济南市高一下学期期末数学试卷(理科)B卷
2023-2024学年山东省济南市高一下学期7月期末学习质量检测数学试题
2023-2024学年山东省济南市高一下学期7月期末学习质量检测数学试题1.已知为虚数单位,则复数的虚部是()A.B.C.D.2.从装有两个白球和两个黄球的口袋中任取两个球,下列各组事件中,是互斥事件的是()A.“至少一个白球”与“至少一个黄球”B.“恰有一个白球”与“恰有两个白球”C.“至多一个白球”与“至多一个黄球”D.“至少一个黄球”与“都是黄球”3.在中,记,,若,则()A.B.C.D.4.若正三棱台上底面边长为,下底面边长为,高为,则该棱台的体积为()A.B.2C.D.5.如图,已知某频率分布直方图形成“右拖尾”形态,则下列结论正确的是()A.众数平均数中位数B.众数中位数平均数C.众数平均数中位数D.中位数平均数众数6.已知两条不同的直线,和两个不同的平面,,则下列结论正确的是()A.若,,则B.若,,则C.若,,,,则D.若,,,则与平行或异面7.某地区公共卫生部门为了了解本地区中学生的吸烟情况,对随机抽出的200名学生进行调查.为了得到该敏感性问题的诚实反应,设计如下方案:每个被调查者先后抛掷两颗骰子,调查中使用两个问题:①第一颗骰子的点数是否比第二颗的大?②你是否经常吸烟?两颗骰子点数和为奇数的学生如实回答第一个问题,两颗骰子点数和为偶数的学生如实回答第二个问题.回答“是”的学生往盒子中放一个小石子,回答“否”的学生什么都不用做.若最终盒子中小石子的个数为57,则该地区中学生吸烟人数的比例约为()A.0.035B.0.07C.0.105D.0.148.如图,设,是平面内夹角为的两条数轴,,分别是与轴、轴正方向同向的单位向量.若向量,则有序数对叫做点在坐标系中的坐标.在该坐标系下,,,为不共线的三点,下列结论错误..的是()A .线段中点的坐标为B .重心的坐标为C .,两点的距离为D .若,则,,三点共线9.已知为虚数单位,复数,,则下列结论正确的是()A .所对应的点在第一象限B .所对应的点在第二象限C .D .10.已知有限集为随机试验的样本空间,事件,为的子集,则事件,相互独立的充分条件可以是()A .B .C .D .11.如图所示,三棱锥中,,其余棱长均为.为棱的中点,将三棱锥绕旋转,使得点,分别到达点,,且.下列结论正确的是()A .平面B .C .直线与所成的角为D .点,,,,,在同一个直径为的球面上12.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.7,现两人各自独立射击一次,则至少一人中靶的概率为______.13.已知,,分别为内角,,的对边,且,,则使得有两组解的的值可以是_____________(写出满足条件的一个值即可).14.在平行六面体中,底面是边长为2的菱形,,,且平面,均与底面垂直.点在侧面上运动,若,则点的轨迹长为_____________.15.某学校组织“泉城知识答题竞赛”,满分100分,共有100人参赛,其成绩均落在区间内,将成绩数据分成,,,,5组,制成如图所示的频率分布直方图.(1)求的值并估计参赛学生成绩的分位数;(2)从成绩低于70分的学生中,用按比例分配的分层抽样抽取6人.从这6人中任选2人,求此2人分数都在的概率.16.已知内角,,的对边分别为,,,且满足.(1)求;(2)若,,求的周长.17.如图1,在菱形中,是边长为2的等边三角形,将沿对角线翻折至的位置,得到图2所示的三棱锥.(1)证明:;(2)若二面角的平面角为,求直线与平面所成角的正弦值.18.如图,内角,,的对边分别为,,,为边上一点,且,.(1)已知.(ⅰ)求的值;(ⅱ)若,求的面积;(2)求的最小值.19.给定三棱锥,设的四个顶点到平面的距离所构成的集合为,若中元素的个数为,则称为的阶等距平面,称为的阶等距集.(1)若为三棱锥,满足,,求出的1阶等距平面截该三棱锥所得到的截面面积(求出其中的一个即可);(2)如图所示,是棱长为的正四面体.(ⅰ)若为的1阶等距平面且1阶等距集为,求的所有可能取值以及相对应的的个数;(ⅱ)已知是的4阶等距平面,点与点,,分别位于两侧.是否存在,使的4阶等距集为,其中点到的距离为?若存在,求出截所得的平面多边形的最大边长;若不存在,说明理由.。
山东省济南市实验中学高一数学理下学期期末试题含解析
山东省济南市实验中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,其中,且,则向量和的夹角是()A. B. C. D.参考答案:B试题分析:由题意知,所以,设与的夹角为,则,,故选B.考点:1、向量的概念;2、向量的数量积.2. 的值为A.B.C.D.参考答案:D3. 若函数(且)经过点,则(A)(B)(C)(D)参考答案:C4. 定义算式?:x?y=x(1﹣y),若不等式(x﹣a)?(x+a)<1对任意x都成立,则实数a的取值范围是()A.﹣1<a<1 B.0<a<2 C.D.参考答案:D【考点】3W:二次函数的性质.【分析】由已知中算式?:x?y=x(1﹣y),我们可得不等式(x﹣a)?(x+a)<1对任意x都成立,转化为一个关于x的二次不等式恒成立,进而根据二次不等式恒成立的充要条件,构造一个关于a的不等式,解不等式求出实数a的取值范围.【解答】解:∵x?y=x(1﹣y),∴若不等式(x﹣a)?(x+a)<1对任意x都成立,则(x﹣a)?(1﹣x﹣a)﹣1<0恒成立即﹣x2+x+a2﹣a﹣1<0恒成立则△=1+4(a2﹣a﹣1)=4a2﹣4a﹣3<0恒成立解得故选D5. 某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量与当天平均气温,并制作了对照表:由表中数据得到线性回归方程=﹣2x+a ,当气温为﹣4℃时,预测用电量均为()A .68度B.52度C.12度D.28度参考答案:A【考点】线性回归方程.【分析】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,可得线性回归方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.【解答】解:由表格得==10,=40.∴(,)为:(10,40),又(,)在回归方程=bx+a中的b=﹣2,∴40=10×(﹣2)+a,解得:a=60,∴=﹣2x+60,当x=﹣4时, =﹣2×(﹣4)+60=68.故选:A.6. 函数y=2sin(x﹣)的一条对称轴是()A.x=B.x=C.x=D.x=2π参考答案:C【考点】H6:正弦函数的对称性.【分析】由题意利用正弦函数的图象的对称性,求出函数y=2sin(x﹣)的一条对称轴.【解答】解:对于函数y=2sin(x﹣),令x﹣=kπ+,求得x=kπ+,k∈Z,可得它的图象的对称轴为x=kπ+,k∈Z,令k=0,可得它的一条对称轴是x=,故选:C.7. 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有( ).A.a>b>c B.b>c>a C.c>a>b D.c>b>a参考答案:D试题分析::∵生产的件数是15,17,14,10,15,17,17,16,14,12总和为147,∴平均数a==14.7,样本数据17出现次数最多,为众数,即c=17;从小到大排列中间二位的平均数,即中位数b=15.∵17>15>14.7,∴c>b>a考点:众数、中位数、平均数8. 若点在函数的图象上,则函数的值域为A. B. C. D.参考答案:D略9. 如果函数f(x)=x2+bx+c对任意实数均有f(﹣x)=f(x),那么()A.f(﹣2)<f(1)<f(3)B.f(3)<f(﹣2)<f(1)C.f(﹣2)<f(3)<f (1)D.f(1)<f(﹣2)<f(3)参考答案:D【考点】二次函数的性质.【分析】由条件可知f(x)为偶函数,b=0,从而得到当x>0时,f(x)是单调递增,则f(﹣2)=f(2),由单调性,即可判断大小.【解答】解:∵函数f(x)=x2+bx+c对任意实数均有f(﹣x)=f(x),∴f(x)为偶函数,b=0,∴f(﹣2)=f(2),当x>0时,f(x)是单调递增,∵1<2<3,∴f(1)<f(2)<f(3),即f(1)<f(﹣2)<f(3),故选D.10. 抛掷一枚骰子,记事件A为“落地时向上的数是奇数”,记事件B为“落地时向上的数是偶数”,事件C为“落地时向上的数是2的倍数”,事件D为“落地时向上的数是2或4”,则下列每对事件是互斥事件但不是对立事件的是()A.A与D B.A与B C.B与C D.B与D参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 某程序框图如图所示,若输出的,则自然数___▲.参考答案: 4由题意,可列表如下:S 0 1 3 6 10 … k 12345…由上表数据知,时,循环结束,所以的值为.12. 将函数的图像上所有点的横坐标都缩小到原来的,再向右平移个单位,所得图像的解析式为,则函数的解析式为=。
2024届山东省济南市部分区县高一数学第二学期期末考试模拟试题含解析
