初一数学上册考试及答案

合集下载

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

初一上册数学测试题及答案

初一上册数学测试题及答案

初一上册数学测试题及答案一、选择题(每小题 1 分,共 20 分)1. 某数的 1/3 是6.这个数是多少?A) 18 B) 21 C) 24 D) 272. 下面哪个数是 12 的约数?A) 2 B) 3 C) 4 D) 53. 下图是一条数轴。

哪个数对应点 X 的位置?(请参考文章插入一个有标注的数轴图)A) -3 B) -2 C) 0 D) 24. 一辆汽车从 A 地出发,以每小时 60 公里的速度行驶,求 2 小时后汽车行驶的距离。

A) 100 公里 B) 120 公里 C) 150 公里 D) 180 公里5. 在 |m-3| = 5 中,m 的值是多少?A) -8 B) -2 C) 2 D) 86. 假设一张电影票的原价为 80 元,打折后的价格是原价的 0.8 倍,打折后的价格是多少?A) 40 元 B) 60 元 C) 64 元 D) 80 元7. 如图所示,一个正方形 ABCD,若相邻顶点间的距离为 1,求线段 EF 的长度。

(请参考文章插入一个有标注的正方形图)A) 1 B) 2 C) 3 D) 48. 线段 AB 的长度是 3,线段 BC 的长度是 4,求线段 AC 的长度。

A) 1 B) 2 C) 3 D) 49. 把一个分数 4/5 化成百分数是多少?A) 40% B) 45% C) 50% D) 80%10. 某数的 3/5 是 45,这个数是多少?A) 25 B) 45 C) 50 D) 7511. 已知∠A + ∠B + ∠C = 180°,且∠A = 60°,求∠B 的度数。

A) 30° B) 60° C) 90° D) 120°12. 根据如图所示的长方形 ABCD 和线段 EF,求线段 EF 的长度。

(请参考文章插入一个有标注的长方形图)A) 6 B) 7 C) 8 D) 913. 5.5 ÷ 0.5 = ?A) 10 B) 11 C) 12 D) 1314. 若 x = 3 ,y = 4 ,z = 5 ,求 x * y + z 的值。

初一上册数学测试题及答案

初一上册数学测试题及答案

初一上册数学测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -12. 如果a = -2,b = 3,那么a + b的值是多少?A. 1B. 5C. -1D. 43. 哪个选项是最小的负数?A. -1B. -2C. -3D. 无法确定4. 绝对值是5的数有几个?A. 1个B. 2个C. 3个D. 无数个5. 下列哪个表达式等于0?A. 3 - 3B. 2 + 2C. 5 - 2D. 4 × 06. 哪个选项是正确的乘法分配律应用?A. (a + b) × c = a × c + bB. (a + b) × c = a × c + b × dC. (a + b) × c = a × c + b × cD. (a - b) × c = a × c - b × c7. 哪个选项表示了有理数的加法?A. 2 + 3 = 5B. 2 - 3 = -1C. 2 × 3 = 6D. 2 ÷ 38. 哪个选项是正确的因式分解?A. x^2 - 1 = (x + 1)(x - 1)B. x^2 - 1 = (x - 1)(x + 1)C. x^2 - 1 = (x + 1)^2D. x^2 - 1 = x - 19. 下列哪个是完全平方数?A. 16B. 17C. 18D. 1910. 哪个选项是正确的因式分解?A. a^2 - b^2 = (a + b)(a - b)B. a^2 - b^2 = (a - b)(a + b)C. a^2 - b^2 = a^2 - b^2D. a^2 - b^2 = (a + b)^2 - b^2二、填空题(每题2分,共20分)11. 一个数的相反数是-4,这个数是________。

