均数方差与原数据比较即可得答 解析:方差【解析】【分析】设原数据的众数为a 、中位数为b 、平均数为x 、方差为S 2,数据个数为n ,根据数据中的每一个数都加上1,利用众数、中位数的定义,平均数、方差的公式分别求出新数据的众数、中位数、平均数、方差,与原数据比较即可得答案.【详解】设原数据的众数为a 、中位数为b 、平均数为x 、方差为S 2,数据个数为n ,∵将一组数据中的每一个数都加上1,∴新的数据的众数为a+1,中位数为b+1, 平均数为1n (x 1+x 2+…+x n +n )=x +1, 方差=1n[(x 1+1-x -1)2+(x 2+1-x -1)2+…+(x n +1-x -1)2]=S 2, ∴值保持不变的是方差,故答案为:方差【点睛】本题考查的知识点众数、中位数、平均数、方差,熟练掌握方差和平均数的计算公式是解答本题的关键.20.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运解析:2【解析】【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.【详解】 解:a b ab ab b a b a +=+ =()a b ab +, ∵3a b +=,2ab =,∴原式=3232=⨯; 故答案为:32. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.三、解答题21.(1)详见解析;(2)1人;(3) 从优秀率看8(2)班更好,从稳定性看8(2)班的成绩更稳定;【解析】【分析】(1)由8(2)班A 级人数及其所占百分比可得两个班的人数,班级人数减去A 、B 级人数可求出C 等级人数;(2)班级人数乘以C 等级对应的百分比可得其人数;(3)根据平均数和方差的定义求解可得;【详解】(1)∵8(2)班有2人达到A 级,且A 等级人数占被调查的人数为20%,∴8(2)班参赛的人数为2÷20%=10(人), ∵8(1)和8(2)班参赛人数相同,∴8(1)班参赛人数也是10人,则8(1)班C 等级人数为10-3-5=2(人),补全图形如下:(2)此次竞赛中8(2)班成绩为C 级的人数为10×(1-20%-70%)=1(人),故答案为:1.(3)m=1 10×(100×3+90×5+80×2)=91(分),n=110×[(100-91)2×3+(90-91)2×5+(80-91)2×2]=49,∵8(1)班的优秀率为3510+×100%=80%,8(2)班的优秀率为20%+70%=90%,∴从优秀率看8(2)班更好;∵8(1)班的方差大于8(2)班的方差,∴从稳定性看8(2)班的成绩更稳定;【点睛】此题考查条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对平均数、方差的认识.22.(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,OD OBDOE BOFOE OF⎧⎪∠∠⎨⎪⎩===,∴△DOE≌△BOF.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)y=3x+2(2)x <13【解析】【分析】 (1)根据y-2与x 成正比例可设y 与x 之间的函数关系式为y-2=2k ,将点的坐标代入一次函数关系式中求出k 值,此题得解;(2)令y<3,由此即可得出关于x 的一元一次不等式,解之即可得出结论.【详解】解:(1)∵2y -与x 成正比例,∴设2y kx -=,∵2x =时,8y =,∴822k -=,∴3k =,∴32y x =+;(2)∵3y <,∴323x +<, 即13x <. 故答案为(1)y=3x+2;(2)x <13. 【点睛】本类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用不等式解决问题.24.(1)证明见解析;(2【解析】【分析】(1)根据正方形的性质得AB =BC ,再根据同角的余角相等得∠BAE =∠EBH ,再利用“角角边”证明△ABE ≌△BCF ,根据全等三角形的对应边相等得AE =BF ;(2)根据全等三角形的对应边相等得BE =CF ,再利用勾股定理计算即可得出结论.【详解】(1)∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°. ∴∠BAE +∠AEB =90°. ∵BH ⊥AE ,∴∠BHE =90°. ∴∠AEB +∠EBH =90°. ∴∠BAE =∠EBH.在△ABE 和△BCF 中,∴△ABE≌△BCF(ASA).∴AE=BF.(2)由(1)得△ABE≌△BCF,∴BE=CF.∵正方形的边长是5,BE=2,∴DF=CD-CF=CD-BE=5-2=3.在Rt△ADF中,由勾股定理得:AF===.【点睛】本题考查了全等三角形的判定与性质和正方形的性质,解题的关键是熟练的掌握全等三角形的判定与性质和正方形的性质.25.2【解析】【分析】根据根式的化简原则化简计算即可.【详解】解:原式=(8393)6-=(3)6-=2=22 -【点睛】本题主要考查根式的计算,是基本知识点,应当熟练的计算.。

初二数学下期末一模试卷(附答案)

初二数学下期末一模试卷(附答案)

初二数学下期末一模试卷(附答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 2.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .3.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( )A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B4.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元5.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3 6.如图,在ABCD 中, 对角线AC 、BD 相交于点O.E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠7.计算12(75+313﹣48)的结果是( ) A .6B .43C .23+6D .12 8.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .89.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S 甲2=1.5,S 乙2=2.6,S 丙2=3.5,S 丁2=3.68,你认为派谁去参赛更合适( )A .甲B .乙C .丙D .丁 10.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限11.下列运算正确的是( )A 235+=B .22=3C 236=D 632 12.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题13.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.14.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.15.若ab <0,则代数式2a b 可化简为_____.16.如图,一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x 的方程kx =b 的解是_____.17.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.18.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.19.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试86 92笔试 90 83 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

【冲刺卷】八年级数学下期末第一次模拟试题(及答案)

【冲刺卷】八年级数学下期末第一次模拟试题(及答案)

【冲刺卷】八年级数学下期末第一次模拟试题(及答案)一、选择题1.若2(5)x -=x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >5 2.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .3.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是( )A .30B .36C .54D .72 4.已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .4 5.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( ) A . B .C.D.6.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60B.平均数是21C.抽查了10个同学D.中位数是507.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方ab ,大正方形的面积为形,设直角三角形较长直角边长为a,较短直角边长为b.若825,则小正方形的边长为()A.9B.6C.4D.38.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为()A.10米B.16米C.15米D.14米9.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 2 11.下列运算正确的是( ) A .235+= B .32﹣2=3 C .236⨯=D .632÷= 12.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题13.如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E ,若∠EAO=15°,则∠BOE 的度数为 度.14.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.15.已知13y x =-+,234y x =-,当x 时,12y y <.16.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.17.如图,直线y =kx +b (k >0)与x 轴的交点为(﹣2,0),则关于x 的不等式kx +b <0的解集是_____.18.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 19.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若DQ =2QC ,BC =3,则平行四边形ABCD 周长为_____.20.如图,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若4AE =,6AF =,且□ABCD 的周长为40,则□ABCD 的面积为_______.三、解答题21.已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.22.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x 块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.23.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.24.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差22 3S甲,数据:11,15,18,17,10,19的方差235 3S=乙:(1)分别求甲、乙两段台阶的高度平均数;(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.25.某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.(Ⅰ)写出y关于x的函数关系式;(Ⅱ)该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】2a(a≤0),由此性质求得答案即可.【详解】()25x-,∴5-x≤0∴x≥5.故选C.【点睛】此题考查二次根式的性质:2a=a(a≥0),2a=-a(a≤0).2.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.3.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.解析:B 【解析】由图象可得2535kk<⎧⎨>⎩,解得5532k<<,故符合的只有2;故选B.5.B解析:B【解析】【分析】先根据正比例函数y kx=的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,00k k∴->,<,∴一次函数y x k=-的图象经过一、三、四象限.故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.6.B解析:B【解析】【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.7.D解析:D【解析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:-a bQ 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-= 2()25169a b ∴-=-=3a b ∴-=故选:D【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.8.B解析:B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC 中,根据勾股定理得:=10米.所以大树的高度是10+6=16米.故选:B .【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.9.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC 、BD 互相垂直,则需添加条件:AC 、BD 互相平分故选:B10.B解析:B【分析】【详解】解:如图,设直线AB的解析式为y=kx+b,则4+=1200 {5k+b=1650k b,解得450 {600 kb==-故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2)故选B.【点睛】本题考查一次函数的应用.11.C解析:C【解析】【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】23B.3222,故该选项计算错误,2323⨯6,故该选项计算正确,6363÷2,故该选项计算错误.故选:C.【点睛】本题考查二次根式得运算,熟练掌握运算法则是解题关键.12.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.【点睛】本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题13.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD∴∠BAE=∠E解析:75°.【解析】试题分析:根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.解:在矩形ABCD中,∵AE平分∠BAD,∴∠BAE=∠EAD=45°,又知∠EAO=15°,∴∠OAB=60°,∵OA=OB,∴△BOA为等边三角形,∴BA=BO,∵∠BAE=45°,∠ABC=90°,∴△BAE为等腰直角三角形,∴BA=BE.∴BE=BO,∠EBO=30°,∠BOE=∠BEO,此时∠BOE=75°.故答案为75°.考点:矩形的性质;等边三角形的判定与性质.14.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a2解析:【解析】【分析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.15.【解析】【分析】根据题意列出不等式求出解集即可确定出x的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x>7解得:x故答案为:解析:74 >.【解析】【分析】根据题意列出不等式,求出解集即可确定出x的范围.【详解】根据题意得:-x+3<3x-4,移项合并得:4x>7,解得:x74 >.故答案为:7 4 >16.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30解析:3.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示.连接HC、DF,且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG ∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°∴△DCF是等边三角形,∠DFC=∠FDC=60°∴∠EFD=∠ADF=30°,HF=HD∴HC是FD的垂直平分线,∠FCH=∠DCH=12∠DCF=30°在Rt△HDC中,HD=DC·tan∠3∵正方形ABCD的边长为3∴HD=DC·tan∠DCH=3×tan30°=3×33 3试题点评:构建新的三角形,利用已有的条件进行组合.17.x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大当x<﹣2时y<0即可求出答案【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣20)∴y随x的增大而增大当x<﹣2时y<0即解析:x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大,当x<﹣2时,y<0,即可求出答案.【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx +b <0.故答案为:x <﹣2.【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.18.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC S CD AB =⋅V =112102⨯⨯=60, 故答案为:60.【点睛】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.19.【解析】试题解析:∵由题意可知AQ 是∠DAB 的平分线∴∠DAQ=∠BAQ ∵四边形ABCD 是平行四边形∴CD ∥ABBC=AD=3∠BAQ=∠DQA ∴∠DAQ=∠DAQ ∴△AQD 是等腰三角形∴DQ=AD解析:【解析】试题解析:∵由题意可知,AQ 是∠DAB 的平分线,∴∠DAQ =∠BAQ .∵四边形ABCD 是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=12DQ=32,∴CD=DQ+CQ=3+32=92,∴平行四边形ABCD周长=2(DC+AD)=2×(92+3)=15.故答案为15.20.48【解析】∵▱ABCD的周长=2(BC+CD)=40∴BC+CD=20①∵AE⊥BC于EAF⊥CD于FAE=4AF=6∴S▱ABCD=4BC=6CD整理得BC=CD②联立①②解得CD=8∴▱ABC解析:48【解析】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=32CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.故答案为48.三、解答题21.(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解析】【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE (HL )∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.22.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A 售价﹣A 进价)x+(B 售价﹣B 进价)×(100﹣x )列式整理即可; (2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x 的正整数值即可;(3)利用y 与x 的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x )=140x+6000.由700x+100(100﹣x )≤40000得x≤50.∴y 与x 之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:方案A品牌(块)B品牌(块)①4852②4951③5050∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.23.(1)详见解析(2)详见解析(3)58【解析】【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=58°.【详解】解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS).(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP.∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E ,即∠DPE=∠DCE .∵AB ∥CD ,∴∠DCE=∠ABC .∴∠DPE=∠ABC .(3)解:在菱形ABCD 中,BC=DC ,∠BCP=∠DCP ,在△BCP 和△DCP 中,BC DC BCP DCP PC PC =⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△DCP (SAS ),∴∠CBP=∠CDP ,∵PE=PB ,∴∠CBP=∠E ,∴∠DPE=∠DCE ,∵AB ∥CD ,∴∠DCE=∠ABC ,∴∠DPE=∠ABC=58°,故答案为:58.24.(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm ,游客行走更舒服.【解析】分析:(1)根据图中所给的数据,利用平均数公式求解即可;(2)根据平均数、中位数、方差和极差的特征回答即可;(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm (原平均数)使得方差为0,游客行走更舒服.点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可.25.(Ⅰ)103000y x =-+;(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】【分析】(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x 的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:()()()604012090100103000y x x x =-+--=-+则y 与x 的函数关系式为103000y x =-+.(Ⅱ)()40901008000x x +-≤,解得20x ≥.∴至少要购进20件甲商品.103000y x =-+,∵100-<,∴y 随着x 的增大而减小∴当20x =时,y 有最大值,102030002800y =-⨯+=最大.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.。