2024届山东省济南市部分区县高一数学第二学期期末考试模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知0a b >>,且a ,b ,2-这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则a b +=( ) A .7 B .6C .5D .92.把直线y x =绕原点逆时针转动,使它与圆22230x y y ++-+=相切,则直线转动的最小正角度(). A .3πB .2π C .23π D .56π 3.若直线()y c c R =∈与函数tan (0)y x ωω=≠的图象相邻的两个交点之间的距离为1,则函数tan y x ω=图象的对称中心为( )A .,0,2k k Z ⎛⎫∈ ⎪⎝⎭B .(,0),k k Z ∈C .,0,2k k Z π⎛⎫∈⎪⎝⎭D .(,0),k k Z π∈ 4.圆()()22215x y -++=关于原点对称的圆的方程为( ) A .()()22215x y -+-= B .()()22125x y ++-= C .()()22125x y -++=D .()()22215x y ++-=5.在直三棱柱(侧棱垂直于底面)111ABC A B C -中,若2AB BC ==,13AA =,90ABC ∠=︒,则其外接球的表面积为( )A .17πB .43π C .173πD 6.关于x 的方程sin 26x m π⎛⎫+= ⎪⎝⎭在[0,]π内有相异两实根,则实数m 的取值范围为( )A .31,42⎡⎤⎢⎥⎣⎦ B .31,42⎡⎫⎪⎢⎪⎣⎭C .11,42⎡⎫⎪⎢⎣⎭D .11,42⎡⎤⎢⎥⎣⎦7.设偶函数()f x 定义在0022ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,, 上,其导数为()f x ',当02x π<< 时,()cos ()sin 0f x x f x x '+< ,则不等式()2cos 3f x f x π⎛⎫> ⎪⎝⎭的解集为( )A .0233πππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭,,B .0332πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,, C .0033,,ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .2332ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭,,8.已知数列{}n a 满足:()*122,n n a a n n n N-=+≥∈,17a=-,则该数列中满足311n a ≤≤的项共有( )项A .0B .1C .2D .59.已知某几何体的三视图如图所示,则该几何体的表面积为( )A .23B .46+C .43+D .23+10.执行如图所示的程序框图,则输出的k 的值为( )A .3B .4C .5D .6二、填空题:本大题共6小题,每小题5分,共30分。
山东省济南市数学高一下学期理数期末考试试卷
17. (10分) (2018高二下·临汾期末) 如图,在四棱锥 中, 底面 , , , ,点 为棱 的中点,
(1) 证明: ;
(2) 若点 为棱 上一点,且 ,求二面角 的余弦值.
18. (5分) 在△ABC中,A,B,C的对边分别是a,b,c,C=60°,3sinA=sinB.
(i)用所给编号列出所有可能的结果;
(ii)设A为事件“编号为 的两名运动员至少有一人被抽到”,求事件A发生的概率.
20. (5分) (2017·北京) 已知函数f(x)= cos(2x﹣ )﹣2sinxcosx.(13分)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求证:当x∈[﹣ , ]时,f(x)≥﹣ .
A .
B .
C .
D .
7. (2分) 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )
A . 锐角三角形
B . 直角三角形
C . 钝角三角形
D . 由增加的长度决定
8. (2分) (2016高一下·大同期中) 已知 与 为互相垂直的单位向量, , 且 与 的夹角为锐角,则实数λ的取值范围是( )
(1)若△ABC的面积为3 , 求b的值;
(2)求cosB的值.
19. (5分) (2018高一下·定远期末) 设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.
(I)求应从这三个协会中分别抽取的运动员人数;
(II)将抽取的6名运动员进行编号,编号分别为 ,从这6名运动员中随机抽取2名参加双打比赛.
14. (1分) 已知点A(﹣1,﹣6),B(2,﹣2),则向量 的模| |=________
2022-2023学年山东省济南市高一(下)期末数学试卷【答案版】
2022-2023学年山东省济南市高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =11+2i对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客( ) A .1000人B .300人C .200人D .100人3.设α,β为两个平面,则α⊥β的充要条件是( ) A .α过β的一条垂线B .α,β垂直于同一平面C .α内有一条直线垂直于α与β的交线D .α内有两条相交直线分别与β内两条直线垂直 4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .355.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( )A .π3B .2π3C .π3或2π3D .无解6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心B .重心C .内心D .外心7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=010.先后抛掷质地均匀的硬币两次,则下列说法正确的是( ) A .事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B .事件“至少一次正面向上”与事件“至少一次反面向上”互斥C .事件“两次正面向上”与事件“两次反面向上”互为对立事件D .事件“第一次正面向上”与事件“第二次反面向上”相互独立11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是( )A .平均数的估计值为30B .众数的估计值为35C .第60百分位数估计值是32D .随机选取这100名学生中有25名学生体育活动时间不低于40分钟12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 .14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 . 15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 .16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i ,y i 分别为甲,乙小区抽取的第i 户家庭近7天用于垃圾分类的总时间,s x 2,s y 2分别为甲,乙小区所抽取样本的方差,已知x =18∑ 8i=1x i =200,s x 2=18∑ 8i=1(x i −x)2=200,y =195,s y 2=210,其中i =1,2,⋯,8.(1)若a ≤b ,求a 和b 的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z 和方差s z 2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x 1,s 12;n ,x 2,s 22,总的样本平均数为ω,样本方差为s 2,则s 2=m m+n [s 12+(x 1−ω)2]+n m+n[s 22+(x 2−ω)2].21.(12分)如图1,在等腰△ABC 中,AC =4,A =π2,O ,D 分别为BC 、AB 的中点,过D 作DE ⊥BC 于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH)=32,点B为线段AD的中点,AC=√3OB=3,sin∠ACOsin∠AOB=32,求cos A.2022-2023学年山东省济南市高一(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z=11+2i对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:z=11+2i=1−2i(1+2i)(1−2i)=15−25i,它在复平面内对应点为(15,−25),在第四象限.