12. 绝对值等于4的数是________。

初一上册数学月考试卷及答案解析

初一上册数学月考试卷及答案解析

初一上册数学月考试卷及答案解析【篇一】一、选择题(每小题3分,共30分)1.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作() A.﹣500元B.﹣237元C.237元D.500元考点:正数和负数.分析:根据题意237元应记作﹣237元.解答:解:根据题意,支出237元应记作﹣237元.故选B.点评:此题考查用正负数表示两个具有相反意义的量,属基础题.2.3的相反数是()A.﹣3B.+3C.0.3D.|﹣3|考点:相反数.分析:根据相反数的定义求解即可.解答:解:3的相反数为﹣3.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.2012年国庆长假无锡共接待游客约6420000万,数据“6420000”用科学记数法表示正确的是()A.642×103B.64.2×103C.6.42×106D.0.642×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6420000=6.42×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个考点:有理数.分析:根据分母为一的数是整数,可得整数集合.解答:解:+1,﹣14,0,﹣5是整数,故选:C.点评:本题考查了有理数,分母为一的数是整数.5.下列说法正确的是()A.一个负数的绝对值一定是正数B.倒数是它本身的数是0和1C.绝对值是它本身的数是正数D.平方是它本身的数是0、±1考点:绝对值;倒数;有理数的乘方.分析:根据绝对值的性质,倒数的定义有理数的乘方对各选项分析判断利用排除法求解.解答:解:A、一个负数的绝对值一定是正数,正确,故本选项正确;B、倒数是它本身的数是﹣1和1,故本选项错误;C、绝对值是它本身的数是正数和零,故本选项错误;D、平方是它本身的数是0、1,故本选项错误.故选A.点评:本题考查了绝对值的性质,倒数的定义,有理数的乘方,熟记性质和相关概念是解题的关键.6.下列各组数中,相等的是()A.﹣1与(﹣4)+(﹣3)B.|﹣3|与﹣(﹣3)C.与D.(﹣4)2与﹣16考点:有理数的乘方;相反数;绝对值;有理数的加法.分析:分别利用有理数的加减运算法则以及绝对值的性质和幂的乘方计算得出答案即可.解答:解:A.(﹣4)+(﹣3)=﹣7,则﹣1与(﹣4)+(﹣3)不相等,故此选项错误;B.|﹣3|=3,﹣(﹣3)=3,则|﹣3|与﹣(﹣3)相等,故此选项正确;C.=,则与不相等,故此选项错误;D.(﹣4)2=16,故(﹣4)2与﹣16不相等,故此选项错误;故选:B.点评:此题主要考查了有理数的运算绝对值等知识,熟练化简各式是解题关键.7.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kgB.0.6kgC.0.5kgD.0.4kg考点:正数和负数.分析:根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的数.解答:解:根据题意从中找出两袋质量波动的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.8.如图所示,根据有理数a、b在数轴上的位置,下列关系正确的是()A.|a|>|b|B.a>﹣bC.b<﹣aD.a+b>0考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置即可得出结论.解答:解:∵由图可知,|b|>a,b<0<a,∴|a|<|b|,a<﹣b,a+b<0,b<﹣a,故A、B、D错误,C正确.故选C.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.9.下列一组数:﹣8,2.7,,,0.66666…,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数的有()A.0个B.1个C.2个D.3个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,0.080080008…(相邻两个8之间依次增加一个0).共2个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.观察以下数组:(2),(4、6),(8、10、12),(14、16、18、20),…,问2016在第几组()A.44B.45C.46D.无法确定考点:规律型:数字的变化类.分析:根据数据的个数可知前n组共有数1+2+3+…+n个,利用规律得到n(n+1)≥2016(m为自然数),进一步试值即可求解.解答:解:设2016在第n组,则n(n+1)≥2016,当n=44时,44×(44+1)=1980<2016,当n=45时,45×(45+1)=2070>2016,所以2016在第45组.故选:B.点评:此题考查数字的变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.二、填空题(每小题3分,共24分)11.﹣4.5是4.5的相反数.考点:相反数.分析:直接利用相反数的定义得出答案.解答:解:∵﹣4.5+4.5=0,∴﹣4.5是4.5的相反数.故答案为:﹣4.5.点评:此题主要考查了相反数,正确把握相反数的定义是解题关键.12.用“>”、“<”、“=”号填空:>.考点:有理数大小比较.专题:计算题.分析:先计算得到|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.解答:解:∵|﹣|==,|﹣|==,∴﹣>﹣.故答案为>.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.﹣|﹣|=﹣.考点:相反数;绝对值.分析:利用相反数及绝对值的定义求解即可.解答:解:﹣|﹣|=﹣.故答案为:﹣.点评:本题主要考查了相反数及绝对值,解题的关键是熟记定义.14.计算(﹣1)2012﹣(﹣1)2011的值是2.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)2012﹣(﹣1)2011,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.15.﹣3705.123用科学记数法表示是﹣3.705123×103.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将﹣3705.123用科学记数法表示为﹣3.705123×103.故答案为:﹣3.705123×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.现定义某种运算“*”,对任意两个有理数a、b,有a*b=ab,则(﹣3)*3=﹣27.考点:有理数的乘方.专题:新定义.分析:将新定义的运算按定义的规律转化为有理数的乘方运算,即可得出答案.解答:解:∵a*b=ab,∴(﹣3)*3=(﹣3)3=﹣27;故答案为:=﹣27.点评:此题考查了有理数的乘方,掌握新定义的运算,严格按定义的规律来计算是本题的关键.17.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为﹣10.考点:代数式求值.专题:图表型.分析:根据图表列出算式,然后把x=﹣5代入算式进行计算即可得解.解答:解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣5时,y=[﹣5+4﹣(﹣3)]×(﹣5)=(﹣5+4+3)×(﹣5)=2×(﹣5)=﹣10.故答案为:﹣10.点评:本题考查了代数式求值,根据图表正确列出算式是解题的关键.18.已知有理数a,b,c满足a+b+c=0,abc≠0.则的所有可能的值为±1.考点:有理数的除法;绝对值;有理数的加法.分析:根据有理数的加法和有理数的乘法运算法则判断出a、b、c三个数中只有一个负数,然后根据绝对值的性质解答即可.解答:解:∵a+b+c=0,abc≠0,∴a、b、c三个数中既有正数也有负数,∴a、b、c三个数中有一个负数或两个负数,∴=﹣1+1+1=1或=﹣1﹣1+1=﹣1;∴的所有可能的值为±1.故答案为:±1.点评:本题考查了有理数的除法和绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.解答题19.(40分)计算:(1)(﹣)+(﹣)+(﹣)+;(2)﹣7.2﹣0.8﹣5.6+11.6;(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)3×(﹣4)+28÷(﹣7)(5)(﹣)×0.125×(﹣2)×(﹣8)(6)(7)(8)(﹣24)×(﹣﹣);(9)18×(﹣)+13×﹣4×.(10).考点:有理数的混合运算.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式利用乘法法则计算即可得到结果;(6)原式利用乘法分配律计算即可得到结果;(7)原式变形后,利用乘法分配律计算即可得到结果;(8)原式利用乘法分配律计算即可得到结果;(9)原式逆用乘法分配律计算即可得到结果;(10)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=(﹣﹣)+(﹣+)=﹣1;(2)原式=﹣8+6=﹣2;(3)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(4)原式=﹣12﹣4=﹣16;(5)原式=﹣×××8=﹣1;(6)原式=12﹣18+8=2;(7)原式=(﹣60+)×(﹣16)=960﹣1=959;(8)原式=﹣8+3+4=﹣1;(9)原式=×(﹣18+13﹣4)=×(﹣9)=﹣6;(10)原式=﹣1××+0.2=﹣+=.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.考点:实数.专题:计算题.分析:利用分数,非负整数,以及无理数的定义判断即可.解答:解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9};无理数:{π,2.5353353335…}点评:此题考查了实数,熟练掌握各自的定义是解本题的关键.21.数轴上的点M对应的数是﹣4,一只蚂蚁从M点出发沿数轴以每秒2个单位长度的速度爬行,当它到达数轴上的N点后,立即返回到原点,共用11秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?考点:数轴.分析:(1)根据公式:路程=速度×时间,直接得出答案;(2)先设点N表示的数为a,分两种情况:点M在点N左侧或右侧,求出从M点到N点单位长度的个数,再由M点表示的数是﹣4,从点N返回到原点即可得出N点表示的数.(3)根据点N表示的数即可得出点M和点N之间的距离.解答:解:(1)2×11=22(个单位长度).故蚂蚁爬行的路程是22个单位长度.(2)①当点M在点N左侧时:a+4+a=22,a=9;②当点M在点N右侧时:﹣a﹣4﹣a=22,a=﹣13;(3)点M和点N之间的距离是13或9.点评:本题考查了数轴,两点之间距离的求法:右边的数减去左边的数.22.在数轴上把下列各数表示出来,并用“<”连接各数.2,﹣|﹣1|,1,0,﹣(﹣3.5)考点:有理数大小比较;数轴.分析:在数轴上表示出各数,从左到右用“<”连接起来即可.解答:解:如图所示,,由图可知,﹣|﹣1|<0<1<2<﹣(﹣3.5).点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.23.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=7.(2)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.考点:绝对值;数轴.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x﹣2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.解答:解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.点评:此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.【篇二】一.选择题(共10小题,每题2分,共20分,请把正确答案写在答案卷上.)1.(2分)下列各数中,是负数的是()A.﹣(﹣3)B.2013C.0D.﹣24【分析】利用负数定义判断即可.【解答】解:﹣24=﹣16,是负数,故选D【点评】此题考查了有理数的乘方,正数与负数,以及相反数,熟练掌握各自的性质是解本题的关键.2.(2分)﹣3+5的相反数是()A.2B.﹣2C.﹣8D.8【分析】先计算﹣3+5的值,再求它的相反数.【解答】解:﹣3+5=2,2的相反数是﹣2.故选B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(2分)将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣2【分析】利用去括号的法则求解即可.【解答】解:6﹣(+3)﹣(﹣7)+(﹣2)=6﹣3+7﹣2,故选:C.【点评】本题主要考查了有理数加减混合运算,解题的关键是注意符号.4.(2分)实数a、b在数轴上的位置如图所示,则a与﹣b的大小关系是()A.a>﹣bB.a=﹣bC.a<﹣bD.不能判断【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,且|a|>|b|,所以,﹣b<0,所以,a<﹣b.故选C.【点评】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.5.(2分)下列各组数中,最后运算结果相等的是()A.102和54B.﹣44和(﹣4)4C.﹣55和(﹣5)5D.()3和【分析】各项两式计算得到结果,比较即可.【解答】解:A、102=100,54=625,不符合题意;B、﹣44=﹣256,(﹣4)4=256,不符合题意;C、﹣55=(﹣5)5=﹣3125,符合题意;D、()3=,=,不符合题意,故选C【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.6.(2分)有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为()A.1个B.3个C.1个或3个D.2个【分析】根据三个数相乘积为负,得到三个数中有1个或3个负数,再由和为正数,确定出三个数中负数只有一个.