高中物理电磁学试题选
高中物理电磁学大题
一、计算题(60分)1.(5分)如图所示,两平行金属板A、B板长L=8cm,两板间距离d=8cm,A板比B板电势高300V,一带正电的粒子电量q=10﹣10C,质量m=10﹣20kg,沿电场中心线RO垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在O点的点电荷Q形成的电场区域,(设界面PS右边点电荷的电场分布不受界面的影响),已知两界面MN、PS相距为12cm,O点在中心线上距离界面PS为9cm,粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏bc上。
(静电力常数k=9×109Nm2/C2)(1) 求粒子穿过界面MN时偏离中心线OR的距离多远?(2) 试在图上粗略画出粒子运动的轨迹;(3) 确定点电荷Q的电性并求其电量的大小。
2.(5分)如图所示,空间有电场强度E=1.0×103 V/m竖直向下的匀强电场,长L=0.4m不可伸长的轻绳一端固定于O点,另一端系一质量m=0.05kg带正电q=5×10-4C的小球,拉起小球至绳水平后在A点无初速度释放,当小球运动至O点的正下方B点时,绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=300,无限大的挡板MN上的C点。
重力加速度g=10m/s2。
试求:(1) 绳子能承受的最大拉力;(2) A、C两点的电势差;(3) 当小球刚要运动至C点时,突然施加一恒力作用在小球上,同时把挡板迅速水平向右移动3.2m,若小球仍能垂直打在档板上,所加恒力的方向与竖直向上方向的夹角α的取值范围。
3.(5分)如图所示,平行于纸面的匀强电场中有三点A、B、C,其连线构成边长L=√3cm的等边三角形,现将一电荷量为q1=-1×10-8C的点电荷从A点移到B点,电场力做功为W1=3×10-6J,将另一电荷量为q2=2×10-8C的点电荷从A点移到C点,电荷克服电场力做功为W2=6×10-6J.(1) 求匀强电场的电场强度大小和方向;(2)一质量为m=1×10-6kg、电荷量q=3×10-8C的微粒在B点时的速度方向指向C,随后恰好通过A点,求该微粒通过A点时的动能。
高中物理选修21第三章电磁感应(含解析)
高中物理选修2-1第三章电磁感应(含解析)一、单选题1.下列现象中,属于电磁感应现象的是()A.小磁针在通电导线附近发生偏转B.通电线圈在磁场中转动C.闭合线圈在磁场中运动而产生电流D.磁铁吸引小磁针2.下列家用电器中,利用电磁感应原理进行工作的是()A.电吹风B.电冰箱C.电饭煲D.电话机3.下列设备中,利用电磁感应原理工作的是()A.电动机B.白炽灯泡C.发电机D.电风扇4.电磁感应现象在生活及生产中的应用非常普遍,下列不属于电磁感应现象及其应用的是()A.发电机B.电动机C.变压器D.日光灯镇流器5.如图所示,把一条长直导线平行地放在小磁针的上方附近,当导线中有电流通过时,小磁针会发生偏转。
首先观察到这个实验现象的物理学家是()A.奥斯特B.法拉第C.洛伦兹D.楞次6.金属探测器已经广泛应用于安检场所,关于金属探测器的论述正确的是()A.金属探测器可用于食品生产,防止细小的砂石颗粒混入食品中B.金属探测器探测地雷时,探测器的线圈中产生涡流C.金属探测器探测金属时,被测金属中感应出涡流D.探测过程中金属探测器与被测物体相对静止与相对运动探测效果相同7.在物理学中许多规律是通过实验发现的,下列说法正确的是()A.麦克斯韦通过实验首次证明了电磁波的存在B.牛顿通过理想斜面实验发现了物体的运动不需要力来维持C.奥斯特通过实验发现了电流的热效应D.法拉第通过实验发现了电磁感应现象8.关于感应电流,下列说法中正确的是()A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生D.只要闭合电路的导体做切割磁感线运动,电路中就一定有感应电流产生9.奥斯特发现电流的磁效应的这个实验中,小磁针应该放在()A.南北放置的通电直导线的上方B.东西放置的通电直导线的上方C.南北放置的通电直导线同一水平面内的左侧D.东西放置的通电直导线同一水平面内的右侧10.图所示的磁场中,有三个面积相同且相互平行的线圈S1、S2和S3,穿过S1、S2和S3的磁通量分别为Φ1、Φ2和Φ3,下列判断正确的是()A.Φ1最大B.Φ2最大C.Φ3最大D.Φ1=Φ2=Φ3二、多选题11.如图所示,直导线MN竖直放置并通以向上的电流I ,矩形金属线框abcd与MN处在同一平面,边ab与MN平行,则()A.线框向左平移时,线框中有感应电流B.线框竖直向上平移时,线框中有感应电流C.线框以MN为轴转动时,线框中有感应电流D.MN中电流突然变化时,线框中有感应电流12.我国已经制订了登月计划,假如航天员登月后想探测一下月球表面是否有磁场,他手边有一只灵敏电流计和一个小线圈,则下列推断中正确的是()A.直接将电流计放于月球表面,看是否有示数来判断磁场有无B.将电流计与线圈组成闭合回路,使线圈沿某一方向运动,如电流计无示数,则判断月球表面无磁场C.将电流计与线圈组成闭合回路,使线圈沿某一方向运动,如电流计有示数,则判断月球表面有磁场D.将电流计与线圈组成闭合回路,使线圈分别绕两个互相垂直的轴转动,月球表面若有磁场,则电流计至少有一次示数不为零13.于感应电流,下列说法中正确的是()A.只要闭合电路里有磁通量,闭合电路里就有感应电流B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量发生变化,线框也没有感应电流D.只要闭合电路的一部分导体切割磁感线运动电路中就一定有感应电流14.电磁感应现象揭示了电与磁之间的内在联系,根据这一发现,发明了许多电器设备.以下电器中,哪些利用了电磁感应原理()A.变压器B.白炽灯泡C.电磁灶D.电吹风15.发现电磁感应规律是人类在电磁学研究中的伟大成就。
高考物理新电磁学知识点之静电场基础测试题及答案(4)
高考物理新电磁学知识点之静电场基础测试题及答案(4)一、选择题1.真空中Ox坐标轴上的某点有一个点电荷Q,坐标轴上A、B两点的坐标分别为0.2 m和0.7 m。
在A点放一个带正电的试探电荷,在B点放一个带负电的试探电荷,A、B两点的试探电荷受到电场力的方向都跟x轴正方向相同,电场力的大小F跟试探电荷电量q的关系分别如图中直线a、b所示。
下列说法正确的是A.点电荷Q是正电荷B.点电荷Q的位置坐标为0.30 mC.B点的电场强度的大小为0.25 N/CD.A点的电场强度的方向沿x轴负方向2.如图所示,虚线a、b、c代表电场中的三条电场线,实线为一带负电的粒子仅在电场力作用下通过该区域时的运动轨迹,P、R、Q是这条轨迹上的三点,由此可知A.带电粒子在P点时的电势能比在Q点时的电势能大B.带电粒子在P点时的加速度大小小于在Q点时的加速度大小C.带电粒子在P点时的速度大小大于在Q点时的速度大小D.带电粒子在R点时的动能与电势能之和比在Q点时的小,比在P点时的大3.如图所示,A、B、C、D为半球形圆面上的四点,处于同一水平面,AB与CD交于球心且相互垂直,E点为半球的最低点,A点放置一个电量为+Q的点电荷,B点放置一个电量为-Q的点电荷,则下列说法正确的是()A .C 、E 两点电场强度不相同B .C 点电势比E 点电势高C .沿CE 连线移动一电量为+q 的点电荷,电场力始终不做功D .将一电量为+q 的点电荷沿圆弧面从C 点经E 点移动到D 点过程中,电场力先做负功,后做正功4.图中展示的是下列哪种情况的电场线( )A .单个正点电荷B .单个负点电荷C .等量异种点电荷D .等量同种点电荷5.如图所示,在空间坐标系Oxyz 中有A 、B 、M 、N 点,且AO =BO =MO =NO ;在A 、B 两点分别固定等量同种点电荷+Q 1与+Q 2,若规定无穷远处电势为零,则下列说法正确的是( )A .O 点的电势为零B .M 点与N 点的电场强度相同C .M 点与N 点的电势相同D .试探电荷+q 从N 点移到无穷远处,其电势能增加6.下列说法正确的是( )A .电场不是实物,因此不是物质B .元电荷就是电子C .首次比较准确地测定电子电荷量的实验是密立根油滴实验,其实验原理是微小带电油滴在电场中受力平衡D .库仑定律122kq q F r =与万有引力定律122km m F r =在形式上很相似;由此人们认识到库仑力与万有引力是同种性质的力7.如图所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O 处的电势为0V ,点A 处的电势为6V ,点B 处的电势为3V ,则电场强度的大小为A .200V /mB .2003/V mC .100/V mD .1003/V m8.一平行板电容器充电后与电源断开,负极板接地,两板间有一个带正电的检验电荷固定在P 点,如图所示,以C 表示电容器的电容,E 表示两板间的场强, 表示P 点的电势,p E 表示正电荷在P 点的电势能,若正极板保持不动,将负极板缓慢向右平移一小段距离0l ,则下列各物理量与负极板移动距离x 的关系图像正确的是( )A .B .C .D .9.a 、b 、c 、d 是匀强电场中的四个点,它们正好是一个矩形的四个顶点.电场线与矩形所在的平面平行.已知a 点的电势是20V ,b 点的电势是24V ,d 点的电势是4V ,如图.由此可知,c 点的电势为( )A .4VB .8VC .12VD .24V10.如图所示,一平行板电容器充电后与电源断开,负极板接地,在两极板间有一正电荷(电荷量很小)固定在P 点,用E 表示两极板间电场强度,U 表示电容器的电压,Ep 表示正电荷在P 点的电势能,若保持负极板不动,将正极板移到图中虚线所示的位置,则( )A .E 变大,Ep 变大B .U 变小,Ep 不变C .U 变大,Ep 变小D .U 不变,Ep 不变11.如图所示,在一对带等量异号电荷的平行金属板间,某带电粒子只在电场力作用下沿虚线从A 运动到B .则( )A .粒子带负电B .从A 到B 电场强度增大C .从A 到B 粒子动能增加D .从A 到B 粒子电势能增加12.如图所示,用劲度系数为15N/m 的轻弹簧悬挂一个绝缘带有电荷量为72.010C -⨯的小球A ,此时弹簧的长度为10cm 。
高中物理竞赛试题分类汇编―电磁学
高中物理竞赛试题分类汇编―电磁学全国中学生物理竞赛分类汇编电磁学第21届预赛三、(15分)测量电子电荷质量比(电荷Q与质量MQ/m之比)的实验装置如图所示。
真空玻璃管中阴极K的电能子,经阳极a与阴极k之间的高电压加速后,形成一束很细的电子流,电子流以平行于平板电容器极板的速度进入两极板c、d间的区域。
若两极板c、d间无电压,则离开极板区域的电子将打在荧光屏上的o点;若在两极板间加上电压u,则离开极板区域的电子将打在荧光屏上的p点;若再在极板间加一方向垂直于纸面向外、磁感应强度为b的匀强磁场,则打到荧光屏上的电子产生的光点又回到o点。
现已知极板的长度l=5.00cm,c、d间的距离d=l.50cm,极板区的中点m到荧光屏中点o的距离为l=12.50cm,u=200v,p点到o点的距离y?op?3.0cm;b=6.3×104t。
试求电子的荷质比。
(不计重力影响)。
-五、(15分)如图所示,两条平行的长直金属细导轨kl、pq固定于同一水平面内,它们之间的距离为l,电阻可忽略不计;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨良好接触,并可沿导轨滑动时没有摩擦。
两个杆的阻力均为r。
杆CD的中点用一根轻绳绑住,绳子的另一端绕过轻固定滑轮,悬挂一个质量为M的物体。
滑轮和转轴之间的摩擦被忽略,滑轮和杆CD之间的轻绳处于水平直线状态,与导轨平行。
导轨和金属细杆都处于均匀的磁场中,磁场的方向与导轨所在的平面垂直,磁感应强度为B。
此时,两根杆和悬浮液开始从静止状态移动。
当AB棒和CD棒的速度分别达到V1和V2时,两个棒的加速度是多少?8、(17点)在图中所示的电路中,每个电源的内阻为零,其中B点和C点为1.0?阻力和2.0?电阻连接到无限组合电路。
在图表中110? 连接在F电容器和E点之间的电极板上的电荷量。
rp2a第21届复赛五、(20点)如图所示,接地空心导体球壳的内径为r,电量为Q1和Q2的点电荷放置在空腔中直径为Q1=Q2=q的P1和P2处,两个??ap1r点电荷到球心的距离均为a.由静电感应与静电屏蔽可知:导体空腔内表面将出现感应电荷分布,感应电荷电量等于-2q.空腔内部的电场是由q1、q2和两者在空腔内表面上的感应电荷共同产生的.由于我们尚不知道这些感应电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感应电荷对腔内电场的贡献,可用假想的位于腔外的(等效)点电荷来代替(在本题中假想(等效)点电荷应为两个),只要假想的(等效)点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,? 与Q1一起在原腔中产生的电场是Q1在原腔内表面上感应的虚(等效)点电荷,Q1内表面位置的每个点的电势为0;Q2在原始空腔内表面上诱发的假设电荷(等效)?与q2共同产生的电场在原空腔内表面所在位置处各点的电势皆为0.这样确定点电荷q2的假想电荷叫做感应电荷的等效电荷,而且这样确定的等效电荷是唯一的.等效电荷取代?、问题2?Q1和Q2计算时空腔中存在原始导体的任何点的感应电荷,可以使用等效电荷Q1电势或场强?、q2?的位置及电量.1.试根据上述条件,确定假想等效电荷q12.求空腔内部任意点a的电势ua.已知a点到球心o的距离为r,oa与op1的夹角为??.七、(25分)如图所示,有二平行金属导轨,相距l,位于同一水平面内(图中纸面),处在磁感应强度为b的匀强磁场中,磁场方向竖直向下(垂直纸面向里).质量将odbxycyav0为M的两根金属棒AB和CD放置在导轨上,并与导轨垂直。
电磁学考试题库及答案高中
电磁学考试题库及答案高中电磁学是物理学中的一个重要分支,它研究的是电荷、电场、电流、磁场以及它们之间的相互作用。
以下是一份高中电磁学考试题库及答案,供同学们学习和练习。
一、选择题1. 电荷间的相互作用遵循以下哪条定律?A. 牛顿第一定律B. 牛顿第二定律C. 库仑定律D. 欧姆定律答案:C2. 以下哪个单位是用来测量电流的?A. 伏特(V)B. 安培(A)C. 欧姆(Ω)D. 法拉(F)答案:B3. 一个电路中,电阻为10Ω,通过它的电流为0.5A,根据欧姆定律,该电路两端的电压是多少伏特?A. 2VB. 5VC. 10VD. 20V答案:B4. 电磁波的传播速度在真空中是多少?A. 299,792,458 m/sB. 300,000 km/sC. 3×10^8 m/sD. 3×10^11 m/s答案:C5. 法拉第电磁感应定律表明什么?A. 电流的产生与磁场的变化有关B. 电流的产生与电场的变化有关C. 磁场的产生与电流的变化有关D. 电场的产生与磁场的变化有关答案:A二、填空题6. 电场强度的定义式是 \( E = \frac{F}{q} \),其中 \( E \) 表示电场强度,\( F \) 表示电荷所受的电场力,\( q \) 表示电荷量。
答案:电场强度7. 电流的国际单位是安培,用符号 \( A \) 表示。
答案:安培8. 一个闭合电路的总电阻为 \( R \),电源的电动势为 \( E \),电路中的电流 \( I \) 可以通过欧姆定律计算,即 \( I = \frac{E}{R} \)。
答案:欧姆定律9. 电磁波的三个主要特性包括:波长、频率和速度。
答案:波长、频率10. 法拉第电磁感应定律表明,当磁场变化时,会在导体中产生感应电动势。
答案:感应电动势三、简答题11. 简述电磁波的产生原理。
答案:电磁波是由变化的电场和磁场相互作用产生的,它们以波的形式向外传播,不需要介质,可以在真空中传播。
高中物理电磁学选择题举例与分析
高中物理电磁学选择题举例与分析电磁学是高中物理中的重要内容之一,也是学生们普遍感到困惑的部分。
在考试中,选择题是常见的形式,因此我们有必要针对一些典型的电磁学选择题进行举例与分析,帮助学生们更好地理解和掌握这一知识点。
一、电磁感应1. 题目:一根导线以速度v匀速穿过均匀磁场B,且与磁场方向垂直。
若导线两端电压为U,则导线的长度为?A. U/vBB. UB/vC. vB/UD. Uv/B解析:根据电磁感应定律,导线在磁场中运动时会感应出电动势。
根据题目中给出的导线两端电压U,我们可以利用电磁感应定律的公式:U = Blv,其中l为导线长度。
将公式改写为l = U/Bv,所以答案选A。
2. 题目:一个平行板电容器,两板间距离为d,板的面积为A。
当电容器中的电荷量Q发生变化时,电容器两板间的电压变化为ΔU。
若将电容器放入磁场中,磁感应强度为B,当电容器两板间的电流发生变化时,电容器两板间的电压变化为ΔU'。
