第一章线性空间和线性变换概况讲解学习

合集下载

第1章线性空间与线性变换讲义教材

第1章线性空间与线性变换讲义教材
Rmn = { A | A = (aij )mn , aij R } Amn + Bmn = C mn R mn ,
l Amn = Dmn R mn ,
∴ Rm×n是一个线性空间。
5
例3 次数小于n 的多项式的全体,记作 P[x]n P[ x]n = { an1xn1 + + a1x + a0 an1, , a0 R }
(8) 1a = a
则称V 为数域 F 上的线性空间,称V 的元素为向量, 称满足(1)-(4)的和为加法,满足(5)-(8)的积为数乘。
3
例1. 实数域上全体 n 维向量的集合
R n = { ( x1, x2 , , xn )T | x1, x2 , , xn R } a = ( x1, x2 ,, xn )T , b = ( x1, x2 ,, xn )T Rn , k R
定义加法:
a + b = ( x1 + y1 , x2 + y2 , , xn + yn )T
定义数乘:
ka = (kx1, kx2 ,, kxn )T ,
Rn 是数域 R 上的线性空间。 Cn 是数域C 上的线性空间。
4
例2 实数域 R上的全体 m×n 矩阵,对矩阵的加法 和数乘运算构成 R上的线性空间,记作 Rm×n
例2 设
1 0 0
a1 = 2, a2 = 1, a3 = 0
3
2
1
为 R3 的一组基, 求a = (1,0,-1)T 在基
a1 , a2 , a3 下的坐标。
13
例3

R22 中的元素
A
=
1 1
2 1
,在基

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。

本文将介绍线性空间的定义、性质以及线性变换的概念和特性。

一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。

具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。

即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。

2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。

3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。

4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。

线性空间的性质还包括零向量、负向量和线性相关性。

零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。

线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。

二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。

具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。

2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。

线性变换的性质还包括零变换、恒等变换和可逆性。

零变换表示线性变换将所有向量映射为零向量。

恒等变换表示线性变换将每个向量映射为其本身。

可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。

三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。

线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

第1章 线性空间与线性变换讲义

第1章 线性空间与线性变换讲义
定义加法:
a + b = ( x 1 + y1 , x 2 + y 2 , , x n + y n ) T
定义数乘:
ka = ( kx1 , kx 2 , , kx n ) T ,
R n 是数域 R 上的线性空间。 C n 是数域 C 上的线性空间。
4
例2 实数域 R上的全体 m×n 矩阵,对矩阵的加法 和数乘运算构成 R上的线性空间,记作 Rm×n
定义:设 V 是一个非空集合,F 为数域,a, b, g V, 对于任意的a, b V, 总有唯一的元素 g V
与之对应,称 g 为a 与b 的和,记作 g =a +b,且
(1) a + b = b + a ;
( 2 ) (a + b ) + g = a + ( b + g );
( 3) 存在零元素: b V , a V , a + b = a, 称 b 为零元素, 并记 b 为 0 ; ( 4) 存在负元素 a V , b V, a + b = 0; 称 b 为 a 的负元素, 并记 b 为 - a ;
(1) a , b W , 则a + b W (2) a W , k F , 则 ka W
则称W 是V 的子空间。
21
例1. 实数域上 n 维向量的集合
W = { ( 0, x 2 , , x n ) T | x 2 , , x n R }
则 W是 R n 的 子 空 间 。
则 P 称为由基 a 1 , a 2 , , a n 到基 b 1 , b 2 , , b n 的 转移矩阵(或过渡矩阵),其中
p11 p21 P= p n1 p12 p22 pn 2 p1n p2 n pnn