故选:D.2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客()A.1000人B.300人C.200人D.100人解:依题意济南天下第一泉风景区应抽取游客1500×100100+30+20=1000(人).故选:A.3.设α,β为两个平面,则α⊥β的充要条件是()A.α过β的一条垂线B.α,β垂直于同一平面C.α内有一条直线垂直于α与β的交线D.α内有两条相交直线分别与β内两条直线垂直解:由α⊥β可得α经过β的一条垂线,反之若α经过β的一条垂线,由面面垂直的判定定理可得α⊥β,故A正确;α,β垂直于同一个平面,可得α,β平行或相交,故B错误;α内有一条直线垂直于α与β的交线,可得α,β不一定垂直,故C 错误; α内有两条相交直线分别与β内两条直线垂直,可得α,β平行或相交,故D 错误. 故选:A .4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .35解:袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球, 从中不放回地依次随机摸出2个球, 第二次摸到红球的情况有两种:①第一次摸到红球,第二次摸到红球,概率为:P 1=35×24=310, ②第一次摸到黄球,第二次摸到红球,概率为:P 2=25×34=310, 则第二次摸到红球的概率为P =P 1+P 2=310+310=35. 故选:D .5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( ) A .π3B .2π3C .π3或2π3D .无解解:∵B =π4,b =1,c =√62,由正弦定理有:bsinB=c sinC,∴sinC =csinB b =√62×√221=√32,∵c >b ,∴C >B ,∴C ∈(π4,π),∴C =π3或2π3.故选:C .6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心 B .重心C .内心D .外心解:如图所示:因为SO ⊥平面ABC ,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等, 则∠SAO =∠SBO =∠SCO ,AO =SO tan∠SAO ,BO =SO tan∠SBO ,CO =SOtan∠SCO,故AO =BO =CO ,故O 是△ABC 的外心. 故选:D .7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)解:∵B =π3,c =2, ∴由正弦定理得asinA=b sinπ3=2sinC,∴b =√3sinC ,a =2sinA sinC =2sin(π3+C)sinC =√3cosC+sinCsinC, ∴a +b =√3sinC+√3cosC+sinCsinC=√3(cosC+1)sinC+1=2√3cos 2C 22sin C 2cos C 2+1=√3tan C 2+1,在锐角△ABC 中,{0<C <π20<2π3−C <π2,解得π6<C <π2, ∴π12<C 2<π4,即tanπ12<tan C2<1,又tan π6=2tanπ121−tan 2π12=√33,解得tan π12=2−√3或tan π12=−2−√3(不合题意,舍去), ∴2−√3<tan C2<1,∴1<1tan C 212−3=2+√3,∴√3+1<√3tan C 2+1<4+2√3,即√3+1<a +b <4+2√3,∴√3+3<a +b +c <6+2√3,故△ABC 的周长的取值范围为(√3+3,6+2√3). 故选:C .8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1解:由题意得QE ,QF ,QG 均最小时,平方和最小,过点Q 分别作平面P AB ,平面P AD ,平面ABCD 的垂线,垂足分别为E ,F ,G , 连接AQ ,因为P A ⊥面ABCD ,BC ⊂平面ABCD ,所以P A ⊥BC ,因为底面ABCD 为正方形,所以AB ⊥BC ,又因为P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥面P AB ,因为QE ⊥平面P AB ,则QE ∥BC ,又因为点Q 在PC 上,则点E 应在PB 上, 同理可证F ,G 分别位于PD ,AC 上, 从而补出长方体EQFJ ﹣HGIA ,则AQ 是以QE ,QF ,QG 为共点的长方体的对角线,则AQ ²=QE ²+QF ²+QG ², 则题目转化为求AQ 的最小值,显然当AQ ⊥PC 时,AQ 的最小值, 因为四边形ABCD 为正方形,且P A =AB =1,则AC =√2, 因为P A ⊥面ABCD ,AC ⊂面ABCD ,所以P A ⊥AC , 所以PC =√PA 2+AC 2=√3, 则直角三角形P AC 斜边AC 的高AQ =1×√2√3=√63,此时AQ 2=23, 则QE ²+QF ²+QG ²的最小值为23,故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=0解:ω=−12+√32i ,则ω2=(−12+√32i)=−12−√32i ,ω2≠ω,故C 错误; |ω|=√(−12)2+(√32)2=1,故A 正确;ω3=ω2•ω=(−12−√32i)(−12+√32i)=1,故B 错误; ω2+ω+1=−12−√32i −12+√32i +1=0,故D 正确.故选:AD.10.先后抛掷质地均匀的硬币两次,则下列说法正确的是()A.事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B.事件“至少一次正面向上”与事件“至少一次反面向上”互斥C.事件“两次正面向上”与事件“两次反面向上”互为对立事件D.事件“第一次正面向上”与事件“第二次反面向上”相互独立解:根据题意,依次分析选项:对于A,事件“恰有一次正面向上”即“一次正面向上、一次反面向上”,同样,事件“恰有一次反面向上”也是“一次正面向上、一次反面向上”,两个事件相等,A正确;对于B,事件“至少一次正面向上”,即“一次正面向上、一次反面向上”和“两次都是正面向上”,事件“至少一次反面向上”,即“一次正面向上、一次反面向上”和“两次都是反面向上”,两个事件不互斥,B错误;对于C,事件“两次正面向上”与事件“两次反面向上”不是对立事件,还有一种情况“一次正面向上、一次反面向上”,C错误;对于D,由相互独立事件的定义,事件“第一次正面向上”与事件“第二次反面向上”相互独立,D正确.故选:AD.11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是()A.平均数的估计值为30B.众数的估计值为35C.第60百分位数估计值是32D.随机选取这100名学生中有25名学生体育活动时间不低于40分钟解:对于A,由频率分布直方图可知平均数的估计值为:5×0.1+15×0.18+25×0.22+35×0.25+45×0.2+55×0.05=29.2,故A 错误;对于B ,由频率分布直方图可知[30,40)的频率最大,因此众数的估计值为35,故B 正确; 对于C ,由频率分布直方图得从第一组到第六组的频率依次是0.1,0.18,0.22,0.25,0.2,0.05, 所以第60百分位数估计值m 在[30,40)内,所以0.1+0.18+0.22+(m ﹣30)×0.025=0.6,解得m =34,故C 错误;对于D ,随机选取这100名学生中体育活动时间不低于40分钟的人数为100×(0.2+0.05)=25,故D 正确. 