则ΔU与ΔU'之间的关系是?A. ΔU = ΔU'B. ΔU > ΔU'C. ΔU < ΔU'D. 无法确定解析:根据法拉第电磁感应定律,当电容器中的电流发生变化时,会感应出电动势,从而引起电容器两板间的电压变化。
因此,ΔU'与ΔU之间存在一定的关系,但具体大小无法确定。
所以答案选D。
二、电磁波1. 题目:电磁波的传播速度与下列哪个物理量有关?A. 频率B. 波长C. 介质D. 振幅解析:根据电磁波的基本性质,电磁波的传播速度与其波长有关,而与频率、介质和振幅无关。
所以答案选B。
2. 题目:一束电磁波在真空中传播,其频率为f,波长为λ。
若将其传播介质换成折射率为n的介质,那么电磁波的频率和波长分别变为多少?A. f/n,λ/nB. nf,λ/nC. f/n,λnD. nf,λn解析:根据电磁波传播的基本原理,频率在介质中不发生变化,所以频率仍为f。
高中物理电磁学基础练习题及答案
高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
高中物理必修第三册课时同步检测—电磁感应现象及应用(含解析)
高中物理必修第三册课时同步检测—电磁感应现象及应用(含解析)一、单选题1.如图所示,变化的匀强磁场垂直穿过金属框架MNQP ,金属杆ab 在恒力F 作用下沿框架从静止开始运动,t =0时磁感应强度大小为B 0,为使ab 中不产生感应电流,下列能正确反映磁感应强度B 随时间t 变化的图像是( )A .B .C .D .【答案】C【解析】当通过闭合回路的磁通量不变时,则棒MN 中不产生感应电流,BS Φ=,设金属杆ab 长为L ,金属杆ab 距离MP 的距离为l 1,棒的质量为m ,则Fa m =,212x at =则()22101112+22ml FtFt B Ll BL l x BL l BL m m ⎛⎫=+=+= ⎪⎝⎭则21012+=2ml Ft B l B m所以21012+12ml Ft B m B l 随着时间增加,1B是增大的,且增大的速度越来越快,且非线性关系. 故选C 。
2.如图是漏电保护器的部分电路图,由金属环,线圈,控制器组成,其工作原理是控制器探测到线圈中有电流时会把入户线断开,即称电路跳闸,下列有关漏电保护器的说法正确的是( )A .当接负载的电线中电流均匀变化时,绕在铁芯上的线圈中有稳定的电流B .当接负载的电线短路或电流超过额定值时,漏电保护器会发出信号使电路跳闸C .只有当接负载的电线漏电时,绕在铁芯上的线圈中才会有电流通过D .当接负载的电线中电流不稳定时,漏电保护器会发出信号使电路跳闸【答案】C【解析】漏电保护器的工作原理是控制器探测到线圈中有电流时会把入户线断开,线圈的磁通量是由流入负载的导线中的电流和流出负载的导线中的电流在线圈中产生的磁通量的叠加,由于一般情况下,流入负载导线中的电流和流出负载导线中的电流等大反向,故线圈中的磁通量为零,无电流产生。
而发生漏电时,流入负载导线中的电流和流出负载导线中的电流大小不等,线圈的磁通量发生变化,有电流产生。
故选C 。
高中物理电磁学特训测试题目附加曲线运动测试
−31 7 u = 2 × 10 −1 m t = v 0 = v 0 = mv0 = 9.1 × 10 × 4 × 10 = 1.2 × 10 −8 s -----------------5 分 E a eE eE 1.6 × 10 −19 × 2 × 10 4 m mgtg 37° 15:①小球带负电, qE = tg 37° , q = = 1.85 × 10 −5 c ……………………(4 分) E mg
U U0 t -U0
参考答案
-8-
题号 序号
1 B
2 BCD
3 BD 12.左
4 BD
5 B
6 C
7 A
8 B
9 AB
10 B
11.导电纸;灵敏电流计;两只探针 指零电场答案 14:
13.B、E,导电纸
复写纸
白纸,指零,
1 2 mv = e ⋅ u 2
d=
u=
mv 2 9.1 × 10 −31 × 16 × 1014 = = 4.05 × 10 3 v -----------------5 分 2e 2 × 1.6 × 10 −19
6.如图,在 A 点放有电量为 Q 的点电荷,在 B 点放有电量为-2Q 的点电荷,在它们的连线 上有 M、N 两点,且 AM=BN,比较 M、N 两点的场强和电势高低,则 A.EM>EN,UM>UN C.EM<EN,UM>UN B.EM>EN,UM<UN D.EM<EN, UM<UN ( )
7.如图所示,让平行板电容器带电后,静电计的指针偏转一定角度,若不改变 A、B 两极板带的 电量而减小两极板间的距离,同时在两极板间插入电介质,那么静电计指针的偏转角度 ( ) A.一定减小 B.一定增大 C.一定不变 D.可能不变 8.一平行板电容器通过开关和电源连接,如图所示,电源的电动势保持 9V 不变.先闭合开关, 把一个厚 0.5mm 的金属板平行插入间距为 1mm 的两板之间( 金属板的面积和电容器极板 的相等).等稳定后再打开开关, 拔出金属板设整个过程中金属板未和电容器极板相碰.则 此时电容器极板间的电压是 ( ) A.9V B.18V C.4.5V D.0V
高中物理电磁感应练习题及答案
高中物理电磁感应练习题及答案一、选择题1、在电磁感应现象中,下列说法正确的是:A.感应电流的磁场总是阻碍原磁通量的变化B.感应电流的磁场方向总是与原磁场的方向相反C.感应电流的磁场方向总是与原磁场的方向相同D.感应电流的磁场方向与原磁场方向无关答案:A.感应电流的磁场总是阻碍原磁通量的变化。
2、一导体在匀强磁场中匀速切割磁感线运动,产生感应电流。
下列哪个选项中的物理量与感应电流大小无关?A.磁感应强度B.导体切割磁感线的速度C.导体切割磁感线的长度D.导体切割磁感线的角度答案:D.导体切割磁感线的角度。
二、填空题3、在电磁感应现象中,当磁通量增大时,感应电流的磁场方向与原磁场方向_ _ _ _ ;当磁通量减小时,感应电流的磁场方向与原磁场方向 _ _ _ _。
答案:相反;相同。
31、一根导体在匀强磁场中以速度v运动,切割磁感线,产生感应电动势。
如果只增大速度v,其他条件不变,则产生的感应电动势将_ _ _ _ ;如果保持速度v不变,只减小磁感应强度B,其他条件不变,则产生的感应电动势将 _ _ _ _。
答案:增大;减小。
三、解答题5、在电磁感应现象中,有一闭合电路,置于匀强磁场中,接上电源后有电流通过,现将回路断开,换用另一电源重新接上,欲使产生的感应电动势增大一倍,应采取的措施是()A.将回路绕原路转过90°B.使回路长度变为原来的2倍C.使原电源的电动势增大一倍D.使原电源的电动势和回路长度都增大一倍。
答案:A.将回路绕原路转过90°。
法拉第电磁感应定律是电磁学中的重要规律之一,它描述了变化的磁场产生电场,或者变化的电场产生磁场的现象。
这个定律是法拉第在1831年发现的,它为我们打开了一个全新的领域——电磁学,也为我们的科技发展提供了强大的理论支持。
在高中物理中,法拉第电磁感应定律主要通过实验和理论推导来展示,让学生们能够更直观地理解这个重要的规律。
高中的学生们已经对电场和磁场的基本概念有了一定的了解,他们已经掌握了电场线和磁场线的概念,以及安培定则等基本知识。
人教版高中物理电磁学静电场知识总结例题
(每日一练)人教版高中物理电磁学静电场知识总结例题单选题1、如图,在(a,0)位置放置电荷量为q的正点电荷,在(0,a)位置放置电荷量为q的负点电荷,在距P(a,a)为√2a的某点处放置正点电荷Q,使得P点的电场强度为零。
则Q的位置及电荷量分别为()A.(0,2a),√2q B.(0,2a),2√2qC.(2a,0),√2q D.(2a,0),2√2q答案:B解析:根据点电荷场强公式E=k Q r2两点量异种点电荷在P点的场强大小为E0=kqa2,方向如图所示两点量异种点电荷在P点的合场强为E1=√2E0=√2kqa2,方向与+q点电荷与-q点电荷的连线平行如图所示Q点电荷在p点的场强大小为E2=k Q(√2a)2=kQ2a2三点电荷的合场强为0,则E2方向如图所示,大小有E1=E2解得Q=2√2q由几何关系可知Q的坐标为(0,2a)故选B。
2、如图所示,在水平向右的匀强电场中,质量为m的带电小球,以初速度υ从M点竖直向上运动,通过N点时,速度大小为2υ,方向与电场方向相反,则小球从M运动到N的过程()A.动能增加12mυ2B.机械能增加2mυ2C.重力势能增加32mυ2D.电势能增加2mυ2解析:由动能的表达式E k =12mv 2可知带电小球在M 点的动能为E kM =12mv 2,在N 点的动能为E kN =12m (2v )=2mv 2,所以动能的增量为ΔE k =32mv 2,故A 错误;带电小球在电场中做类平抛运动,竖直方向受重力做匀减速运动,水平方向受电场力做匀加速运动,由运动学公式有v y =v =gt,v x =2v =at =qE mt ,可得qE =2mg ,竖直方向的位移ℎ=v2t ,水平方向的位移x =2v 2t =vt ,因此有x =2ℎ,对小球写动能定理有qEx −mgℎ=△E k =32mv 2,联立上式可解得qEx =2mv 2,mgℎ=12mv 2,因此电场力做正功,机械能增加,故机械能增加2mv 2,电势能减少2mv 2,故B 正确D 错误,重力做负功重力势能增加量为12mv 2,故C 错误.3、静电场中,带电粒子在电场力作用下从电势为φa 的a 点运动至电势为φb 的b 点.若带电粒子在a 、b 两点的速率分别为va 、vb ,不计重力,则带电粒子的比荷q /m ,为( )A .v a 2−v b 2φb−φaB .v b 2−v a 2φb−φaC .v a 2−v b 22(φb−φa)D .v b2−v a 22(φb−φa)答案:C 解析:带电粒子在a 、b 两点的速率分别为v a 、v b ,带电粒子在a 、b 两点动能的变化ΔE k =12mv b 2−12mv a 2带电粒子在电场力作用下从电势为φa 的a 点运动至电势为φb 的b 点,电势能的变化为ΔE P =qφb −qφa根据能量守恒得ΔE K =−ΔE P解得q m =v a 2−v b 22(φb −φa )4、如图所示,边长为a的等边ΔABC的A、B、C三点处各放置一个点电荷,三个点电荷所带电荷量数值均为Q,其中A、B处为正电荷,C处为负电荷;边长为a的等边ΔEFG的E、F、G三点处均有一垂直纸面的电流大小为I的导线,其中E、F处电流垂直纸面向内,G处电流垂直纸面向外,O,H是三角形的中心,D为AB中点,若两三角形均竖直放置,且AB、EF相互平行,下列说法正确的是()A.O点处的电势高于D点处的电势B.带负电的试探电荷沿直线从D点运动到O点的过程中电势能减小C.A点电荷所受电场力方向与E点处通电直导线所受安培力方向相同D.正电荷在O点处所受电场力方向与电流方向垂直纸面向外的通电导线在H点处所受安培力方向相同答案:D解析:A.结合三个点电荷分布可知,CD的电场线方向由D指向C,顺着电场线的方向电势逐渐降低,即O点处的电势低于D点处的电势,故A错误;B.带负电的试探电荷沿直线从D点运动到O点的过程中,电势降低,故负电荷的电势能增大,故B错误;C.在电场中,根据同种电荷排斥,异种电荷相吸引,分别作出B、C对A的作用力,再根据平行四边定则进行合成,得A点电荷所受电场力F A,其方向如左图所示;在磁场中,根据同向电流相吸引,反向电流相排斥,分别作出F、G对E的作用力,再根据平行四边定则进行合成,得E点处通电直导线所受安培力F E,其方向如右由图可知,A点电荷所受电场力方向与E点处通电直导线所受安培力方向不相同,故C错误;D.在电场中,作出A、B、C三个点电荷在O点产生的电场强度方向,因正电荷A、B两点电荷产生的电场强度大小相等,与DC线的夹角相等,根据平行四边形定则可知,A、B的合电场强度方向由O指向C,而负电荷C 在O点产生的电场强度方向,也是由O指向C,如左图所示,故三个点电荷在O点产生的电场强度方向最终也是由O指向C,所以将正电荷放在O点,其所受的电场力方向由O指向C;在磁场中,分别作出E、F、G三根通电导线在H点产生的磁感应强度方向,因E、F的电流大小相等,方向相同,且都向里,则两根通电导线在H 点产生的磁感应强度大小相等,方向如右图所示根据平行四边形定则,可知E、F两根通电导线的合磁感应强度方向沿水平向右,而G通的电流方向是垂直纸面向外,故在H点产生的磁感应强度方向是水平向右,故三根通电导线的最终合磁感应强度方向水平向右,所以根据左手定则可知,在H点放一根电流方向垂直纸面向外的通电导线,所受的安培力方向由H指向G,即正电荷在O 点处所受电场力方向与电流方向垂直纸面向外的通电导线在H 点处所受安培力方向相同,故D 正确。
2024-2024年高中物理知识点《电磁学》《磁场》综合测试试卷
第一部分:选择题(共60分)1.长直导线通电,其产生的磁场线是:A.与导线平面垂直的小圆圈B.与导线平面平行的半圆C.与导线平面垂直的直线D.与导线平面平行的直线2.在匀强磁场中,一电子垂直于磁场方向运动,如果其速度增大,则此时电子所受的磁力:A.增大B.减小C.不变D.无法判断3.载流直导线的磁感应强度的大小取决于下列哪项?A.导线的长度B.导线的宽度C.导线的电流方向D.导线的材料4.一质点在均匀磁场中作圆周运动,若磁场强度增加,则此时质点的运动半径会:A.增大B.减小C.不变D.无法判断5.两根平行直导线之间的力是由:A.电荷之间的相互作用力B.磁感线之间的相互作用力C.电荷和磁感线之间的相互作用力D.无法判断6.质量为m的带电粒子在匀强磁场中的圆周运动半径为R,速度为v,所受的磁场力为F,则F与v之间的关系为:A.F∝vB.F∝v²C.F∝1/vD.F∝1/v²7.两根电流方向相同的导线之间的相互作用力的方向是:A.按导线之间的直线方向B.按两导线平面的向内方向C.按两导线平面的向外方向D.沿行线的圆周方向8.载流直导线产生的磁场是由电流:A.垂直于导线方向的圆圈状磁感线组成B.平行于导线方向的磁感线组成C.垂直于导线方向的直线状磁感线组成D.平行于导线方向的直线状磁感线组成9.一条载流直导线上的电流强度增加,此时导线附近的磁感应强度:A.增大B.减小C.不变D.无法判断10.质量为m的带电粒子在匀强磁场中的圆周运动半径为R,速率为v,则v与R之间的关系为:A.v∝RB.v∝R²C.v∝1/RD.v∝1/R²第二部分:填空题(共40分)1.载流直导线的磁感应强度与导线长度和电流强度的关系为___________________。
2.在匀强磁场中,电子受到的磁力方向与速度和磁场方向之间的夹角为___________________。
3.一根电流为I的导线的磁感应强度与导线与观察点间的距离r的平方之和的关系为___________________。
高中物理电磁学练习题(含解析)
高中物理电磁学练习题学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。
许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。
转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。
高中物理电磁学经典例题
高中物理典型例题集锦(电磁学部分)25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有小孔M、N。
今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好为零,然后按原路径返回。
若保持两板间的电压不变,则:A.若把A板向上平移一小段距离,质点自P点下落仍能返回。
B.若把B板向下平移一小段距离,质点自P点下落仍能返回。
C.若把A板向上平移一小段距离,质点自P点下落后将穿过N孔继续下落。
图22-1D.若把B板向下平移一小段距离,质点自P点下落后将穿过N孔继续下落。
分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回,应选A。
若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功增加,所以它将一直下落,应选D。
由上述分析可知:选项A和D是正确的。
想一想:在上题中若断开开关S后,再移动金属板,则问题又如何?(选A、B)。
26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。
现有一离子束,其中每个离子的质量为m,电量为q,从与两板等距处沿着与板平行的方向连续地射入两板间的电场中。
设离子通过平行板所需的时间恰为 T(与电压变化周期相同),且所有离子都能通过两板间的空间打在右端的荧光屏上。
试求:离子击中荧光屏上的位置的范围。
(也就是与O‘点的最大距离与最小距离)。
重力忽略不计。
分析与解:各个离子在电场中运动时,其水平分运动都是匀速直线运动,而经过电场所需时间都是T,但不同的离子进入电场的时刻不同,由于两极间电压变化,因此它们的侧向位移也会不同。
高中物理电磁学部分试题精选.