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。

本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。

一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。

2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。

3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。

4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。

5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。

6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。

7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。

8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。

9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。

线性空间的例子包括n维向量空间和函数空间等。

它们满足上述定义中的所有条件。

二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。

2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。

3. 线性变换T将零向量映射为目标线性空间的零向量。

线性变换的例子包括平移、旋转和缩放等。

它们保持向量空间的线性结构和线性关系。

三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。

给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间(也称为向量空间)是线性代数的基本概念之一。

它是指由向量集合组成的集合,满足特定的运算规则。

线性空间中的向量可以是实数域上的实向量,也可以是复数域上的复向量。

线性空间的定义涵盖了许多重要的数学概念和定理,在各个领域中都有广泛的应用。

一、线性空间的定义线性空间的定义遵循以下几个基本条件:1. 封闭性:对于线性空间V中任意向量u和v,它们的线性组合也属于V。

即对于任意的标量a和b,有a*u + b*v∈V。

2. 加法结合性:对于线性空间V中任意向量u、v和w,有(u+v)+w = u+(v+w)。

3. 加法交换性:对于线性空间V中任意向量u和v,有u+v = v+u。

4. 零向量存在性:存在一个特殊的向量0,满足对于线性空间V中任意向量u,有u+0 = u。

5. 加法逆元存在性:对于线性空间V中任意向量u,存在一个向量-v,使得u+(-v) = 0。

6. 数量乘法结合性:对于线性空间V中任意的标量a、b和向量u,有(a*b)*u = a*(b*u)。

7. 标量乘法分配律:对于线性空间V中任意的标量a和向量u、v,有a*(u+v) = a*u + a*v。

8. 向量乘法分配律:对于线性空间V中任意的标量a和b,以及向量u,有(a+b)*u = a*u + b*u。

二、线性变换的定义与性质线性变换是一种将一个线性空间映射到另一个线性空间的函数。

线性变换也被称为线性映射或线性算子。

线性变换保持线性空间的线性结构,即对于线性空间V中任意的向量u和v,以及标量a和b,有以下性质:1. 线性变换将零向量映射到零向量,即T(0) = 0,其中T表示线性变换。

2. 线性变换保持向量的线性组合,即对于线性空间V中任意的向量u和v,以及标量a和b,有T(a*u + b*v) = a*T(u) + b*T(v)。

3. 线性变换的像空间是一个线性空间,即对于线性空间V中的线性变换T,其像空间W也是一个线性空间。

矩阵论学习-(线性空间与线性变换)

矩阵论学习-(线性空间与线性变换)

ka1 ,
kb1 +
k( k 2
1 ) a21
ka2 ,
kb2
+
k(
k2
1)
a22
=
ka1
+
ka2 ,
kb1
+
kb2
+
k( k 2
1) (
a21
+
a22 )
+
k2 (
a1 a2 )
.
4
矩 阵 论 学 习 辅 导 与 典型 题 解 析
故有 k⊙ ( α β) = ( k⊙α) ( k⊙β) , 即八条运算法则皆成立 , V 在实域 R 上构
第一章 线性空间与线性变换
线性空间是某一类事物从量方面的一个数学抽象, 线性变换则是反映线性空 间元素之间最基本的线性函数关系 , 它们是研究线性代数的理论基础 .理解本章的 主要概念 , 掌握基本定理、结论和方法 , 对学好矩阵论起着关键的作用 .
§1 .1 线性空间 , 基、维数及坐标
一、线性空间与子空间
mn
mn
mn
∑ ∑ ( aij + bij ) = ∑∑ aij + ∑ ∑ bij = 0
i = 1j = 1
i = 1j = 1
i = 1j = 1
即有 A + B∈ W4 , 同样由于 kA = ( kaij ) m × n ,
mn
mn
∑∑ kaij = k∑∑ aij = k0 = 0
i = 1j = 1
i = 1j = 1
即有 kA∈ W4 .加法运算和数乘运算封闭 , 故 W4 是一个子空间 .
⑥ ( kl ) ⊙α=

第1章_线性空间与线性变换

第1章_线性空间与线性变换

图1.2.1中 直线 l ,平面 是 R3 的两个线性子空间,而在 图1.2.2中由于直线 m 和平面 不含原点所以不能形成 R3 的 子空间。
图1.2.1
图1.2.2
由于零子空间不含线性无关的向量,因此 没有基,它的维数规定为零。而对于 V 的其它 的子空间,由于它的线性无关的向量个数不可 能比整个线性空间线性无关的向量个数多,所 以子空间的维数比原空间的维数小,即
W { k11 k22 kmm,i V, ki P 1 i m}
容易验证,W 对 V 中定义的加法和数乘运算是 封闭的,所以 W 是 V 的线性子空间.这个子空 间称为由 V 中向量 S {1, 2 ,, m} 生成的线性子 空间,记为
W L(1,2,,m ) Span{1,2,,m} (1.2.2)
(2) T(k ) kT( ) V , k P
称作V 的一个线性变换或线性算子。特别 当 V W 时,称 T :Vn Vn 是 Vn 上的线性变换.
注:定义中两个条件可以用一个表达式来表示, 即T 是线性变换的充要条件是:
T (k l ) kT() lT( )
例:两个特殊线性变换 (1) 如果对任意 V ,恒有 T() 0,则
例1.2.4
dim(V1 V2 ) 1
定义1.2.2 如果 V1 V2 中任一向量只能唯
一的表示成子空间 V1 的一个向量和子空间
V2 中的一个向量的和,则称 V1 V2 是 V1,V2
的直和,记为 V1 V2(或
). •
V1 V2
定理1.2.5 两个子空间的和是直 和的充分必要条件是:
V1 V2 L(0)
定义1.1.4 设 S {1, 2 ,, n} 是线性空间 Vn 的 一个基(底), 是 Vn 中的一个向量,而且