【解答】解:有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为1个.故选A【点评】此题考查了有理数的乘法,以及有理数的加法,熟练掌握运算法则是解本题的关键.7.(2分)地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2B.36.1×107km2C.0.361×109km2D.3.61×108km2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:361000000=3.61×108,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2分)如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2013的值是()A.﹣1B.2013C.﹣2013D.1【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+2|+(b﹣1)2=0,∴a+2=0,b﹣1=0,即a=﹣2,b=1,则原式=(﹣2+1)2013=(﹣1)2013=﹣1.故选A【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握非负数的性质是解本题的关键.9.(2分)下列说法:①1是最小的正数②的负整数是﹣1③任何有理数的绝对值都是正数④若|a|=﹣a,则a是负数⑤互为相反数的两个数,绝对值相等⑥若﹣a=a,那么a=0其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据有理数的含义和分类,相反数的含义和求法,以及绝对值的含义和求法,判断出正确的说法有多少个即可.【解答】解:∵1不是最小的正数,∴选项①不正确;∵的负整数是﹣1,∴选项②正确;∵0的绝对值不是正数,∴选项③不正确;∵若|a|=﹣a,则a是负数或0,∴选项④不正确.∵互为相反数的两个数,绝对值相等,∴选项⑤正确;∵若﹣a=a,∴a=0,∴选项⑥正确.综上,可得正确的个数有3个:②、⑤、⑥.故选:C.【点评】此题主要考查了有理数的含义和分类,相反数的含义和求法,以及绝对值的含义和求法,要熟练掌握.10.(2分)已知m≥2,n≥2,且m、n均为正整数,如果将mn进行如图所示的“分解”,那么下列四个叙述中正确的有()①在25的“分解”中,的数是11.②在43的“分解”中,最小的数是13.③若m3的“分解”中最小的数是23,则m=5.④若3n的“分解”中最小的数是79,则n=5.A.1个B.2个C.3个D.4个【分析】通过观察可知:底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂,由此规律进一步分析探讨得出正确的答案.【解答】解:①在25的“分解”中,的数是25﹣1+1=17,所以此叙述不正确;②在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43,所以此叙述正确;③若m等于5,由53“分解”的最小数是2,1,则其余四个数为23,25,27,29,31,所以此叙述错误;④若3n的“分解”中最小的数是3n﹣1﹣2=79,则n=5,所以此叙述正确.故正确的有②④.故选:B.【点评】考查学生观察分析问题的能力,由观察可知底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂.由此可以依次判断.二.填空题(共10小题,每题2分,共20分,请把结果直接填在答题卷上.)11.(2分)﹣3的倒数是﹣;相反数是3.【分析】根据相反数,倒数的概念可求解.【解答】解:﹣3的倒数是﹣;相反数是3.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.(2分)如果温度上升6℃记作+6℃,那么下降3℃记作﹣3℃.【分析】用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升6℃记作+6℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.13.(2分)如果﹣x=7,那么x=﹣7;如果|﹣x|=5,则x=±5.【分析】﹣x=7两边同时除以﹣1即可得到x的值;根据绝对值等于一个正数的数有两个可得|﹣x|=5时x=±5.【解答】解:∵﹣x=7,∴x=﹣7;∵|﹣x|=5,∴﹣x=±5,∴x=±5,故答案为:﹣7;±5.【点评】此题主要考查了绝对值和相反数,关键是掌握绝对值的性质:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.14.(2分)若|x|=3,|y|=2,且x>y,则x﹣y的值为1或5.【分析】首先根据绝对值的定义确定出x、y的值,再找出x>y的情况,然后计算x ﹣y即可.【解答】解:∵|x|=3,|y|=2,∴x=±3,y=±2,∵x>y,∴①x=3,y=2,x﹣y=1;②x=3,y=﹣2,x﹣y=3﹣(﹣2)=3+2=5;故答案为:1或5.【点评】此题主要考查了绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x、y的值.15.(2分)满足条件大于﹣2而小于π的整数共有5个.【分析】在数轴上标出﹣2与π,根据数轴的特点直接解答即可.【解答】解:如图所示:大于﹣2而小于π的整数有:﹣1,0,1,2,3,共5个.故答案为:5.【点评】本题考查的是数轴的特点,根据数轴的特点利用数形结合求解是解答此题的关键.16.(2分)(1)|﹣18|+|﹣6|=24(2)﹣π<﹣3.14.【分析】(1)先求绝对值,再计算加减;(2)两个负数,绝对值大的其值反而小.【解答】解:(1)|﹣18|+|﹣6|=18+6=24;(2)﹣π<﹣3.14.故答案为:24;<.【点评】此题考查有理数的加法,绝对值,有理数大小比较,正确、灵活掌握各运算法则,以及注意运算顺序,是解题的关键.17.(2分)某次数学和测验,以90分为标准,老师公布成绩:小明+10分,小刚0分,小敏﹣2分,则小刚的实际得分是90,小敏的实际得分是88.【分析】根据正负数的意义即可求出答案.【解答】解:根据题意可知:小刚的得分为:90+0=90小敏的得分为:90﹣2=88故答案为:90,88【点评】本题考查正负数的意义,解题的关键是正确理解正负数的意义,本题属于基础题型.18.(2分)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2013,且AO=2BO,则a+b的值为﹣671.【分析】根据已知条件可以得到a<0<b.然后通过取绝对值,根据两点间的距离定义知b﹣a=2013,a=﹣2b,则易求b=671.所以a+b=﹣2b+b=﹣b=﹣671.【解答】解:如图,a<0<b.∵|a﹣b|=2013,且AO=2BO,∴b﹣a=2013,①a=﹣2b,②由①②,解得b=671,∴a+b=﹣2b+b=﹣b=﹣671.故答案是:﹣671.【点评】本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.19.(2分)初次见面通常以握手示礼,适当的握手时间与力度会让人有一种舒服亲切的感受.某次联谊会有41人参加,若41位与会人员彼此握手一次,那么全体与会人员共握手820次.如果有n个人参加,那么全体与会人员共握手n(n﹣1)次.【分析】设握手x次,根据图表中给出的类比规律,可知当有n个人时,握手次数为n(n﹣1),根据此规律可求出握手次数.【解答】解:由题意得:设握手n次,则x=n(n﹣1),当n=41时,x=n(n﹣1)=×41×(41﹣1)=820.故答案为:820,n(n﹣1).【点评】本题考查理解题意的能力,关键根据图表给的信心找出握手总次数和人数的关系式,从而可列出方程求解.20.(2分)下边横排有12个方格,每个方格都有一个数字,若任何相邻三个数字的和都是20,则x=5.5ABCDEFxGHI10【分析】根据任何相邻三个数字的和都是20列出关系式,依次即可求出x的值.【解答】解:根据题意得:5+A+B=20,A+B+C=20,C+D+E=20,D+E+F=20,E+F+x=20,∴A+B=15,C=5,B+D=15,D+E=15,F=5,F+x=10,则x=5.故答案为:5【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.三.解答题(共8小题,共60分.解答需写出必要的文字说明或演算步骤.)21.(4分)把数2、﹣|﹣1|、1、0、﹣(﹣3.5)在数轴上表示出来,再用“<”把它们连接起来.【分析】首先在数轴上表示各数,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把各数连接起来即可.【解答】解:如图所示:,﹣|﹣1|<0<1<2<﹣(﹣3.5).【点评】此题主要考查了有理数的比较大小,以及数轴,关键是掌握在数轴上表示的两个有理数,右边的数总比左边的数大.22.(5分)把下列各数填在相应的集合内:100,﹣0.82,﹣30,3.14,﹣2,0,﹣2011,﹣3.1,,﹣,2.010010001…,正分数集合:{3.14,,…}整数集合:{100,﹣2,0,﹣2011,…}负有理数集合:{﹣0.82,﹣30,﹣2,﹣2011,﹣3.1,…}非正整数集合;{﹣2,0,﹣2011,…}无理数集合:{﹣,2.010010001…,…}.【分析】根据分数,有理数,整数以及无理数的概念进行判断即可.【解答】解:正分数集合:{3.14,,…}整数集合:{100,﹣2,0,﹣2011,…}负有理数集合:{﹣0.82,﹣30,﹣2,﹣2011,﹣3.1,…}非正整数集合;{﹣2,0,﹣2011,…}无理数集合:{﹣,2.010010001…,…}.故答案为:3.14,;100,﹣2,0,﹣2011;﹣0.82,﹣30,﹣2,﹣2011,﹣3.1;﹣2,0,﹣2011;﹣,2.010010001….【点评】本题主要考查了实数的分类,解题时注意:有理数和无理数统称实数.23.(20分)计算:①8+(﹣10)﹣(﹣5)+(﹣2);②7﹣(﹣3)+(﹣4)﹣|﹣8|③(﹣+)×(﹣36)④﹣81÷×(﹣)÷3⑤49×(﹣5)(简便方法计算)【分析】按照先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,有时利用乘法结合律、加法结合律进行简便运算.【解答】解:①8+(﹣10)﹣(﹣5)+(﹣2)=8﹣10+5﹣2=13﹣12=1.②7﹣(﹣3)+(﹣4)﹣|﹣8|=7+3﹣4﹣8=10﹣12=﹣2.③(﹣+)×(﹣36)=﹣18+20﹣21=﹣19.④﹣81÷×(﹣)÷3=81×××=12.⑤49×(﹣5)=(50﹣)×(﹣5)=﹣250+=﹣249.【点评】本题考查有理数混合运算,注意:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,有时利用乘法结合律、加法结合律进行简便运算.24.(4分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,求m2﹣cd+的值.【分析】利用相反数,绝对值,以及倒数的定义求出a+b,cd以及m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,∴m2=4原式=4﹣1+0=3;【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(6分)出租车司机小王某天下午营运全是在东西走向的太湖大道上进行的.如果向东记作“+”,向西记作“﹣”.他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣5,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午共收到多少钱?【分析】(1)把小王下午的行车记录相加,然后根据正负数的意*答;(2)根据行车记录和收费方法列出算式,计算即可得解.【解答】解:(1)﹣2+5﹣1+10﹣3﹣2﹣5+6=﹣13+21=8千米,所以小王在下午出车的出发地的东面,距离出发地8千米;(2)10×8+2×(5﹣3)+2×(10﹣3)+2×(5﹣3)+2×(6﹣3)=80+4+14+4+6=108元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(6分)寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.【分析】(1)根据所给的式子可得S与n之间的关系为:S=n(n+1);(2)首先确定有几个加数,由(1)得出的规律,列出算式,进行计算即可.【解答】解:(1))∵1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+ (400)=(2+4+6+…+400)﹣(2+4+6+…+160),=200×201﹣80×81,=40200﹣6480,=33720.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.27.(6分)阅读下列材料,并回答问题计算机利用的是二进制数,它共有两个数码:0,1;将一个十进制的数转化为二进制数,只需把该数写成若干个的数的和,依次写出1或0即可.例如十进制数19可以按下述方法转化为二进制数:19=16+2+1=1×24+0×23+0×22+1×21+1×20=10011.二进制数110110可以转换成十进制数为:110110=1×25+1×24+0×23+1×22+1×21+0×20=54.(1)将86化成二进制;(2)将1011101化成十进制.【分析】(1)十进制化成二进制用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.(2)将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.【解答】解:(1)86÷2=43,43÷2=21…1,21÷2=10…1,10÷2=5…0,5÷2=2…1,2÷2=1…0,1÷2=0…1,故86(10)=1010110(2).(2)(1011101)2=1×26+0×25+1×24+1×23+1×22+0×21+1×20=64+0+16+8+4+0+1=93;(1011101)2=(93)10.【点评】本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.28.(9分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;。