故选:BD .12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32解:对于A 选项,在△BCD 中,BC =AB =2,CD =√6,cos∠CBD =14, 由余弦定理可得CD 2=BC 2+BD 2﹣2BC •BD cos ∠CBD , 即4+BD 2−4BD ×14=6,即BD 2﹣BD ﹣2=0,因为BD >0,解得BD =2, 取AB 的中点E ,连接CE 、DE ,如下图所示:因为△ABC 为等边三角形,E 为AB 的中点,所以,CE ⊥AB ,又因为CD ⊥AB ,CD ∩CE =C ,CD ,CE ⊂平面CDE ,所以,AB ⊥平面CDE , 因为DE ⊂平面CDE ,所以,DE ⊥AB , 所以,二面角D ﹣AB ﹣C 的平面角为∠CED ,因为E 为AB 的中点,所以,AD =BD =2,故△ABD 也是边长为2的等边三角形, 所以DE =√AD 2−AE 2=√4−1=√3,CE =√AC 2−AE 2=√4−1=√3, 又因为CD =√6,所以,CE 2+DE 2=CD 2,则CE ⊥DE , 故二面角D ﹣AB ﹣C 为π2,A 对;对于B 选项,设△ABC 、△ABD 的中心分别为点G 、H ,分别过点G 、H 作GO ∥DE 、HO ∥CE ,设GO ∩HO =O , 因为CE ⊥DE ,CE ⊥AB ,AB ∩DE =E ,AB 、DE ⊂平面ABD ,所以,CE ⊥平面ABD ,因为HO ∥CE ,则OH ⊥平面ABD ,同理,OG ⊥平面ABC , 所以,O 为三棱锥D ﹣ABC 的外接球球心, 由等边三角形的几何性质可知,HE =13DE =√33,同理,GE =13CE =√33,因为OH ∥GE ,OG ∥EH ,HE =GE =√33,GE ⊥HE , 所以,四边形OHEG 为正方形,且OH =GE =√33, 又因为DH =DE −HE =√3−√33=2√33, 因为CE ⊥DE ,OH ∥CE ,则OH ⊥DE ,则OD =√OH 2+DH 2=√(33)2+(233)2=√153, 所以,三棱锥D ﹣ABC 的外接球半径为√153,因此,三棱锥D ﹣ABC 的外接球的表面积为4π⋅OD 2=4π×(√153)2=20π3,B 对; 对于C 选项,设点D 在平面α内的射影点为N ,连接MN ,因为CM ⊥a ,DN ⊥a ,则CM ∥DN ,故点C 、D 、N 、M 四点共面, 因为AB ⊂α,则AB ⊥CM ,又因为CD ⊥AB ,CD ∩CM =C ,CD 、CM ⊂平面CDNM ,则AB ⊥平面CDNM , 又因为AB ⊥平面CDE ,故平面CDE 与平面CDNM 重合, 又因为E ∈α,M ,N ∈α,故E ∈MN , 设∠CEM =θ,其中0≤θ≤π2,又因为∠CED =π2,则∠DEN =π−∠CED −∠CEM =π−π2−θ=π2−θ, 所以,CM =CEsin ∠CEM =√3sinθ,DN =DEsin ∠DEN =√3sin(π2−θ)=√3cosθ,所以,点C 与点D 到平面α的距离之和CM +DN =√3sinθ+√3cosθ=√6sin(θ+π4), 因为0≤θ≤π2,则π4≤θ+π4≤3π4,故当θ+π4=π2时,即当θ=π4时,CM +DN 取最大值√6,C 错; 对于D 选项,ME =CEcosθ=√3cosθ,∠DEM =∠CED +∠CEM =π2+θ, 由余弦定理可得DM =√DE 2+EM 2−2DE ⋅EMcos(π2+θ) =√3+3cos 2θ+2√3⋅√3cosθsinθ=√3+3×1+cos2θ2+3sin2θ =√3sin2θ+3cos2θ2+92=√352sin(2θ+φ)+92, 其中φ为锐角,且tanφ=12,因为0≤θ≤π2,则φ≤2θ+φ≤π+φ,故当2θ+φ=π2时,DM 取得最大值, 且(DM)max =√9+352=√18+654=√15+√32,D 对. 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 5 .解:5×75%=3.75,故一组数据1,2,4,5,8的第75百分位数为5. 故答案为:5.14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 12.解:如图,连接A 1C 1,A 1B ,在正方体ABCD ﹣A 1B 1C 1D 1中,有A 1D 1∥B 1C 1∥BC ,A 1D 1=B 1C 1=BC , 所以四边形A 1D 1CB 为平行四边形,所以A 1B ∥CD 1, 所以∠A 1BC 1为直线BC 1与直线CD 1夹角或其补角, 设正方体ABCD ﹣A 1B 1C 1D 1棱长为a , 则A 1B =BC 1=A 1C 1=√2a , 所以△A 1BC 1为等边三角形, 所以∠A 1BC 1=π3,故直线BC 1与直线CD 1夹角的余弦值为cos ∠A 1BC 1=cos π3=12. 故答案为:12.15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 2 . 解:∵在圆C 中,已知一条弦AB =2,∴根据圆的几何性质得出:|AC |cos ∠CAB =12|AB |=12×2=1, ∵AB →•AC →=|AB →•|AC →|cos ∠CAB =2×1=2. 故答案为:2.16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为4√213.解:由题意c =2b ,S △ABC =12bc sin A =1,即b 2sin A =1;连接AG 并延长交BC 于D ,则D 为BC 的中点,可得AD →=12(AB →+AC →),又因为G 为三角形的重心,则AG →=23AD →,可得AG →=13(AB →+AC →),BC →=AC →−AB →,所以AG 2=AG →2=19(AB →2+AC →2+2AB →•AC →)=19(c 2+b 2+2bc cos A )=19(5b 2+4b 2cos A ), BC 2=BC →2=AC →2+AB →2﹣2AB →•AC →=b 2+c 2﹣2bc cos A =5b 2﹣4b 2cos A ,所以3AG 2+BC 2=53b 2+4b 23cos A +5b 2﹣4b 2cos A =203b 2−83b 2cos A =203sinA −8cosA 3sinA,令t =203sinA −8cosA 3sinA>0,则3t sin A +8cos A =20, 即sin (A +φ)=20√9t +64≤1,当且仅当A +φ=π2时取等号,tan φ=82t ,可得9t 2+64≥400,解得t ≥4√213或t ≤−4√213(舍), 即t 的最小值为:4√213.故答案为:4√213. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.解:(1)∵|e 1→|=|e 2→|=1,<e 1→,e 2→>=π3, ∴e 1→⋅e 2→=12,∴|a →|=√e 1→2+4e 2→2+4e 1→⋅e 2→=√1+4+2=√7; (2)∵a →⊥b →,∴a →⋅b →=(e 1→+2e 2→)⋅(te 1→−3e 2→)=te 1→2−6e 2→2+(2t −3)e 1→⋅e 2→=t −6+12(2t −3)=0,解得t =154. 18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .证明:(1)连接A 1B 交AB 1于点N ,连接MN ,则正三棱柱中A 1B 1BA 是平行四边形, 所以N 为A 1B 的中点,又M 为A 1C 1的中点,所以MN ∥BC 1,BC 1⊄平面AB 1M ,MN ⊂平面AB 1M ,所以BC 1∥平面AB 1M . 解:(2)过M 作MH ⊥A 1B 1,垂足为H ,由题意可得B 1M =√3,AM =√5,AB 1=2√2,所以B 1M 2+AM 2=AB 12,所以B 1M ⊥AM ,所以△AB 1M 的面积S △AB 1M =12×√3×√5=√152, 因为正三棱柱中平面A 1B 1C 1⊥平面A 1B 1BA ,又平面A 1B 1C 1∩平面A 1B 1BA =A 1B 1,MH ⊂平面A 1B 1C 1,且MH ⊥A 1B 1, 所以MH ⊥平面A 1B 1BA ,即M 到平面A 1B 1BA 的距离为MH =MA 1sin π3=√32,又△ABB 1的面积S △ABB 1=12AB ⋅BB 1=2, 所以V M−ABB 1=13MH ⋅S △ABB 1=13×√32×2=√33,又V M−ABB 1=V B−MAB 1, 所以13S △AB 1M ⋅d =√33,解得d =2√55, 所以点B 到平面AB 1M 的距离为2√55. 19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.解:(1)证明:事件A 与事件B 相互独立,则P (AB )=P (A )P (B ), 又由B =A B +AB ,事件A B 和AB 互斥,则有P (B )=P (A B +AB )=P (AB )+P (A B )=P (A )P (B )+P (A B ),变形可得:P (A B )=P (B )﹣P (A )P (B )=[1﹣P (A )]P (B )=P (A )P (B ), 故事件A 与B 相互独立;(2)根据题意,设事件A 1、A 2分别表示甲答对1道、2道题目,事件B 1、B 2分别表示乙答对1道、2道题目,则P (A 1)=2×35×(1−35)=1225,P (A 2)=35×35=925, P (B 1)=2×23×(1−23)=49,P (B 2)=23×23=49, 若甲乙两人在两轮活动中答对3道题,即A 2B 1+A 1B 2,则甲乙两人在两轮活动中答对3道题的概率P =P (A 2B 1+A 1B 2)=P (A 2B 1)+P (A 1B 2)=925×49+1225×49=2875. 