线性空间与线性变换解析

线性空间与线性变换解析

线性空间与线性变换解析线性空间和线性变换是线性代数中重要的概念。

线性空间是指具备了特定性质的向量集合,而线性变换是将一个向量空间映射到另一个向量空间的映射关系。

通过分析线性空间与线性变换的特点和性质,可以深入理解线性代数的基本概念与应用。

一、线性空间的定义与性质1.1 线性空间的定义线性空间,也称为向量空间,是指一个非空集合V及其上的两种运算:加法和标量乘法,满足以下八个条件:(1)加法交换律:对于任意的u和v,u+v=v+u;(2)加法结合律:对于任意的u、v和w,(u+v)+w = u+(v+w);(3)零向量存在:存在一个向量0,使得对于任意的u,u+0=u;(4)负向量存在:对于任意的u,存在一个向量-v,使得u+(-v)=0;(5)标量乘法结合律:对于任意的标量a和b,以及向量u,(ab)u=a(bu);(6)分配律1:对于任意的标量a和向量u、v,a(u+v)=au+av;(7)分配律2:对于任意的标量a和b,以及向量u,(a+b)u=au+bu;(8)单位元存在:对于任意的向量u,1u=u。

1.2 线性空间的基本性质(1)线性空间中的向量可以进行加法和标量乘法运算;(2)线性空间中的向量满足向量加法的封闭性和标量乘法的封闭性;(3)线性空间中的向量满足加法交换律、加法结合律和分配律;(4)线性空间中存在唯一的零向量和负向量;(5)线性空间中存在多个基向量,它们可以线性组合得到任意向量;(6)线性空间中的向量存在唯一的零向量和唯一的负向量。

二、线性变换的定义与性质2.1 线性变换的定义线性变换,也称为线性映射,是指将一个向量空间V映射为另一个向量空间W的一种映射关系。

若对于任意的向量u和v,以及任意的标量a和b,满足以下两个条件,则称该映射关系为线性变换:(1)保持加法运算:T(u+v) = T(u) + T(v);(2)保持标量乘法:T(au) = aT(u)。

2.2 线性变换的基本性质(1)线性变换保持零向量:T(0) = 0;(2)线性变换保持向量的加法和标量乘法运算;(3)线性变换保持向量的线性组合关系;(4)线性变换将线性无关向量映射为线性无关向量;(5)线性变换的核和像是向量空间。

第一章线性空间与线性变换-矩阵理论课件

第一章线性空间与线性变换-矩阵理论课件

(2)x W , P x W . 平凡子空间
例5
① V x (x1, x2, , xn )T Ax , A Rnn,det(A) 0
是 R中n 的一个子空间。 ② R3是3 R的m一n个子空间。
③ P3[是t] Pn[的t]一个子空间。
定义2 (线性生成子空间)
设 x1, x2 , , xn V L(P ) , 线性组合
C
C11C2
0 0
1 0
1 1
1 1
0
1
1 1
1 1
1
0
0 0 0 1 1 1 0 1
1 1 0 0 1 0 1 1 1 1 0 0
0
0
1 0
1 1
0
0
1 1
1 1
1 1
1
0
1
0
0 0
0
1
1 1
0
0
0
1
1
1
0
1
1
1 0 1
§3、子空间与维数定理 定义1 (子空间)
下的坐标依次可记为
E11, E12 , E21, E22
1 0 0 1 1
1
1
0
,2
1 1
,
3
0
1
,
1
0
2
,
2
1 0
0
0
1
3
1
容易判定该向量组的一个最大无关组为 1,2 ,3 , 2
A1, A2 , A3, B2 是 V1 V2 的一个基。dim(V1 V2 ) 4
③求V1 的V基2 与维数。
分析: 设V的两个子空间为
求 x1, x2, , xm , y1, y2, , yn