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试题一、单选题1.15-的倒数是( )A .﹣5B .5C .15- D .152.单项式2a 的系数是( )A .2B .2aC .1D .a 3.一元一次方程4x+1=0的解是( ) A .x 14=B .x 14=- C .x =4 D .x =﹣4 4.若一个角为45°,则它的补角的度数为( )A .55°B .45°C .135°D .125° 5.下列图形中,是圆锥的侧面展开图的是( )A .B .C .D .6.已知关于x 的方程3x 2a 2+=的解是a 1-,则a 的值是( ) A .1 B .35 C .15D .1-7.把2.36°用度、分、秒表示,正确的是( )A .2°18′36″B .2°21′36″C .2°30′60″D .2°3′6″8.将方程3x+6=2x ﹣8移项后,四位同学的结果分别是(1)3x+2x =6﹣8;(2)3x ﹣2x =﹣8+6;(3)3x ﹣2x =8﹣6;(4)3x ﹣2x =﹣6﹣8,其中正确的有( ) A .0个 B .1个 C .2个 D .3个9.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A.10cm B.8cm C.8cm或10cm D.2cm或4cm10.代数式2ax+5b的值会随x的取值不同而不同,下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=4的解是()A.12B.4C.-2D.0二、填空题11.计算:6﹣(3﹣5)=_____.12.一个多项式减去﹣x2+x﹣2得x2﹣1,则此多项式应为_______.13.如图,OA表示南偏东32°,OB表示北偏东57°,那么∠AOB=_____°.14.今年妈妈26岁,儿子2岁,_______年后,妈妈的年龄是儿子年龄的5倍.15.将一副三角板和一个直尺按如图所示的位置摆放,则1∠的度数为____________度.16.下列四个数中:∠0;∠12020-;∠5;∠﹣1.最小的数是_______.17.若关于x,y的单项式xm﹣1y2n与单项式13x2yn+1是同类项,则这两个单项式的和为_______.18.如图,在数轴上有A、B两个动点,O为坐标原点.点A、B从图中所示位置同时向数轴的负方向运动,A点运动速度为每秒1个单位长度,B点运动速度为每秒3个单位长度,当运动_____秒时,点O恰好为线段AB中点.三、解答题19.计算:6×(﹣14)﹣(﹣14)+(﹣1)2022.20.解方程:4x﹣3(20﹣x)=6x﹣7(9﹣x).21.如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.AB.再反向延长AC至点D,使得22.已知线段AB=2cm,延长AB至C,使BC=12AD=AC.(1)准确画出图形,并标出相应字母.(2)求出线段BD的长度.23.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?24.如图,直线ED上有一点O,∠AOC=∠BOD=90°,射线OP是∠AOD的平分线,(1)说明射线OP是∠COB的平分线;(2)写出图中与∠COD互为余角的角.25.老师写出一个整式(ax2+bx﹣1)﹣(4x2+3x)(其中a,b为常数),然后让同学们给a,b 赋予不同的数值进行化简.(1)甲同学给出了a=5,b=﹣1,请按照甲同学给出的数值化简整式;(2)乙同学给出了一组数据,最后化简的结果为2x2﹣3x﹣1,求a,b的值.26.已知关于x的方程2(x+1)﹣m=﹣22m的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.27.如图,将两个直角三角板的顶点叠放在一起进行探究.(1)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CE恰好是∠ACB的平分线,请你猜想此时CB是不是∠ECD的平分线,并简述理由;(2)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CB始终在∠DCE的内部,请猜想∠ACE与∠DCB是否相等,并简述理由;(3)如图∠,若将两个同样的三角板中60°锐角的顶点A叠放在一起,请你猜想∠DAB与∠CAE有何关系,并说明理由.参考答案1.A【分析】根据乘积为1的两个数互为倒数,求解即可.【详解】解:∠(15-)×(-5)=1,∠15-的倒数是-5.故选:A.【点睛】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2.A【详解】试题分析:对于一个单项式而言,它的系数是指字母前面的常数,本题中2a 的系数为2.考点:单项式的系数.3.B【分析】先移项,再把系数化为1,即可求解.【详解】解:4x+1=0,移项得:41x=-,解得:14x=-.故选:B【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的基本步骤是解题的关键.4.C【分析】根据补角的性质,即可求解.【详解】解:∠一个角为45°,︒-︒=︒.∠它的补角的度数为18045135故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.5.A【分析】根据圆锥的侧面展开图的特点作答.【详解】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.观察四个选项,只有A符合;故选A.【点睛】考查了几何体的展开图,解题关键是掌握圆锥的侧面展开图是扇形.6.A【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【详解】根据题意得:3(a-1)+2a=2,解得a=1故选A.【点睛】考查了方程解的定义,已知a-1是方程的解实际就是得到了一个关于a的方程.7.B【分析】根据大单位化小单位除以进率,可得答案.【详解】解:2.36°=2°+0.36×60′=2°21′+0.6×60″=2°21′36″,故选:B.【点睛】此题主要考查度、分、秒的转化运算,进行度、分、秒的转化运算,注意以60为进制.8.B【分析】根据移项要变号,进行判断即可.【详解】∠3x+2x=6﹣8没有变号,∠(1)错误;∠3x﹣2x=﹣8+6,6没有变号,∠(2)错误;∠3x﹣2x=8﹣6;-8没有移项,却变号,∠(3)错误;∠(4)3x﹣2x=﹣6﹣8,,∠(4)正确;故选B.【点睛】本题考查了移项,注意移项必须改变符号是解题的关键.9.C【分析】根据题意作图,由线段之间的关系即可求解.【详解】如图,∠点C是线段AB的中点,∠AC=BC=12AB=6cm当AD=23AC=4cm时,CD=AC-AD=2cm∠BD=BC+CD=6+2=8cm;当AD=13AC=2cm时,CD=AC-AD=4cm∠BD=BC+CD=6+4=10cm;故选C.【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.10.C【分析】根据表格中的数据确定出a与b的值,代入方程计算即可求出解.【详解】解:根据题意得:-2a+5b=0,5b=-4,解得:a=-2,b=4-5,代入方程得:-4x-4=4,解得:x=-2,故选:C.11.8【详解】【分析】先计算括号内的,然后再利用有理数的减法法则进行计算即可得出答案.【详解】6﹣(3﹣5)=6﹣(﹣2)=8,故答案为8.12.x-3 【分析】根据被减数=差+减数列式求解.【详解】解:由题意得x2﹣1+(﹣x2+x﹣2)= x2﹣1﹣x2+x﹣2=x ﹣3,故答案为:x-3.13.91【分析】根据方位角的定义求解即可.【详解】∠OA 表示南偏东32°,OB 表示北偏东57°, ∠∠AOB =(90°﹣32°)+(90°﹣57°)=58°+33°=91°, 故答案为91.【点睛】本题考查了方向角,熟练掌握方向角的意义是解答本题的关键.在观测物体时,地球南北方向与观测者观测物体视线的夹角叫做方向角.14.4【分析】设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意列出方程,即可求解. 【详解】解:设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意得:()2652x x +=+ ,解得:4x =答:4年后,妈妈的年龄是儿子年龄的5倍. 故答案为:415.75【分析】首先计算4∠的度数,再根据平行线的性质可得14∠=∠,进而可得答案. 【详解】解:∠260∠=︒,345∠=︒, ∠4180604575∠=︒-︒-︒=︒, ∠//a b , ∠1475∠=∠=︒, 故答案为:75.【点睛】此题主要考查了平行线的性质,掌握平行线的性质并能灵活应用是解题关键. 16.-1【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】解:1120202020-=,11-=, ∠112020<, ∠12020->-1, ∠-1<12020-<0<5, 故答案为:-1.【点睛】本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键. 17.2243x y 【分析】先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)求出,m n 的值,再计算合并同类项即可得.【详解】解:由题意得:12,21m n n -==+, 解得3,1m n ==,则这两个单项式的和为2222221433x y x y x y +=, 故答案为:2243x y . 【点睛】本题考查了同类项、合并同类项、一元一次方程的应用,熟记同类项的定义是解题关键.18.1【分析】设经过t 秒,点O 恰好是线段AB 的中点,因为点B 不能超过点O ,所以0<t <2,经过t 秒,点A ,B 表示的数为﹣2﹣t ,6﹣3t ,根据题意可知﹣2﹣t <0,6﹣3t >0,化简|﹣2﹣t|=|6﹣3t|,即可得出答案.【详解】解:设经过t 秒,点O 恰好为线段AB 中点.根据题意可得:经过t 秒,点A 表示的数为﹣2﹣t ,AO 的长度为|﹣2﹣t|,点B 表示的数为6﹣3t ,BO 的长度为|6﹣3t|.因为点B 不能超过点O ,所以0<t <2,则|﹣2﹣t|=|6﹣3t|. 因为﹣2﹣t <0,6﹣3t >0, 所以﹣(﹣2﹣t )=6﹣3t , 解得:t=1. 故答案为:1.【点睛】本题考查了绝对值的意义以及解一元一次方程,根据题意列出等式应用绝对值的意义化简是解答本题的关键.19.-69【详解】解:原式=(-14)×(6-1)+1 =-70+1 =-69.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.有时也可以根据运算律改变运算的顺序.20.x=12【分析】方程去括号,移项、合并同类项,把x 系数化为1,即可求出解.【详解】解:去括号得:4x−60+3x =6x−63+7x , 移项,得4x +3x−6x−7x =60−63, 合并同类项,得:−6x =−3, 系数化为1,得x=12.【点睛】本题考查解一元一次方程.解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,注意移项要变号.21.130°.【分析】根据角平分线的定义可知,∠AOC=2∠AOD ,∠BOC=2∠BOE ,根据角的和差可知,∠AOB=∠AOC+∠BOC ,计算得出∠AOB 的度数.【详解】因为OD 、OE 分别是∠AOC 和∠BOC 的平分线,∠AOD =40°,∠BOE =25°, 所以∠AOC=2∠AOD=40°×2=80°,∠BOC=2∠BOE=25°×2=50°, 因为∠AOB=∠AOC+∠BOC , 所以∠AOB=80°+50°=130°.22.(1)见解析;(2)5cm 【分析】(1)根据题意,做出图形,并且标出相应字母即可; (2)先计算出BC 的长度,然后求出AD 的长度,用AD+AB 可求得BD 的长度. 【详解】解:(1)如图:;(2)∠12BC AB = ∠1BC cm =∠213AC AB BC cm =+=+=∠AD =AC∠3AD cm =∠BD AB AD =+∠()235BD cm =+=【点睛】关于线段的延长,要注意分清方向,关于线段的长度的计算,搞清楚是哪些线段的和差即可进行计算23.(1)这个小组男生百米测试的达标率是62.5%;(2)这个小组8名男生的平均成绩是13.9秒.【分析】(1)根据非正数是达标数,解得达标数,再将达标数除以总人数即可解题;(2)计算数据的总和,再除以8即可解题.【详解】解:(1)达标人数为5,达标率为58×100%=62.5%. 答:这个小组男生百米测试的达标率是62.5%;(2) 1.20.7010.30.20.30.58-++--+++=﹣0.1(秒), 14﹣0.1=13.9(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】本题考查正数、负数的实际应用,掌握非正数是达标数是解题关键. 24.(1)见解析;(2)∠BOC 和∠AOE .【分析】(1)根据题意可得∠COD =∠AOB ,根据角平分线的定义及角的和差关系可得∠POB =∠POC ,进而得出射线OP 是∠COB 的平分线;(2)根据互余的两角之和为90°求解即可.【详解】解:(1)∠∠AOC =∠BOD =90°,∠∠AOD ﹣∠AOC =∠AOD ﹣90°=∠AOD ﹣∠BOD ,∠∠COD =∠AOB ,∠射线OP 是∠AOD 的平分线;∠∠POA =∠POD ,∠∠POA ﹣∠AOB =∠POD ﹣∠COD ,∠∠POB =∠POC ,∠射线OP 是∠COB 的平分线;(2)∠∠COD =∠AOB ,∠AOC =∠BOD =90°,∠∠AOE =∠BOC ,∠∠COD+∠BOC =90°,∠图中与∠COD 互为余角的角有∠BOC 和∠AOE .【点睛】本题考查了余角和补角以及角平分线,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.25.(1)x 2-4x-1(2)6,0a b ==【分析】(1)先将原式化简,再将a =5,b =﹣1代入,即可求解;(2)先将原式化简,可得42,33a b -=-=-,即可求解.(1)解:原式=ax 2+bx-1-4x 2-3x=(a-4)x 2+(b-3)x-1,当a=5,b=-1时原式=x 2-4x-1(2)根据题意得:(a-4)x 2+(b-3)x-1=2x 2-3x-1得42,33a b -=-=-,解得:6,0a b == .【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.26.(1)x=3;(2)m=22.【分析】(1)按去括号、移项、合并同类项的步骤进行求解即可;(2)根据(1)中求得的x 的值,由题意可得关于x 的方程2(x+1)﹣m=﹣m 22-的解,然后代入可得关于m 的方程,通过解该方程求得m 值即可.【详解】(1)5(x ﹣1)﹣1=4(x ﹣1)+1,5x ﹣5﹣1=4x ﹣4+1,5x ﹣4x=﹣4+1+1+5,x=3;(2)由题意得:方程2(x+1)﹣m=﹣m22-的解为x=3+2=5,把x=5代入方程2(x+1)﹣m=﹣m22-,得:2×(5+1)﹣m=﹣m22-,12﹣m=﹣m22-,解得:m=22.【点睛】本题考查了一元一次方程的解、解一元一次方程.熟练掌握解解一元一次方程的一般步骤是解题的关键.27.(1)CB是∠ECD的平分线,理由见解析(2)∠ACE=∠DCB,理由见解析(3)∠DAB+∠EAC=120°,理由见解析【分析】(1)根据角平分线的定义求得∠ECB=45°,进而求得∠BCD=45°,证得∠ECB=∠DCB即可解答;(2)根据等角的余角相等解答即可;(3)根据角的运算求解即可.(1)解:CB是∠ECD的平分线.理由:∠∠ACB=90°,CE恰好是∠ACB的平分线,∠∠ECB=45°,∠∠DCE=90°,∠∠DCB=90°-45°=45°,∠∠ECB=∠DCB,∠CB是∠ECD的平分线;(2)解:∠ACE=∠DCB.理由:∠∠ACB=∠DCB=90°,∠∠ACE+∠ECB=90°,∠DCB+∠ECB=90°,∠∠ACE=∠DCB;(3)解:∠DAB+∠EAC=120°.理由:∠∠BAE=∠CAD=60°,∠∠DAE+∠EAC=60°,∠EAC+∠CAB=60°,∠∠DAE+∠EAC+∠EAC+∠CAB=120°,∠∠DAE+∠EAC+∠CAB=∠DAB,∠∠DAB+∠CAE=120°.【点睛】本题考查三角板中角的运算、等角的余角相等、角平分线的定义,熟练掌握图形中的角的运算是解答的关键.。