【冲刺卷】八年级数学下期末一模试题(附答案)

【冲刺卷】八年级数学下期末一模试题(附答案)

【冲刺卷】八年级数学下期末一模试题(附答案)一、选择题1.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h += 3.下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等4.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .56.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形 B .钝角三角形C .直角三角形D .锐角三角形7.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒ 8.已知y =(k -3)x |k |-2+2是一次函数,那么k 的值为( )A .3±B .3C .3-D .无法确定9.如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A .23B .1C .32D .210.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .611.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .512.如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax bkx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩二、填空题13.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .14.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).15.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.16.观察下列各式:221111++1212⨯, 221111++2323⨯, 221111++3434⨯, ……请利用你所发现的规律, 22111++1222111++2322111++3422111++910,其结果为_______. 17.将直线y =2x 向下平移3个单位长度得到的直线解析式为_____.18.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.19.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____. 20.已知3a b +=,2ab =,则a bb a+的值为_________. 三、解答题21.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. (1)求y 关于x 的函数关系式;(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少? (3)实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.22.已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.23.如图,AE BF P ,AC 平分BAD ∠,交BF 于点C ,BD 平分ABC ∠,交AE 于点D ,连接CD .求证:四边形ABCD 是菱形.24.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?25.某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺 在Rt △AB'C 中,82+(x-2)2=x 2, 解之得:x=17, 即芦苇长17尺. 故选C . 【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.D解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .3.C解析:C 【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假. 解:A 、逆命题是三个角对应相等的两个三角形全等,错误; B 、绝对值相等的两个数相等,错误; C 、同位角相等,两条直线平行,正确; D 、相等的两个角都是45°,错误. 故选C .4.B解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.B解析:B 【解析】 【分析】由四边形ABCD 为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB 为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO 为60°,据此即可求得AB 长. 【详解】∵在矩形ABCD 中,BD=8,∴AO=12AC , BO=12BD=4,AC=BD , ∴AO=BO ,又∵∠AOB=60°,∴△AOB 是等边三角形, ∴AB=OB=4, 故选B. 【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.6.C解析:C 【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+,∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形, 故选:C . 【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.7.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90° 即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.C解析:C 【解析】 【分析】根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可. 【详解】一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1. 所以|k|-2=1, 解得:k=±3,因为k-3≠0,所以k≠3, 即k=-3. 故选:C . 【点睛】本题主要考查一次函数的定义,一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.9.B解析:B 【解析】 【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论. 【详解】∵将△CBE 沿CE 翻折至△CFE , ∴∠F=∠B=∠A=90°,BE=EF , 在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ), ∴FH=AE ,GF=AG , ∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ∴DH=x+2,CH=6-x , ∵CD 2+DH 2=CH 2, ∴42+(2+x )2=(6-x )2, ∴x=1, ∴AE=1, 故选B . 【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.10.C解析:C 【解析】 【分析】 【详解】解:∵四边形ABCD 是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C11.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.12.D解析:D【解析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32 xy=-⎧⎨=-⎩.故选D.【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题13.9【解析】∵四边形ABCD是矩形∴∠ABC=90°BD=ACBO=OD∵AB=6cmBC=8cm∴由勾股定理得:(cm)∴DO=5cm∵点E F分别是AOAD的中点(cm)故答案为25解析:9【解析】∵四边形ABCD 是矩形,∴∠ABC =90°,BD =AC ,BO =OD ,∵AB =6cm ,BC =8cm ,∴由勾股定理得:10BD AC == (cm ),∴DO =5cm ,∵点E . F 分别是AO 、AD 的中点,1 2.52EF OD ∴== (cm ), 故答案为2.5.14.大于【解析】【分析】根据一次函数的性质当k <0时y 随x 的增大而减小【详解】∵一次函数y =−2x +1中k =−2<0∴y 随x 的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的解析:大于【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小.【详解】∵一次函数y =−2x +1中k =−2<0,∴y 随x 的增大而减小,∵x 1<x 2,∴y 1>y 2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.15.①③④【解析】【分析】根据y1=kx+b 和y2=x+a 的图象可知:k <0a <0所以当x >3时相应的x 的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方解析:①③④【解析】【分析】根据y 1=kx+b 和y 2=x+a 的图象可知:k <0,a <0,所以当x >3时,相应的x 的值,y 1图象均低于y 2的图象.【详解】根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx+b=x+a 的解是x=3,正确;④当x >3时,y 1<y 2正确.故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.16.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确 解析:9910 【解析】 分析:直接根据已知数据变化规律进而将原式变形求出答案. 详解:由题意可得: 22111++12+22111++23+22111++34+…+22111++910 =11+12⨯+1+123⨯+1+134⨯+…+1+1910⨯ =9+(1﹣12+12﹣13+13﹣14+…+19﹣110) =9+910=9910. 故答案为9910. 点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.17.【解析】【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y2x 向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b 而言: 解析:23y x =-.【解析】【分析】根据直线的平移规律“上加下减,左加右减”求解即可.【详解】解:直线y =2x 向下平移3个单位长度得到的直线解析式为23y x =-.【点睛】本题考查了直线的平移变换. 直线平移变换的规律是:对直线y=kx+b 而言:上下移动,上加下减;左右移动,左加右减.例如,直线y=kx+b 如上移3个单位,得y=kx+b +3;如下移3个单位,得y=kx+b -3;如左移3个单位,得y=k (x +3)+b ;如右移3个单位,得y=k (x -3)+b .掌握其中变与不变的规律是解决直线平移变换问题的基本方法.18.【解析】【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b 然后将点(02)代入即可得出直线的函数解析式【详解】解:设平移后直线的解析式为y=3x+b 把(02)代入直线解析式得2=b 解得解析:32y x =+【解析】【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b ,然后将点(0,2)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=3x+b .把(0,2)代入直线解析式得2=b ,解得 b=2.所以平移后直线的解析式为y=3x+2.故答案为:y=3x+2.【点睛】本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b (k≠0)平移时k 的值不变是解题的关键.19.﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0进而求出n 值即可【详解】∵特征数是2n+1的一次函数为正比例函数∴n+1=0解得:n =﹣1故答案为:﹣1【点睛】本题考查正比例函数解析:﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n 值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n =﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx (k≠0),是解题关键.20.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运解析:2【解析】【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.【详解】=, ∵3a b +=,2ab =,∴原式;. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.三、解答题21.(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A 型电脑每台利润×A 电脑数量+B 型电脑每台利润×B 电脑数量”可得函数解析式;(2)根据“B 型电脑的进货量不超过A 型电脑的2倍且电脑数量为整数”求得x 的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a )x+500(100﹣x ),即y=(a ﹣100)x+50000,分三种情况讨论,①当0<a <100时,y 随x 的增大而减小,②a=100时,y=50000,③当100<m <200时,a ﹣100>0,y 随x 的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x )=﹣100x+50000;(2)∵100﹣x≤2x ,∴x≥1003, ∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.22.(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解析】【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵AD AB AF AE ⎧⎨⎩==,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.23.详见解析【解析】【分析】由角平分线和平行线的性质先证出AB BC =,AB AD =,从而有AD BC =,得到四边形ABCD 是平行四边形,又因为AB BC =,所以四边形ABCD 是菱形.【详解】证明:∵AC 平分BAD ∠,∴BAC DAC ∠=∠,∵AE BF P ,∴DAC ACB ∠=∠,∴BAC ACB ∠=∠,∴AB BC =,同理AB AD =.∴AD BC =,∵AE BF P ,∴AD BC ∥且AD BC =,∴四边形ABCD 是平行四边形,∵AB BC =,∴四边形ABCD 是菱形.【点睛】本题考查了菱形,熟练掌握菱形的判定方法是解题的关键.24.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据题意得2(x+50)=3x ,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a ﹣)=100a+14000(元), 到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.25.(1)2140(4058)82(5871)x x y x x -+⎧=⎨-+<⎩剟„;(2)55元 【解析】【分析】(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y 与x 之间的函数关系式为y =kx+b (k≠0),将(40,60),(58,24)代入y =kx+b ,得: 40605824k b k b +=⎧⎨+=⎩ ,解得:2140k b =-⎧⎨=⎩, ∴当40≤x≤58时,y 与x 之间的函数关系式为y =2x+140;当理可得,当58<x≤71时,y 与x 之间的函数关系式为y =﹣x+82.综上所述:y 与x 之间的函数关系式为2140(4058)82(5871)x x y x x -+⎧=⎨-+<⎩剟„. (2)设当天的销售价为x 元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x ﹣40)(﹣2x+140)=100×3+150, 解得:x 1=x 2=55;当57<x≤71时,依题意,得:(x ﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.【点睛】本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.。