矩阵论——讲稿

矩阵论——讲稿

(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
例 3 K = R 时, R n —向量空间;
R m×n —矩阵空间
第一章 线性空间与线性变换(第 1 节)
3
Pn[t]—多项式空间; C[a,b] —函数空间 K = C 时, Cn —复向量空间; Cm×n —复矩阵空间 例 4 集合 R + = {m m是正实数 } ,数域 R = {k k是实数 } .
0
a 12
a
22
ai
j1
I
S 2
=
{A
=
a11
0
0
a
22
a 11
, a22

R}
S 1
U
S 2
=
{A
=
a11 a21
a 12
a
22
aa 12 21
=
0,
ai
j

R}
S 1
+
S 2
=
{A
=
a11 a21
a 12
a 22
ai j ∈ R}
2.数域:关于四则运算封闭的数的集合.
2.减法运算:线性空间V 中, x − y = x + (− y) .

01_矩阵论_第一章线性空间与线性变换

01_矩阵论_第一章线性空间与线性变换

则有
1 0 0 1 0 0 0 0 A a11 0 0 a12 0 0 a21 1 0 a22 0 1
因此 R22 中任何一个向量都可写成向量组
1 0 0 1 0 0 0 0 E11 0 0 , E12 0 0 , E21 1 0 , E22 0 1
Pn [ x] { ai xi | ai R}
i 0 n 1
在通常多项式加法和数乘多项式运算下构成线性 空间 Pn[x]。 值得指出的是次数等于 n 1 的多项式集合
V { ai x | ai R, an1 0}
i i [a, b] = {f (x) | f (x) 是区间 [a, b] 上 实连续函数 } ,对于函数的加法与数乘运算构成 实数域上的线性空间。
定义 1.3 设 1, 2, …, n 是线性空间 Vn(F) 的一组基,若 V,
xi i (1 2
i 1 n
x1 x2 n ) x n
(1.1)
则称数 x1, x2, …, xn 是 在基 {1, 2, …, n} 下 的坐标,(1.1) 式中向量 (x1, x2, …, xn)T 为 的坐 标向量,也简称为坐标。
从上述线性空间例子中可以看到,许多常见 的研究对象都可以在线性空间中作为向量来研究。 另外应理解加法和数乘分别是 V 中的一个二元运 算和数域 F 和 V 中元素间的运算,要求运算满足 定义 1.1 中的八条性质,它们已不再局限在数的 加法、乘法的概念中。
一个数学例子 取集合为正实数集合 R+,F 为实数域 R,加 法“”和数乘“”如下定义 :a, bR+,ab = ab, :kR(i.e. F ),aR+,k a = ak。 在此运算下,R+ 是 R 上的一个线性空间,其中 加法零元素是 R+ 中的数 1,R+ 中元素 a 的负元素 是 a1。

矩阵理论课件 第一章 线性空间与线性变换

矩阵理论课件  第一章 线性空间与线性变换

a1n
a2n
ann
前述关系可以表示为 AT 或 T T A
则称矩阵 A 为基 到基 的过渡矩阵(唯一且可逆)
定义2 (坐标变换)
设x V L(P) ,向量 x 在 基 和基 下的
坐标之间的关系,称之为坐标变换。
坐标变换与过渡矩阵的关系:
设 x k1x1 k2 x2 kn xn 和 x t1 y1 t2 y2 tn yn
和 W W1 W2 为直和,记为 W W1 W2 。
例6 设 R4的3个子空间:
① V1 (a, b, 0, 0)T a, b R ② V2 (0,0,c, 0)T c R ③ V3 (0,d,e, 0)T d,e R
容易验证V1 是V2直和, V1 V3不,V是2 直 V和3。
事实上 不妨设简单基为 (III )e1, e2 , , en ( x1, x2 , , xn ) (e1, e2 , , en )C1 ( y1, y2 , , yn ) (e1, e2 , , en )C2
( x1, x2 , , xn )C11C2
C C11C2
例4 设线性空间P3[t] 的两个基为: (I ) f1(t) 1, f2(t) 1 t, f3(t) 1 t t 2,
表示,不妨记
y1 a11x1 a21x2
y2
a12 x1
a22 x2
yn a1n x1 a2n x2
称上述关系为两组基的基变换。
an1xn an2 xn
ann xn
x1
y1
a11 a12
若记
x2
,
y2
A
a21
a22
xn
yn
an1 an2