初一上册数学测试题及答案

初一上册数学测试题及答案

初一上册数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -1答案:C2. 绝对值等于5的数是:A. 5B. -5C. 5和-5D. 以上都不是答案:C3. 计算下列哪个表达式的结果为负数?A. 3 - (-2)B. -3 - 2C. 0 - 5D. 7 + (-3)答案:B4. 有理数的乘法法则中,下列哪个说法是错误的?A. 正数乘以正数得正数B. 负数乘以负数得正数C. 正数乘以负数得负数D. 负数乘以正数得负数答案:D5. 一个数的相反数是-7,这个数是:A. 7B. -7C. 0D. 14答案:A6. 计算下列哪个表达式的结果为0?A. 0 + 5B. 0 - 3C. 0 × 4D. 0 ÷ 8答案:C7. 一个数的倒数是1/3,这个数是:A. 3C. 1/9D. 3/1答案:A8. 计算下列哪个表达式的结果为1?A. 2 ÷ 2B. 3 - 2C. 4 × 0.25D. 5 + (-5)答案:A9. 下列哪个选项是不等式?A. 3 + 2 = 5B. 7 > 3C. 6 = 6答案:B10. 计算下列哪个表达式的结果为-8?A. 8 - 16B. -8 + 8C. 0 - 8D. 8 + (-16)答案:D二、填空题(每题4分,共40分)11. 一个数的平方是25,这个数是______。

答案:±512. 一个数的立方是-8,这个数是______。

答案:-213. 计算表达式 4 × (-3) + 6 的结果是______。

答案:-614. 计算表达式 -7 ÷ 7 的结果是______。

答案:-115. 计算表达式 (-2)²的结果是______。

答案:416. 计算表达式 3 × 2 - 5 的结果是______。

答案:117. 计算表达式 -4 + 4 × 3 的结果是______。

初一上册数学试题及答案

初一上册数学试题及答案

初一上册数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 1B. 2C. 3D. 42. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 23. 一个数的绝对值是它自己,这个数是:A. 0B. 正数C. 负数D. 0和正数4. 计算下列算式的结果:\[ 2 + 3 \times 4 \]A. 20B. 14C. 8D. 225. 一个数的平方是16,这个数是:B. -4C. 4或-4D. 26. 下列哪个选项是质数?A. 2B. 4C. 6D. 87. 一个数的立方是-27,这个数是:A. 3B. -3C. 9D. -98. 计算下列算式的值:\[ \frac{3}{4} + \frac{2}{5} \]A. 1.4B. 1.25C. 1.75D. 1.59. 一个数的倒数是它自己,这个数是:A. 1B. -1C. 0D. 1或-110. 下列哪个选项是合数?B. 3C. 5D. 4二、填空题(每题4分,共20分)1. 一个数的绝对值是5,这个数可以是________或________。

2. 一个数的平方是9,这个数是________或________。

3. 一个数的立方是8,这个数是________。

4. 计算下列算式的值:\[ 5 - \frac{1}{2} \times 3 \] 等于________。

5. 一个数的倒数是\[ \frac{1}{3} \],这个数是________。

三、解答题(每题10分,共50分)1. 计算下列算式,并说明计算过程:\[ 7 \times (3 - \frac{1}{2}) \]2. 一个数的平方是25,求这个数。

3. 一个数的立方是64,求这个数。

4. 计算下列算式的值,并说明计算过程:\[ \frac{3}{4} \div \frac{1}{2} \]5. 一个数的倒数是\[ \frac{2}{5} \],求这个数。

2024年最新人教版初一数学(上册)期中考卷及答案(各版本)

2024年最新人教版初一数学(上册)期中考卷及答案(各版本)

2024年最新人教版初一数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式正确的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √2B. √3C. √5D. √94. 下列运算中,先进行乘除后进行加减的是()A. 2 + 3 × 4 5B. 2 × 3 + 4 ÷ 2C. (2 + 3) × 4 ÷ 2D. 2 ÷ 3 × 4 + 55. 已知等差数列的前5项和为25,公差为2,则第3项是()A. 3B. 4C. 5D. 6二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 任何两个实数的积都是实数。

()3. 0是最小的自然数。

()4. 任何数乘以0都等于0。

()5. 任何数除以0都有意义。

()三、填空题5道(每题1分,共5分)1. 两个数的和为10,其中一个数为3,另一个数为______。

2. 两个数的差为5,被减数为10,减数为______。

3. 两个数的积为24,其中一个数为6,另一个数为______。

4. 两个数的商为3,被除数为9,除数为______。

5. 1千克等于______克。

四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。

2. 请简述等差数列的定义。

3. 请简述实数的分类。

4. 请简述方程的定义。

5. 请简述不等式的定义。

五、应用题:5道(每题2分,共10分)1. 小明买了3本书,每本书的价格为8元,请计算小明一共花了多少钱。

2. 小红买了4个苹果,每个苹果的价格为2元,请计算小红一共花了多少钱。

3. 一个长方形的长为5厘米,宽为3厘米,请计算这个长方形的面积。

初一数学上册期末试卷及答案

初一数学上册期末试卷及答案

初一数学上册期末试卷及答案一、选择题(共10小题,每小题3分,满分30分)1.﹣2的相反数是()A.1+B.1﹣C.2D.﹣2相反数.根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:﹣2的相反数是2,故选:C.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.埃及金字塔类似于几何体()A.圆锥B.圆柱C.棱锥D.棱柱认识立体图形.几何图形问题.根据埃及金字塔的形状及棱锥的定义分析即可求解.解:埃及金字塔底面是多边形,侧面是有公共顶点的三角形,所以是棱锥.故选C.本题主要考查棱锥的概念的掌握情况.棱锥的定义:如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.3.用科学记数法表示9.06×105,则原数是()A.9060B.__C.__D.__科学记数法—原数.根据科学记数法的定义,由9.06×105的形式,可以得出原式等于9.06×__=__,即可得出答案.解:9.06×105=__,故选:C.本题主要考查科学记数法化为原数,得出原式等于9.06×__=__是解题关键.4.利用一副三角尺不能画出的角的度数是()A.15°B.80°C.105°D.135°角的计算.根据角的和差,可得答案.解:A、利用45°角与30°角,故A不符合题意;B、一副三角板无法画出80°角,故B符合题意;C、利用45°角与60°角,故C不符合题意;D、利用45°角与90°角,故C不符合题意;故选:B.本题考查了角的计算,利用了角的和差,熟悉一副三角板的各角是解题关键.5.下列调查,不适合抽样调查的是()A.想知道一大锅汤的味道B.要了解我市居民节约用电的情况C.香港市民对“非法占中”事件的看法D.要了解“神舟6号”运载火箭各零件的正常情况全面调查与抽样调查.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、想知道一大锅汤的味道必须进行抽样调查,选项错误;B、要了解我市居民节约用电的情况,人数太多,适合抽样调查,选项错误;C、香港市民对“非法占中”事件的看法,人数太多,适合抽样调查,选项错误;D、要了解“神舟6号”运载火箭各零件的正常情况,事关重大必须进行全面调查,不适合抽样调查.故选D.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.下列去括号或添括号正确的是()A.x+(y﹣2)=x+y+2B.x﹣(y﹣1)=x﹣y﹣1C.x﹣y+1=x﹣(y ﹣1)D.x+y﹣1=x+(y+1)去括号与添括号.根据去括号与添括号的法则,分别对每一项进行分析即可.A.x+(y﹣2)=x+y﹣2,故本选项错误,B.x﹣(y﹣1)=x﹣y+1,故本选项错误,标签:C.x﹣y+1=x﹣(y﹣1),故本选项正确,D.x+y﹣1=x+(y﹣1),故本选项错误,故选:C.此题考查了去括号与添括号,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号,去括号也一样.7.如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点确定一条线段C.两点之间,直线最短D.两点之间,线段最短线段的性质:两点之间线段最短.根据两点之间线段最短即可得出答案.解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:D.本题考查了线段的性质,属于基础题,关键是掌握两点之间线段最短.8.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2一元一次方程的解.计算题.虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.解:把x=﹣2代入2x+m﹣4=0得:2×(﹣2)+m﹣4=0解得:m=8.故选A.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.9.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元一元一次方程的应用.销售问题.设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.10.下列变形:①如果a=b,则ac2=bc2;②如果ac2=bc2,则a=b;③如果a=b,则3a﹣1=3b﹣1;④如果,则a=b,其中正确的是() A.①②③④B.①③④C.①③D.②④等式的性质.分别利用等式的性质进而判断得出答案.解:①如果a=b,则ac2=bc2,正确;②如果ac2=bc2,则a=b(c≠0),故此选项错误;③如果a=b,则3a﹣1=3b﹣1,正确;④如果,则a=b,正确.故选:B.此题主要考查了等式的性质,正确把握等式基本性质是解题关键.二、填空题(共6小题,每小题4分,满分24分)11.若|x|=3,则x=±3.绝对值.根据绝对值的性质解答即可.解:∵|x|=3,∴x=±3.故答案为:±3.本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.已知a,b两数在数轴上的表示如图所示,则﹣a>b.(填“>”、“=”或“<”)有理数大小比较;数轴.推理填空题;实数.根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,可得a>0>b,而且|a|<|b|,所以﹣a>b,据此判断即可.解:根据数轴的特征,可得a>0>b,而且|a|<|b|,标签:∴﹣a>b.故答案为:>.(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.13.列代数式:a只鸡和b只兔同笼,鸡脚和兔脚共2a+4b只.列代数式.推理填空题.根据一只鸡有两只脚,一个兔子有四只脚,从而可以求出a只鸡和b 只兔一共有多少只脚.解:∵a只鸡和b只兔同笼,∴鸡脚和兔脚共有2a+4b只.故答案为:2a+4b.本题考查列代数式,解题的关键是明确题意,可以列出相应的代数式.14.若xmy2与﹣xyn是同类项,则mn等于1.同类项.根据同类项的定义中相同字母的指数也相同列出方程,解方程求得m 和n的值,代入代数式计算即可.解:∵xmy2与﹣xyn是同类项,∴m=1,n=2,则mn=1.故答案为:1.本题考查同类项的定义,掌握所含字母相同且相同字母的指数也相同的项是同类项是解题的关键.15.按照下图所示的操作步骤,若输入x的值为3,则输出的值为7.代数式求值.图表型.根据图表的意思,列出代数式,将x=3代入求值即可.解:由图表可知,输出的算式为(x﹣5)2+3,当x=3时,(x﹣5)2+3=(3﹣5)2+3=7.故答案为:7.本题考查了代数式求值.解答本题的关键就是弄清楚题图给出的计算程序.16.观察下列一列数,探求其规律:﹣1,,﹣,,﹣,,。