人教版八年级数学下册期末冲刺卷(一)附解析

人教版八年级数学下册期末冲刺卷(一)附解析

人教版八年级数学下册期末冲刺卷(一)附解析一、选择题(共12小题;共60分)1. 若分式无意义,则A. B. C. D.2. 下列函数中,自变量的取值范围是的是A. B. C. D.3. 如图,平行四边形的周长为,的周长比的周长多,则的长为A. B. C. D.4. 下列约分正确的是A. B.5. 下列命题是假命题的是A. 菱形的四条边都相等B. 互为倒数的两个数的乘积为C. 若,,则D. 两个负数的和仍然是负数6. 计算的结果为A. B.7. 分式,的最简公分母是A. B.C. D.8. 如图,已知:,与是对应边,那么A. B. C. D.9. 月日玉树发生的地震导致公路破坏,为抢修一段米的公路,施工队每天比原来计划多修米,结果提前天通了汽车,问原计划每天修多少米?若设原计划每天修米,则所列方程正确的是A. B. C. D.10. 函数的图象经过点,则下列各点中在的图象上的是A. D.11. 若点在第四象限,则的取值范围是A. B. C. D.12. 一组数据:,,,,的众数,中位数,方差分别是A. ,,B. ,,C. ,,D. ,,二、填空题(共6小题;共30分)13. .14. 某小食堂存煤千克,可使用的天数和平均每天的用煤(千克)的函数关系式为:.15. 已知梯形中,,,,如果,那么.16. 四边形中,,要使四边形成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可).17. 若,则.18. 如图所示,菱形中,对角线,相交于点,若再补充一个条件能使菱形成为正方形,则这个条件是.三、解答题(共8小题;共104分)19. .20. 如图所示,是等边三角形,点是的中点,延长到,使.(1)用尺规作图的方法,过点作,垂足是;(不写作法,保留作图痕迹)(2)求证:.21. 如图,在平行四边形中,,为上两点,且,.求证:(1).(2)四边形是矩形.22. 先化简,再求值:,其中.23. 今年植树节,某校师生到距学校千米的公路旁植树,一班师生骑自行车先行,行进了千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快千米,求两种车的速度各是多少? 24. 已知如图,一次函数的图象与反比例函数的图象相交于,两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的的取值范围.25. 如图,在中,是边上的一点,是的中点,过点作的平行线交的延长线于点,且,连接.(1)求证:;(2)如果,试判断四边形的形状,并证明你的结论.26. 我市部分地区近年出现持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池.该村共有户村民,准备维护和新建的储水池共有个,费用和可供使用的户数及用地情况如下表:已知可支配使用土地面积为,若新建储水池个,新建和维护的总费用为万元.(1)求与之间的函数关系;(2)满足要求的方案各有几种;(3)若平均每户捐元时,村里出资最多和最少分别是多少?答案第一部分1. D2. D3. D4. D5. C6. C7. B8. B9. A10. D11. B12. B第二部分13.14.15.16. (或)18. (答案不唯一)第三部分19.20. (1)如图所示;(2)是等边三角形,是的中点,平分,,,,又,,又,,,,又,.21. (1)是平行四边形.又,,即.又,.(2)由(1)知,,.又,,,四边形是矩形.22.当时,.23. 设自行车的速度为千米/时,解得,经检验,是原分式方程的解,且符合题意.,即自行车的速度是千米/时,汽车的速度是千米/时.24. (1)据题意,反比例函数的图象经过点,所以有,所以反比例函数解析式为,又反比例函数的图象经过点,所以,所以,将,两点代入,有解得所以一次函数的解析式为.(2)一次函数的值大于反比例函数的值时,取相同值,一次函数图象在反比例函数上方即一次函数大于反比例函数,所以或.25. (1),.是的中点,.在和中,....(2)四边形是矩形.,是的中点,..,,四边形是平行四边形.又,四边形是矩形26. (1)由题意得,即;(2)由题意得,化简得,即.,解得,.又为整数,满足要求的方案有三种:新建个,维护个;新建个,维护个;新建个,维护个;(3)由知随的增大而增大.当时,,当时,.而居民捐款共(万元).村里出资最多为万元,最少为万元.。

八年级下册数学期末冲刺卷答案

八年级下册数学期末冲刺卷答案

八年级下册数学期末冲刺卷答案期末考试是教学活动中十分重要的环节,数学期末考试与八年级学生的学习是息息相关的。

下面是小编为大家精心整理的八年级下册数学期末冲刺卷和答案,仅供参考。

八年级下册数学期末冲刺卷题目一、选择题(每小题3分。

共30分)1. 下列各数中,与是同类二次根式的是…………………… 【】A. B. C. D.2. 若一个多边形的每个内角都等于135°,则该多边形的边数为【】A.8B.7C.6D.53. 若一1是关于x的方程nx2+mx+2=0(n≠0)的一个根,则m—n的值为【】A.1B.2C.一lD.一24.若,则的值为【】A.4或-2B.4C.一2D.一45.下列二次根式中,最简二次根式是( ) 【】A. B. C. D.6.在△ABC中,AB=15,AC=13,高AD=12. 则它的周长是【】A. 42.B. 32.C. 37或33D.42或32.7.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分81 79 ■ 80 82 ■ 80那么被遮盖的两个数据依次是【】A.80,2 B.80,2 C.78,2D.78,28.如图,在菱形ABCD中,AB=5,对角线AC=6,过A作AE⊥BC,垂足为E,则AE的长是【】A. 24B. 36C. 48D. 4.89.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为【】A.10°B.15°C.20°D.30°10.如图,已知平行四边形ABCD,下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD从中选两个作为补充条件,使它成为正方形,其中错误的是【】A.①②B.②③C.①③D.②④二、填空题 (每小题3分。

共24分)11.若代数式在实数范围内有意义,则x的取值范围是____________.12.平行四边形ABCD中,对角线AC、BD的长度分别为10、6,则边AB的长度取值范围是 ____________.13.已知关于x的方程x2+6x+k=0的两实根分别是x1、x2, 且则k的值是____________.14.若矩形对角线相交所成的钝角为120°,较短的边长为4cm,则对角线的长为____________.15.已知方程x2+4x+n=0可以配方成(x+m)2=3,则(m-n)2016=________.16.一个三角形的三边长之比为5:12:13,它的周长为120,则它的面积是________.17.如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积是。

【冲刺卷】八年级数学下期末第一次模拟试卷(及答案)

【冲刺卷】八年级数学下期末第一次模拟试卷(及答案)