20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i,y i分别为甲,乙小区抽取的第i户家庭近7天用于垃圾分类的总时间,s x2,s y2分别为甲,乙小区所抽取样本的方差,已知x=18∑8i=1x i=200,s x2=18∑8i=1(x i−x)2=200,y=195,s y2=210,其中i=1,2,⋯,8.(1)若a≤b,求a和b的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z和方差s z2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m,x1,s12;n,x2,s22,总的样本平均数为ω,样本方差为s2,则s2=mm+n [s12+(x1−ω)2]+nm+n[s22+(x2−ω)2].解:(1)已知x=18∑8i=1x i=18(200+220+200+180+200+a+b+220)=200,整理得a+b=380,①又s x2=18∑8i=1(x i−x)2=8[3×(200﹣200)2+2×(220﹣200)2+(180﹣200)2+(a﹣200)2+(b﹣200)2]=200,整理得(a﹣200)2+(b﹣200)2=400,②联立①②,解得a=180,b=200或a=200,b=180,因为a≤b,所以a=180,b=200;(2)设甲小区试行新措施之后,甲小区抽取的第i户家庭近7天用于垃圾分类的总时间为m i,此时m i=x i﹣35,则m i=x−35=165,s m2=s x2=200,所以z=116(8m+8y)=12(165+195)=180,s z2=88+8[s m2+(m−z)2]+88+8[s y2+(y−z)]=12[200+(165﹣180)2]+12[210+(195﹣180)2]=430.21.(12分)如图1,在等腰△ABC中,AC=4,A=π2,O,D分别为BC、AB的中点,过D作DE⊥BC于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.(1)证明:因为DE ⊥BE ,DE ⊥OE ,且BE ∩OE =E ,BE 、OE ⊂平面BCE , 所以DE ⊥平面BCE ,又OA ∥DE ,所以OA ⊥平面BCE ,设点P 是翻折前点B 所在的位置,则D 为AP 的中点, 因为F 为AB 的中点,所以DF ∥PB ,因为PB ⊂平面BCE ,所以OA ⊥PB ,所以OA ⊥DF , 由题意知,DA =DB ,因为F 为AB 的中点,所以DF ⊥AB , 又OA ∩AB =A ,OA 、AB ⊂平面AOB , 所以DF ⊥平面AOB .(2)解:以O 为坐标原点,建立如图所示的空间直角坐标系,则A (0,0,2√2),P (2√2,0,0),C (﹣2√2,0,0),D (√2,0,√2), 由(1)知,DF ⊥平面AOB ,因为DF ∥PB ,所以PB ⊥平面AOB ,所以PB ⊥OB , 又OB =√2=12OP ,所以∠POB =60°,所以B (√22,√62,0),F (√24,√64,√2), 所以BF →=(−√24,−√64,√2),CD →=(3√2,0,√2),CB →=(5√22,√62,0),设平面BCD 的法向量为n →=(x ,y ,z ),则{n →⋅CD →=0n →⋅CB →=0,即{3√2x +√2z =05√22x +√62y =0, 令x =1,则y =53,z =﹣3,所以n →=(1,53,﹣3), 设直线BF 与平面BCD 所成的角为θ,则sin θ=|cos <BF →,n →>|=|BF →⋅n →||BF →|⋅|n →|=|−√24+√64×5√3−3√2|(24)+(64)√1+(5√3)=4√3355,故直线BF 与平面BCD 所成的角的正弦值为4√3355. 22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH )=32,点B 为线段AD 的中点,AC =√3OB =3,sin∠ACOsin∠AOB =32,求cos A .解:(1)证明:在△AOC 、△AOD 、△BOC 、△BOD 中,CA CB =S △AOC S △BOC =12OA⋅OCsin∠AOC 12OB⋅OCsin∠BOC =OAsin∠AOC OBsin∠BOC,DA DB=S △AOD S △BOD=12OA⋅ODsin∠AOD 12OB⋅ODsin∠BOD =OAsin∠AOD OBsin∠BOD,所以(ABCD)=CA CB DA DB=OAsin∠AOC OBsin∠BOC OAsin∠AOD OBsin∠BOD=sin∠AOC⋅sin∠BODsin∠BOC⋅sin∠AOD,又在△EOG 、△EOH 、△FOG 、△FOH 中,GE GF =S △EOG S △FOG =12OE⋅OGsin∠EOG 12OF⋅OGsin∠FOG =OEsin∠EOG OFsin∠FOG,HE HF=S △EOH S △FOH=12OE⋅OHsin∠EOH 12OF⋅OHsin∠FOH =OEsin∠EOH OFsin∠FOH,所以(EFGH)=GE GF HE HF=OEsin∠EOG OFsin∠FOG OEsin∠EOH OFsin∠FOH=sin∠EOG⋅sin∠FOHsin∠FOG⋅sin∠EOH ,又∠EOG =∠AOC ,∠FOH =∠BOD ,∠FOG =∠BOC ,∠EOH =∠AOD , 所以sin∠AOC⋅sin∠BOD sin∠BOC⋅sin∠AOD=sin∠EOG⋅sin∠FOH sin∠FOG⋅sin∠EOH,所以(EFGH )=(ABCD ).(2)由题意可得(EFGH)=32,所以(ABCD)=32,即CACB DA DB=32,所以CA CB ⋅DBDA=32,又点B 为线段AD 的中点,即DB DA=12,所以CACB=3,又AC =3,则AB =2,BC =1, 设OA =x ,OC =y 且OB =√3, 由∠ABO =π﹣∠CBO , 所以cos ∠ABO +cos ∠CBO =0, 即2√3)222×2×√3+2√3)222×1×√3=0,解得x 2+2y 2=15,①在△AOB 中,由正弦定理可得AB sin∠AOB =x sin∠ABO,②在△COB 中,由正弦定理可得OB sin∠BCO=y sin∠CBO,③且sin ∠ABO =sin ∠CBO ,②③得,x y=AB sin∠AOB⋅sin∠BCO OB=32×√3=√3,即x =√3y ,④由①④解得x =3,y =√3(负值舍去), 即AO =3,OC =√3所以cosA =AO 2+AB 2−OB 22AO⋅AB =32+22−(√3)22×3×2=56.。
山东省济南市高一下学期期末数学试卷(理科)
山东省济南市高一下学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高一下·彭水期中) 已知关于的不等式的解集是,则的值是()A . -11B . 11C . -1D . 12. (2分) (2019高二上·南宁月考) 直线(a为常数)的倾斜角为()A .B .C .D .3. (2分)(2018·长沙模拟) 在体积为的球内有一个多面体,该多面体的三视图是如图所示的三个斜边都是的等腰直角三角形,则的最小值是()A .B .C .D .4. (2分) (2017高一下·安平期末) 已知数列{an}是等比数列,a1=1,a4=8,则公比q等于()A . 2B . ﹣2C .D . ﹣5. (2分)已知直线 2x+my﹣1=0与直线 3x﹣2y+n=0垂直,垂足为(2,p),则m+n+p=()A . ﹣6B . 6C . 4D . 106. (2分) (2016高一下·衡水期末) △ABC中,AB=2,AC=3,∠B=60°,则cosC=()A .B .C .D .7. (2分) (2016高二上·湖南期中) 设a、b、c表示三条直线,α、β表示两个平面,则下列命题的逆命题不成立的是()A . c⊥α,若c⊥β,则α∥βB . b⊂β,c是a在β内的射影,若b⊥c,则a⊥bC . b⊂β,若b⊥α则β⊥αD . b⊂α,c⊄α,若c∥α,则b∥c8. (2分)若函数,则不等式的解集为()A .B .C .D .9. (2分)当x,y满足条件时,目标函数z=x+3y的最小值是()A . 0B . 1.5C . 4D . 910. (2分)已知直线l过点(1,2),且在x轴截距是在y轴截距的2倍,则直线l的方程为()A . x+2y-5=0B . x+2y+5=0C . 2x-y=0或x+2y-5=0D . 2x-y=0或x-2y+3=011. (2分)(2017·枣庄模拟) 某四棱台的三视图如图所示,则该四棱台的体积是()A . 7B . 6C . 5D . 412. (2分)的内角A,B,C的对边分别为a,b,c.若a,b,c成等比数列,且c=2a,则=()A .B .C .D .