电磁学部分一、在下列各踢的四个选项中,1~60小题只有一个选项是符合题目要求的,61~70小题有两个或两个以上的选项是符合题目要求的。
1. 下列关于电磁波的叙述中正确的是( )A. 电磁波是变化的电磁场由发生区域向远处的传播B .电磁波在任何介质中的传播速度为3×108m/sC. 电磁波由真空进入介质传播时, 波长将变化D. 电磁波不能产生干涉、衍射现象2. 19世纪20年代, 以数学家赛贝克为代表的科学家己认识到温度差会引起电流. 安培考虑到地球自转造成了被太阳照射后正面与背面的温度差, 从而提出如下假设:地球磁场是绕地球的环形电流引起的. 该假设中电流的方向是 ( )A. 由西向东垂直磁子午线B. 由东向西垂直磁子午线C .由南向北沿磁子午线方向 D. 由赤道向两极沿磁子午线方向3. 如图所示,A 、B 是两个外形相同的正六面体, 其中A 由金属板焊接而成,B 由玻璃板粘合而成, 在A 、B 之间有一个由电容器C 、电感线圈L, 干电池E 和单刀双掷开关S 组成的电路.初始时将S 置于位置l, 当电路处于稳定状态后, 不考虑其它干扰 , 将有( )A. 保持开关S 在1位置不变 ,A 内没有电磁波传播, B 内有电磁波传播B. 保持开关S 在1位置不变 ,A 和 B 内都有电磁波传播C. 将开关 S 掷于2位置后 ,A 内没有电磁波传播 ,B 内有电磁波传播D. 无论开关 S 置于何处 ,A 内均没有电磁波传播 ,B 内总有电磁波传播4. 如图,一绝缘细杆的两端各固定着一个小球,两小球带有等量异号的电荷,处于匀强电场中,电场方向如图中箭头所示。
开始时,细杆与电场方向垂直,即在图中Ⅰ所示的位置;接着使细杆绕其中心转过90”,到达图中Ⅱ所示的位置;最后,使细杆移到图中Ⅲ所示的位置。
以W 1表示细杆由位置Ⅰ到位置Ⅱ过程中电场力对两小球所做的功,W 2表示细杆由位置Ⅱ到位置Ⅲ过程中电场力对两小球所做的功,则有 A .W 1=0,W 2≠0 B .W 1=0,W 2=0 C .W 1≠0,W 2=0 D .W 1≠0,W 2≠05. 宇航员在探测某星球时, 发现该星球均匀带电,且电性为负, 电量为Q, 表面无大气 .在一次实验中, 宇航员将一带电-q (q 《 Q)的粉尘置于离该星球表面h 高处, 该粉尘恰处于悬浮状态;宇航员又将此粉尘带到距该星球表面2h 处, 无初速释放, 则此带电粉尘将( )A. 背向星球球心方向飞向太空B. 仍处于悬浮状态C. 沿星球自转的线速度方向飞向太空D. 向星球球心方向下落6. 等量异种点电荷的连线和其中垂线如图所示, 现将一个带负电的检验电荷先从图中a 点沿直线移到b 点, 再从b 点沿直线移到C 点. 则检验电荷在此全过程中( )A. 所受电场力的方向将发生改变B .所受电场力的大小恒定C. 电势能一直减小D. 电势能先不变后减小7. 空间中有一个孤立的带负电的金属球, 电荷量为q, 球半径为R, 球外a 、b 两点距球心的距离分别为2R 和4R, 如图所示 , 已知在带电金属球的电场中这两点的电场强度分别为a E 、b E , 电势分别为a φ、b φ关于这个电场有以下判断① a E >b E ② a φ > b φ③ 若在a 点引入一个带正电、电荷量也是q 的点电荷, 则该点电荷受到的电场力应是 F=q a E , 其中a E 是没有引人点电荷时, 金属球在a 点所产生的场强④ 若把该正点电荷从a 点移到b 点 , 电势能一定增大下述四个选项中包含全部正确说法的是( )A. ①②③B. ①③C. ①③④D. ①④8.空间存在一匀强磁场B, 其方向垂直纸面向里,另有一个点电荷+Q 的电场, 如图所示 .一带电-q 的粒子以初速度v 0从某处垂直电场、磁场入射, 初位置到点电荷的距离为r, 则粒子在电、磁场中的运动轨迹不可能为( )A. 以点电荷十Q 为圆心 , 以r 为半径的在纸平面内的圆周B. 开始阶段在纸面内向右偏的曲线C. 开始阶段在纸面内向左偏的曲线D. 沿初速度v 0方向的直线9. 不带电的金属球A 的正上方有一点, 该处有带电液滴不断地自静止开始落下, 液滴到达A 球后将电荷全部传给A 球, 不计其它影响, 则下列叙述中正确的是( )A. 第一液滴做自由落体运动 , 以后的液滴做变加速运动, 都能到达A 球B. 当液滴下落到重力等于电场力位置时, 液滴速度为零C. 当液滴下落到重力等于电场力位置时, 开始做匀速运动D. 一定有液滴无法到达A 球10. 如图所示, 在竖直放置的光滑半圆弧绝缘细管的圆心O 处固定一点电荷, 将质量为m, 带电量为q 的小球从圆弧管的水平直径端点A 由静止释放, 小球沿细管滑到最低点B 时, 对管壁恰好无压力, 则固定于圆心处的点电荷在AB 弧中点处的电场强度的大小为( )A. E=mg/qB. E=2mg/qC. E=3mg/qD. E =4mg/q11. 内壁光滑, 水平放置的玻璃圆环内, 有一直径略小于环口直径的带正电的小球, 以速度V 0沿逆时针方向匀速转动, 如图所示, 若在此空间突然加上方向竖直向上、磁感应强 度B 随时间成正比增加的变化磁场, 设运动过程中小球带电量不变,则正确的是( )A. 小球对玻璃环的压力一定不断增大B. 小球受到的磁场力一定不断增大C. 小球先沿逆时针方向减速运动一段时间后沿顺时针方向加速运动D. 磁场力对小球先做负功后做正功12. A 、B 是电场中的一条直线形的电场线, 若将一个带正电的点电荷从A 点由静止释放, 它在沿电场线从A 向B 运动过程中的速度图象如图所示 .比较A 、B 两点的电势ϕ和场强E ,下列说法中正确的是( )A .A ϕ<B ϕ,B A E E < B.B A ϕϕ<,B A E E >C. B A ϕϕ>,B A E E >D.B A ϕϕ>, B A E E <13. 传感器是把非电学量(如温度、速度、压力等)的变化转换为电学量变化的一种元件. 在自动控刽中有着广泛的应用. 如图所示是种测量液面高度h 的电容式传感器的示意图,从电容C 大小的变化就能反映液面的升降情况 .关于两者关系的说法中正确的是( )A. C 增大表示h 减小B .C 减小表示h 增大C .C 减小表示h 较小D. C 的变化与h 变化无直接关系14. 示波器可以视为加速电场与偏转电场的组合,若已知前者的电压为U 1 , 后者电压为U 2、极板长为L 、板间距为d ,且电子被加速前的初速度可忽略, 则下面关于示波器的灵敏度(偏转电场中每单位偏转电压所引起的偏转量h/U 2称“灵敏度”)与加速电场、偏转电场的关系中正确的是( )A. L 越大,灵敏度越大B. d 越大, 灵敏度越大C .U 1越大,灵敏度越小 D. 灵敏度与U 2无关15.要使平行板电容器两极板间电势差加倍, 同时极板间的场强减半,下述的四种方法中应采取哪种( )A .两极板的电荷量加倍,板间距离为原来的4倍B .两极板的电荷量减半, 板间距离为原来的4倍C .两极板的电荷量加倍, 板间距离为原来的2倍D .两极板的电荷量减半, 板间距离为原来的2倍16.传感器是一种采集信息的重要器件, 如图所示的是一种测定压力的电容式传感器,当待测压力F 作用于可动膜片的电极上时,以下说法中正确的是( )① 若F 向上压膜片电极, 电路中有从a 到b 的电流② 若F 向上压膜片电极, 电路中有从b 到a 的电流③ 若F 向上压膜片电极, 电路中不会出现电流④ 若电流表有示数 , 则说明压力 F 发生变化⑤ 若电流有有示数 , 则说明压力 F 不发生变化A. ②④B. ①④C. ③⑤D. ①⑤17. 如图所示, 质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点 (不计P 、Q 的重力以及它们间的相互作用),则从开始射入到打到上极板的过程, 下列说法中不正 确的是( )A. 它们运动的时间相等B. 它们所带的电荷量之比21=Q P q q C. 它们的电势能减小量之比21=∆∆Q P E E D. 它们的动量增量之比21=∆∆Q P P P 18. 电阻R 与两个完全相同的二极管连成如图所示的电路,a 、b 端加上电压ab U =1OV 时,a 点的电流为0.01A ;当ab U =-0.2V 肘 ,a 点的电流也为0.0lA,电阻R 的阻值为( )A .1020Ω B. 1000Ω C. 980Ω D. 20Ω19. 有一内阻为4.4Ω的直流电动机和一盏标有“110V 6OW ”的灯泡串联后接在电压恒定为22OV 的电路两端, 灯泡正常发光 , 则( )A. 电动机的输入功率为 60 WB. 电动机的发热电功率为 60 WC. 电路消耗的总功率为 6OWD. 电动机的输出功率为 6O W20. 如图所示的电路, 开关S 原来是闭合的, 当S 开时, 电流表的示数变化情况是 ( 电池内阻符号为 r )( )A. r=0 时示数不变 ,r≠0时示数变大B. r=0 时、 r≠0时示数都变大C .r=0 时示数变小 ,r ≠0时示数变大D. r=0时示数变大,r ≠0时示数变小21. 如图所示是一火警报警器的部分电路示意图. 其中R2为用半导体热敏材料制成的传感器, 电流表为值班室的显示器,a、b之间接报警器. 当传感器R2所在处出现火情时, 显示器的电流I、报警器两端的电压U的变化情况是( )A. I 变大, U 变大B. I 变大 ,U 变小C. I 变小 ,U 变大D. I 变小 ,U 变小22. 如图所示的电路图是测量电流表G内阻的实验电路图, 根据实验原理分析可知( )A. 测量值比真实值偏大B. 测量值比真实值偏小C. 测量值与真实值相等D. 测量值与真实值是否相等难以确定23. 如图所示的电路中,电阻R1=R2,外加电压U保持不变,在双刀双掷开关分别掷向3、6位置和掷向1 、4位置的两种情况下,电路在单位时间里放出的总热量之比是( )A.4 :1B.l :4C.2 :1D.1 :224. 在如图所示电路中,电源的电动势为E,内电阻为r,当变阻器R3的滑动触头P向b端移动时( )A. 电压表示数变大,电流表示数变小B. 电压表示数变小,电流表示数变大C. 电压表示数变大,电流表示数变大D. 电压表示数变小,电流表示数变小25. 如图所示是一种测量电阻阻值的实验电路图, 其中R1、R2是未知的定值电阻,R3是保护电阻. R是电阻箱,Rx为待测电阻. V0是一只零刻度在中央、指针可以左右偏转的双向电压表, 闭合开关S1、S2 , 调节R. 使电压表V0的指针指在零刻度处, 这时R的读数为90Ω,将R1、R2互换后再次闭合S1、S2, 调节R, 使指针指在零刻度处, 这时R的读数为 160Ω, 那么被测电阻Rx的数值和R1与R2的比值分别为 ( )A.120Ω,3 :4B. 125Ω,4 :3C.160Ω,16 :9D. 25OΩ,9 :1626. 某同学做电学实验 , 通过改变滑动变阻器电阻大小, 测量并记录了多组电压表和电流表的读数, 根据表格中记录的数据分析, 他所连接的电路可能是下列电路图中的( )27. 如图所示, R 1为定值电阻,R 2为可变电阻,E 为电源电动势,r 为电源的内电阻, 以下说法中正确的是( )A. 当R 2=R 1+r 时 ,R 2上获得最大功率B. 当R 2=R 1+r 时 ,R 1上获得最大功率C. 当R 2=0 时 , 电源的效率最大D. 当R 2=0 时 , 电源的输出功率一定最大28. 临沂市电厂发电机的输出电压稳定, 它发出的电先通过电厂附近的升压变压器升压,然后用输电线路把电能输送到远处居民小区附近的降压变压器, 经降低电压后输送到用户, 设升、降变压器都是理想变压器, 那么在用电高峰期, 白炽灯不够亮, 但电厂输送的总功率增加 , 这时( )A. 升压变压器的副线圈的电压变大B. 降压变压器的副线圈的电压变大C. 高压输电线路的电压损失变大D. 用户的负载增多, 高压输电线中的电流减小29. 计算电功率的公式RU P 2=中,U 表示用交流电压表测出的加在用电器两端的电压值,R 是用欧姆表测出的用电器的电阻值, 则此式可用于计算 ( )A. 电冰箱的功率B. 电风扇的功率C. 电烙铁的功率D. 洗衣机的功率30. 如图所示, 理想变压器的输入电压U 1不变 , R 1、R 2、R 3、R 4为定值电阻,R 为滑动变阻器 , 设电压表和电流表的示数分别为U 和I, 当R 的滑动触头向图中b 移动时,则( )A. U 不变 , I 不变B.U 减小 ,I 增大C.U 不变 ,I 增大D.U 减小 ,I 不变31. 如图所示,T 为理想变压器,A 1、A 2 为交流电流表 , R 1、R 2为定值电阻,R 3为滑动变阻器 ,原线圈两端接恒压交流电源, 当滑动变阻器的滑动触头向下 滑动时 ( )A. A 1读数变大 ,A 2 读数变大B. A 1读数变大 ,A 2读数变小C. A 1读数变小 ,A 2读数变大D. A 1读数变小, A 2读数变小32. 如图甲所示为分压器电路图, 已知电源电动势为E, 内电阻不计, 变阻器总电阻为 R 0=50Ω. 闭合开关S后, 负载电阻R L 两端的电压U 随变阻器a 端至滑动触头间的阻值Rx 变化而改变. 当负载电阻分别为R L1=20O Ω和R L2=2O Ω时, 关于负载电阻两端的电压U 随Rx 变化的图线大致接近图乙中哪条曲线的下列说法中, 正确的是( )A.R L1大致接近曲线① ,R L2大致接近曲线②B.R L1大致接近曲线②,R L2大致接近曲线①C.R L1大致接近曲线③,R L2大致接近曲线④D.R L1大致接近曲线④,R L2大致接近曲线③33. 如图所示为一理想变压器, 其原、副线圈的匝数均可调节, 原线圈两端电压为一最大值不变的正弦交流电, 为了使变压器输入功率增大, 可使 ( )A. 其他条件不变, 原线圈的匝数n 1增加B. 其他条件不变, 副线圈的匝数n 2的减小C . 其他条件不变 .负载电阻R 的阻值增大D . 其他条件不变 .负载电阻R 的阻值减小34. 如图所示 .理想变压器、原副线圈匝数之比n 1:n 2=3:l , 且分别接有阻值相同的电阻R 1和R 2,所加交流电源电压的有效值为U, 则( )A. R 1两端电压与R 2两端电压之比为3:1B. R1、R2消耗功率之比为1:9C. R 1、R 2两端电压均为U/4D. R 1 、R 2 消耗功率之比为l:l35. 如图所示, 理想变压器原、副线圈匝数之比n 1: n 2=4:1, 原线圈两端连接光滑导轨, 副线圈与电阻R 相连组成闭合回路. 当直导线AB在均强磁场中沿导轨匀速地向右做切割磁感线运动时, 电流表A 1 的读数是12mA, 那么电流表A 2的读数为 ( )A.OB. 3mAC.48mAD. 与电阻 R 大小有关36. 如图所示, 有一个理想变压器,0为副线圈中心抽出的线头 , 电路中两个电阻R 1和R 2的阻值相同, 开关S 闭合前后, 原线圈的电流分别为I 1和I 2, 则I 1:I 2等于 ( )A. 1:1B. 2:1C. 1:2D. 4:137. 如图所示, 理想变压器原、副线圈的匝数比为10:1,b 是原线圈的中心抽头, 电压表V 和电流表A 均为理想电表, 除R 以外其余电阻不计, 从某时刻开始在原线圈两端加上交变电压,其瞬时值表达式为u 1=220t π100sin 2V). 下列说法中正确的是( ) A. t=6001s 时, ac 两点间的电压瞬时值为110V B. t=6001s 时, 电压表的读数为22V C. 滑动变阻器触头向上移, 电压表和电流表的示数均变大D. 单刀双掷开关由a 搬向b,电压表和电流表的示数均变小38. 图(a)为某型号电热毯的电路图, 将电热丝接在u=156sin120πtV 的电源上, 电热毯被加热到一定温度后, 由于P 的作用使输入的正弦交流电仅有半个周期能够通过, 即电压变为图(b)所示波形, 从而进入保温状态, 则此时交流电压表的读数是( )A. 156VB. 110VC. 78VD. 55V39. 自藕变压器的特点是在铁心上只绕一个线圈,它的结构如图所示,P 、M 之间可以当作一个线圈,移动滑动触头P, 可以改变这个线圈的匝数;N 、M 之间可以当作另一个线圈. M 、N 与一个滑动变阻器相连,Q 为滑动变阻器的滑动触头, 下列论述中正确的是( )A. 当恒压电源接到a 、b 时, 向上移动滑动触头P, 电压表V 1的示数不变, V 2示数变大B. 当恒压电源接到a 、b 时, 向上移动滑动触头P, 电压表V 1的示数变大, V 2示数也变大C. 当恒压电源接到c 、d 时, 向上移动滑动触头Q, 电压表V 1的示数不变, V 2示数不变D. 当恒压电源接到c 、d 时, 向上移动滑动触头Q, 电压表V 1的示数变大, V 2示数不变40. 如图所示 , 三只白炽灯L 1、L 2、L 3分别和电感、电阻、电容器串联后并联接在同一个交变电源上. 当交变电源的电压为U, 频率为5OHz 时,三只灯泡的亮度相同, 那么当交变电源的电压不变,而频率增大后, 三只灯泡的亮度变化将是( )A. L 1变暗, L 2不变, L 3变亮B. L l 变亮, L 2不变, L 3变暗C. L l 变暗, L 2变亮, L 3变亮D. L 1变亮, L 2变亮, L 3变暗41. 一直升飞机停在南半球的地磁极上空。