【冲刺卷】八年级数学下期末第一次模拟试卷(及答案)一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a2.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺3.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.54.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >5.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形6.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是( )A .30B .36C .54D .727.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒8.计算12(75+313﹣48)的结果是( ) A .6 B .43C .23+6D .129.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵10.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .611.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定12.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .二、填空题13.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.14.在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.15.若x <222)x (﹣x|的正确结果是__.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、E 的面积分别为2,5,1,10.则正方形D 的面积是______.17.如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___18.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 19.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.20.(多选)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,两车同时出发,乙车先到达目的地,图中的折线段表示甲,乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系,下列说法正确的是( )A .甲乙两车出发2小时后相遇B .甲车速度是40千米/小时C .相遇时乙车距离B 地100千米D .乙车到A 地比甲车到B 地早53小时 三、解答题21.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下: 甲1061068乙 7 9 7 8 9经过计算,甲进球的平均数为8,方差为3.2. (1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么? 22.某经销商从市场得知如下信息:A 品牌手表B 品牌手表 进价(元/块) 700 100 售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x 块,这两种品牌手表全部销售完后获得利润为y 元. (1)试写出y 与x 之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案; (3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元. 23.已知:2y -与x 成正比例,且2x =时,8y =. (1)求y 与x 之间的函数关系式; (2)当3y <时,求x 的取值范围.24.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分) 中位数(分)众数(分)初中部85(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.25.已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:首先由,即可将原式化简,然后由1<a<2,去绝对值符号,继而求得答案.详解:∵1<a<2,(a-2),|a-1|=a-1,(a-2)+(a-1)=2-1=1.故选A.点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt△AB'C中,82+(x-2)2=x2,解之得:x=17,即芦苇长17尺.故选C.【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.3.A解析:A【解析】【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=12AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=12 AC,∴222251213AB BC+=+=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.4.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.5.D解析:D【解析】A 、两条对角线垂直并且相互平分的四边形是菱形,故选项A 错误; B 、对角线垂直且相等的平行四边形是正方形,故选项B 错误; C 、两条对角线相等的平行四边形是矩形,故选项C 错误;D 、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D 正确; 故选D .6.D解析:D 【解析】 【分析】求▱ABCD 的面积,就需求出BC 边上的高,可过D 作DE ∥AM ,交BC 的延长线于E ,那么四边形ADEM 也是平行四边形,则AM=DE ;在△BDE 中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE 是直角三角形;可过D 作DF ⊥BC 于F ,根据三角形面积的不同表示方法,可求出DF 的长,也就求出了BC 边上的高,由此可求出四边形ABCD 的面积.作DE ∥AM ,交BC 的延长线于E ,则ADEM 是平行四边形,∴DE=AM=9,ME=AD=10, 又由题意可得,BM=12BC=12AD=5, 则BE=15,在△BDE 中,∵BD 2+DE 2=144+81=225=BE 2, ∴△BDE 是直角三角形,且∠BDE=90°, 过D 作DF ⊥BE 于F , 则DF=365BD DE BE ⋅=, ∴S ▱ABCD =BC•FD=10×365=72. 故选D . 【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.7.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90° 即CBD ∠=90°【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.D解析:D【解析】【分析】【详解】===.12故选:D.9.D解析:D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.10.C解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4 故选C11.B解析:B 【解析】 【分析】由矩形ABCD 可得:S △AOD =14S 矩形ABCD ,又由AB=15,BC=20,可求得AC 的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果. 【详解】连接OP ,如图所示:∵四边形ABCD 是矩形, ∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20,∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12.∴点P 到矩形的两条对角线AC 和BD 的距离之和是12. 故选B . 【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.解析:A 【解析】 【分析】首先写出函数的解析式,根据函数的特点即可确定. 【详解】由题意得:s 与t 的函数关系式为s=600-200t ,其中0≤t≤3, 所以函数图象是A . 故选A . 【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.二、填空题13.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为解析:15° 【解析】 【分析】 【详解】解:由题意可知:90,60.BAD DAE ∠=∠=oo.AB AD AE ==150.BAE o∴∠= ABE △是等腰三角形 15.AEB ∴∠=o 故答案为15.o14.x <1【解析】观察图象即可得不等式kx<-x+3的解集是x <1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键解析:x <1 【解析】观察图象即可得不等式kx<-x+3的解集是x <1.点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.15.5-2x 【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x <2∴x-203-x0∴原式=2-x+3-x=5-2x 故解析:5-2x 【解析】本题首先根据题意得出x-2<0,3-x >0,然后根据绝对值的性质进行化简,从而得出答案. 【详解】解:﹣x| =2x -+|3﹣x| ∵x <2∴x -2<0,3-x >0 ∴原式=2-x+3-x=5-2x 故答案为:5-2x 【点睛】本题主要考查的就是二次根式的化简. 2的区别,第一个a 的取值范围为全体实数,第二个a 的取值范围为非负数,第一个的运算结果为a ,然后根据a 的正负性进行去绝对值,第二个的运算结果就是a.本题我们知道原式=x 2-+3x -,然后根据x 的取值范围进行化简.16.2【解析】【分析】设中间两个正方形和正方形D 的面积分别为xyz 然后有勾股定理解答即可【详解】解:设中间两个正方形和正方形D 的面积分别为xyz 则由勾股定理得:x =2+5=7;y =1+z ;7+y =7+1解析:2 【解析】 【分析】设中间两个正方形和正方形D 的面积分别为x ,y ,z ,然后有勾股定理解答即可. 【详解】解:设中间两个正方形和正方形D 的面积分别为x ,y ,z , 则由勾股定理得: x =2+5=7; y =1+z ; 7+y =7+1+z =10;即正方形D 的面积为:z =2. 故答案为:2. 【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17.5【解析】【分析】由是的垂直平分线可得AD=CD 可得∠CAD=∠ACD 利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B 可得CD=BD 可知CD=BD=AD=【详解】解:∵是的解析:5【分析】由DE 是AC 的垂直平分线可得AD=CD ,可得∠CAD=∠ACD ,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B ,可得CD=BD ,可知CD=BD=AD=152AB = 【详解】解:∵DE 是AC 的垂直平分线 ∴AD=CD ∴∠CAD=∠ACD∵10AB =,8AC =,6BC = 又∵2226+8=10 ∴222AC BC AB += ∴∠ACB=90°∵∠ACD+∠DCB=90°, ∠CAB+∠B=90° ∴∠DCB=∠B ∴CD=BD ∴CD=BD=AD=152AB = 故答案为5 【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键.18.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD ∵AC=BC=13AB=10∴△AB C 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60 【解析】 【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案. 【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形, ∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2,,12ABC S CD AB =⋅V =112102⨯⨯=60,故答案为:60. 【点睛】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.19.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3, 32. 【解析】 【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差. 【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.20.ABD 【解析】【分析】根据图象的信息依次进行解答即可【详解】A 出发2h 后其距离为零即两车相遇故正确;B 甲的速度是千米/小时故正确;C 相遇时甲行驶的路程为2×40=80km 故乙车行驶路程为120千米故解析:ABD 【解析】 【分析】根据图象的信息依次进行解答即可. 【详解】A 、出发2h 后,其距离为零,即两车相遇,故正确;B、甲的速度是200405=千米/小时,故正确;C、相遇时,甲行驶的路程为2×40=80km,故乙车行驶路程为120千米,故离B地80千米,故错误;D、乙车2小时行驶路程120千米,故乙的速度是120602=千米/小时,故乙车到达A地时间为20060=103小时,故乙车到A地比甲车到B地早5-103=53小时,D正确;故选:ABD.【点睛】本题考查了行程问题的数量关系速度=路程÷时间的运用,速度和的运用,解答时正确理解函数图象的数据的意义是关键.三、解答题21.(1)乙平均数为8,方差为0.8;(2)乙.【解析】【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S21n=[(x1x-)2+(x2x-)2+…+(x n x-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.22.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y 与x 的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可. 【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x )=140x+6000. 由700x+100(100﹣x )≤40000得x≤50.∴y 与x 之间的函数关系式为y=140x+6000(x≤50) (2)令y≥12600,即140x+6000≥12600, 解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:∴x=50时y 取得最大值. 又∵140×50+6000=13000, ∴选择方案③进货时,经销商可获利最大,最大利润是13000元. 【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用. 23.(1)y=3x+2(2)x <13【解析】 【分析】(1)根据y-2与x 成正比例可设y 与x 之间的函数关系式为y-2=2k ,将点的坐标代入一次函数关系式中求出k 值,此题得解;(2)令y<3,由此即可得出关于x 的一元一次不等式,解之即可得出结论. 【详解】解:(1)∵2y -与x 成正比例, ∴设2y kx -=, ∵2x =时,8y =, ∴822k -=, ∴3k =, ∴32y x =+; (2)∵3y <, ∴323x +<,即13x <. 故答案为(1)y=3x+2;(2)x <13. 【点睛】本类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用不等式解决问题. 24.(1)平均数(分)中位数(分)众数(分)初中部858585高中部8580100【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可. 25.(1)m =3;(2)1<m <3. 【解析】 【分析】根据一次函数的相关性质进行作答.【详解】(1)∵一次函数图象过原点,∴1030mm-≠⎧⎨-=⎩,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴1030mm-<⎧⎨-<⎩,∴1<m<3.【点睛】本题考查了一次函数的相关性质,熟练掌握一次函数的相关性质是本题解题关键.。

【冲刺卷】八年级数学下期末一模试题(及答案)

【冲刺卷】八年级数学下期末一模试题(及答案)