二、填空题 (共4题;共5分)13. (1分)(2018·银川模拟) 等差数列中,,则该数列的前项的和________.14. (1分)若圆锥的侧面积与过轴的截面面积之比为2,则其母线与轴的夹角的大小为________ .15. (2分)已知直线,且l1⊥l2 ,则l1的倾斜角为________,原点到l2的距离为________.16. (1分) (2016高三上·厦门期中) 已知正项等比数列{an}的前n项积为πn ,已知am﹣1•am+1=2am ,π2m﹣1=2048,则m=________三、解答题 (共6题;共40分)17. (10分)解下列关于x的不等式:(1)≤2;(2) x2﹣(a+1)x+a<0.18. (5分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=1km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D间的距离.(计算结果精确到0.1km)参考数据:,≈2.45.19. (5分) (2016高二上·平罗期中) 根据下列条件,求直线的方程:(Ⅰ)过直线l1:2x﹣3y﹣1=0和l2:x+y+2=0的交点,且垂直于直线2x﹣y+7=0;(Ⅱ)过点(﹣3,1),且在两坐标轴上的截距之和为﹣4.20. (10分) (2017高三上·赣州期末) 在△ABC中,角A,B,C的对边分别为a,b,c,a2+b2+c2=ac+bc+ca.(1)证明:△ABC是正三角形;(2)如图,点D的边BC的延长线上,且BC=2CD,AD= ,求sin∠BAD的值.21. (5分) (2016高二上·晋江期中) 已知数列{an}的前n项和为Sn ,若Sn=2an﹣3n.(Ⅰ)求证:数列{an+3}是等比数列,并求出数列{an}的通项an;(Ⅱ)求数列{nan}的前n项和Tn .22. (5分) (2016高二上·诸暨期中) 如图,四棱锥P﹣ABCD的底面是矩形,PA⊥底面ABCD,PA=AD,点E、F分别为棱AB、PD的中点.(Ⅰ)求证:AF∥平面PCE;(Ⅱ)AD与平面PCD所成的角的大小.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共40分) 17-1、17-2、18-1、19-1、20-1、20-2、21-1、第11 页共12 页22-1、第12 页共12 页。
山东省济南市市中区实验中学2024届数学高一下期末统考试题含解析
山东省济南市市中区实验中学2024届数学高一下期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.己知ABC ∆的周长为20,内切圆的半径为3,7BC =, 则tan A 的值为( )A .33B .1C .3D .22.在ABC △中,3A π∠=,6,26BC AB ==,则C ∠=( )A .4π或34πB .34π C .4π D .6π 3.化简()1111232240,0a b a b a b ⎛⎫⎛⎫÷>> ⎪ ⎪⎝⎭⎝⎭结果为( ) A .a B .b C .abD .b a4.若实数,x y 满足26403xy x x ⎛⎫+=<< ⎪⎝⎭,则41x y +的最小值为( ) A .4B .8C .16D .325.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为( ) A .B .C .D .6.把十进制数15化为二进制数为 A .1011 B .1001 C .1111D .11107.已知直线()21:3120l x a y +--=,()21:103l x a y a +--=,若12//l l ,则a 的值为( ) A .1a =或2a =B .1a =C .2a =D .2a =-8.若函数()sin cos 2sin cos 1f x x x x x a =+-+-有零点,则实数a 的取值范围为( ) A .9[2,]4B .[2,2]-C .[2,2]-D .9[2,]4-9.在△ABC 中,已知9,sin cos sin ,6ABC AB AC B A C S ∆⋅==⋅=,P 为线段AB上的点,且,||||CA CBCP x y xy CA CB =⋅+⋅则的最大值为( ) A .3 B .4 C .5 D .6 10.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞二、填空题:本大题共6小题,每小题5分,共30分。
最新版山东省济南高一下学期期末考试数学试题Word版含答案
数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考;要注重培养学生良好的学习习惯、掌握有效的学习方法。
学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。
教师教学应该以学生的认知发展水平和益友的经验为基础,面向全体学生,注重启发式和因材施教,为学生提供充分的数学活动的机会。
2016-2017学年度第二学期期末模块考试高一期末数学试题(2017.07)考试时间 120分钟满分 150 分第Ⅰ卷(选择题,共50分)一、选择题(10*5=50分)1.已知sin α<0且tan α>0,则角α是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角2、已知向量13(,)22BA uu v ,31(,),22BC uu u v 则ABC ()(A)300(B) 450(C) 600(D)12003、函数f (x )=(3sin x+cos x )(3cos x –sin x )的最小正周期是()(A )2π(B )π(C )23π(D )2π4、已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是()(A )内切(B )相交(C )外切(D )相离5、样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y ,其中102a ,则n,m 的大小关系为()A .n m B .n m C .n m D.不能确定6、在ABC 中,已知,2,45ax b B ,如果利用正弦定理三角形有两解,则x 的取值范围是() A .222x B. 22x C .22x D.02x。
济南市高一下学期期末数学考试试卷B卷(模拟)
济南市高一下学期期末数学考试试卷B卷姓名:________ 班级:________ 成绩:________一、填空题: (共14题;共15分)1. (1分) (2018高二上·抚顺期中) 若不等式的解集为,则 ________.2. (1分) (2017·长春模拟) 已知在锐角△ABC中,角A,B,C的对边分别是a,b,c,2asinB= b,b=2,c=3,AD是角A的平分线,D在BC上,则BD=________.3. (1分)已知两条直线l1:x+(2+m)y=﹣3,l2:mx+y=﹣5,若l1⊥l2 ,则m=________.4. (1分)某高校调查了400名大学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25)[25,27.5),[27.5,30].根据此直方图,这400名大学生中每周的自习时间不少于25小时的人数是________.5. (1分) (2018高一下·枣庄期末) 一组样本数据按从小到大的顺序排列为:,,,,,,已知这组数据的平均数与中位数均为,则其方差为________.6. (1分)(2016·太原模拟) 太原五中是一所有着百年历史的名校,图1是某一阶段来我校参观学习的外校人数统计茎叶图,第1次到第14次参观学习人数依次记为A1 , A2 ,…,A14 ,图2是统计茎叶图中人数在一定范围内的一个算法流程图,那么算法流程图输出的结果是________.7. (2分) (2019高三上·西湖期中) 在中,角所对的边分别为,已知,则 ________,若,的面积为,则 ________.8. (1分) (2017高二上·大连期末) 已知实数x,y满足,且数列6x,z,2y为等差数列,则实数z的最大值是________.9. (1分)已知sin(α﹣45°)=﹣,且0°<α<90°,则cos2α的值为________10. (1分)高一班班委会由名男生和名女生组成,现从中任选人参加某社区敬老务工作,则选出的人中至少有一名女生的概率是________.(结果用最简分数表示)11. (1分)(2020·江西模拟) 记等差数列和的前项和分别为和,若,则 ________.12. (1分) (2017高三上·徐州期中) 已知实数x,y满足x2+y2=3,|x|≠|y|,则的最小值为________.13. (1分) (2019高一上·兰州期中) 函数的单调递减区间为________.14. (1分) (2016高二上·清城期中) 在数列{an}中,a1=2,an+1=an+ln(1+ ),则an=________.