电磁学经典练习题及答案
电磁学经典练习题及答案高中物理电磁学练习题一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.1.如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近验电器上部的金属板时,金属箔张开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①~④四个选项中选取一个正确的答案.[]图3-1B.图②C.图③D.图④2.下列关于静电场的说法中正确的是[]3.在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则[]于ΔE/dqΔE/q4.将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[]5.如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上的某点为圆心做匀速圆周运动,以下说法正确的是[]图3-2心力不相等6.如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[]图3-3B.c点场强D.c点电势7.如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说法正确的是[]图3-42μmgsμmgsμmgsμmgs8.如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q,整个装置处于水平向右的匀强电场中,电场强度为E.[]图3-59.将一个6V、6W的小灯甲连接在内阻不能忽略的电源上,小灯恰好正常发光,现改将一个6V、3W的小灯乙连接到同电源上,则 [ ]一定正常发光10.用三个电动势均为1.5V、内阻均为0.5Ω的相同电池串联起来作电源,向三个阻值都是1Ω的用电器供电,要想获得最大的输出功率,在如图3-6所示电路中应选择的电路是 [ ]图3-611.如图3-10所示的电路中,R1、R2、R3、R4、R5为阻值固定的电阻,R6为可变电阻,A为内阻可忽略的电流表,V为内阻很大的电压表,电源的电动势为,内阻为r.当R6的滑动触头P向a端移动时 [ ]图3-10大12.如图3-11所示的电路中,滑动变阻器的滑片P从a滑向b的过程中,3只理想电压表的示数变化的绝对值分别为ΔU1、ΔU2、ΔU3,下列各值可能出现的是 [ ]图3-11 ΔU1=3V、ΔU2=2V、ΔU3=1VΔU1=1V、ΔU2=3V、ΔU3=2V ΔU1=0.5V、ΔU2=1V、ΔU3=1.5V ΔU1=0.2V、ΔU2=1V、ΔU3=0.8V 13.如图3-12甲所示电路中,电流表A1与A2内阻相同,A2与R1串联,当电路两端接在电压恒定的电源上时,A1示数为3A,A2的示数为2A;现将A2改为与R2串联,如图3-12乙所示,再接在原来的电源上,那么 [ ]图3-12 1的示数必增大,A2的示数必减小 1的示数必增大,A2的示数必增大 1的示数必减小,A2的示数必增大 1的示数必减小,A2的示数必减小 14.如图3-13所示为白炽灯L1(规格为“220V,100W”)、L2(规格为“220V,60W”)的伏安特性曲线(I-U图象),则根据该曲线可确定将L1、L2两灯串联在220V的电源上时,两灯的实际功率之比大约为 [ ]图3-131∶2 B.3∶5 C.5∶3 D.1∶3 15.如图3-14所示的电路中,当R1的滑动触头移动时 [ ]图3-14 1上电流的变化量大于R3上电流的变化量 1上电流的变化量小于R3上电流的变化量 2上电压的变化量大于路端电压的变化量 2上电压的变化量小于路端电压的变化量 16.电饭锅工作时有两种状态:一种是锅内水烧干前的加热状态,另一种是锅内水烧干后保温状态,如图3-15所示是电饭锅电路原理示意图,S是用感温材料制造的开关.下列说法中正确的是 [ ]图3-152是供加热用的电阻丝2在保温状态时的功率为加热状态时的一半,R1/R2应为2∶12在保温状态时的功率为加热状态时的一半,R1/R2应为(-1)∶1 17.如图3-16所示M为理想变压器,电源电压不变,当变阻器的滑动头P向上移动时,读数发生变化的电表是 [ ]图3-16 1 B.A2 C.V1 D.V2 18.如图3-17甲所示,两节同样的电池(内电阻不计)与滑线变阻器组成分压电路和理想变压器原线圈连接,通过改变滑动触头P的位置,可以在变压器副线圈两端得到图3-17乙中哪些电压? [ ]图3-17 19.如图3-18所示的电路中,L1和L2是完全相同的灯泡,线圈L的电阻可以忽略.下列说法正确的是 [ ]图3-18 1先亮,L2后亮,最后一样亮1和L2始终一样亮 1立刻熄灭,L2过一会儿才熄灭 1和L2都要过一会儿才熄灭 20.如图3-19所示,理想变压器的副线圈上通过输电线接有三个灯炮L1、L2和L3,输电线的等效电阻为R,原线圈接有一个理想的电流表.开始时,开关S接通,当S断开时,以下说法中正确的是 [ ]图3-191和L2变亮21.如图3-20所示是一个理想变压器,A1、A2分别为理想的交流电流表,V1、V2分别为理想的交流电压表,R1、R2、R3均为电阻,原线圈两端接电压一定的正弦交流电源,闭合开关S,各交流电表的示数变化情况应是 [ ]图3-20 1读数变大 B.A2读数变大 1读数变小 D.V2读数变小22.如图3-21所示电路中,电源电动势为,内电阻为r,R1、R2为定值电阻,R3为可变电阻,C为电容器.在可变电阻R3由较小逐渐变大的过程中[ ]图3-21 2的电流方向是由b到a23.如图3-22所示是一理想变压器的电路图,若初级回路A、B两点接交流电压U时,四个相同的灯泡均正常发光,则原、副线圈匝数比为 [ ]图3-224∶1 B.2∶1 C.1∶3 D.3∶124.如图3-23所示,一个理想变压器的原、副线圈匝数之比为n1∶n2=10∶1,在原线圈上加220V的正弦交变电压,则副线圈两端c、d间的最大电压为[]图3-2322VB.22VC.零D.11V25.如图3-24所示,某理想变压器的原、副线圈的匝数均可调节,原线圈两端电压为一最大值不变的正弦交流电,在其它条件不变的情况下,为了使变压器输入功率增大,可使[]图3-241增加2增加26.如图3-26甲所示,闭合导体线框abcd从高处自由下落,落入一个有界匀强磁场中,从bc边开始进入磁场到ad边即将进入磁场的这段时间里,在图3-26乙中表示线框运动过程中的感应电流-时间图象的可能是[]图3-2627.如图3-28所示,abcd是粗细均匀的电阻丝制成的长方形线框,导体棒MN有电阻,可在ad边与bc边上无摩擦滑动,且接触良好,线框处在垂直纸面向里的匀强磁场中,在MN由靠近ab边处向dc边匀速滑动的过程中,下列说法正确的是[]图3-28端的电压先减小后增大28.一平行板电容器充电后与电源断开,负极板接地.在两极板间有一正电荷(电量很小)固定在P点,如图3-30所示.以E表示两板间的场强,U表示电容器两板间的电压,W表示正电荷在P点的电势能.若保持负极板不动,将正极板移到图中虚线所示位置,则[]图3-30B.E变大,W变大D.U不变,W不变29.如图3-31所示,有一固定的超导体圆环,在其右侧放着一条形磁铁,此时圆环中没有电流.当把磁铁向右方移走时,由于电磁感应,在超导体圆环中产生了一定的电流[]图3-3130.如图3-32所示的哪些情况中,a、b两点的电势相等,a、b两点的电场强度矢量也相等? []图3-32带电时,极板间除边缘以外的任意两点a、bb31.在图3-33中虚线所围的区域内,存在电场强度为E的匀强电场和磁感强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转.设重力可以忽略不计,则在这区域中E和B的方向可能是[]图3-33向,并与电子运动方向相反32.在一根软铁棒上绕有一组线圈,a、c是线圈的两端,b为中心抽头,把a端和b抽头分别接到两条平行金属导轨上,导轨间有匀强磁场,方向垂直于导轨所在平面并指向纸内,如图3-35所示,金属棒PQ在外力作用下以图示位置为平衡位置左右做简谐运动,运动过程中保持与导轨垂直,且两端与导轨始终接触良好,下面的过程中a、c点的电势都比b点的电势高的是[]图3-35中33.质量为m、电量为q的带电粒子以速率v垂直磁感线射入磁感强度为B的匀强磁场中,在磁场力作用下做匀速圆周运动,带电粒子在圆周轨道上运动相当于一环形电流,则[]34.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图3-36所示.若小球运动到A点时,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是[]图3-3635.如图3-37所示,竖直面内放置的两条平行光滑导轨,电阻不计,匀强磁场方向垂直纸面向里,磁感强度B=0.5T,导体棒ab、cd长度均为0.2m,电阻均为0.1Ω,重力均为0.1N,现用力向上拉动导体棒ab,使之匀速上升(导体棒ab、cd与导轨接触良好),此时cd静止不动,则ab上升时,下列说法正确的是[]图3-372N2m/s2s内,拉力做功,有0.4J的机械能转化为电能2s内,拉力做功为0.6J36.如图3-38所示,闭合矩形线圈abcd与长直导线MN在同一平面内,线圈的ab、dc两边与直导线平行,直导线中有逐渐增大、但方向不明的电流,则[]图3-3837.如图3-39甲所示,A、B表示真空中水平放置相距为d的平行金属板,板长为L,两板加电压后板间电场可视为匀强电场,现在A、B两极间加上如图3-39乙所示的周期性的交变电压,在t=T/4时,恰有一质量为m、电量为q的粒子在板间中央沿水平方向以速度v射入电场,忽略粒子重力,下列关于0粒子运动状态表述正确的是[]图3-39A.粒子在垂直于板的方向的分运动可能是往复运动的值同时满足一定条件,粒子可以沿与板平行0的方向飞出.38.如图3-40甲所示,两块大平行金属板A、B之间的距离为d,在两板间加上电压U,并将B板接地作为电势零点,现将正电荷q逆着电场线方向由A板移到B板,若用x表示称动过程中该正电荷到A板的距离,则其电势能随x变化的图线为图3-40乙中的[]图3-4039.如图3-41所示,用绝缘细丝线悬吊着的带正电小球在匀强磁场中做简谐振动,则[]图3-4140.如图3-42甲所示,直线MN右边区域宽度为L的空间,存在磁感强度为B的匀强磁场,磁场方向垂直纸面向里.由导线弯成的半径为R(L>2R)的圆环处在垂直于磁场的平面内,且可绕环与MN的切点O在该平面内转动.现让环以角速度ω顺时针转动.图3-42乙是环从图示位置开始转过一周的过程中,感应电动势的瞬时值随时间变化的图象,正确的是[]图3-4241.空间某区域电场线分布如图3-43所示,带电小球(质量为m,电量为q)在A点速度为v1,方向水平向右,至B点速度为v2,v2与水平方向间夹角为α,A、B间高度差为H,以下判断正确的是[]图3-431/2)mv22-(1/2)mv12)/q2cosα-v1)1/2)mv22-(1/2)mv12-mgH2sinα42.如图3-44所示,一块金属导体abcd和电源连接,处于垂直于金属平面的匀强磁场中,当接通电源、有电流流过金属导体时,下面说法中正确的是[]图3-44两侧存在电势差,且a点电势低于d点电势43.如图3-45所示,MN、PQ是间距为l的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置,并以速度v向右匀速滑动.则 [ ]图3-453 2Blv/344.如图3-46所示,Q1、Q2带等量正电荷,固定在绝缘平面上,在其连线上有一光滑的绝缘杆,杆上套一带正电的小球,杆所在的区域同时存在一个匀强磁场,方向如图,小球的重力不计.现将小球从图示位置从静止释放,在小球运动过程中,下列说法中哪些是正确的 [ ]图3-4645.一根金属棒MN放在倾斜的导轨ABCD上处于静止,如图3-47所示,若在垂直于导轨ABCD平面的方向加一个磁感强度均匀增大的匀强磁场,随着磁感强度的增大,金属棒在倾斜导轨上由静止变为运动,在这个过程中,关于导轨对金属棒的摩擦力f的大小变化情况是 [ ]图3-47大小 46.如图3-48所示,一个质子和一个α粒子垂直于磁场方向从同一点射入一个匀强磁场,若它们在磁场中的运动轨迹是重合的,则它们在磁场中运动的过程中 [ ]图3-48α粒子冲量的2倍 α粒子的冲量是质子冲量的2倍 47.如图3-49甲所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN成水平沿导轨滑下.在与导轨和电阻R组成的闭合电路中,其他电阻不计,当金属杆MN进入磁场区后,其运动的速度图象可能是图3-49乙中的 [ ]图3-49二、解答应写出必要的文字说明、方程式和重要演算步骤,答案中必须明确写出数值和单位.1.如图3-87所示的电路中,电源电动势=24V,内阻不计,电容C=12μF,R1=10Ω,R3=60Ω,R4=20Ω,R5=40Ω,电流表G的示数为零,此时电容器所带电量Q=7.2×10-5C,求电阻R2的阻值?图3-87 2.如图3-88中电路的各元件值为:R1=R2=10Ω,R3=R4=20Ω,C=300μF,电源电动势=6V,内阻不计,单刀双掷开关S开始时接通触点2,求:图3-88 1)当开关S从触点2改接触点1,且电路稳定后,电容C所带电量.2)若开关S从触点1改接触点2后,直至电流为零止,通过电阻R的电1量.3.