【冲刺卷】八年级数学下期末一模试题(及答案)一、选择题1.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③ 3.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .4.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =05.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A.3B.4C.5D.2.5 6.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大7.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁8.无论m为任何实数,关于x的一次函数y=x+2m与y=-x+4的图象的交点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6B.12C.24D.不能确定10.如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.11.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若AFDV的周长为18,ECFV的周长为6,四边形纸片ABCD的周长为()A .20B .24C .32D .4812.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题13.已知13y x =-+,234y x =-,当x 时,12y y <. 14.如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.15.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.16.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= . 17.已知0,0a b <>2()a b -=________18.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 .19.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______20.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.三、解答题21.如图,在ABCD Y 中,E ,F 分别是边AD ,BC 上的点,且AE CF .求证:四边形BEDF 为平行四边形.22.如图,在Rt △ABC 中,∠A=90°,∠B=30°,D 、E 分别是AB 、BC 的中点,若DE=3,求B C 的长.23.计算:(. 24.已知:如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .求证:∠EBF =∠EDF .25.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE=2DE ,延长DE 到点F ,使得EF=BE ,连接CF .(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt△AB'C中,82+(x-2)2=x2,解之得:x=17,即芦苇长17尺.故选C.【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.A解析:A【解析】【分析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=123 s.因此③正确.终上所述,①②③结论皆正确.故选A.3.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.4.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.5.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.6.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键. 7.A解析:A【解析】【分析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.8.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m 取何值,直线y=x+2m 与y=-x+4的交点不可能在第三象限.故选C .9.B解析:B【解析】【分析】由矩形ABCD 可得:S △AOD =14S 矩形ABCD ,又由AB=15,BC=20,可求得AC 的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果.【详解】连接OP ,如图所示:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12.∴点P到矩形的两条对角线AC和BD的距离之和是12.故选B.【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.10.A解析:A【解析】【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,反映到图象上应选A.故选:A.【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.11.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.12.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.【点睛】本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题13.【解析】【分析】根据题意列出不等式求出解集即可确定出x的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x>7解得:x故答案为:解析:74 >.【解析】【分析】根据题意列出不等式,求出解集即可确定出x的范围.【详解】根据题意得:-x+3<3x-4,移项合并得:4x>7,解得:x74 >.故答案为:7 4 >14.3【解析】【分析】根据折叠的性质只要求出DN就可以求出NE在直角△CEN中若设CN=x则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN的长【详解】设CN=x则DN=8-x由折叠的性解析:【解析】【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,而EC=BC=4,在Rt△ECN中,由勾股定理可知,即整理得16x=48,所以x=3.故答案为:3.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.15.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30解析:3.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示.连接HC、DF,且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°∴△DCF是等边三角形,∠DFC=∠FDC=60°∴∠EFD=∠ADF=30°,HF=HD∴HC是FD的垂直平分线,∠FCH=∠DCH=12∠DCF=30°在Rt△HDC中,HD=DC·tan∠3∵正方形ABCD的边长为3∴HD=DC·tan∠DCH=3×tan30°=3×33 3试题点评:构建新的三角形,利用已有的条件进行组合.16.5【解析】试题分析:∵四边形ABCD 是矩形∴OA=O B 又∵∠AOB=60°∴△AOB 是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质解析:5。

【冲刺卷】八年级数学下期末第一次模拟试卷带答案

【冲刺卷】八年级数学下期末第一次模拟试卷带答案

【冲刺卷】八年级数学下期末第一次模拟试卷带答案一、选择题 1.若2(5)x -=x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >52.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52)D .(-5,2)3.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( )A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B 4.三角形的三边长为22()2a b c ab +=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形 5.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )A .30B .36C .54D .726.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( )A .90万元B .450万元C .3万元D .15万元7.下列有关一次函数y =﹣3x +2的说法中,错误的是( )A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为(0,2)C .函数图象经过第一、二、四象限D .图象经过点(1,5)8.下列计算中正确的是()A.325+=B.321-=C.3333+=D.33 42 =9.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1B.2C.3D.410.函数的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 11.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.89C.8D.4112.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.80二、填空题13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足_________条件时,四边形BEDF是正方形.1445与最简二次根式21a-是同类二次根式,则a=_____.15.若2(3)x -=3-x ,则x 的取值范围是__________.16.如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.17.已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.18.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .19.如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.20.如图,已如长方形纸片,ABCD O 是BC 边上一点,P 为CD 中点,沿AO 折叠使得顶点B 落在CD 边上的点P 处,则OAB ∠的度数是______.三、解答题21.如图,已知一次函数y=kx+b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.22.如图,在四边形ABCD 中,//AD BC ,12AD cm =,15BC cm =,点P 自点A 向D 以/lcm s 的速度运动,到D 点即停止.点Q 自点C 向B 以2/cm s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为()t s .()1用含t 的代数式表示:AP =______;DP =______;BQ =______.(2)当t 为何值时,四边形APQB 是平行四边形?23.在创建文明城区的活动中,有两端长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度(米)与施工时间(时)之间的关系的部分图像.请解答下列问题.(1)甲队在的时段内的速度是 米/时.乙队在的时段内的速度是 米/时. 6小时甲队铺设彩色道砖的长度是 米,乙队铺设彩色道砖的长度是 米. (2)如果铺设的彩色道砖的总长度为150米,开挖6小时后,甲队、乙队均增加人手,提高了工作效率,此后乙队平均每小时比甲队多铺5米,结果乙反而比甲队提前1小时完成总铺设任务.求提高工作效率后甲队、乙队每小时铺设的长度分别为多少米?24.在平面直角坐标系中,一次函数y=kx+b (k ,b 都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y 的取值范围;(2)已知点P (m ,n )在该函数的图象上,且m ﹣n=4,求点P 的坐标.25.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】2a(a≤0),由此性质求得答案即可.【详解】()2-,5x∴5-x≤0∴x≥5.故选C.【点睛】2a(a≥02a(a≤0).2.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.3.C解析:C【解析】【分析】根据勾股定理逆定理可判断出A 、B 是否是直角三角形;根据三角形内角和定理可得C 、D 是否是直角三角形.【详解】A 、∵b 2-c 2=a 2,∴b 2=c 2+a 2,故△ABC 为直角三角形;B 、∵32+42=52,∴△ABC 为直角三角形;C 、∵∠A :∠B :∠C=9:12:15,151807591215C ︒︒∠=⨯=++,故不能判定△ABC 是直角三角形;D 、∵∠C=∠A-∠B ,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC 为直角三角形; 故选C .【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断. 4.C解析:C【解析】【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.【详解】∵22()2a b c ab +=+,∴a 2+2ab+b 2=c 2+2ab ,∴a 2+b 2=c 2,∴这个三角形是直角三角形,故选:C .【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.5.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.6.A解析:A【解析】1(3.4 2.9 3.0 3.1 2.6)35x=++++=.所以4月份营业额约为3×30=90(万元).7.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.8.D解析:D【解析】分析:根据二次根式的加减法则对各选项进行逐一计算即可.详解:AB不是同类项,不能合并,故本选项错误;C、3不是同类项,不能合并,故本选项错误;D故选:D.点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.9.C解析:C【解析】【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB=22AC BC-=22108-=6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.11.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.12.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.二、填空题13.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°解析:∠ABC=90°【解析】分析: 由题意知,四边形DEBF是平行四边形,再通过证明一组邻边相等,可知四边形DEBF是菱形, 进而得出∠ABC=90°时,四边形BEDF是正方形.详解: 当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.理由:∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形∵BD是∠ABC的平分线,∴∠EBD=∠FBD,又∵DE∥BC,∴∠FBD=∠EDB,则∠EBD=∠EDB,∴BE=DE .故平行四边形DEBF 是菱形,当∠ABC =90°时,菱形DEBF 是正方形.故答案为:∠ABC =90°. 点睛: 本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.14.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及 解析:3【解析】【分析】化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a 的方程,解出即可.【详解】=与最简二次根式∴215a -=,解得:3a =故答案为:3【点睛】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于a 的方程是解题的关键.15.【解析】试题解析:∵=3﹣x∴x -3≤0解得:x≤3解析:3x ≤【解析】﹣x ,∴x -3≤0,解得:x ≤3, 16.3或6【解析】【分析】先表示出AB 坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b 即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A 、B 坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b 即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO ,由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b ,∵点C (0,6),∴OC=6,∴BC=6-b ,在△DBC 和△BAO 中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF ⊥CE 于F ,同理证得△BDC ≌△DAF ,∴CD=AF=6,BC=DF ,∵OB=b ,OA=b ,∴BC=DF=b-6,∵BC=6-b ,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.17.﹣1<x<1或x>2【解析】【分析】观察图象和数据即可求出答案【详解】y<0时即x轴下方的部分∴自变量x的取值范围分两个部分是−1<x<1或x>2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键解析:﹣1<x<1或x>2.【解析】【分析】观察图象和数据即可求出答案.【详解】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.【点睛】本题考查的是函数图像,熟练掌握图像是解题的关键.18.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长= AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.19.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.20.30°【解析】【分析】根据题意先通过△ADP求出∠DAP的因为△ABO≌△APO即可求出∠OAB的度数【详解】解:∵P是CD的中点沿折叠使得顶点落在边上的点∴DP=PC=CD△ABO≌△APO∵四边解析:30°【解析】【分析】根据题意先通过△ADP求出∠DAP的,因为△ABO≌△APO,即可求出∠OAB的度数.【详解】解:∵ P是CD的中点,沿AO折叠使得顶点B落在CD边上的点P∴DP=PC=12CD, △ABO≌△APO∵四边形ABCD为长方形∴∠D=∠DAB=90°,AB=CD=AP=2DP ∴∠DAP=30°∵△ABO≌△APO∴∠PAO=∠OAP=12∠BAP∴∠OAP=12∠BAP=12(∠DAB-∠DAP)=12(90°-30°)=30°故答案为:30°【点睛】此题主要考查了全等三角形的性质和特殊直角三角形的性质,解题的关键是折叠前后图形全等.三、解答题21.(1) y=43x+53;(2)52.【解析】【分析】(1)求经过已知两点坐标的直线解析式,一般是按待定系数法步骤求得;(2)△AOB的面积=S△AOD+S△BOD,因为点D 是在y轴上,据其坐标特点可求出DO的长,又因为已知A、B点的坐标则可分别求三角形S△AOD与S△BOD的面积.【详解】解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得213k bk b-+=-⎧⎨+=⎩,解得4353kb⎧=⎪⎪⎨⎪=⎪⎩.所以一次函数解析式为y=43x+53;(2)把x=0代入y=43x+53得y=53,所以D点坐标为(0,53),所以△AOB的面积=S△AOD+S△BOD=12×y=43x+53;×2+12×y=43x+53×1=52.【点睛】本题考查了待定系数法求一次函数解析式.用待定系数法求一次函数的步骤:(1)设出函数关系式;(2)把已知条件(自变量与函数的对应值)代入函数关系式中,得到关于待定系数的方程(组).22.(1)t;12t-;152t-;(2)5.【解析】【分析】(1)直接利用P ,Q 点的运动速度和运动方法进而表示出各部分的长;(2)利用平行四边形的判定方法得出t 的值.【详解】()1由题意可得:AP t =,DP 12t =-,BQ 152t =-,故答案为t ,12t -,152t -;()2AD //BC Q ,∴当AP BQ =时,四边形APQB 是平行四边形,t 152t ∴=-,解得:t 5=.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题关键.23.(1)10, 5, 60, 50;(2)提高工作效率后甲队每小时铺设的长度分别为15米、乙队每小时铺设的长度为20米.【解析】【分析】(1)根据函数图象,速度=路程÷时间,即可解答;(2)根据题意列方程解答即可.【详解】解:(1)(1)由图象可得,甲队在0≤x≤6的时段内的速度是:60÷6=10(米/时); 乙队在2≤x≤6的时段内的速度是:(50−30)÷(6−2)=5(米/时);6小时甲队铺设彩色道砖的长度是60米,乙队铺设彩色道砖的长度是50米.故答案为:10;5;60;50;(2)设提高工作效率后甲队每小时铺设的长度分别为米,由题意得:, 整理得:, 解得:, 经检验:,都是原方程的解,不合题意,舍去. 答:提高工作效率后甲队每小时铺设的长度分别为15米、乙队每小时铺设的长度为20米.【点睛】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.24.(1) ﹣4≤y <6;(2)点P 的坐标为(2,﹣2) .【解析】【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【详解】设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质25.(1)证明见解析;(2)3【解析】试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE==,所以,S菱形ABCD考点:1.菱形的性质;2..矩形的判定.。