线性空间和线性变换

线性空间和线性变换

线性空间和线性变换 什么是线性的?什么是空间?什么是变换? 变换倒是容易理解,就是某种映射。

对于线性空间,有种似懂未懂的感觉,甚⾄对空间的概念就是三维坐标空间那样的空间。

之所以会有这种朦胧的感觉,是因为经常见到但⼜不认真地讨论分析过它。

先给出结论,然后再仔细说明。

⼀、结论 线性空间把集合,数域以及满⾜相应运算律的两种运算作为统⼀整体的⼀个概念。

⼆、详细介绍 定义:设V是⼀个⾮空集合,F是⼀个数域。

(1)如果能定义⼀种V的元素间的运算,叫做加法:对于V中任意两个元素a,b,都有V中唯⼀的元素c与之对应;c称为a与b的和,记为c=a+b。

(2)另外,还能定义⼀种数域F的数与集合V的元素间的运算,叫做数乘:对于数域F中任⼀数k及集合V中任⼀元素a,都有V中唯⼀的元素d与之对应;d称为k与a的数积,记为 d=ka。

(3)并且以上两种运算具有如下性质:对于任意的a,b,c属于V及k,l属于F,满⾜...8个性质 则称V为数域F上的⼀个线性空间 定义中的加法及乘法运算统称为线性运算三、深⼊理解(1)线性空间亦称向量空间。

线性空间的元素⼜称为向量,零元素⼜称为零向量,负元素⼜称负向量。

(2)“加法”与“数乘”其实各是⼀种给定的规则,能成为线性空间定义要求的运算,除了规则的确定性之外,还要具备“运算结果仍在V中”这⼀条件,即要求集合V具备对加法运算和数乘运算的封闭性。

(3)复数域C是实数域R上的⼀个线性空间。

这⾥,加法是通常意义下的,数乘指实数乘复数。

但如果数乘选择 k。

a=1/2ka,k属于R,a属于C 1。

a=1/2a不满⾜其中⼀条性质,因此在这样的数乘意义下不能构成线性空间(4)集合不能构成复数域C上的线性空间。

通常意义下的数乘不满⾜(5)容易发现,很多例⼦中,构成线性空间时的两种运算都是在所涉及领域中通常的加法和数乘,正因为这样,线性空间的研究成果可以⽅便、有效地⽤于我们已经熟悉的许多领域、并且具有统⼀的、居⾼临下的指导作⽤。

第1,2章 线性空间与线性变换

第1,2章 线性空间与线性变换

§1·4 线性变换(Linear Transformations)
一、 线性变换的概念
1. 线性变换的来历;
Definition: (i)T是V上的映射:T:VV。 (ii) T具有线性性:
T(+)=T()+T()
(保持加法的三角形法则)
T(k)=kT( )
(保持比例关系)
2 线性变换的性质:
2 坐标变换公式
已知 ➢空间中两组基:
{1, 2,..., n} {1, 2 ,..., n}
满足:(1, 2 ,..., n ) (1,2 ,..., n )Cnn
➢: (12...n )X ; (12...n )Y
讨论X和Y的关系
X=CY
例 已知空间R中两组基(I){Eij}
(II);{ 2 1 0 1 0 0 0 0 } 0 0 1 0 3 1 0 3
Rmn ;Cmn 。
F[t]n ={f(x)=a0 + a1x+ a2x2+...+an-1xn-1 :aiR}
运算:多项式的加法和数乘
•C[a,b]={f(x):f(x)在[a,b]上连续}
运算:函数的加法和数乘
•Example: V=R+,F=R, a b=ab, a=a
不是线性空间的集合
要点:
• 集合V 与数域F • 向量的加法和数乘向量运算 (运算之后的结果跑不出去) • 八条运算律 (能够保证向量的混合运算几乎与数的运算一样完美)
常见的线性空间
F=R或C
Fn={X=(x1,x2,…,xn)T:x F}
运算:向量加法和数乘向量
Fmn = {A=[aij]mn:a ijF}; 运算:矩阵的加法和数乘矩阵