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 下列哪个是等边三角形的特点?A. 有两个角相等B. 有三条边相等C. 有一个角是直角D. 所有角都小于90度3. 下列哪个是负数?A. 5B. 0C. 3D. 84. 下列哪个是最小的合数?A. 4B. 6C. 8D. 95. 下列哪个是平行四边形的性质?A. 对角线互相垂直B. 对角线互相平分C. 对边平行且相等D. 所有角都是直角二、判断题(每题1分,共5分)1. 0是最小的自然数。

()2. 等腰三角形的两个底角相等。

()3. 1是质数。

()4. 平行四边形的对角线互相平分。

()5. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 3的平方是______。

3. 1千米等于______米。

4. 等边三角形的每个角都是______度。

5. 5的立方是______。

四、简答题(每题2分,共10分)1. 解释什么是质数。

2. 简述平行四边形的性质。

3. 解释负数和正数的区别。

4. 什么是等腰三角形?5. 解释乘法的分配律。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个数加上它的5倍等于30,求这个数。

3. 一个等边三角形的周长是18厘米,求它的边长。

4. 一个数减去7等于10,求这个数。

5. 一个数的平方是64,求这个数。

六、分析题(每题5分,共10分)1. 小明有5个苹果,他吃掉了2个,然后又得到了3个,现在小明有多少个苹果?2. 一个长方形的长是15厘米,宽是10厘米,如果长方形的长增加5厘米,宽减少2厘米,求新长方形的面积。

七、实践操作题(每题5分,共10分)1. 画出一个等边三角形,并标出它的三个角。

2. 画出一个长方形,并标出它的长和宽。

八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上受到的摩擦力与物体重量之间的关系。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.4的倒数是( )A .4-B .4C .14- D .142.单项式23x y -的系数是( )A .3-B .1C .2D .33.下列各式中结果为负数的是( )A .()3--B .3-C .()23-D .23-4.如图,这个几何体是由哪个图形绕虚线旋转一周形成的( )A .B .C .D .5.已知关于x 的方程290x a +-=的解是3x =,则a 的值为( )A .2B .3C .4D .56.下列计算正确的是( )A .277x x x +=B .532y y -=C .437x y xy +=D .22232x y x y x y -=7.将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( ) A . B .C .D .8.若()123m m x --=是关于x 的一元一次方程,则m 的值是( )A .2-B .1C .2D .2±9.如图,点A 在点O 的北偏西60°方向,射线OB 与射线OA 所成的角是108°,则射线OB 的方向是( )A .北偏西42°B .北偏西48°C .北偏东42°D .北偏东48° 10.有一项城市绿化整治任务交甲、乙两个工程队完成,已知甲单独做10天完成,乙单独做8天完成,若甲先做1天,然后甲、乙合作x 天后,共同完成任务,则可列方程为( )A .11108x x +-=B .11108x x ++= C .11108x x --= D .11108x x -+= 11.将图①中的正方形剪开得到图①,图①中共有4个正方形;将图①中一个正方形剪开得到图①,图①中共有7个正方形;将图①中一个正方形剪开得到图①,图①中共有10个正方形……如此下法,则第2022个图中共有正方形的个数为( )A .2022B .6062C .6063D .606412.如图,点O 为直线AB 上一点,COD ∠为直角,OE 平分AOC ∠,OF 平分COB ∠,OG 平分BOD ∠.下列结论:①45FOG =︒∠;①90AOE FOB ∠+∠=︒;①130EOG ∠=︒;①90AOC BOD ∠-∠=︒.正确的有( )A .4个B .3个C .2个D .1个二、填空题13.数轴上表示2-和3+两个点之间的距离是______.14.300000-用科学记数法表示为______.15.若一个角是25°38′,则它的余角为______.16.若x 的相反数是3,y 的绝对值是7,则x y +的值为______.17.如图,点B 、C 在线段AD 上,CD=5,BD=9,B 是AC 的中点,则AC 的长为______.18.已知x+2y ﹣5=0,则代数式2x+4y ﹣7的值是_____.19.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“民”字一面的相对面上的字是_______.三、解答题20.解方程:127x -﹣1=33+x .21.已知213a b x y -与23x y -是同类项.(1)请直接写出:a =______,b =______;(2)在(1)的条件下,求()()2222523425a b ab b a+--+的值.22.直线AB ,CD 交于点O ,将一个三角板的直角顶点放置于点O 处,使其两条直角边OE ,OF ,分别位于OC 的两侧.若OC 平分①BOF ,OE 平分①COB .(1)求①BOE的度数;(2)写出图中①BOE的补角,并说明理由.23.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.24.用尺规作图按下列语句画图:(1)画射线BC,连接AC,AB;(2)反向延长线段AB至点D,使得DA=AB.25.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?26.如图,OD平分①BOC,OE平分①AOC.若①BOC=70°,①AOC=50°.(1)求出①AOB及其补角的度数;(2)请求出①DOC和①AOE的度数,并判断①DOE与①AOB是否互补,并说明理由.参考答案1.D2.A3.D4.A5.B6.D7.C8.A9.D10.B11.D12.B13.5.【分析】数轴上两点之间的距离,即数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.【详解】解:数轴上表示-2和+3的两个点之间的距离是3-(-2)=5.故答案是:5.【点睛】本题考查了数轴的定义.解答该题时,也可以利用借助数轴用几何方法求两点之间的距离.14.-3×105【分析】根据科学记数法的定义计算求值即可;-= -3×105,【详解】解:300000故答案为:-3×105【点睛】本题考查了科学记数法:把一个绝对值大于1的数表示成a×10n的形式(a大于或等于1且小于10,n是正整数);n的值为小数点向左移动的位数.15.64°22′【分析】根据余角的定义可知这个角的余角=90°-25°38′,然后将90°化为89°60′计算即可.【详解】解:它的余角=90°-25°38′=89°60′-25°38′=64°22′.故答案为:64°22′.【点睛】本题主要考查的是度分秒的换算、余角的定义,将90°转化为89°60′是解题的关键.16.4或10-或4-##10【分析】根据相反数的定义和绝对值的性质,先求出x、y的值,再代值求解.【详解】解:由题意,得:x=-3,y=±7;当x=-3,y=7时,x+y=-3+7=4;当x=-3,y=-7时,x+y=-3-7=-10.故答案为:4或10-.【点睛】此题主要考查绝对值的性质以及相反数的定义.有理数的加法运算,代数式的值,需注意的是互为相反数的两个数绝对值相等,不要漏解.17.8【分析】根据线段中点的定义和线段的和差即可得到结论.【详解】解:①CD=5,BD=9,①BC=BD-CD=4,①B是AC的中点,①AB=BC=4,①AC=AB+BC=8,故答案为:8.【点睛】本题考查了两点间的距离,熟练掌握线段中点的定义是解题的关键.18.3.【分析】直接利用已知得出x+2y=5,再将原式变形进而得出答案.【详解】①x+2y﹣5=0,①x+2y=5,①2x+4y﹣7=2(x+2y)﹣7=10﹣7=3.故答案为:3.19.化【详解】选择“民”这一面作为底面将正方体还原可得:“弘”与“族”是相对面,“扬”与“文”是相对面,“民”与“化”是相对面,故答案为:化.【点睛】本题考查了根据正方体表面展开图判断相对面的字,熟练掌握正方体表面展开图的特点是解题的关键,需要一定空间想象能力.20.原方程的解是x=﹣3.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x ﹣7x =21﹣3+21,合并,得﹣13x =39,系数化1,得x =﹣3,则原方程的解是x =﹣3.21.(1)1,−2(2)32【分析】(1)两个单项式为同类项,则字母相同,对应字母的指数也相同,据此可求得a 、b 的值;(2)先去括号再合并同类项,最后代入求值.(1)解:①213a b x y -与23x y -是同类项,①2a=2,1−b=3,①a=1,b=−2;故答案为:1,−2;(2)解:()()2222523425a b ab b a +--+=5a 2+6b 2-8ab-2b 2-5a 2=4b 2-8ab ,当a=1,b=−2时,原式=4×(−2) 2-8×1×(−2)=16-(-16)=32.【点睛】本题考查整式的化简求值,同类项,解题的关键是掌握同类项的定义,整式的加减运算法则.22.(1)30°;(2)①BOE 的补角有①AOE 和①DOE .【分析】(1)根据OC 平分①BOF ,OE 平分①COB .可得①BOE =①EOC =12①BOC ,①BOC =①COF ,进而得出,①EOF =3①BOE =90°,求出①BOE ;(2)根据平角和互补的意义,通过图形中可得①BOE+①AOE =180°,再根据等量代换得出①BOE+①DOE =180°,进而得出①BOE 的补角.【详解】解:(1)①OC 平分①BOF ,OE 平分①COB .①①BOE =①EOC =12①BOC ,①BOC =①COF , ①①COF =2①BOE ,①①EOF =3①BOE =90°,①①BOE =30°,(2)①①BOE+①AOE =180°①①BOE 的补角为①AOE ;①①EOC+①DOE =180°,①BOE =①EOC ,①①BOE+①DOE=180°,①①BOE的补角为①DOE;答:①BOE的补角有①AOE和①DOE;【点睛】考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.23.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)①点C为原点,BC=1,①B所对应的数为﹣1,①AB=2BC,①AB=2,①点A所对应的数为﹣3,①m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)①点B为原点,AC=6,AB=2BC,AB+BC=AC,①AB=4,BC=2,①点A所对应的数为﹣4,点C所对应的数为2,①m=﹣4+2+0=﹣2;(3)①原点O到点C的距离为8,①点C所对应的数为±8,①OC=AB,①AB=8,当点C对应的数为8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为4,点A所对应的数为﹣4,①m=4﹣4+8=8;当点C所对应的数为﹣8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为﹣12,点A所对应的数为﹣20,①m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.24.(1)见详解;(2)见详解.【分析】(1)根据尺规作图过程画射线BC,连接AC,AB即可;(2)根据尺规作图过程反向延长线段AB至点D,使得DA=AB即可.【详解】解:如图所示:(1)(1)射线BC,连接AC,AB即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.25.(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.26.(1)120°,60°;(2)①DOE与①AOB互补,理由见解析.【分析】(1)①AOB的度数等于已知两角的和,再根据补角的定义求解;(2)根据角平分线把角分成两个相等的角,求出度数后即可判断.【详解】解:(1)①AOB=①BOC+①AOC=70°+50°=120°,其补角为180°-①AOB=180°-120°=60°.(2)①DOC=①BOC=×70°=35°,①AOE=①AOC=×50°=25°.①DOE与①AOB互补.理由如下:①①DOC=35°,①AOE=25°,①①DOE=①DOC+①COE =①DOC+①AOE=60°.①①DOE+①AOB=60°+120°=180°,①①DOE与①AOB互补.11。