【冲刺卷】初二数学下期末一模试题附答案

【冲刺卷】初二数学下期末一模试题附答案

【冲刺卷】初二数学下期末一模试题附答案一、选择题1.若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h += 3.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B4.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =05.以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形6.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒7.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( ) A .90万元 B .450万元 C .3万元 D .15万元8.已知y =(k -3)x |k |-2+2是一次函数,那么k 的值为( ) A .3± B .3C .3-D .无法确定9.如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是( )A .B .C .D .10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 211.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限12.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=o ;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④二、填空题13.如图.过点A 1(1,0)作x 轴的垂线,交直线y=2x 于点B 1;点A 2与点O 关于直线A 1B 1对称,过点A 2作x 轴的垂线,交直线y=2x 于点B 2;点A 3与点O 关于直线A 2B 2对称.过点A 3作x 轴的垂线,交直线y=2x 于点B 3;…按此规律作下去.则点A 3的坐标为_____,点B n 的坐标为_____.14.45与最简二次根式321a -是同类二次根式,则a =_____. 15.已知13y x =-+,234y x =-,当x 时,12y y <. 16.菱形的边长为5,一条对角线长为6,则该菱形的面积为__________.17.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.18.若一个多边形的内角和是900º,则这个多边形是 边形.19.已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____. 20.如图,直线1y kx b =+过点A(0,2),且与直线2y mx =交于点P(1,m),则不等式组mx > +kx b > mx -2的解集是_________三、解答题21.计算:0221218(2020)()(21)2π-+---+-.22.计算:(.23.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品. (1)请写出此车间每天获取利润y (元)与x (人)之间的函数关系式; (2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品? (3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?24.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分) 中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定. 25.0164(51)1235-+⨯--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】63n 63n 273n ⨯7n 7n 是完全平方数,满足条件的最小正整数n 为7. 【详解】63n 273n ⨯7n 7n∴7n 是完全平方数; ∴n 的最小正整数值为7. 故选:D . 【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.==.解题关键是分解成一个完全平方数和一个代数式的积的形式.2.D解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=abh. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .3.C解析:C 【解析】 【分析】根据勾股定理逆定理可判断出A 、B 是否是直角三角形;根据三角形内角和定理可得C 、D 是否是直角三角形. 【详解】A 、∵b 2-c 2=a 2,∴b 2=c 2+a 2,故△ABC 为直角三角形;B 、∵32+42=52,∴△ABC 为直角三角形; C 、∵∠A :∠B :∠C=9:12:15,151807591215C ︒︒∠=⨯=++,故不能判定△ABC 是直角三角形;D 、∵∠C=∠A-∠B ,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC 为直角三角形; 故选C . 【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.4.C解析:C 【解析】 【分析】根据y=kx+b (k 、b 是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案. 【详解】解:∵y=(m ﹣2)x n ﹣1+n 是一次函数, ∴m ﹣2≠0,n ﹣1=1, ∴m≠2,n=2, 故选C . 【点睛】本题考查了一次函数,y=kx+b ,k 、b 是常数,k≠0,x 的次数等于1是解题关键.5.A解析:A 【解析】 【分析】利用正方形的判定方法分别判断后即可确定正确的选项. 【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题, 故选:A . 【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.6.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90° 即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.A解析:A 【解析】1(3.4 2.9 3.0 3.1 2.6)35x =++++=.所以4月份营业额约为3×30=90(万元).8.C解析:C 【解析】 【分析】根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可. 【详解】一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1. 所以|k|-2=1, 解得:k=±3, 因为k-3≠0,所以k≠3, 即k=-3. 故选:C . 【点睛】本题主要考查一次函数的定义,一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.9.C解析:C 【解析】 【分析】根据m 、n 同正,同负,一正一负时利用一次函数的性质进行判断. 【详解】解:①当mn >0时,m 、n 同号,y =mnx 过一三象限;同正时,y =mx+n 经过一、二、三象限,同负时,y =mx+n 过二、三、四象限;②当mn <0时,m 、n 异号,y =mnx 过二四象限,m >0,n <0时,y =mx+n 经过一、三、四象限;m <0,n >0时,y =mx+n 过一、二、四象限;【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.10.B解析:B 【解析】 【分析】 【详解】 解:如图,设直线AB 的解析式为y=kx+b ,则4+=1200{5k+b=1650k b ,解得450{600k b ==-故直线AB 的解析式为y=450x ﹣600, 当x=2时,y=450×2﹣600=300, 300÷2=150(m 2) 故选B .【点睛】本题考查一次函数的应用.11.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m 取何值,直线y=x+2m 与y=-x+4的交点不可能在第三象限. 故选C .12.C解析:C 【解析】 【分析】易证Rt ABE Rt ADF V V ≌,从而得到BE DF =,求得15BAE DAF ∠=∠=︒;进而得到CE CF =,判断出AC 是线段EF 的垂直平分线,在Rt AGF n 中,利用正切函数证得②正确;观察得到BE GE ≠,判断出③错误;设BE x =,CE y =,在Rt ABE V 中,运用勾股定理就可得到2222x xy y +=,从而可以求出CEF V 与ABE V 的面积比.∵四边形ABCD 是正方形,AEF V 是等边三角形,∴90B BCD D AB BC DC AD AE AF EF ∠=∠=∠=︒=====,,. 在Rt ABE V 和Rt ADF V 中,AB ADAE AF ⎧⎨⎩==∴()Rt ABE Rt ADF HL V V ≌. ∴BE DF =,∠BAE =∠DAF∴()()1190601522BAE DAF BAD EAF ∠=∠=∠-∠=︒-︒=︒故①正确;∵BE DF BC DC ==,,∴CE BC BE DC DF CF =-=-=, ∵AE AF =,CE CF =, ∴AC 是线段EF 的垂直平分线, ∵90ECF ∠=︒, ∴GC GE GF ==, 在Rt AGF n 中,∵tan tan 60AG AGAFG GF GC∠=︒===∴AG =,故②正确; ∵BE DF GE GF ==,,15BAE ∠=︒,30GAE ∠=︒,90B AGE ∠=∠=︒ ∴BE GE ≠∴BE DF EF +≠,故③错误; 设BE x =,CE y =,则CF CE y ==,AB BC x y AE EF ==+====,.在Rt ABE V 中,∵90B ∠=︒,AB x y BE x AE =+==,,,∴222())x y x ++=. 整理得:2222x xy y +=. ∴CEF S V :ABE S V11CE ?CF :AB?BE 22⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()()•:?CE CF AB BE ==2y :()x y x ⎡⎤+⎣⎦()()2222:2:1x xy x xy =++=.∴CEF ABE 2S S =V V ,故④正确; 综上:①②④正确 故选:C. 【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识,而采用整体思想(把2x xy +看成一个整体)是解决本题的关键.二、填空题13.(40)(2n ﹣12n )【解析】【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn 的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x 轴解析:(4,0) (2n ﹣1,2n ) 【解析】 【分析】先根据题意求出A 2点的坐标,再根据A 2点的坐标求出B 2的坐标,以此类推总结规律便可求出点A 3、B n 的坐标. 【详解】解:∵点A 1坐标为(1,0), ∴OA 1=1,过点A 1作x 轴的垂线交直线于点B 1,可知B 1点的坐标为(1,2), ∵点A 2与点O 关于直线A 1B 1对称, ∴OA 1=A 1A 2=1, ∴OA 2=1+1=2,∴点A 2的坐标为(2,0),B 2的坐标为(2,4),∵点A 3与点O 关于直线A 2B 2对称.故点A 3的坐标为(4,0),B 3的坐标为(4,8), 此类推便可求出点A n 的坐标为(2n ﹣1,0),点B n 的坐标为(2n ﹣1,2n ).故答案为(4,0),(2n ﹣1,2n ).考点:一次函数图象上点的坐标特征.14.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及解析:3 【解析】 【分析】化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a 的方程,解出即可. 【详解】解:∵4535=45与最简二次根式321a -是同类二次根式∴215a -=,解得:3a = 故答案为:3 【点睛】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于a 的方程是解题的关键.15.【解析】【分析】根据题意列出不等式求出解集即可确定出x 的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x >7解得:x 故答案为:解析:74>. 【解析】 【分析】根据题意列出不等式,求出解集即可确定出x 的范围. 【详解】根据题意得:-x+3<3x-4, 移项合并得:4x >7, 解得:x 74>. 故答案为:74>16.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO=解析:24 【解析】 【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积. 【详解】解:如图,当BD=6时,∵四边形ABCD 是菱形, ∴AC ⊥BD ,AO=CO ,BO=DO=3, ∵AB=5,∴AO==4,∴AC=4×2=8, ∴菱形的面积是:6×8÷2=24, 故答案为:24. 【点睛】本题考查了菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.17.【解析】【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b 然后将点(02)代入即可得出直线的函数解析式【详解】解:设平移后直线的解析式为y=3x+b 把(02)代入直线解析式得2=b 解得 解析:32y x =+【解析】 【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b ,然后将点(0,2)代入即可得出直线的函数解析式. 【详解】解:设平移后直线的解析式为y=3x+b . 把(0,2)代入直线解析式得2=b , 解得 b=2.所以平移后直线的解析式为y=3x+2. 故答案为:y=3x+2. 【点睛】本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b (k≠0)平移时k 的值不变是解题的关键.18.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七 【解析】 【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可. 【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =. 故答案为7. 【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.19.【解析】试题分析:数据:﹣142﹣2x 的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数解析:【解析】试题分析:数据:﹣1,4,2,﹣2,x 的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案为1. 考点:1.众数;2.算术平均数.20.【解析】【分析】【详解】解:由于直线过点A (02)P (1m )则解得故所求不等式组可化为:mx >(m-2)x+2>mx-20>-2x+2>-2解得:1<x <2 解析:12x <<【解析】 【分析】 【详解】 解:由于直线过点A (0,2),P (1,m ),则2k b m b +=⎧⎨=⎩,解得22k m b =-⎧⎨=⎩,1(2)2y m x ∴=-+,故所求不等式组可化为: mx >(m-2)x+2>mx-2, 0>-2x+2>-2, 解得:1<x <2,三、解答题21.72﹣4. 【解析】 【分析】利用负指数幂的性质、零指数幂的性质、二次根式的性质进行化简再解答即可. 【详解】解:原式=2×32+1﹣4+2﹣1 =62+1﹣4+2﹣1 =72﹣4. 【点睛】本题考查了负指数幂的性质、零指数幂的性质、二次根式的性质,掌握各类代数式的性质是解答本题的关键. 22.7-2【解析】 【分析】利用平方差公式和完全平方公式计算即可.【详解】原式==7﹣2.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.23.(1) y =﹣600x+18000(2)6(3)6【解析】【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可.(2)根据每天获取利润为14400元,则y=14400,求出即可.(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【详解】解:(1)根据题意得:y=12x×100+10(10﹣x)×180=﹣600x+18000.(2)当y=14400时,有14400=﹣600x+18000,解得:x=6.∴要派6名工人去生产甲种产品.(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,∴10﹣x≥6,∴至少要派6名工人去生产乙种产品才合适.24.(1)平均数(分)中位数(分)众数(分)初中部858585高中部8580100【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部85 80 100∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可. 25.【解析】 【分析】原式第一项利用平方根定义计算,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:原式=8-1+4-5=6. 【点睛】本题考查实数的运算;零指数幂;负整数指数幂.。