二、解答题: (共6题;共60分)15. (10分) (2016高一上·郑州期末) 已知△ABC的顶点B(﹣1,﹣3),边AB上的高CE所在直线的方程为4x+3y﹣7=0,BC边上中线AD所在的直线方程为x﹣3y﹣3=0.(1)求点C的坐标;(2)求直线AB的方程.16. (10分)已知f(α)= .(1)若α是第三象限角,且cos(α﹣π)= ,求f(α)的值;(2)若f(α)=﹣2,求2sinαcosα+cos2α的值.17. (10分)(2020·兴平模拟) 在中,角,,的对边分别为,,,且.(1)求角的值;(2)若,且的面积为,求边上的中线的大小.18. (5分)已知公比不等于1的等比数列{an},满足:a3=3,S3=9,其中Sn为数列{an}的前n项和.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log2,若cn=,求数列{cn}的前n项和Tn .19. (10分) (2016高一上·澄海期中) 某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床位每天的租金)不超过10元时,床位可以全部租出;当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位定一个合适的价格,条件是:①要方便结帐,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高得越多越好.若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入):(1)把y表示成x的函数;(2)试确定,该宾馆将床价定为多少元时,既符合上面的两个条件,又能使净收入高?20. (15分) (2017高一下·赣州期末) 已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an .(1)求数列{an},{bn}的通项公式;(2)令cn= ,求数列{cn}的前n项和Sn;(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.参考答案一、填空题: (共14题;共15分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题: (共6题;共60分)15-1、15-2、16-1、16-2、17-1、17-2、18-1、19-1、19-2、20-1、20-2、20-3、。
山东省济南市2020年高一下学期数学期末考试试卷 B卷
山东省济南市2020年高一下学期数学期末考试试卷 B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知各项均为正数的等比数列{an}满足a1•a5=16,a2=2,则公比q=()A . 4B .C . 2D .2. (2分)设,是两个不同的平面,l,m是两条不同的直线,且l, m()A . 若l,则B . 若,则l mC . 若l//,则//D . 若//,则l//m3. (2分)正方体中,下列结论错误的是()A . ∥平面B . 平面C .D . 异面直线与所成的角是45º4. (2分) (2018高三上·信阳期中) 设a=2 ,b=(),c=ln (其中π是圆周率),则()A . c<a<bB . b<c<aC . a<c<bD . c<b<a5. (2分)如图是从事网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依此类推.若2013是第m 行从左至右算的第n个数字,则(m,n)为()A . (63,60)B . (63,4)C . (64,61)D . (64,4)6. (2分) (2016高一下·雅安期末) 在△ABC中,AB=2,AC=3,G为△ABC的重心,若AG= ,则△ABC的面积为()A .B .C .D .7. (2分)(2017·广西模拟) 某几何体的三视图如图所示,则该几何体是()A . 棱柱B . 圆柱C . 棱锥D . 圆锥8. (2分)已知直线l1:(m-1)x+2y-1=0,l2:mx-y+3=0 若,则m的值为()A . 2.B . -1C . 2或-1D .9. (2分)(2017·万载模拟) 在区间[0,2]上任取两个实数a,b,则函数f(x)=x3+ax﹣b在区间[﹣1,1]上有且只有一个零点的概率是()A .B .C .D .10. (2分)一货轮航行到M处,测得灯塔S在货轮的北偏东15°方向上,与灯塔S相距20nmile,随后货轮按北偏西30°的方向航行3h后,又测得灯塔在货轮的东北方向,则货轮的速度为()A . nmile/hB . nmile/hC . nmile/hD . nmile/h11. (2分)如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别在A1D、AC上,且A1E= A1D,AF= AC,则()A . EF至多与A1D、AC之一垂直B . EF与A1D、AC都垂直C . EF与BD1相交D . EF与BD1异面12. (2分)数列的前项和为,已知,则的值为()A . 0B . 1C . 0.5D . 1.5二、填空题 (共4题;共4分)13. (1分) (2017高一上·延安期末) 已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为________.14. (1分) (2017高二下·溧水期末) 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有________斛.15. (1分) (2016高二上·宁远期中) 在△ABC中,若b=2,B=30°,C=135°,则a=________.16. (1分)(2017·赤峰模拟) 三棱锥P﹣ABC中,PC⊥平面ABC,∠CAB=90°,PC=3,AC=4,AB=5,则此三棱锥外接球的表面积为________.三、解答题 (共6题;共55分)17. (10分) (2018高二下·保山期末) 已知函数f(x)=|x﹣3|+|x+m|(x∈R).(1)当m=1时,求不等式f(x)≥6的解集;(2)若不等式f(x)≤5的解集不是空集,求参数m的取值范围.18. (5分) (2017高二上·浦东期中) 已知等比数列{an},它的前n项和记为Sn ,首项为a,公比为q (0<q<1),设Gn=a12+a22+…+an2 ,求的值.19. (10分) (2018高三上·黑龙江月考) 在,,(1)若,求的长(2)若点在边上,,,为垂足,,求角的值.20. (10分)如图,在四棱锥S﹣ABCD中,底面梯形ABCD中,AD∥BC,平面SAB⊥平面ABCD,△SAB是等边三角形,已知,M是SD上任意一点,,且m>0.(1)求证:平面SAB⊥平面MAC;(2)试确定m的值,使三棱锥S﹣ABC体积为三棱锥S﹣MAC体积的3倍.21. (10分)(2017·厦门模拟) 在△ABC中,角A、B、C的对边分别为a,b,c,且bcosC=(2a﹣c)cosB.(1)求角B的大小;(2)已知b= ,BD为AC边上的高,求BD的取值范围.22. (10分)(2017·湘潭模拟) 在数列{an}中,a2= .(1)若数列{an}满足2an﹣an+1=0,求an;(2)若a4= ,且数列{(2n﹣1)an+1}是等差数列,求数列{ }的前n项和Tn.参考答案一、选择题 (共12题;共24分)1-1、2、答案:略3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、第11 页共11 页。
山东省济南市第十二中学2021年高一数学理下学期期末试题含解析