光滑水平面上放有如图3-89所示的用绝缘材料制成的L形滑板(平面部分足够长),质量为4m,距滑板的A壁为L距离的B处放有一质量为m,电1量为+q的大小不计的小物体,物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中.初始时刻,滑块与物体都静止,试问:图3-89多大?1)释放小物体,第一次与滑板A壁碰前物体的速度v12)若物体与A壁碰后相对水平面的速率为碰前速率的3/5,则物体在第二次跟A壁碰撞之前,滑板相对于水平面的速度v和物体相对于水平面的速度v分别为多大?23)物体从开始运动到第二次碰撞前,电场力做的功为多大?(设碰撞所经历时间极短)4.如图3-90所示,半径为r的金属球在匀强磁场中以恒定的速度v沿与磁感强度B垂直的方向运动,当达到稳定状态时,试求:图3-901)球内电场强度的大小和方向?2)球上怎样的两点间电势差最大?最大电势差是多少?5.如图3-91所示,小车A的质量M=2kg,置于光滑水平面上,初速度为=14m/s.带正电荷q=0.2C的可视为质点的物体B,质量m=0.1kv0g,轻放在小车A的右端,在A、B所在的空间存在着匀强磁场,方向垂直纸面向里,磁感强度B=0.5T,物体与小车之间有摩擦力作用,设小车足够长,求图3-911)B物体的最大速度?2)小车A的最小速度?3)在此过程中系统增加的内能?(g=10m/s2)6.把一个有孔的带正电荷的塑料小球安在弹簧的一端,弹簧的另一端固定,小球穿在一根光滑的水平绝缘杆上,如图3-92所示,弹簧与小球绝缘,弹簧质量可不计,整个装置放在水平向右的匀强电场之中,试证明:小球离开平衡位置放开后,小球的运动为简谐运动.(弹簧一直处在弹性限度内)图3-927.有一个长方体形的匀强磁场和匀强电场区域,它的截面为边长L=0.20m的正方形,其电场强度为E=4×105V/m,磁感强度B=2×10-2T,磁场方向垂直纸面向里,当一束质荷比为m/q=4×10-10kg/C的正离子流以一定的速度从电磁场的正方形区域的边界中点射入如图3-93所示,图3-931)要使离子流穿过电磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?2)在离电磁场区域右边界0.4m处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a点,若撤去磁场,离子流击中屏上b点,求ab间距离.8.如图3-94所示,一个初速为零的带正电的粒子经过M、N两平行板间电场加速后,从N板上的孔射出,当带电粒子到达P点时,长方形abcd区域内出现大小不变、方向垂直于纸面且方向交替变化的匀强磁场.磁感强度B=0.4T.每经t=(π/4)×10-3s,磁场方向变化一次.粒子到达P点时出现的磁场方向指向纸外,在Q处有一个静止的中性粒子,P、Q间距离s=3m.PQ直线垂直平分ab、cd.已知D=1.6m,带电粒子的荷质比为1.0×104C/kg,重力忽略不计.求图3-941)加速电压为220V时带电粒子能否与中性粒子碰撞?2)画出它的轨迹.3)能使带电粒子与中性粒子碰撞,加速电压的最大值是多少?9.在磁感强度B=0.5T的匀强磁场中,有一个正方形金属线圈abcd,边长l=0.2m,线圈的ad边跟磁场的左侧边界重合,如图3-95所示,线圈的电阻R=0.4Ω,用外力使线圈从磁场中运动出来:一次是用力使线圈从左侧边界匀速平动移出磁场;另一次是用力使线圈以ad边为轴,匀速转动出磁场,两次所用时间都是0.1s.试分析计算两次外力对线圈做功之差图3-9510.如图3-97所示的装置,U1是加速电压,紧靠其右侧的是两块彼此平行的水平金属板,板长为l,两板间距离为d.一个质量为m、带电量为-q的质点,经加速电压加速后沿两金属板中心线以速度v0水平射入两板中,若在两水平金属板间加一电压U2,当上板为正时,带电质点恰能沿两板中心线射出;当下板为正时,带电质点则射到下板上距板的左端l/4处.为使带电质点经U1加速后,沿中心线射入两金属板,并能够从两金属之间射出,问:两水平金属板间所加电压应满足什么条件,及电压值的范围.图3-9711.矩形线圈M、N材料相同,导线横截面积大小不同,M粗于N,M、N由同一高度自由下落,同时进入磁感强度为B的匀强场区(线圈平面与B垂直如图3-99所示),M、N同时离开磁场区,试列式推导说明.图3-9912.匀强电场的场强E=2.0×103Vm-1,方向水平.电场中有两个带电质点,其质量均为m=1.0×10-5kg.质点A带负电,质点B带正电,电量皆为q=1.0×10-9C.开始时,两质点位于同一等势面上,A的初速度vAo=2.0m·s-1,B的初速度vBo=1.2m·s-1,均沿场强方向.在以后的运动过程中,若用Δs表示任一时刻两质点间的水平距离,问当Δs的数值在什么范围内,可判断哪个质点在前面(规定图3-100中右方为前),当Δs的数值在什么范围内不可判断谁前谁后?图3-10013.如图3-101所示,两根相距为d的足够长的平行金属导轨位于水平的xy平面内,一端接有阻值为R的电阻.在x>0的一侧存在沿竖直方向的均匀磁场,磁感强度B随x的增大而增大,B=kx,式中的k是一常量,一金属直,方杆与金属导轨垂直,可在导轨上滑动,当t=0时位于x=0处,速度为v0向沿x轴的正方向.在运动过程中,有一大小可调节的外力F作用于金属杆以保持金属杆的加速度恒定,大小为a,方向沿x轴的负方向.设除外接的电阻R外,所有其它电阻都可以忽略.问:图3-1011)该回路中的感应电流持续的时间多长?/2时,回路中的感应电动势有多大?2)当金属杆的速度大小为v03)若金属杆的质量为m,施加于金属杆上的外力F与时间t的关系如何?14.如图3-102所示,有一矩形绝缘木板放在光滑水平面上,另一质量为m、带电量为q的小物块沿木板上表面以某一初速度从A端沿水平方向滑入,木板周围空间存在着足够大、方向竖直向下的匀强电场.已知物块与木板间有摩擦,物块沿木板运动到B端恰好相对静止,若将匀强电场方向改为竖直向上,大小不变,且物块仍以原初速度沿木板上表面从A端滑入,结果物块运动到木板中点时相对静止.求:图3-1021)物块所带电荷的性质;2)匀强电场的场强大小.15.(1)设在磁感强度为B的匀强磁场中,垂直磁场方向放入一段长为L的通电导线,单位长度导线中有n个自由电荷,每个电荷的电量为q,每个电荷定向移动的速率为v,试用通过导线所受的安掊力等于运动电荷所受洛伦兹力的总和,论证单个运动电荷所受的洛伦兹力f=qvB.图3-1032)如图3-103所示,一块宽为a、厚为h的金属导体放在磁感应强度为B的匀强磁场中,磁场方向与金属导体上下表面垂直.若金属导体中通有电流强度为I、方向自左向右的电流时,金属导体前后两表面会形成一个电势差,已知金属导体单位长度中的自由电子数目为n,问:金属导体前后表面哪一面电势高?电势差为多少?16.如图3-104(a)所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O、O′,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动.其速度图象如图3-104(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O处连续不断以垂直于C板方向飘入质量为m=3.2×10-21kg、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计).求图3-104(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界MN?2)粒子从边界MN射出来的位置之间最大的距离为多少?17.如图3-108所示是一个电子射线管,由阴极上发出的电子束被阳极A与阴极K间的电场加速,从阳极A上的小孔穿出的电子经过平行板电容器射向荧光屏,设A、K间的电势差为U,电子自阴极发出时的初速度可不计,电容器两极板间除有电场外,还有一均匀磁场,磁感强度大小为B,方向垂直纸面向外,极板长度为d,极板到荧光屏的距离为L,设电子电量为e,质量为m.问图3-1081)电容器两极板间的电场强度为多大时,电子束不发生偏转,直射到荧光屏S上的O点; 2)去掉两极板间电场,电子束仅在磁场力作用下向上偏转,射在荧光屏S上的D点,求D到O点的距离x. 18.如图3-109所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1kg的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面.当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω.不计一切摩擦,g取10m/s2.求:图3-1091)导体棒所达到的稳定速度是多少?2)导体棒从静止到达稳定速度的时间是多少?答案:一、1.B 2.ACD 3.BD 4.AD 5.BC 6.AD 7.AD 8.AD 9.AB 10.C 11.AC 12.BD 13.A 14.D 15.AC 16.ABD 17.AB 18.BCD 19.D 20.D 21.ABD 22.AB 23.D 24.B 25.BD 26.CD 27.BD 28.AC 29.D 30.BD 31.ABC 32.C 33.CD 34.ACD 35.BC 36.BC 37.AD 38.C 39.AD 40.D 41.CD 42.AD 43.CD 44.AD 45.B 46.D 47.ACD1.解:电容器两端电压 UC=Q/C=6V,R4/R5=U4/(-U4), 4=8V. U1=6+8=14V,则有1/(-U1)=R1/R2,∴R2=7.14Ω. 1=8-6=2V,则有-U′1)=R1/R2,∴R2=110Ω. 2.解:(1)接通1后,电阻R1、R2、R3、R4串联,有/(R1+R2+R3+R4)=0.1A.C=U3+U4=I(R3+R4)=4V. Q=CUC=1.2×10-3C. 2)开关再接通2,电容器放电,外电路分为R1、R2和R3、R4两个支路,通过两支路的电量分别为I1t和I2t,I=I1+I2;I1与I2的分配与两支路电阻成反比,通过两支路的电量Q则与电流成正比,故流经两支路的电量Q12和Q34与两支路的电阻成反比,即 12/Q34=(R3+R4)/(R1+R2)=40/20=2,12+Q34=Q=1.2×10-3C,所以 Q12=2Q/3=0.8×10-3C. 3.解:(1)对物体,根据动能定理,有1=(1/2)mv12,得 v1=.2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1′;滑板的速度为v,则 1=mv1′+4mv. 1′=(3/5)v1,则v=v1/10,因为v1′>v,不符合实际,故应取v1′=-(3/5)v1,则v=(2/5)v1=(2/5).做匀速运动,在这段时间内,两者相对于水平面的位移相同. 2+v1′)/2t=v·t,v2=(7/5)v1=(7/5).3)电场力做功 1/2)mv12+((1/2)mv22-(1/2)mv1′2)=(13/5)qEL1.4.(1)稳定时球内电子不做定向运动,其洛伦兹力与电场力相平衡,有Bev=Ee,∴ E=Bv,方向竖直向下. 2)球的最低点与最高点之间的电势差最大 max=Ed=E×2r=2Bvr. 5.解:(1)对B物体:fB+N=mg, 0, vmax=mg/Bq=10m/s. 2)A、B系统动量守:Mv0=Mv+mvmax, ∴ v=13.5m/s,即为A的最小速度. 3)Q=ΔE=(1/2)Mv02-(1/2)Mv2-(1/2)mvmax2=8.75J. 6.解:设小球带电荷量为q,电场的电场强度为E,弹簧的劲度系数为k. 0. 0=qE. ① 0+x,以向右为正,小球所受合外力 合=qE-k(x0+x), ② F合=-kx. 指向平衡位置,与相对于平衡位置的位移成正比,所以小球所做的运动为简谐运动. 7.解:(1)电场方向向下,与磁场构成粒子速度选择器,离子运动不偏转,则qE=qBv, 2×107m/s.2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力为洛伦兹力,于是2/R,R=mv/qB=0.4m.θ=L/R=1/2,即θ=30°.如图17甲所示.1=R-Rsinθ=0.05m.距离为y=y1+Dtgθ=0.28m.a=qE/mθ′如图17乙所示,则tgθ′=vy/v=(qEL/mv2)·(1/2),图172′=(1/2)at2=0.05m.y′=y2′+Dtgθ′=0.25m,=0.53m.8.解:(1)设带电粒子在磁场中做匀速圆周运动的半径为r,周期为T.2πm/Bq=(π/2)×10-3s,t恰为半个周期.1/2)mv2和r=mv/Bq,0.5m,可见s=6r.200V时,带电粒子能与中性粒子碰撞.2)如图18所示图183)带电粒子与中性粒子碰撞的条件是:PQ之间距离s是2r的整数n倍,且r≤D/2,2,即r′=0.75m.max=(1/2)mv′2,解得Umax=450V.9.使线圈匀速平动移出磁场时,bc边切割磁感线而产生恒定感应电动势,线圈中产生恒定的感生电流=Blv,①/R,②。
高中物理竞赛电磁学专题练习20题(带答案详解)