【冲刺卷】八年级数学下期末一模试题(含答案)

【冲刺卷】八年级数学下期末一模试题(含答案)

【冲刺卷】八年级数学下期末一模试题(含答案)一、选择题1.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)2.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥3.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元 4.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒5.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元6.下列计算中正确的是()A.325+=B.321-=C.3333+=D.33 42 =7.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个8.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.89C.8D.419.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.610.如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A .B .C .D .11.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.8 12.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题13.如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=o ,则E ∠=___o .14.2(3)x -3-x ,则x 的取值范围是__________.15.如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.-=______.16.若3的整数部分是a,小数部分是b,则3a b17.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s关于行走的时间t和函数图象,则两图象交点P的坐标是_____.18.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.19.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______20.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.三、解答题21.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?22.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?23.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x 块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.24.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.25.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为(-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质. 2.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.3.C解析:C【解析】【分析】根据加权平均数的定义列式计算可得.【详解】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元),故选:C .【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.4.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5.A解析:A【解析】1(3.4 2.9 3.0 3.1 2.6)35x =++++=.所以4月份营业额约为3×30=90(万元). 6.D解析:D【解析】分析:根据二次根式的加减法则对各选项进行逐一计算即可.详解:AB 不是同类项,不能合并,故本选项错误;C 、3不是同类项,不能合并,故本选项错误;D 故选:D .点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.7.C解析:C【解析】【分析】根据勾股定理可得①中第三条边长为5∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确.【详解】①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.故选C .【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.9.C解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C10.A解析:A【解析】【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,反映到图象上应选A.故选:A.【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.11.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.12.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.二、填空题13.27°【解析】【分析】连接AE 先证Rt △ABD ≌Rt △CBD 得出四边形ABCE 是菱形根据菱形的性质可推导得到∠E 的大小【详解】如下图连接AE ∵BE ⊥AC ∴∠ADB=∠BDC=90°∴△ABD 和△CB解析:27°【解析】【分析】连接AE ,先证Rt △ABD ≌Rt △CBD ,得出四边形ABCE 是菱形,根据菱形的性质可推导得到∠E 的大小.【详解】如下图,连接AE∵BE ⊥AC ,∴∠ADB=∠BDC=90°∴△ABD 和△CBD 是直角三角形在Rt △ABD 和Rt △CBD 中AB BC BD BD=⎧⎨=⎩ ∴Rt △ABD ≌Rt △CBD∴AD=DC∵BD=DE∴在四边形ABCE 中,对角线垂直且平分∴四边形ABCE 是菱形∵∠ABC=54°∴∠ABD=∠CED=27°故答案为:27°【点睛】本题考查菱形的证明和性质的运用,解题关键是先连接AE ,然后利用证Rt △ABD ≌Rt △CBD 推导菱形.14.【解析】试题解析:∵=3﹣x ∴x-3≤0解得:x≤3解析:3x ≤﹣x,∴x-3≤0,解得:x≤3,15.>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(12)∴关于x的不等式mx+n<x+n-2的解集为x>1故答案为x>1解析:x>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),∴关于x的不等式mx+n<x+n-2的解集为x>1,故答案为x>1.16.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a,小数部分为b,∴a=1,b1,-b1)=1.故答案为1.17.(324800)【解析】【分析】根据题意可以得到关于t的方程从而可以求得点P的坐标本题得以解决【详解】由题意可得150t=240(t﹣12)解得t=32则15 0t=150×32=4800∴点P的坐标解析:(32,4800)【解析】【分析】根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.【详解】由题意可得,150t=240(t﹣12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).【点睛】本题考查了一次函数的应用,根据题意列出方程150t=240(t﹣12)是解决问题的关键.18.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙【解析】【分析】由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.故答案为:乙.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.19.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴,∵A点表示-1,∴E-1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.20.2【解析】【分析】先用平均数是3可得x的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)21解析:2【解析】【分析】先用平均数是3可得x的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x+5),解得:x=4,∴方差是S215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2.故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.三、解答题21.(1)该一次函数解析式为y=﹣x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,得,解得:,∴该一次函数解析式为y=﹣x+60;(2)当y=﹣x+60=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键. 22.(1) y =﹣600x+18000(2)6(3)6【解析】【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可.(2)根据每天获取利润为14400元,则y=14400,求出即可.(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【详解】解:(1)根据题意得:y=12x×100+10(10﹣x)×180=﹣600x+18000.(2)当y=14400时,有14400=﹣600x+18000,解得:x=6.∴要派6名工人去生产甲种产品.(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,∴10﹣x≥6,∴至少要派6名工人去生产乙种产品才合适.23.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.24.(1)60,3;(2)y=120t(0≤t≤3);y=120(3<t≤4);y=-120t+840(4<t≤7);(3)83小时或4小时或6小时.【解析】【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A 地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC 两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t 的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C 地时;③两车都朝A 地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【详解】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度=720÷6=120(千米/小时) ∴t=360÷120=3(小时). 故答案为:60;3;(2)①当0≤x≤3时,设y=k 1x ,把(3,360)代入,可得3k 1=360,解得k 1=120,∴y=120x (0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k 2x+b ,把(4,360)和(7,0)代入,可得224360{70k b k b +=+=,解得2120{840k b =-= ∴y=﹣120x+840(4<x≤7).(3)①÷+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,÷60=240÷6=4(小时)③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x ﹣[120(x ﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6. 综上,可得乙车出发83小时、4小时、6小时后两车相距120千米.【点睛】本题考查一次函数的应用.25.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg 的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8. ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【冲刺卷】八年级数学下期末一模试题(带答案)一、选择题1.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.若63n 是整数,则正整数n 的最小值是( ) A .4 B .5 C .6D .7 3.下列命题中,真命题是( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形4.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.5 5.已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .46.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是()A.B.C.D.7.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差8.若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或9.如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.210.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4B.7,24,25C.8,12,20D.5,13,1511.将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤ 12.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题13.若x=2-1, 则x 2+2x+1=__________.14.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.15.如图,一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x 的方程kx =b 的解是_____.16.20n n 的最小值为___17.已知函数y =2x +m -1是正比例函数,则m =___________.18.在矩形ABCD 中,AD=5,AB=4,点E ,F 在直线AD 上,且四边形BCFE 为菱形,若线段EF 的中点为点M ,则线段AM 的长为 .19.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 20.如图,已如长方形纸片,ABCD O 是BC 边上一点,P 为CD 中点,沿AO 折叠使得顶点B 落在CD 边上的点P 处,则OAB ∠的度数是______.三、解答题21.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚20分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B 城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.22.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?23.如图,在平行四边形ABCD中,点E,F分别是边AD,BC上的点,且AE=CF,求证:AF=CE.24.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.25.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差22 3S=甲,数据:11,15,18,17,10,19的方差235 3S=乙:(1)分别求甲、乙两段台阶的高度平均数;(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt△AB'C中,82+(x-2)2=x2,解之得:x=17,即芦苇长17尺.故选C.【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.D解析:D【解析】【分析】63n63n27n7n是完全平方数,满足条件的最小73n正整数n为7.【详解】∴7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.==.解题关键是分解成一个完全平方数和一个代数式的积的形式.3.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.4.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.5.B解析:B【解析】由图象可得2535kk<⎧⎨>⎩,解得5532k<<,故符合的只有2;故选B.6.B解析:B【解析】【分析】先根据正比例函数y kx=的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,00k k∴->,<,∴一次函数y x k=-的图象经过一、三、四象限.故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.7.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