矩阵理论第一章线性空间与线性变换精品PPT课件

矩阵理论第一章线性空间与线性变换精品PPT课件
对、、 V,k、l F 或F C, 成立
(A1) 加法交换律: , (A2) 加法结合律:( ) ( ),
(A3) 具有加法单位元(零向量) V ,使得
(A4) 具有加法逆元(负向量) V
( )
,使得
(M1) 数乘的结合律:k(l ) (kl)
例3 闭区间 [a,b]上的所有实值连续函数按通常函
数的加法和数与函数的乘法,构成线性空间 C[a, b]
例4 次数不超过 n 的所有实系数多项式按通常多项
式加法和数与多项式的乘法,构成线性空间 P[ x]n
例5 所有收敛的实数数列按数列极限的加法和数乘,

构成线性空间
。l
例6 齐次线性方程组 Ax 的所有解的集合构成数 域 R 上的线性空间 N ( A) ,称为 Ax 的解空间,
或矩阵 的A核空间或零空间,即
N ( A) { x Rn | Ax , A Rmn}
Ker( A)
例7 所有矩阵向量积 Ax 的集合构成数域 R 上的
线性空间 R( A) , 称为矩阵 A 的列空间或值域, 也称为矩阵 A 的像 , 即
R( A) { y Rm | y Ax, x Rn, A Rmn}
(M2) 数乘的单位元:1 (D1) 分配律1: k( ) k k (D2) 分配律2:(k l) k l
注意:这里我们不再关心元素的特定属性,而 且我们也不用关心这些线性运算(加法和数乘) 的具体形式。
例2 所有 m n 阶的实(复)矩阵按矩阵的加法和
数乘,构成线性空间 Rmn (C mn ) 。
中,直觉和抽象是交互为用的。”(汤川秀树,1949 年诺贝尔物理奖获得者)。
几何方法与代数方法的融和是数学自身的需要和数 学统一性的体现,也是处理工程问题的有力手段。

第一章线性空间与线性变换

第一章线性空间与线性变换

第⼀章线性空间与线性变换第⼀章线性空间和线性变换§1.1线性空间集合v 集合:作为整体看的⼀堆东西元素?⼦集Sa ?21S S ì?集合相等运算交并和122121S S S S S S ìì?=且21S S I 21S S U },|{2121S y S x y x S S ??+=+数域v数域: 如果⼀个数集中任意两个数的和、差、积、商(除数不为0)仍在该数集中v常⽤数域有:有理数域、实数域、复数域v奇数集和偶数集不能形成数域映射v映射:集合S到集合S’的⼀个映射是指⼀个法则(规则)f: S →S’,对S中任何元素a,都有S’中的元素a’与之对应,记为:f(a)=a’或a→a’。

⼀般称a’为a的象,a为a’的原象。

v若S =S’,则称映射为变换。

v映射的相等:设有两个映射f: S →S’和g: S →S’,若对任何元素a∈S都有f(a)=g(a)则称f与g相等。

映射的例⼦v例⼦1:设集合S是数域F上所有⽅阵的集合,则f(A)=det(A)为S到F的映射。

v例2:设S为次数不超过n的多项式构成的集合,则求导运算:δ(f(t))=f’(t)为S到S的变换。

映射的乘积v映射的乘积(复合):若f : S1→S2 和g: S 2→S3,则映射的乘积g○f定义为:g○f(a)=g(f(a))。

v在不⾄混淆的情况下,简记g ○f为gfv映射的乘积满⾜结合律,即(fg)h=f(gh)v映射的乘积不满⾜交换律,⼀般⽽⾔fg≠gf线性空间的定义v定义:设V是⼀个⾮空的集合,K是⼀个数域,在集合V 中定义两种封闭的代数运算, ⼀种是加法运算,⽤+ 来表⽰,另⼀种是数乘运算, ⽤?来表⽰, 并且这两种运算满⾜下列⼋条运算律:(1)加法交换律:α+β= β+α(2)加法结合律:(α+β)+γ= α+(β+γ)(3)零元素:在V中存在⼀个元素0,使得对于任意的α∈V 都有α+0 =α(4)负元素:对于V中的任意元素α都存在⼀个元素β使得:α+β= 0线性空间的定义(续)(5)数1:对α∈V,有:1?α=α(6)结合律:对k,l∈K, α∈V有:(kl) ?α= k?(l?α)(7)分配律:对k,l∈K, α∈V有:(k+l) ?α= k?α+l?α(8)数因⼦分配律:对k∈K, α, β∈V有:k?(α+β)= k?α+k?β称这样的集合V为数域K上的线性空间。