高中物理竞赛电磁学专题练习20题(带答案详解)一、解答题1.如图所示,长直螺旋管中部套有一导线围成的圆环,圆环的轴与螺旋管的轴重合,圆环由电阻不同的两半圆环组成,其阻值1R 、2R 未知.在两半圆环的结合点A 、B 间接三个内阻均为纯电阻的伏特表,且导线0A V B --准确地沿圆环直径安放,而1A V B --、2A V B --分置螺旋管两边,长度不拘,螺旋管中通有交流电时发现,0V 、1V 的示数分别为5V 、10V ,问:1V 的示数为多少?螺旋管外的磁场及电路的电感均忽略不计2.图1、2、3所示无限长直载流导线中,如果电流I 随时间t 变化,周围空间磁场B 也将随t 变化,从而激发起感应电场E .在载流导线附近空间区域内,B 随t 的变化,乃至E 随t 的变化可近似处理为与I 随时间t 变化同步.距载流导线足够远的空间区域,B 、E 随t 的变化均会落后于I 随t 的变化.考虑到电磁场变化传播的速度即为光速,如果题图讨论的空间区域线度尽管很大,即模型化为图中x 可趋向无穷,但这一距离造成的B 、E 随t 的变化滞后于I 随t 变化的效应事实上仍可略去.在此前提下,求解下述问题(1)系统如图1、2所示,设()I I t =①通过分析,判定图1的xOy 平面上P 处感应电场场强P E 的三个分量Px E 、Py E 、PzE中为零的分量②图2中12l l ⨯长方形框架的回路方向已经设定,试求回路电动势ε③将图1中的P 、Q 两处感应电场场强的大小分别记为P E 、Q E ,试求P Q -E E 值 (2)由两条无限长反向电流导线构成的系统如图3所示,仍设()I I t =,试求P 处感应电场场强P E 的方向和大小3.现构造如图1所示网络,该网络为无穷正方形网络,以A 为原点,B 的坐标为()1985,930.现在两个这样的网络C C A B 和L L A B ,其单位长度上所配置的电学元件分别为电容为C 的电容器及电感为L 的线圈,且网络中的电阻均忽略不计,并连接成如图2所示的电路S 为调频信号发生器,可发出频率()0,f Hz ∈+∞的电学正弦交流信号.即()0sin 2πS U U ft =,0U 为一已知定值,R 为一已知保护电阻试求干路电流达到最大时,S 的频率m f 以及此时干路的峰值电流max I4.在空间中几个点依次放置几个点电荷1q ,2q ,3q ,4q ,…,n q ,对于点i ,其余1n -个点电荷在这一点上的电势和为i U ,若在这n 个点上换上另n 个点电荷1q ',2q ',3q ',…,n q ',同理定义()1,2,,i U i n '=(1)证明:()112nni i i i i i qU q U n ==''=≥∑∑(2)利用(1)中结论,证明真空中一对导体电容器的电容值与这两个导体的带电量无关.(这对导体带等量异号电荷)(3)利用(1)中的结论,求解如下问题:如图所示,正四面体ABCD 各面均为导体,但又彼此绝缘.已知带电后四个面的静电势分别为1ϕ、2ϕ、3ϕ和4ϕ,求四面体中心O点的电势O ϕ5.有七片完全相同的金属片,面积为S ,放置在真空中,除4和5两板间的间距为2d 外,其他相邻两板间距均为d ,且1和5、3和7用导线相连,试求:(1)4与6两板构成的电极的电容(2)若在4和6间加上电压U ,求各板的受力.6.如图所示,一电容器由一圆形平行金属板构成,金属板的半径为R ,间距为d ,现有一点P ,在两金属板的中位面(即平行于两板,且平分两极板所夹区域的平面)上,P 到两中心O 的距离为()0R r r +>R ,已知极板所带的面电荷密度为σ±,且R r d ,试求P 点的场强大小P E7.在一环形铁芯上绕有N 匝外表绝缘的导线,导线两端接到电动势为ε的交流电源上,一电阻为R 、自感可略去不计的均匀细圆环套在这环形铁芯上,细圆环上a 、b 两点间的环长(劣弧)为细圆环长度的1n.将电阻为r 的交流电流计G 接在a 、b 两点,有两种接法,分别如图1、图2所示,试分别求这两种接法时通过G 的电流8.有一个平面正方形无限带电网络,每个格子边长均为r ,线电荷密度为()0λλ>,有一带电电量为()0Q Q >、质量为m 的粒子恰好处于一个格子的中心,若给它某个方向的微扰,使其位移d ,dr .试求它受到电场力的大小,并描述它以后的运动.(提示:可能用到的公式2222π11116234=++++)9.(1)一维电磁驻波()()sin x E x A k x =在x 方向限制在0x =和x a =之间.在两个端点处驻波消失,求x k 的可能值.(2)弦理论认为物理空间多于三维,多出的隐藏维空间像细圆柱的表面一样卷了起来,如图中y 坐标所示,设圆柱的半径为()b a ,在圆柱面上电磁波的形式为()()(),sin cos x y E x y A k x k y =,其中y 是绕圆柱的折叠空间的坐标.求y k 的可能值.(3)光子能量W =()1239hc eV nm =⨯,eV 表示1电子伏特,1nm 等于910m -.目前人类能产生的最高能量的光子大约为121.010eV ⨯.如果该能量能够产生一个折叠空间的光子,b 的值满足什么条件?10.在图1所示的二极管电路中,从A 端输入图2所示波形的电压,若各电容器最初都没有充电,试画出B 、D 两点在三个周期内的电压变化.将三极管当作理想开关,B 点电压的极限是多少?11.理想的非门可以视为一个受控电压源:当输入端电压小于6C U V =时,输出端相当于和地线之间有一个理想电压源,电源电压012U V =;当输入端电压大于C U 时,输出端相当于和地线之间短路.等效电路图如图1所示.不同非门中接地点可以视为是同一个点,我们利用非门、电容和电阻能够做成一个输出方波信号的多谐振荡器.给出图2电路中02U 随着时间的变换关系.提示:如图3的RC 电路,从刚接通电路开始,电容上的电压随时间变化规律为()()01t RC U t U e -=-12.如图所示,在圆形区域中(足够大),有垂直于纸面向内随时间均匀增加的磁场Bk t∆=∆.在与圆心O 距离为d 的位置P 处有一个钉子,钉住了一根长度为l ,质量为m 的均匀绝缘棒的中心,绝缘棒能在平面内自由无摩擦地自由转动.绝缘棒上半截均匀带正电,电量为Q ,下半截均匀带负电,电量为Q -.初始时刻绝缘棒垂直于OP(1)计算在P 点处钉子受到的压力(2)若绝缘棒受到微小扰动,在平面内来回转动起来(速度很小,洛仑兹力可以忽略),求证此运动是简谐振动,并计算周期.(绝缘棒绕质心的转动惯量为2112I ml =) 13.如图1所示的电阻网络中,图中各段电阻的阻值均为r(1)试求AB R 、AC R(2)现将该网络接入电路中,如图2所示.AC 间接电感L ,A 、B 间接一交流电源,其角频率为ω,现为提高系统的动率因数,在A 、B 间接一电容C ,试求使功率因数为1的电容C ,已知rL αω=14.两个分别绕有1N 和2N 匝的圆线圈,半径分别为1r ,2r 且21r r ,设大圆的电阻为R ,试求:(1)两线圈在同轴共面位置的互惑系数(2)在小线圈中通以稳恒电流I ,并使之沿轴线以速度v 匀速运动.始终保持二者共轴,求两线圈中心相距为x 时,大线圈中的感生电动势(3)若把小线圈从共面移到很远处,求大线圈中通过的感生电量.(忽略所有自感) 15.如图所示为一两端无限延伸的电阻网络,设每小段电阻丝电阻均为1Ω,试问:A 、B 间等效电阻AB R 为多少?(结果保留三位有效数字)16.如图a 所示,电阻101k R R ==Ω,电动势6V E =,两个相同的二极管D 串联在电路中,二极管D 的D D I U -特性曲线如图b 所示.试求: (1)通过二极管D 的电流; (2)电阻1R 消耗的功率.17.如图甲所示,两台发电机并联运行,共同供电给负载,负载电阻24R =Ω.由于某种原因,两台发电机的电动势发生差异,1130V ε=、11r =Ω、2117V ε=、20.6r =Ω.求每台发电机中的电流和它们各自发出的功率.18.如图1所示的无限旋转内接正方形金属丝网络由一种粗细一致、材料相同的金属丝构成,其中每一个内接正方形的顶点都在外侧正方形四边中点上.已知与最外侧正方形边长相同的同种金属丝A B ''的电阻为0R ,求网络中 (1)A 、C 两端间等效电阻AC R ; (2)E 、G 两端间等效电阻EC R .19.正四面体框架形电阻网络如图所示,其中每一小段的电阻均为R,试求:(1)AB两点间的电阻;(2)CD两点间的电阻.20.在如图所示的网络中,仅知道部分支路上的电流值及其方向、某些元件参数和支路交点的电势值(有关数值及参数已标在图甲上),请你利用所给的有关数值及参数求出含有电阻x R的支路上的电流值x I及其方向.参考答案1.220V U V =或0. 【解析】 【详解】因螺旋管中通有交流电,故回路中产生的电动势也是交变的,但可以仅限于某确定时刻的感生电动势、电压和电流的瞬时值,这是因为在无电感、电容的情况下,各量有效值的关系与瞬时值的关系相同.(1)当12R R <,取A B U U >时,回路中的电流如图所示,则0001102V I R I R ε+-=,0100102V V I R I R ε'+-=, 0002202V I R I R ε-+=,0200202V V I R I R ε'-+=. 整理可得0120001202V V V V I R I R I R I R ε''=+=-.所以,2201201220V V V V U I R I R I R V ''==+= (2)当12R R >,取A B U U <时,0I 反向,其他不变,则1020010202V V V V I R I R I R I R ε''=-=+所以,221021020V V V V U I R I R I R ''==-=(此时20R =,即2R 段为超导体,10R ≠) 综上所述,220V U V =或0 2.(1)①0Pz E =②012d ln2πd l x l l t x με+⎛⎫=⎪⎝⎭③02d ln 2πd P Q x l I E E t x μ+⎛⎫-=⎪⎝⎭(2)()0d ln2πd P I d xE x t xμ-⎛⎫=⎪⎝⎭,基准方向取为与y 轴反向 【解析】 【详解】(1)①若0Pz E ≠,则在过P 点且与xOy 坐标面平行的平面上,取一个以x 为半径,以y 轴为中央轴的圆,设定回路方向如题解图所示.由系统的轴对称性,回路各处感应电场E 的角向分量与图中Pz E 方向一致地沿回路方向,且大小相同,由E 的回路积分所得的感应电动势0ε≠.另一方面,电流I 的磁场B 在该回路所包围面上磁通量恒为零,磁通量变化也为零,据法拉第电磁感应定律应有0ε=.两者矛盾,故必定是0Pz E =.若0Py E ≠,由系统的轴对称性,在题解图1的圆柱面上各处场强E 的y 方向分量方向、大小与图中Py E 方向、大小相同.若取一系列不同半径x 的同轴圆柱面,每个圆柱面上场强E 的y 方向分量方向相同、大小也相同,但大小应随x 增大而减小.这将使得题文图2中的矩形回路感生感应电动势0ε≠,与法拉第电磁感应定律相符,因此允许0Py E ≠若0Px E ≠,由轴对称性,题解图1的圆柱面上各处场强E E 的径向分量方向与Px E 对应的径向方向一致,两者大小也相同.将题解图1中的圆柱面上、下封顶,成为一个圆筒形高斯面,上、下两个端面d ⋅E S 通量积分之和为零,侧面d ⋅E S 通量积分不为零,这与麦克斯韦假设所得1d d 0se sV V ρε⋅==⎰⎰⎰⎰⎰E S 矛盾,故必定是0Px E =②据法拉第定律,参考题文图2,有()21d d d x l x B x l x t ε+=--⎰,其中()02πI B x xμ= 所以,001221d d ln ln d 2π2πd Il x l x l l l t x t xμμε++⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭ ③据麦克斯韦感应电场假设,结合(1.1)问解答,有()()121=d LE l E x lE x l l ε⋅=-+⎰结合①②问所得结果,有()()012121d ln 2πd l x l I E x l E x l l t xμ+⎛⎫-+=⎪⎝⎭()()022d ln 2πd x l I E x E x l t xμ+⎛⎫-+=⎪⎝⎭即得()()022d ln 2πd P Q x l I E E E x E x l t xμ+⎛⎫-=-+=⎪⎝⎭(2)从物理上考虑,远场应()220l E x l →∞+→代入上式,得()202d ln 2πd P l x l I E E x t xμ→∞+⎛⎫==→∞ ⎪⎝⎭为行文方便,将P E 改述为()02d ln 2πd z P P l x l I E E x t xμ→∞+⎛⎫→=→∞ ⎪⎝⎭()P E x 为发散量,系因模型造成,并非真实如图所示,由左侧变化电流贡献的()P x 左E 和右侧变化电流贡献的()P x 右E 合成的()P E x ,基准方向取为与y 轴反向.即有()()()P P P E x E x E x =-左右()()00d d ln ln 2πd 2πd P x d x l x l I I E x t x t xμμ∞+-++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭左右 ()()()00d d ln ln 2πd 2πd P d x l d x x l I I E x t d xt d xμμ∞-+-++⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭右左使得()()0d ln 2πd P I d xE x E x t xμ-⎛⎫==⎪⎝⎭3.0maxU I R=,2πmf ω== 【解析】 【详解】不妨设电感网络等效电感AB L L α=,则其阻抗L αω=Z j (j 为单位虚根) 又由于C C A B 与L L A B 的结构相同,故在阻抗上形式具有相似性,有1C Cαω=⋅Z j ,从而总阻抗11L C R R L R L C C αωααωωω⎛⎫⎛⎫=++=+-=+- ⎪ ⎪⎝⎭⎝⎭Z Z Z Z j j j又峰值00U I =Z,所以,100I U -=⋅ 所以,当10L Cωω-=,即ω=0I 最大 此时,0max U I R=,而2πmf ω== 4.(1)证明见解析(2)证明见解析(3)12344O ϕϕϕϕϕ+++=【解析】 【详解】(1)设i 点对j 点所产生的电势为ij i a q ,同理易知j 点对i 点产生电势为ji j a q ,而对于此二点系统,我们有ij j ji i U q U q =,即ij i j ji j i a q q a q q = 所以,ij ji a a =,易知ij a 为只与位置有关的参量. 又1231231n ni i i i i n ij j j U a q a q a q a q a q ==++++=∑(令0ii a =)则1231231n ni i i i i n ij j j U a q a q a q a q a q =''''''=++++=∑(ij a 只与位置有关)所以,111,1111nn n n n n ni i i ij j ij i j i ij j i i i i j i j i j i qU q a q a q q q a q q U =======⎛⎫⎛⎫'''''==== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑∑∑所以原式(格林互易定理)成立(2)分别设两导体前后所带静电分别为1Q ±,2Q ±,其对应的电容分别为1C 、2C 则由(1)知,()121122121221niii qU QUQU Q U U ='=-=-∑(其中21U ,22U 为带2Q ±时两导体电势) 同样()211212211121ni ii q UQ U Q U Q U U ='=-=-∑(其中11U ,12U 为带1Q ±时两导体电势)由(1)知二者相等,则()()1212221112Q U U Q U U -=- 所以,121211122122Q Q C C U U U U ===--即与导体带电量多少无关.(3)由题意,设四个面与中心O 的电荷量分别为1q 、2q 、3q 、4q 、0 同时,四个面与中心的电势分别为1ϕ、2ϕ、3ϕ、4ϕ、O ϕ.现将外面四个面接地,中心放一个电量为Q 的点电荷,中心电势为U ,而四个面产生的感应电荷都相等,为4Q-,则此时四个面与中心O 的电荷和电势分别为 4Q -、4Q -、4Q -、4Q-、Q ;0、0、0、0、U 由格林互易定理可得123404444O Q Q Q Q U ϕϕϕϕϕ⎛⎫⎛⎫⎛⎫⎛⎫⋅-+⋅-+⋅-+⋅-+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭即可得12344O ϕϕϕϕϕ+++=5.(1)04616161919S C C d ε==(2)204232361U S F d ε=,方向向上;205213722U S F dε=,方向向下;206216722U S F d ε=,方向向上;207281722U S F dε=,方向向上 【解析】 【详解】(1)由4与6两板构成的电极的电容结构可等效为图所示的电容网络,其中图101223345667SC C C C C C dε======,04522SC C dε==. 