【详解】由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D.8.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时, 第三边==, 当13,12分别是斜边和一直角边时, 第三边==5. 故选D .【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想. 9.B解析:B【解析】【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论.【详解】∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.10.B解析:B【解析】试题解析:A 、∵22+32≠42,∴不能构成直角三角形;B 、∵72+242=252,∴能构成直角三角形;C 、∵82+122≠202,∴不能构成直角三角形;D 、∵52+132≠152,∴不能构成直角三角形.故选B .11.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm ,则在杯外的最大长度是24-8=16cm ;再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=2222158AB BC +=+=17,则在杯外的最小长度是24-17=7cm ,所以h 的取值范围是7cm ≤h ≤16cm ,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.12.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.二、填空题13.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式解析:2【解析】【分析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵,∴x2+2x+1=(x+1)22=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.14.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD 得出∠BAD=180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠A BE=75°即可得出∠EBC的度数【详解解析:45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°,AB∥CD,得出∠BAD=180°﹣∠D=60°,由等腰三角形的性质和三角形内角和定理求出∠ABE=75°,即可得出∠EBC的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=120°,AB∥CD,∴∠BAD=180°﹣∠D=60°,∵AE平分∠DAB,∴∠BAE=60°÷2=30°,∵AE=AB,∴∠ABE=(180°﹣30°)÷2=75°,∴∠EBC=∠ABC﹣∠ABE=45°;故答案为:45°.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及三角形内角和定理,正确理解和掌握性质定理是解决本题的关键.15.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x 的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=解析:x=2【解析】【分析】依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),∴0=-2k+b3=b⎧⎨⎩,解得323kb⎧=⎪⎨⎪=⎩,∴关于x的方程kx=b即为:32x=3,解得x=2,故答案为:x=2.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.16.5【解析】【分析】因为是整数且则5n是完全平方数满足条件的最小正整数n为5【详解】∵且是整数∴是整数即5n是完全平方数;∴n的最小正整数值为5故答案为:5【点睛】主要考查了二次根式的定义关键是根据乘解析:5【解析】【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴5n是完全平方数;∴n的最小正整数值为5.故答案为:5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.17.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y=2x+m-1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.18.5或05【解析】【分析】两种情况:①由矩形的性质得出CD=AB=4BC=AD=5∠ADB=∠CDF=90°由菱形的性质得出CF=EF=BE=BC=5由勾股定理求出DF得出MF 即可求出AM;②同①得出解析:5或0.5.【解析】【分析】两种情况:①由矩形的性质得出CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,由菱形的性质得出CF=EF=BE=BC=5,由勾股定理求出DF,得出MF,即可求出AM;②同①得出AE=3,求出ME,即可得出AM的长.【详解】解:分两种情况:①如图1所示:∵四边形ABCD是矩形,∴CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,∵四边形BCFE为菱形,∴CF=EF=BE=BC=5,∴,∴AF=AD+DF=8,∵M是EF的中点,∴MF=12EF=2.5,∴AM=AF﹣DF=8﹣2.5=5.5;②如图2所示:同①得:AE=3,∵M是EF的中点,∴ME=2.5,∴AM=AE ﹣ME=0.5;综上所述:线段AM 的长为:5.5,或0.5;故答案为5.5或0.5.【点睛】本题考查矩形的性质;菱形的性质.19.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC S CD AB =⋅V =112102⨯⨯=60, 故答案为:60.【点睛】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.20.30°【解析】【分析】根据题意先通过△ADP 求出∠DAP 的因为△ABO ≌△A PO 即可求出∠OAB 的度数【详解】解:∵P 是CD 的中点沿折叠使得顶点落在边上的点∴DP=PC=CD△ABO≌△APO∵四边解析:30°【解析】【分析】根据题意先通过△ADP求出∠DAP的,因为△ABO≌△APO,即可求出∠OAB的度数.【详解】解:∵ P是CD的中点,沿AO折叠使得顶点B落在CD边上的点P∴DP=PC=12CD, △ABO≌△APO∵四边形ABCD为长方形∴∠D=∠DAB=90°,AB=CD=AP=2DP ∴∠DAP=30°∵△ABO≌△APO∴∠PAO=∠OAP=12∠BAP∴∠OAP=12∠BAP=12(∠DAB-∠DAP)=12(90°-30°)=30°故答案为:30°【点睛】此题主要考查了全等三角形的性质和特殊直角三角形的性质,解题的关键是折叠前后图形全等.三、解答题21.(1)y=-90x+300;(2)s=300-150x;(3)a=108(千米/时),作图见解析.【解析】【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=-90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【详解】(1)由图知y是x的一次函数,设y=kx+b∵图象经过点(0,300),(2,120),∴300{2120 bk b=+=解得90 {300 kb=-=∴y=-90x+300.即y关于x的表达式为y=-90x+300.(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=-150x+300,2<x≤103时,s=150x-300103<x≤5时,s=60x;(3)在s=-150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚20分钟到达,20分钟=13小时,所以在y=-90x+300中,当y=0,x=103.所以,相遇后乙车到达终点所用的时间为103+13-2=53(小时).乙车与甲车相遇后的速度a=(300-2×60)÷53=108(千米/时).∴a=108(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.考点:一次函数的应用.22.(1)10;30;(2)15(02)3030(211)x xyx x⎧=⎨-⎩剟剟;(3)4分钟、9分钟或15分钟.【解析】【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(300-100)÷20=10(米/分钟), b=15÷1×2=30.故答案为:10;30.(2)当0≤x≤2时,y=15x ;当x≥2时,y=30+10×3(x-2)=30x-30. 当y=30x-30=300时,x=11.∴乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为15(02)3030(211)x x y x x ⎧=⎨-⎩剟剟. (3)甲登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(30x-30)=50时,解得:x=4;当30x-30-(10x+100)=50时,解得:x=9;当300-(10x+100)=50时,解得:x=15.答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y 关于x 的函数关系式;(3)将两函数关系式做差找出关于x 的一元一次方程.23.见解析【解析】【分析】根据平行四边形ABCD 的对边平行得出AD ∥BC ,又AE=CF ,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF 为平行四边形,然后根据平行四边形的对边相等证得结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AE ∥CF ,又∵AE=CF ,∴四边形AECF 为平行四边形,∴AF=CE .【点睛】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.24.(1)CH 是从村庄C 到河边的最近路,理由见解析;(2)原来的路线AC 的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.25.(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm,游客行走更舒服.【解析】分析:(1)根据图中所给的数据,利用平均数公式求解即可;(2)根据平均数、中位数、方差和极差的特征回答即可;(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0,游客行走更舒服.点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可.。

相关文档
最新文档