矩阵分析引论--第一章 线性空间与线性变换-线性变换的概念、线性变换的矩阵、不变子空间

矩阵分析引论--第一章 线性空间与线性变换-线性变换的概念、线性变换的矩阵、不变子空间
的变换T 满足:对于 , V 及 k P ,均有: (1) T( ) T( ) T( );
(2) T(k ) kT( ).
则称T 是线性空间V 的一个线性变换.
目录 上页 下页 返回 结束
第一章第五六七节 线性变换的概念及其矩阵、不变子空间
若′T ( ) , 则T ( )或′称为向量 ∈V 在线 性变换T 下的象,而 称为T ()或′的原象.
第一章 线性空间与线性变换
第五节 线性变换的概念 第六节 线性变换的矩阵 第七节 不变子空间
第一章第五六七节 线性变换的概念及其矩阵、不变子空间
第五节 线性变换的概念
一、线性变换的定义
设V 是数域P上的线性空间,从V 到V 的映 射称为V 的变换. 定义1-7:设V 是数域P上的线性空间,若V 上
R[a,b]:实连续函数空间
t
T ( f (t)) a f (u)du (a t b).
5. V , T ( ) 0.
零变换 0
6. V , T ( ) .
单位变换 I
目录 上页 下页 返回 结束
第一章第五六七节 线性变换的概念及其矩阵、不变子空间
二、线性变换的性质
1、若T是线性变换,则 T(0) 0, T( ) T( ).
2、线性变换T保持向量的线性组合与线性关系式,