由图可知,各电容器所带的电量满足342356Q Q Q =+,451267Q Q Q +=,2312Q Q =. 各支路的电压满足如下关系:3456Q Q U C C +=,45672Q Q U C C +=,23566712Q Q Q Q C C C C+=-. 由上述各式解得1223119Q Q CU ==,341019Q CU =,45619Q CU =,56919Q CU =,67719Q CU =, 则344504616161919Q Q SC C U d ε+===. 为求4、6端的电容,我们也可通过先求如图左所示的电阻网络的阻值,进而求得电容.将图中O ABC -的Y 形接法部分转化为△接法,得到图2右所示电路,其阻值如图所示,进而易得到461916R R =. 直流电路的电阻、电压、电流之间有U I R=. 由电容组成的电路的电容、电压、电量之间有Q CU =. 类比有1C R~. 且上述的电阻电路与电容电路匹配,所以,46461C R ~,即有04616161919S C C dε==.(2)由于各板的受力为系统中其他板上的电荷在该板处产生的电场对其板上电荷的作用力,故而通过高斯定理易求得各板处的场强,进而求得各板的受力为20121111202722U S Q F E Q Q d εε==⋅=,方向向下,在原系统中.(1E 求法:1板上侧面不带电,下侧面带电12Q ,正电,即011219USQ Q dε==,由电荷守恒知,27~板带电总量为1Q ,为负电,将27~视为整体,由高斯定理易得到1102Q E ε=) 下面符号i Q 表示第i 块板所带的总电量.2220F E Q ==.(该板显然有20Q =)2456701233332009922722Q Q Q Q U S Q Q F E Q Q d εεε⎛⎫++++==-⋅= ⎪⎝⎭,方向向下.式中00033423109191919US US USQ Q Q d d dεεε=-+=-+=-, 0434451619US Q Q Q d ε=+=, 054556319USQ Q Q d ε=-+=,0656671619USQ Q Q d ε=--=-,0767719USQ Q dε=-=-.同理可得:204232361U SF d ε=,方向向上; 205213722U SF d ε=,方向向下; 206216722U SF d ε=,方向向上; 207281722U SF dε=,方向向上.6.02πP dE rσε=【解析】 【详解】我们用磁场来类比,引入假想的磁荷1m q 、2m q ,且定义123014πm m q q r μ==F r ,且1213014πm m q q r μ==F H r . 下面我们通过磁偶极子与环电流找到联系:对于一1m ±q 的磁偶极子,磁矩m m q =p l ,而对于一个电流为I 的线圈,磁矩0m I μ'=p S ,当m m '=p p 时,有0m q I μ=l S .对于此题,我们认为上、下两极板带磁荷面密度为m σ±,则对于S ∆面积中的上、下磁荷,我们看作磁偶极子,则若用环电流代替,有0m Sd I S σμ∆=∆, 所以,0m dI σμ=. 于是,该两带电磁荷板可等效为许多小电流元的叠加,而这样的电流源会在内部抵消,最后只剩下最外层一大圆,且0m dI σμ=. 在P 点处的磁场强度,由于R r ,故可认为由一距P 距离为r 的无限长通电导线所产生,且其中的电流为I ,则002π2πm P d BIH r rσμμ===. 由于电、磁场在引入磁荷后,在形式上完全一样,则02πP dE rσε=7.()21n N n R n r ε⎡⎤-+⎣⎦【解析】 【详解】解法(1):细圆环中的电动势为R Nεε=.细圆环上ab 段的电阻为劣弧ab R R n=. 优弧()1ab n R R n-'=.如题图1中接上G 后,G 的电阻r 与ab R 并联,然后再与ab R '串联,这时总电阻便为()11ab ab ab n R rR rRR R r R nr R n-'=+=+++.于是,总电流(通过优弧ab R '的电流)为()1111RI n R R NrRnr R nεε==⋅-++. (请读者自行推导此式)则通过G 的电流为()11121RR n n i I I R nr R N n R n r rnε===+⎡⎤-+⎣⎦+. (请读者自行推导此式)解法(2):如题图2中接上G 后,G 的电阻r 与ab R '并联,然后再与ab R 串联,这时总电阻便为()()211ab ab ab n rR rR R R R nr n R n r R '-=+=++-'+.于是,总电流(通过劣弧ab R 的电流)为()()22111RI n rR R N R nr n R n εε==⋅-++-,则通过G 的电流为()()2211n n i N n R n r ε-=⎡⎤-+⎣⎦8.故对于一微扰位移为d 的粒子,有()20π02Q Q r λλε=->F d,粒子做简谐振动,ω=【解析】 【详解】引理:线电荷密度为()0λλ>的无限长带电线,其在距带电线r 处产生的场强大小为02πE rλε=,方向垂直于带电线向外. 证明略.对于本题所给的模型,建立图示坐标.因粒子在x 轴方向上的受力只与粒子x 方向上的微扰有关,在y 方向上的受力,也只与y 方向上的微扰有关,设粒子在x 方向上有微扰位移x d ,则110021212π2πd 22x i i x Q Q F i i d r x r λλεε∞∞==∆=---⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭∑∑. 又由于xd r ,则()()110022111121212π2π22x x x i i d d Q Q F i r i r i r i r λλεε∞∞==⎡⎤⎡⎤∆≈--+⎢⎥⎢⎥--⎛⎫⎛⎫⎣⎦⎣⎦-- ⎪ ⎪⎝⎭⎝⎭∑∑ ()()22221100441ππ2121xxi i Q d Q d r i ri λλεε∞∞===-=---∑∑.又22222222221111111111113523456246⎛⎫⎛⎫+++=-++++++-+++ ⎪ ⎪⎝⎭⎝⎭222222*********111234564123⎛⎫⎛⎫=++++++-+++ ⎪ ⎪⎝⎭⎝⎭223ππ468=⨯=,所以,20π2x x Q F d r λε∆=-. 同理,20π2y y Q F d r λε∆=-. 故对于一微扰位移为d 的粒子,有()20π02Q Q rλλε=->F d ,故粒子做简谐振动,ω=9.(1)πx n k a =,1n =,2,3,… (2)y mk b=,1m =,2,3,…(3)12101239102102πb nm nm -->⨯≈⨯ 【解析】 【详解】(1)要使得电磁波在两端形成驻波,则长度应是半波长的整数倍,相位满足:πx k a n =,即πx n k a=,1n =,2,3,…. (2)要使得电磁波在y 方向上的形式稳定为()()(),sin cos x y E x y A k x k y =,则圆柱的周长应为波长的整数倍,相位满足:2π2πy k b m =,即y mk b=,1m =,2,3,…. (3)由W =1210=, 所以,121239102πm m b <,即12101239102102πb nm nm -->⨯≈⨯10.02U 【解析】 【详解】将过程分为三个阶段,记为α、β、γ. 在第一个14周期内,A U 增加,0A D U U >>,因此二极管2D 截止;又因0DB U ≥,二极管1D 保持导通,等效电路如图1所示,在此阶段2D B A U U U ==,记为α然后A U 开始减小,但AD U 保持不变,最初D U 仍然大于零,因此,2D 依然截止.不过D U 正在逐渐减小,所以1D 截止.由于电容上的电荷无处可走,B U 保持不变,AD U 也保持不变.这个阶段一直持续到0D U =,这一过程等效电路如图2所示,记为β.不过,0D U <是不可能的,所以0D U =直至0A U U =-.这一过程等效电路如答图3所示,记为γ.下面A U 又从0U -开始增加,然后AD U 又保持在0U -不变(再次处于β阶段),而B D U U >停留在02U ,直到D U 升至B U .当D B U U =时β阶段结束. 而后新的α阶段又开始了.每个周期均按αβγβ---的次序通过各个阶段,但是电路并不是随时间周期变化的,这可以从图4中看出.B U 等比地趋近于02U ,即是说00322B U U U -→,034U ,038U ,0316U ,….这个电路称为电压倍增器 11.见解析 【解析】 【详解】将多谐振荡器电路等效为图示电路,可见电流只在0102U R C U ---回路中流动.假设系统存在稳态,则电容电量为常数,因而电阻上电流为0,则1G 输入电压等于输出电压,这显然矛盾,因而系统不存在稳态.不失一般性,电容初态电压为0,系统初态010U =,因而0212U V =,电路沿顺时针给电容充电(电阻上的电流I 从下向上为正,电容电量Q 右边记为正).从0C Q Q CU ==时起,图中i U 的大小开始小于6V ,门反转,将此后直到门再次反转的过程记为过程I :此时0112U V =,020U =,由于电容上电量不突变,所以,006i Q U V C=-=-. 因而电路沿逆时针给电容反向充电,新充入电量为Q ∆.0120Q Q V IR C +∆-=--,即18QV IR C∆=--. i U 不断上升,到达6C U V =时,10C Q Q Q CU =+∆=-时,门反转,此后进入过程Ⅱ.设过程Ⅰ历时t Ⅰ,将18Q V IR C ∆=--与题目中的RC 电路满足的0QU IR C ∆=+类比,过程Ⅰ满足的018U V =,()12QU t V C∆==,则由电容上的电压随时间变化规律()()01t RC U t U e -=-可得:ln 3t RC =Ⅰ.对于过程Ⅱ,此时010U =,0212U V =, 由于电容上电量不突变,所以,11218i Q U V C=-=. 因而电路沿顺时针给电容正向充电,新冲入电量为Q '.1012Q Q V IR C '+∆-=--,即18Q V IR C'∆=+. i U 不断上升,到达6C U V =时,210C Q Q Q CU Q '=+∆==,门再次反转,此后又进入过程Ⅰ.同理可得:1ln 3t RC =. 过程Ⅰ、Ⅱ循环进行.因此得方波的信号周期为2ln3T RC =.12.(1)4klQ (2)22T ==【解析】 【详解】设由变化的磁场产生的涡旋电场大小为E ,则有22ππBE r rt∆⋅=∆, 得到2rE k =⋅,方向垂直于与O 的连线. 则杆上场强分量为2x k E y =-⋅,2y kE d =-⋅.(1)由于上下电量相反,y 方向的场强为定值,故钉子在y 方向不受力.在x 方向上,其所受电场力(考虑到上下对称)为202d 224l k Q klQF y y l ⎛⎫=⨯-⋅⋅= ⎪⎝⎭⎰.故钉子压力为4klQ.(由于电场和y 坐标成正比,因而也可以使用平均电场计算电场力) (2)设绝缘棒转过一微小角度θ,此时,y 方向的电场力会提供回转力矩.(由于力臂是一阶小量,横坐标变化引起的电场力改变也是一阶小量,忽略二阶以上小量,因而不必计算电场力改变量产生的力矩.由于电场几乎是均匀的,所以正电荷受力的合力力臂为4lθ⋅) 244k l kdlQ M d Q θθ=-⋅⋅⋅⋅=-,而M I θ=,则04kdlQ Iθθ+=.这是简谐方程,故绝缘棒的运动是简谐运动,其周期为22T == 13.(1)12AB R r =,78AC R r =(2)241916C rααω=+ 【解析】 【分析】 【详解】(1)将题图1所示的电阻网络的A 、B 两点接入电路时,可以发现D 、E 等势点,于是DC 、DE 、CE 可去掉.所以,12AB R r =. 将A 、C 接入电路时,将原电路进行等效变化,如图甲所示.11711283122AC R r rr r =+=+. (2)将题图1等效为图所示三端网络.由(1)知1122AB R R r ==,1278AC R R R r +==,解得114R r =,258R r =. 所以图所示虚线框内的等效阻抗为121211121324154496448i Z r r r i L αααω-⎛⎫⎪++=++= ⎪+ ⎪+⎝⎭. 电路的总复导纳()()()()()22222222214964213244964111213216213216Y i C i C Z rr ααααωωαααα⎛⎫+++ ⎪=+=⋅+-⋅⎪++++⎝⎭为使功率因数为1,则复导纳虚部为0.所以,()()2222244964141916213216C r rαααωαωαα+=⋅=⋅+++ 14.(1) 201221211π2I N r I r μΦ= (2) ()2201212522213π2N N r r Ivx r x με=+ (3) 201221π2N N r I Q r R μ= 【解析】 【详解】6.【解析.如图所示,半径为a 的线圈中通以I 的电流,则中轴线上距圆心x 处的磁感强度为()22π003222022d d 4π2aa I I l B B a x a x μμ===++⎰⎰(1)两线圈在同轴共面位置时,1a r =,0x =,当大线圈中通有1I 的电流时,有010112I B N r μ=⋅因为21r r ,所以,212022πB N r Φ=⋅,则201221211π2I N r I r μΦ=(2)当两环中心相距x 时,有()220121211232221π2N N r r I r xμΦ=+,121M I Φ=,12MI Φ=, ()22012122121522213πd d d d d d 2N N r r Ivx x t x t r x μεΦΦ=-=-⋅=+ (3)d d q I t =220122012211ππ1d 1d d d d 0d 22N N r I N N r I Q q I t t t R R t R r r R μμε⎛⎫Φ⎛⎫====-⋅=-=⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰15.112310.465AB I R I I I '⨯==Ω'''++【解析】【分析】 【详解】将该网络压扁,如图1所示,除AB ,BC ,CD ,DA 间各边电阻为1Ω外,其余电阻为12Ω现在我们讨论MNPQ 的内部电阻我们将RSTL 的内部电阻等效为图2所示电路,其中a ,b 为待定值,由于RSTL 与MNPQ全等,则有如图所示的等价关系,此等价关系即1212MQ MQ MP MP R R R R =⎧⎪⎨=⎪⎩ 下标的1代表图3,2代表图4(1)MP R 的分析①1MP R ,由对称性,去掉NS ,SL ,LQ 得1112112MP ab a b R ab a b ⎛⎫+⋅ ⎪+⎝⎭=⎛⎫++⎪+⎝⎭ ②2MP R ,由对称性,去掉NQ ,得2MP abR a b=+,从而112112ab ab a b ab a b a b ⎛⎫+⋅ ⎪+⎝⎭=+⎛⎫++⎪+⎝⎭,解得12ab a b =+ (2)MQ R 的分析①1MQ R .