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 下列数中,最小的数是()。

A. 1B. 0C. 1D. 22. 如果 a > b,那么 a b 的结果一定()。

A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列式子中,不是同类项的是()。

A. 3xB. 4x^2C. 5xD. 6x^24. 已知 a = 3,b = 2,那么 a + b 的结果是()。

A. 1B. 1C. 5D. 55. 下列数中,是有理数的是()。

A. √2B. √3C. πD. 1/2二、判断题:每题1分,共5分1. 任何两个有理数的和一定是有理数。

()2. 任何两个整数的积一定是整数。

()3. 0 是最小的自然数。

()4. 任何数乘以0都等于0。

()5. 1 是最小的正整数。

()三、填空题:每题1分,共5分1. 如果 a = 5,那么 3a 7 的值是______。

2. 已知 |x 3| = 4,那么 x 的值是______或______。

3. 两个数的和是 15,它们的差是 5,那么这两个数分别是______和______。

4. 如果 a = 2,b = 3,那么 a 2b 的值是______。

5. 下列式子中,同类项是______和______。

四、简答题:每题2分,共10分1. 解释有理数的概念。

2. 举例说明同类项的概念。

3. 解释绝对值的概念。

4. 解释相反数的概念。

5. 解释整除的概念。

五、应用题:每题2分,共10分1. 如果一个数加上8后等于15,那么这个数是多少?2. 如果一个数乘以3后等于18,那么这个数是多少?3. 如果 |x 5| = 7,那么 x 的值是多少?4. 如果 a = 4,b = 2,那么 a + 3b 的值是多少?5. 如果 a = 3,b = 4,那么 a^2 + b^2 的值是多少?六、分析题:每题5分,共10分1. 已知 |x 2| = 3,求 x 的值,并解释解题过程。

初一年级上册数学试卷【含答案】

初一年级上册数学试卷【含答案】

初一年级上册数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 36厘米B. 34厘米C. 32厘米D. 30厘米二、判断题(每题1分,共5分)1. 任何一个自然数都可以分解为几个质数的乘积。

()2. 两条平行线之间的距离是相等的。

()3. 任何一个正数都有两个平方根,它们互为相反数。

()4. 任何一个正整数都可以分解为几个质数的乘积。

()5. 任何一个三角形都有外接圆。

()三、填空题(每题1分,共5分)1. 如果一个数的因数只有1和它本身,那么这个数是________。

2. 两条平行线之间的距离是________。

3. 如果一个三角形的两边长分别是5厘米和12厘米,那么第三边的长度不可能是________。

4. 任何一个正数都有两个平方根,它们互为________。

5. 任何一个三角形都有________。

四、简答题(每题2分,共10分)1. 请简述质数的定义。

2. 请简述等腰三角形的性质。

3. 请简述平行四边形的性质。

4. 请简述因式分解的定义。

5. 请简述勾股定理的定义。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是3cm、4cm和5cm,求它的体积。

2. 一个等腰三角形的底边长是10cm,腰长是12cm,求这个三角形的周长。

3. 如果一个数的因数只有1和它本身,那么这个数是质数。

初一上册数学综合测试卷及答案【三篇】

初一上册数学综合测试卷及答案【三篇】

【导语】本⽂由⽆忧考为您整理的初⼀上册数学综合测试卷及答案【三篇】,希望对⼤家有帮助。

初⼀上册数学有理数综合测试卷及答案 ⼀.选择题(每⼩题3分,共24分) 1.-2的相反数是() A.2B.-2C.D. 2.│3.14-|的值是(). A.0B.3.14-C.-3.14D.3.14+ 3.⼀个数和它的倒数相等,则这个数是() A.1B.C.±1D.±1和0 4.如果,下列成⽴的是() A.B. C.D. 5.⽤四舍五⼊法按要求对0.05019分别取近似值,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位) C.0.05(保留两个有效数字)D.0.0502(精确到0.0001) 6.计算的值是() A.B.C.0D. 7.有理数a、b在数轴上的对应的位置如图所⽰: 则() A.a+b<0B.a+b>0 C.a-b=0D.a-b>0 8.下列各式中正确的是() A.B. C.D. ⼆.填空(每题3分,共24分) 9.在数+8.3、-4、-0.8、、0、90、、中,________是正数,_________不是整数。

10.+2与-2是⼀对相反数,请赋予它实际的意义:_________. 11.的倒数的绝对值是___________. 12.+4=; 13.⽤科学记数法表⽰13040000,应记作_______________. 14.若a、b互为相反数,c、d互为倒数,则(a+b)3.(cd)4=__________. 15.⼤肠杆菌每过20分便由1个分裂成2个,经过3⼩时后这种⼤肠杆菌由1个分裂成__________个. 16.在数轴上与-3距离四个单位的点表⽰的数是__________. 三.解答题(每题6分,共12分) 17.(-0.9)+(+4.4)+(-8.1)+(+5.6) 18. 四.解答题(每题8分,共40分) 19.把下列各数⽤“”号连接起来: ,-0.5,,,-(-0.55), 20.如图,先在数轴上画出表⽰2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表⽰的数,以及B,C两点间的距离. 21.求+的最⼩值 22.某公司去年1~3⽉平均每⽉亏损1.5万元,4~6⽉平均每⽉赢利2万元,7~10⽉平均每⽉赢利1.7万元,11~12⽉平均每⽉亏损2.3万元,问:这个公司去年总的盈、亏情况如何? 23.某⾷品⼚从⽣产的袋装⾷品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不⾜的部分分别⽤正、负数来表⽰,记录如下表: 与标准质量的差值 (单位:g)520136 袋数143453 这批样品的平均质量⽐标准质量多还是少?多或少⼏克?若每袋标准质量为450克,则抽样检测的总质量是多少? 参考答案 ⼀.选择题 1.A 2.C 3.C 4.D 5.C 6.D 7.A 8.A ⼆.填空题 9.+8.3、90;+8.3、、、. 10.向前⾛2⽶记为+2⽶,向后⾛2⽶记为⽶。

完整版)初一数学上册期末测试卷及答案

完整版)初一数学上册期末测试卷及答案

完整版)初一数学上册期末测试卷及答案初一数学上期末试题及答案一。

填空题(本大题共10小题,每小题3分,共30分)1.甲数的3与乙数的2的差用代数式表示为a×3-b×2.2.用四舍五入法,把47.6精确到个位的近似值是48.3.单项式2x2yz3的系数是2,次数是6.4.把多项式3a2b+2ab2-5axy+3x2y按y的降幂排列后,第二项是-5axy。

5.最大的负整数与绝对值最小的数的和为-2.6.在公式v=v0+at中,已知a=3,v0=17,v=5,则t=-4.7.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时相向施工,则要6天可以铺好。

8.若x=1是关于x的方程ax+b=(a≠0)的解,则a+b-1=0.9.某商品的进价为200元,原价为300元,折价销售后的利润率为5%,则此商品是按原价的折销售的。

10.如图是花圃摆放的一组花盆图案(“○”代表红花花盆,“×”代表黄花花盆)观察图案并探索:在第n个图案中,红花有2n-1盆,黄花有2n盆。

二。

选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个答案正确,将正确答案的代号填入题后的括号里)11.下列各式中计算正确的是(B)。