山东省济南市第十二中学2021年高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若f(x)=-x2+2ax与在区间[1,2]上都是减函数,则a的值范围是 ( ) A. B. C.(0,1) D.参考答案:D2. 三个实数依次成公差不为零的等差数列,且成等比数列,则的值是()A. B. C.D.参考答案:C3. 设,且,则A. B. C. D.参考答案:D4. 下列函数中,周期为π,且在上为减函数的是()A.B.C.D.参考答案:A【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的单调性;余弦函数的单调性.【分析】先根据周期排除C,D,再由x的范围求出2x+的范围,再由正余弦函数的单调性可判断A 和B,从而得到答案.【解答】解:C、D中函数周期为2π,所以错误当时,,函数为减函数而函数为增函数,故选A.5. 若x0是方程()x=x的解,则x0属于区间( )A.(,1)B.(,)C.(0,)D.(,)参考答案:D【考点】二分法求方程的近似解.【专题】计算题;函数的性质及应用.【分析】由题意令f(x)=()x﹣x,从而由函数的零点的判定定理求解.【解答】解:令f(x)=()x﹣x,则f(0)=1﹣0>0;f()=﹣()>0;f()=﹣<0;故x0属于区间(,);故选D.【点评】本题考查了函数的零点的判定定理的应用,属于基础题.6. 在△ABC中,若,则△ABC的形状是:( )A. 等腰三角形B. 直角三角形C.等腰或直角三角形D.等腰直角三角形参考答案:A略7. 已知,,,则实数的大小关系是()A. B. C. D.参考答案:C8. 若函数f(x)=a x﹣a﹣x(a>0且a≠1)在R上是增函数,那么g(x)=log a(x+1)的大致图象是()A.B.C.D.参考答案:A【考点】函数的图象.【分析】则由复合函数的性质,我们可得a>1,由此不难判断函数g(x)=log a(x+1)的图象.【解答】解:∵函数f(x)=a x﹣a﹣x(a>0,a≠1)在(﹣∞,+∞)上是增函数,∴a>1,可得g(x)=log a(x+1).函数图象必过原点,且为增函数.故选:A.9. 若a=20.5,b=logπ3,c=log2,则有()A.a>b>c B.b>a>c C.c>a>b D.b>c>a参考答案:A【考点】对数值大小的比较.【分析】利用对数和指数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=logπ3<logππ=1,<log21=0.∴a>b>c.故选:A.【点评】本题考查了对数和指数函数的单调性,属于基础题.10. (5分)曲线y=+1(﹣2≤x≤2)与直线y=kx﹣2k+4有两个不同的交点时实数k的范围是()A.(,] B.(,+∞)C.(,)D.(﹣∞,)∪(,+∞)参考答案:A考点:直线与圆相交的性质.专题:直线与圆.分析:根据直线过定点,以及直线和圆的位置关系即可得到结论.利用数形结合作出图象进行研究即可.解答:由y=k(x﹣2)+4知直线l过定点(2,4),将y=1+,两边平方得x2+(y﹣1)2=4,则曲线是以(0,1)为圆心,2为半径,且位于直线y=1上方的半圆.当直线l过点(﹣2,1)时,直线l与曲线有两个不同的交点,此时1=﹣2k+4﹣2k,解得k=,当直线l与曲线相切时,直线和圆有一个交点,圆心(0,1)到直线kx﹣y+4﹣2k=0的距离d=,解得k=,要使直线l :y=kx+4﹣2k 与曲线y=1+有两个交点时,则直线l 夹在两条直线之间,因此<k≤,故选:A .点评: 本题主要考查直线和圆的位置关系的应用,利用数形结合是解决本题的关键,考查学生的计算能力.二、 填空题:本大题共7小题,每小题4分,共28分11. (1)sin120°?cos330°+sin(﹣690°)?cos (﹣660°)+tan675°= ; (2)已知5cosθ=sinθ,则tan2θ= .参考答案:0;﹣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南市高一下学期期末数学试卷(理科) B卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)已知某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩.现抽取农田480亩估计全乡农田粮食平均亩产量,则采用()抽样比较合适.
A . 抽签法
B . 随机数表法
C . 系统抽样法
D . 分层抽样法
2. (2分) (2017高一下·天津期末) 从某高中随机选取5名高一男生,其身高和体重的数据如表所示:
身高x(cm)160165170175180
体重y(kg)6366707274
根据如表可得回归方程 =0.56x+ ,据此模型可预报身高为172cm的高一男生的体重为()
A . 70.12kg
B . 70.29kg
C . 70.55kg
D . 71.05kg
3. (2分) (2017高一上·长春期末) 若集合A={x|y=lg(2x+3)},B={﹣2,﹣1,1,3},则A∩B等于()
A . {3}
B . {﹣1,3}
C . {﹣1,1,3}
D . {﹣1,﹣1,1,3}
4. (2分)若角α的终边经过点P,则sinαtanα的值是()
A .
B . -
C .
D . -
5. (2分) (2016高一上·南宁期中) 函数f(x)=2x+5x的零点所在大致区间为()
A . (0,1)
B . (1,2)
C . (﹣1,0)
D . (﹣2,﹣1)
6. (2分) (2018高二下·凯里期末) 数学猜想是推动数学理论发展的强大动力,是数学发展中最活跃、最主动、最积极的因素之一,是人类理性中最富有创造性的部分.1927年德国汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数,如果它是奇数,对它乘3再加1,如果它是偶数,对它除以2,这样循环,最终结果都能得到1.下面是根据考拉兹猜想设计的一个程序框图,则输出的为()
A . 5
B . 6
C . 7
D . 8
7. (2分)下列命题中,m、n表示两条不同的直线,α、β、γ表示三个不同的平面.
①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;
③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,m⊥α,则m⊥γ.
则正确的命题是()
A . ①③
B . ②③
C . ①④
D . ②④
8. (2分)规定表示两个数中的最小的数,若函数的图像关于直线对称,则的值是()
A . -1
B . 1
C . 2
D . -2
9. (2分) (2016高三上·石家庄期中) 一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()
A .
B .
C .
D .
10. (2分)若是所在的平面内的点,且
给出下列说法:①;②的最小值一定是;
③点、在一条直线上.其中正确的个数是()
A . 0个.
B . 1个.
C . 2个.
D . 3个.
11. (2分)(2018·延边模拟) 若将函数的图像向左平移个单位长度,则平移后图象的对称轴为()
A .
B .
C .
D .
12. (2分)(2018·河北模拟) 下列结论中正确的个数是()
①“ ”是“ ”的充分不必要条件;②命题“ ”的否定是“ ”;③函数在区间内有且仅有两个零点.
A . 1
B . 2
C . 3
D . 0
二、填空题 (共4题;共4分)
13. (1分)阅读如图所示的程序框图,运行相应的程序,输出的结果是________ .
14. (1分)已知向量=(2,1),=(2,﹣3),且(k﹣)∥(+3),则实数k等于________
15. (1分) (2017高二下·嘉兴期末) 已知点,圆,过点的直线l与圆交于两点,线段的中点为(不同于),若,则l的方程是________.
16. (1分)在如图所示的正方形中随机掷一粒豆子,豆子落在正方形内切圆的上半圆(圆中阴影部分)中的概率是________
三、解答题 (共6题;共50分)
17. (10分)已知函数f(x)= .
(1)求函数f(x)的定义域和值域;
(2)判定f(x)的奇偶性,并求出它的单调区间.
18. (5分) (2017高一上·鞍山期末) 把函数y=sin(x﹣)的图象向左平移个单位长度,再将图象上所有点的横坐标缩短为原来的倍(纵坐标不变)得到函数f(x)的图象.
(Ⅰ)写出函数f(x)的解析式;
(Ⅱ)若x∈[0, ]时,关于x的方程f(x)﹣m=0有两个不等的实数根,求实数m的取值范围.
19. (5分) (2016高二上·泉港期中) 已知关于x的二次函数f(x)=ax2﹣4bx+1
(Ⅰ)设集合P={1,2,3},集合Q={﹣1,1,2,3,4},从集合P中随机取一个数作为a,从集合Q中随机取一个数作为b,求函数f(x)在区间[1,+∞)上是增函数的概率;
(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.
20. (10分) (2016高一下·宜春期中) 四边形ABCD中, =(3,2), =(x,y), =(﹣2,﹣3)
(1)若∥ ,试求x与y满足的关系式;
(2)满足(1)同时又有⊥ ,求x,y的值及四边形ABCD的面积.
21. (10分)如图所示,正方体ABCD﹣A1B1C1D1的棱长为8cm,M,N,P分别是AB,A1D1 , BB1的中点.
(1)画出过M,N,P三点的平面与平面A1B1C1D1的交线以及与平面BB1C1C的交线;
(2)设过M,N,P三点的平面与B1C1交于Q,求PQ的长.
22. (10分)(2019·河北模拟) 设抛物线的焦点为,准线为,,已知以
为圆心,为半径的圆交于两点;
(1)若,的面积为;求的值及圆的方程;
(2)若三点在同一直线上,直线与平行,且与只有一个公共点,求坐标原点到
距离的比值.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共6题;共50分)
17-1、
17-2、
18-1、
19-1、20-1、
20-2、
21-1、21-2、
22-1、22-2、。