m
m
kii T ( ) kiT (i );
i 1
i 1
m
m
kii 0
kiT (i ) 0 .
i 1
i 1
3、线性变换T 把线性相关的向量组变换成线性
相关的向量组.
注:线性变换不能保持线性无关的关系.
目录 上页 下页 返回 结束
第一章第五六七节 线性变换的概念及其矩阵、不变子空间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 基与坐标、坐标变换
(a) 维数
线性空间V中线性无关向量组所含向量最大个数n 称为V的维数(dimension),记为dimV=n。当n是有 限数时,称V为n维线性空间。当n=∞时,称V为无 限维线性空间。
2. 如果向量组x1,x2,…,xr线性无关,而且可以被向 量组y1,y2,…,ys线性表出,则r≤s。
3. 两个等价的线性无关的向量组,必含有相同数 量的向量。
4. 如果向量组x1,x2,…,xr线性无关,但x1,x2,…,xr,y 线性相关,则y必可以由x1,x2,…,xr线性表出,且表 法唯一。
❖ 矩阵的广义逆:将逆矩阵的概念在矩阵不可 逆的情形正在推广就得到了广义逆或伪逆矩 阵的概念,从而使矩阵的求逆运算推广到了 更广的场合。
❖ Kronecker积:Kronecker积是矩阵的另一种 乘法,有广泛的应用。
第一章 线性空间与线性变换
第一章 线性空间与线性变换
1.1 线性空间 1.2 基与坐标、坐标变换 1.3 线性子空间 1.4 线性映射 1.5 线性映射的值域、核 1.6 线性变换的矩阵与线性变换的运算 1.7 n维线性空间的结构 1.8 线性变换的特征值与特征向量 1.9 线性变换的不变子空间 1.10 矩阵的相似形
1.1 线性空间
一、线性空间概念 (a) 数域
数域(field):关于四则运算封闭的数的集合。 ✓任何数域都含有元素0和元素1;
✓典型数域:复数域C,实数域R,有理数域Q; ✓任意数域F都包括有理数域Q。
阿贝尔群V和数域F上的线性运算具有良 (b) 线性空间 好性质,则<V,F>构成一个线性空间。
例5 在Rn中,分别讨论下面两个向量组的线性相 关性:
例6 讨论下面2阶矩阵的线性相关性: a1 1a 11 11
A 1 11 ,A 2 11 ,A 3 a1 ,A 4 1a . 例7 设V是R上全体实函数构成的线性空间,讨论V 中元素组t,et,e2t的线性相关性。
1. 一个向量线性相关的充要条件是它是零向量。 两个以上的的向量线性相关的充要条件是其中有 一个向量是其余向量的线性组合。
数因子结合律 单位向量
k lx kl x
1x x
则称V是F上的线性空间(linear space)。当F是实
数域时,称V为实线性空间;当F是复数域时,称
V为复线性空间。
例1 实系数,次数不超过n的一元多项式的集合构 成实数域R上的线性空间,但由所有次数为n的实 系数多项式构成的集合V不是实数域R上的线性空 间。 例2 闭区间[a,b]上所有实连续函数集 C[a,b]={f(x)|f(x)是[a,b]上实连续函数}. f,gC[a,b],kR,(f+g)(x)=f(x)+g(x), (kf)(x)=kf(x).不难证明C[a,b]满足线性空间的 定义,故它是实线性空间。
❖ 矩阵分解:矩阵分解讲解满秩分解,正交三 角分解,奇异值分解,非负矩阵分解和谱分 解。
❖ 范数、序列、级数:定义了范数,我们就可 以定义矩阵序列、矩阵级数及其极限,并讨 论其收敛和发散性。
❖ 矩阵函数:以矩阵为变量的函数称为矩阵函 数。Jordan标准形在此起了很重要的作用。
❖ 函数矩阵与矩阵微分方程:将矩阵的概念 推广,元素为任意函数的矩阵称为函数矩阵。 这样我们可以求矩阵的导数、微分、积分, 并求解相应的微分方程。
则称x是x1,…,xm的线性组合(linear combination), 或称x能被x1,…,xm线性表示(线性表出)。 对于线性空间V中一组元素x1,…,xm,若存在数域F 中的一组不全为零的数c1,…,cm使得
则称x1,…,xm是线性相关(linearly dependent)的。 否则称x1,…,xm是线性无关(linearly independent) 的。
给定非空集合V ,数域F,如果满足:
Ⅰ 在V中定义一个封闭的加法
加法交换律 x y y x
加法结合律 x y z x y z
零向量 x 0 x
负向量 x x 0
Ⅱ 在V中定义一个封闭的数
元素对数分配律 k l x kx lx
❖ 矩阵与矩阵的Jordan标准形:元素为的多项式的 矩阵称为矩阵。特征矩阵E-A就是矩阵的特例。 利用这个概念我们可以导出任一矩阵均相似于其 Jordan标准形这一重要结果。特征值与特征向量 在求Jordan标准形的过程中起到了重要的作用。 而Jordan标准形有助于解决许多问题。
❖ 内积空间、正规矩阵、Hermite矩阵:引入 内积的线性空间称为内积空间(欧氏空间和 酉空间),内积将度量的概念引入到了线性 空间中,这样我们就可以在其中求距离、夹 角、极限等等。正规矩阵、Hermite矩阵、 二次型是本章的主要概念。
例3 所有n阶实向量的集合。Rn
例4 所有n阶实矩阵的集合。Rn×n
(c) 线性空间的基本性质 1. 零元素是唯一的; 2. 任一元素的负元素是唯一的;
3. 设k, 0,1 K,x, 0, x V,有
① 0x 0
② 1 x x
③ k0 0 ④ 若 kx 0 ,则
k 0或
x 0。
二、向量的线性相关性 给定线性空间V中一组元素x1,…,xm,对于x∈V, 若存在数域K中的一组数c1,…,cm使得
第一章线性空间和线性变换概况
主要内容
1. 线性空间与线性变换 2. 矩阵与矩阵的Jordan标准形 3. 内积空间、正规矩阵、Hermite矩阵 4. 矩阵分解 5. 范数、序列、级数 6. 矩阵函数 7. 函数矩阵与矩阵微分方程 8. 矩阵的广义逆 9. Kronecker积
❖ 线性空间与线性变换:以前我们谈集合和映射(自 己到自己的映射称为变换,一般映射总可以化为变 换),现在谈空间与变换。一般我们指具有结构的 集合称为空间。(代数)结构是指定义了某些运算的 集合。如定义了线性运算(加和数乘)且运算满足一 定性质的集合称为线性空间。第一章是全书的基础, 重要概念有线性空间、线性子空间、线性变换及其 矩阵表示、核空间,值空间、线性变换的特征值与 特征向量。
相关文档
最新文档