A。

11-(-7)=18B。

23-(-3)=26C。

(6)+(-13)=-7D。

(-9)×5×(-4)×2=36012.若室内温度是16℃,室外温度是-5℃,那么室内的温度比室外的温度高(D)。

A。

-21℃B。

21℃C。

-11℃D。

11℃13.如果y=3x,z=2(y-1),那么x-y+z等于(B)。

A。

4x-1B。

4x-2C。

5x-1D。

5x-214.下列运算正确的是(C)。

A。

-2a-2a=-4aB。

2xy+3xy=5xyC。

1/2+1/2=1D。

2/15ab+ba^2=a^2b15.下列方程为一元一次方程的是(D)。

初一上册数学期中试题及答案【四篇】

初一上册数学期中试题及答案【四篇】

【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。

【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。

初一上册数学试题及答案

初一上册数学试题及答案

初一上册数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 如果一个数的绝对值是5,那么这个数可能是:A. 5或-5B. 5C. -5D. 都不是答案:A3. 以下哪个表达式的结果不是正数?A. 3 + 2B. 4 - 6C. 2 × 3D. 5 ÷ 1答案:B4. 一个数的平方是其本身的数是:A. 0B. 1C. -1D. 2答案:A、B5. 下列哪个是偶数?A. 2B. 3C. 5D. 7答案:A6. 一个数的立方是其本身的数是:A. 0B. 1C. -1D. 2答案:A、B、C7. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2答案:A8. 一个数的倒数是它自己,这个数是:A. 0B. 1C. -1D. 2答案:B9. 以下哪个数是质数?A. 2B. 4C. 6D. 8答案:A10. 以下哪个数是合数?A. 2B. 3C. 4D. 5答案:C二、填空题(每题2分,共20分)1. 一个数的绝对值是它自己,这个数是______。

答案:非负数2. 一个数的相反数等于它自己,这个数是______。

答案:03. 一个数的平方等于它自己,这个数是______。

答案:0或14. 一个数的立方等于它自己,这个数是______。

答案:-1、0或15. 一个数的倒数等于它自己,这个数是______。

答案:1或-16. 偶数加偶数的和是______。

答案:偶数7. 奇数加奇数的和是______。

答案:偶数8. 偶数减偶数的差是______。

答案:偶数9. 奇数减奇数的差是______。

答案:偶数10. 奇数乘以奇数的积是______。

答案:奇数三、计算题(每题5分,共30分)1. 计算下列表达式的值:(-3) × (-2) + 4 × 5答案:14 + 20 = 342. 计算下列表达式的值:(-1)² - 2 × 3 + 4答案:1 - 6 + 4 = -13. 计算下列表达式的值:(-2)³ + 3 × (-1) - 5答案:-8 - 3 - 5 = -164. 计算下列表达式的值:(-3) × 2 - 4 × 1 + 5答案:-6 - 4 + 5 = -55. 计算下列表达式的值:(-1) × 3 + 2 × 4 - 5答案:-3 + 8 - 5 = 06. 计算下列表达式的值:(-2) × (-3) + (-1) × 4 - 6答案:6 - 4 - 6 = -4四、解答题(每题10分,共30分)1. 一个数的相反数是-7,求这个数。

七年级上册数学期末测试卷(含答案)

七年级上册数学期末测试卷(含答案)

七年级上册数学期末测试卷(含答案)数学试卷(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。

1.下列四个数中,属于负数的是()A.﹣3B.3C.πD.0【答案】A【解答】解:A.﹣3是负数,故本选项符合题意;B.3是正数,故本选项不符合题意;C.π是正数,故本选项不符合题意;D.0既不是正数,也不是负数,故本选项不符合题意;故选:A.2.在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A.3.下面四个立体图形的展开图中,是圆锥展开图的是()A.B.C.D.【答案】B【解答】解:A.这个立体图形是长方体,故本选项不符合题意;B.圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥,故本选项符合题意;C.这个立体图形是三棱柱,故本选项不符合题意;D.这个立体图形是圆柱,故本选项不符合题意;试题第1页(共22页)试题第2页(共22页)试题第3页(共22页)试题第4页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封故选:B.4.近似数2.01精确到()A.百位B.个位C.十分位D.百分位【答案】D【解答】解:近似数2.01精确到百分位.故选:D.5.木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是()A.两点之间,线段最短B.线动成面C.经过一点,可以作无数条直线D.两点确定一条直线【答案】D【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:D.6.若单项式﹣x m y n与2x3y4是同类项,则m,n分别是()A.m=3,n=4B.m=4,n=3C.m=﹣3,n=﹣4D.m=﹣4,n=﹣3【答案】A【解答】解:∵单项式﹣x m y n与2x3y4是同类项,∴m=3,n=4,故选:A.7.根据等式的性质,下列变形错误的是()A.如果x=y,那么x+5=y+5B.如果x=y,那么﹣3x=﹣3yC.如果x=y,那么x﹣2=y+2D.如果x=y,那么+1=+1【答案】C【解答】解:A.如果x=y,那么x+5=y +5,故本选项不符合题意;B.如果x=y,那么﹣3x=﹣3y,故本选项不符合题意;C.如果x=y,那么x﹣2=y﹣2,故本选项符合题意;D.如果x=y,那么+1=+1,故本选项不符合题意;故选:C.8.有理数a、b在数轴上的对应点的位置如图所示:则下面结论正确的是()A.a+b>0B.a+b<0C.ab>0D.a+b=0【答案】D【解答】解:∵由图可知a、b两点到原点的距离相同,∴a+b=0,ab<0.故选:D.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【答案】C【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.10.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.28B.54C.65D.75【答案】B【解答】解:设三个数中最小的数为x,则另外两数分别为x+7,x+14,∴三个数的和为x+(x+7)+(x+14)=3x+21,依题意得:3x+21=28,解得x=,不是整数,故A不符合题意,3x+21=54,解得x=11,由月历表可知此时框出的三个数是11,18,25,故B符合题意,3x+21=65,解得x=,不是整数,故C不符合题意,3x+21=75,解得x=18,由月历表可知此时不能框出符合题意的三个数,故D不符合题意,故选:B.11.已知线段AB,延长AB至C,使BC=2AB,D是线段AC上一点,且BD=AB,则的值是()A.6B.4C.6或4D.6或2【答案】D试题第5页(共22页)试题第6页(共22页)试题第7页(共22页)试题第8页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封【解答】解:如图,当点D在线段AB时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD=AB,∴AD=AB,∴==6,当点D在线段BC上时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD′=AB,∴AD′=AB,∴==2,综上所述,的值是6或2,故选:D.12.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D .1:4【答案】D【解答】解:∵OM是∠AOB 平分线,OQ 是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.二、填空题(本题共6题,每小题3分,共18分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.(本题8分)两种移动电话记费方式表
(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(5分)
(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)
解:
23.(本题10分)关于x的方程 与 的解互为相反数.
(1)求m的值;(6分)
(2)求这两个方程的解.(4分)
解:解:
19.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):
星期







增减/辆
-1
+3
-2
+4
+7
-5
-10
(1)生产量最多的一天比生产量最少的一天多生产多少辆?(3分)
(2)本周总的生产量是多少辆?(3分)
解:
20.(本题7分)统计数据显示,在我国的 座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的 倍.求严重缺水城市有多少座?
解:
21.(本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.
(A)a+(b+c-d)=a+b+c-d(B)a-(b-c+d)=a-b+c-d
(C)a-b-(c-d)=a-b-c-d(D)a+b-(-c-d)=a+b+c+d
8.如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是().
(A)b-a>0(B)a-b>0(C)ab>0(D)a+b>0
(A)2(B)4(C)-8(D)8
二、填空题(本大题共4小题,每小题3分,共12分,请将你的答案写在“_______”处)
13.写出一个比 小的整数:.
14.已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高____________m.
15.十一国庆节期间,吴家山某眼镜店开展优
9.按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( ).
(A)1022.01(精确到0.01)(B)1.0×103(保留2个有效数字)
(C)1020(精确到十位)(D)1022.010(精确到千分位)
10.“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为( ).
(1)等比数列5、-15、45、…的第4项是_________.(2分)
(2)如果一列数 是等比数列,且公比为 .那么有: , ,
则: =.(用 与 的式子表示)(2分)
(3)一个等比数列的第2项是10,第4项是40,求它的公比.(5分)
解:
全球通
神州行
月租费
50元/分

本地通话费
0.40元/分
0.60元/分
惠学生配镜的活动,某款式眼镜的广告如图,请你
为广告牌补上原价.
16.小方利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入

1
2

4
5

输出


那么,当输入数据为8时,输出的数据为.
三、解答题(本大题共9小题,共72分)
17.(本题10分)计算(1) (2)
解:解:
18.(本题10分)解方程(1) (2)
解:
2006-2007学年度上学期
七年级数学期中考试参考答案与评分标准
一、选择题
1.A2.C3.D4.B5.C6.B7.C8.A9.A10.B11.B 12.D
二、填空题
13.-1等14.35015.20016.
三、解答题
17.(1)解:
=-48+8-36………………………………3分
=-76………………………………5分
解:
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?(4分)
初一数学上册考试及答案
———————————————————————————————— 作者:
———————————————————————————————— 日期:
初一数学试卷
一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 的绝对值是().
4.有理数 , , , ,-(-1), 中,其中等于1的个数是( ).
(A)3个(B)4个(C)5个(D)6个
5.已知p与q互为相反数,且p≠0,那么下列关系式正确的是().
(A) (B) (C) (D)
6.方程5-3x=8的解是( ).
(A)x=1(B)x=-1(C)x= (D)x=-
7.下列变形中,不正确的是( ).
解:
24.(本题12分)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).
(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒Fra bibliotek的位置;(4分)
解:
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(4分)
(A) (B) (C)2(D)-2
2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( ).
(A)1.68×104m(B)16.8×103m(C)0.168×104m(D)1.68×103m
3.如果收入15元记作+15元,那么支出20元记作()元.
(A)+5 (B)+20 (C)-5 (D)-20
(A)x=-x+4(B)x=-x+(-4)(C)x=-x-(-4)(D)x-(-x)=4
11.下列等式变形:①若 ,则 ;②若 ,则 ;③若 ,则 ;④若 ,则 .其中一定正确的个数是( ).
(A)1个(B)2个(C)3个(D)4个
12.已知 、 互为相反数, 、 互为倒数, 等于-4的2次方,则式子 的值为( ).
相关文档
最新文档