如图5所示,取回路MNPQM ,MRLQM ,RSTLR ,RLTR ,QLTPQ 得()()13412255256452566225643301110222334001110222I I I I I I aI I I I I I aI a I I I bI I a I I I I I -+=⎧⎪⎪---=⎪⎪-++-=⎨⎪----=⎪⎪+----=⎪⎩解得1626364655166721162582482562376252222531332225b ab a b a I I a b a b a I I a b ab a b a I I a b a a I I a b b a I I a ⎧++++⎪=⎪+⎪⎪+++⎪=⎪+⎪⎪⎪++++⎨=⎪+⎪⎪++⎪=⎪+⎪⎪++⎪=⎪+⎩ 故1122316167211626016246460MQ b ab a b I a R b I I I ab a b a++++==++++++ ②2MP R 如图6所示,由回路MNPQM ,MQPM 得()798789300I I I a aI bI aI ⎧--=⎨--=⎩,解得7898322a b I I a a b I I a +⎧=⎪⎪⎨+⎪=⎪⎩, 故()27789344MQ a b a aI R I I I a b+==+++.于是有()166721163 6044162464601 2b ab a b a b a a b a b ab a b aab a b⎧++++⎪+=⎪+⎪++++⎨⎪⎪=⎪+⎩⑧⑨ 令1x a =,由⑨得)11x b=- ⑩由⑩代入⑧化简有2210x x --=.则1x =±又0a >,则0x >,所以,1x =,所以,)1a b ⎧=Ω⎪⎨=Ω⎪⎩于是ABCD 如图7所示,同上步骤可得:1618.93I I ''=,2614.55I I ''=,367.19I I ''=,462.64I I ''=,5610.57I I ''=.则112310.465ABI R I I I '⨯==Ω'''++ 16.(1) 2mA D I = (2) 211116mW U P R == 【解析】 【详解】(1)设每只二极管两端的电压为D U ,通过二极管的电流为D I ,则有1222D D D U U I R R ε⎛⎫=-+ ⎪⎝⎭代入题设数据得()31.50.2510V D D U I =-⨯这是一个在图c 上横轴截距为1.5,纵轴截距为6,斜率为一4的直线方程,绘于c 图可获一直线(称为二极管的负载线).因D U 、D I 还受二极管D 的伏安线限制,故二极管必然工作在负载线与伏安曲线的交点P 上,如图c 所示.此时二极管两端的电压和电流分别为1V D U =,2mA D I =.(2)电阻1R 上的电压124V D U U ε=-=.其功率211116mW U P R ==.【点睛】对于非线元件的伏安特性曲线,一般无法用函数方式表述,用图解的方式确定其静态工作点应该是不二的选择.物理问题中涉及非线性元件或过程时,通过图解法来确定其工作点,应该是这类问题的通行做法.17.110A I =(方向为11I 的方向),25A I =(方向为21I 的方向);11200W P =,2600W P =-. 【解析】 【分析】 【详解】这个电路的结构,不能简单地等效为一个串联、并联电路.要计算这种较复杂的电路,可有多种解法.下面提供两种较为常用的方法.方法一:用基尔霍夫定律解.如图乙所示,设各支路的电流分别为1I 、2I 、3I . 对节点1:1230I I I --+=. ① 对回路1:112212I r I r εε-=-. ② 对回路2:2232I r I R ε+=. ③ 解①②③式求得()2121122110A r R R I rr r R r Rεε+-==++,()121212215A r R R I r r r R r Rεε+-==-++,2112312215A r r I r r r R r Rεε-==++.2I 为负值,说明实际电流方向与所设方向相反.各发电机输出的功率分别为2111111200W P I I r ε=-=,221111600W P I I r ε=-=-.这说明第二台发电机不仅没有输出功率,而且还要吸收第一台发电机的功率. 方法二:利用电源的独立作用原理求解.当只考虑发电机1ε的作用时,原电路等效为如图丙所示的电路,由图可知()2111122182A r R I rr r R r Rε+==++,2111280A RI I r R==+. 当只考虑发电机2ε的作用时,原电路等效为如图丁所示的电路. 由图可知将()1222122175A r R I r r r R r Rε+==++122172A R I I r R==+ 两次求得的电流叠加,可得到两台发电机的实际电流分别为11112827210A I I I =-=-=(方向为11I 的方向),2212280755A I I I =-=-=(方向为21I 的方向).同理,可解得各发电机的输出功率11200W P =,2600W P =-.【点睛】(1)从本题计算结果看出,将两个电动势和内电阻都不同的电源并联向负载供电未必是好事,这样做会形成两电源并联部分的环路电流,使电源发热.(2)运用基尔霍夫定律解题时,对于一个复杂的含有电源的电路,如果有n 个节点、p 条支路所组成,我们可以对每一支路任意确定它的电流大小和方向,最后解出值为正说明所设电流方向与实际方向一致,所得值为负则说明所设电流方向与实际方向相反.这个电路中共有p 个待求电流强度.在n 个节点中任意选取其中()1n -个节点,根据基尔霍夫第一定律,列出节点电流方程组,再选择()1m p n =--个独立回路,根据基尔霍夫第二定律,列出回路电压方程组,从而得到p 个方程即可求解.(3)处理复杂的电路的方法有很多,各种方法的优点与不足是在比较中领会的,对于某一道具体的试题,该用何种方法,取决于你的经验与临场的判断.事实上,这些方法也不存在优劣之分,只是在具体的过程中可能存在繁易的差别.18.(1) 00.659AC R R = (2)0EG R =【解析】【分析】【详解】(1)先考察B 、D 连线上的节点.由于这些节点都处于从A 到C 途径的中点上,在A 、C 两端接上电源时,这些节点必然处在一等势线上.因此可将这些节点“拆开”,将原网络等效成如图2所示网络.接着可将网络沿A 、C 连线对折叠合,使原来左、右对称的金属丝、节点相互重合,从而又等效成如图3所示网络.注意到图3中A 、C 间网络与J 、I 间网络在形式上的相似性,而图3且后者恰好是前者在线度上缩小12的结构,因此有 12JI AC R R =. 将折叠后与AE 同长的双金属丝电阻记为1R ,对应地与EH 同长的双金属丝电阻记为2R ,不难算得到1001144R R R =,208R R =. 再将如图3所示网络“量化”成如图4所示网络,其中虚线框内的上、下两端间电阻为1201224R R R R R R '=⋅=+ 于是有2121222122AC AC AC R R R R R R R R ⎛⎫'+ ⎪⎝⎭=+'++解之,得00110.6592AC R R R =-=.(2)能否采用1.中所取的递归方法来求解EG R 呢?由于此时不存在结构相似的内层网络,故不能采用这一方法.解决的方法当然还是有的,这就是利用1.的结果进行简化.据对称性,将原网络中AD 边的中点、BC 边的中点处节点“拆开”,等效成如图5所示网络.此网络中通过E 、G 两端与外正方形连接的内无限小网络与原网络结构相同,只是线度缩短为倍,小网络E 、G 之间的等效电阻便为原网络A 、C 间等效电阻AC R倍.据此,可将图5网络“量化”成图6所示的网络,有101BC AC R R R -⎛⎫=+ ⎪ ⎪⎝⎭ 将1.中算得的AC R 代入后,可得0EG R =【点睛】自相似的结构在物理模型中有很多,但大体都是以无穷、平衡为基础的简化处理.同样,这类试题目前在各类书籍上都有成熟的处理方式,在测试中单独成题的可能性并不太大,但将其融于系统中,考查你对这类问题的处理能力却是极有可能的.19.(1) 12R (2) 38R 【解析】【分析】【详解】(1)电流i 从A 点流入,B 点流出,鉴于网络的对称性,图1中12i i =,34i i =,560i i ==,将D 点断开,断开后的两个小四面体框架的等效电阻同为12R ,电路简化为图2;再由对称性知,E 、F 等势,G 、H 等势,于是网络简化为图3;再由对称性,可在C 点将电阻断开,简化成图4的网络,由串、并关系可得(2)电流从C 点流入,从D 点流出,网络相对于ABD 平面具有对称性,与AB 棱平行的小正方形四个顶点等势,故此正方形的四条边都可拆去,余下部分相对ABD 平面上下对称,可上下合并,等效成如图5所示的网络,而图5的立体网络又可改画成如图6所示的平面网络,网络对C 、D 左右对称,故可折叠成如图7所示的网络,由此可得38CD R R =.。
高中物理各章节练习题
高中物理各章节练习题一、力学部分1. 判断题(1)物体在平衡力的作用下,一定处于静止状态。
(2)牛顿第一定律是实验定律。
(3)摩擦力总是阻碍物体的运动。
2. 选择题A. 质量B. 速度C. 功D. 动能(2)一个物体受到两个力的作用,下列哪种情况是平衡力?A. 两个力的大小相等,方向相同B. 两个力的大小相等,方向相反C. 两个力的大小不等,方向相同D. 两个力的大小不等,方向相反3. 填空题(1)力的国际单位是______,速度的国际单位是______。
(2)一个物体做匀速直线运动,其加速度为______。
4. 计算题(1)一个物体质量为2kg,受到一个6N的力作用,求物体的加速度。
(2)一辆汽车以20m/s的速度行驶,紧急刹车后,加速度为5m/s²,求刹车距离。
二、电磁学部分1. 判断题(1)正电荷在电场中一定沿电场线方向运动。
(2)电流的方向与电子流动的方向相同。
2. 选择题A. 电流B. 电压C. 电场强度D. 磁感应强度(2)下列哪种现象是电磁感应现象?A. 通电导体周围产生磁场B. 磁铁靠近导体,导体中产生电流C. 导体在磁场中运动,导体中产生电流D. 闭合电路的一部分导体在磁场中做切割磁感线运动3. 填空题(1)电场强度的国际单位是______,磁感应强度的国际单位是______。
(2)一个电阻值为10Ω的导体,两端电压为5V,通过导体的电流为______。
4. 计算题(1)一个平行板电容器,两板间距为0.01m,电压为100V,求电场强度。
(2)一个长直导线通有电流10A,距离导线0.2m处的磁感应强度为0.5T,求该处磁场强度。
三、光学部分1. 判断题(1)光在真空中的传播速度大于在任何介质中的传播速度。
(2)光的折射现象是由于光速在不同介质中发生变化导致的。
2. 选择题A. 水中的筷子看起来弯折B. 镜子中的像C. 彩虹D. 小孔成像(2)下列哪种情况光的传播方向不会改变?A. 光从空气进入水中B. 光从水中进入空气C. 光在同种均匀介质中传播D. 光照射到平面镜上3. 填空题(1)光的折射率是______的比值,光的波长与频率的关系是______。
高二物理磁场试题
高二物理磁场试题1.下列各图中,用带箭头的细实线表示通电直导线周围磁感线的分布情况,其中正确的是()【答案】D【解析】通电直导线的磁感线是由导线为中心的一系列同心圆,且导线与各圆一定是相互垂直的,故正确的画法只有D;故选D.【考点】通电直导线和通电线圈周围磁场的方向.点评:在电磁学中应注意空间想象能力的培养,要学会由立体图画出平面图,只有这样才能顺利求解一些电磁场中的力学问题.2.安培的分子环流假设,可用来解释A.两通电导体间有相互作用的原因B.通电线圈产生磁场的原因C.永久磁铁产生磁场的原因D.铁质类物体被磁化而具有磁性的原因【答案】CD【解析】安培的分子环形电流假说是说核外电子绕原子核作圆周运动故可以解释磁化、退磁现象,通电导线的磁场是由自由电荷的定向运动形成的,即产生磁场的不是分子电流,故不能解释电流为什么能产生磁场.所以选CD【考点】考查了对分子环流假说的理解点评:掌握了安培的分子电流假说的内容即可顺利解决此类题目,所以要加强对基本概念的学习.3.如图所示,环形导线中通有顺时针方向的电流I,则该环形导线中心处的磁场方向为A.水平向右B.水平向左C.垂直于纸面向里D.垂直于纸面向外【答案】C【解析】图中电流为环形电流,由右手螺旋定则可得:大拇指指向电流方向,四指弯曲方向在内部向里,所以内部磁场应垂直于纸面向里.C正确,【考点】考查了右手螺旋定则点评:右手螺旋定则在应用过程中容易出现错误,要加强练习,增加熟练程度.4.用来判断通电导线中的电流方向与电流产生的磁场方向之间关系的是_______定则;【答案】安培定则【解析】用来判断通电导线中的电流方向与电流产生的磁场方向之间关系的是安培定则,【考点】本题考查了安培定则的使用情况点评:右手一般牵涉到磁场与电流的方向,左手一般牵涉到力的判断5.下列关于磁铁的使用的说法中不正确的是()A.磁铁受到撞击会使磁铁的磁性减弱B.原先没有磁性的铁,在长期受到磁铁的吸引会产生磁性C.对磁铁加热会使磁铁的磁性减弱D.永磁体在受到加热或敲打后,其磁性不会发生改变【答案】D【解析】磁铁受到撞击会使磁铁的磁性减弱,原先没有磁性的铁,在长期受到磁铁的吸引会产生磁性,对磁铁加热会使磁铁的磁性减弱,故ABC正确,D错误。
高中物理电磁学磁场经典大题例题
(每日一练)高中物理电磁学磁场经典大题例题单选题1、如图所示,在M、N处存在与纸面垂直,且通有大小相等、方向相反电流的长直导线,已知a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等。
下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的的磁感应强度方向相反C.c、d两点处的磁感应强度方向相同D.a、c两点处的磁感应强度方向不同答案:C解析:A.a、b、c、d四个点的磁感应强度均为M、N两长直导线在各点的磁感应强度的叠加,由安培定则可知,M、N在O点处磁感应强度的方向相同,合磁感应强度竖直向下,不为零,故A错误;B.M在a处产生的磁场方向竖直向下,在b处产生的磁场方向竖直向下,N在a处产生的磁场方向竖直向下,b处产生的磁场方向竖直向下,根据场强的叠加知,a、b两点处磁感应强度大小相等,方向相同,故B错误;C.M在c处产生的磁场方向垂直于cM偏向右下,在d处产生的磁场方向垂直dM偏向左下,N在c处产生的磁场方向垂直于cN偏向左下,在d处产生的磁场方向垂直于dN偏向右下,根据平行四边形定则,知c处的磁场方向竖直向下,d处的磁场方向竖直向下,且合场强大小相等,故C正确;D.由以上分析可知,a、c两点处磁感应强度的方向都竖直向下,方向相同,故D错误。
故选C。
2、如图所示,竖直线MN∥PQ,MN与PQ间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O 是MN上一点,O处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN成θ=60°角射出的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的最长时间为()A.πa3v B.√3πa3vC.4πa3v D.2πav答案:C解析:当θ=60°时,粒子的运动轨迹如图甲所示,根据几何关系有a=R sin30°解得R=2a设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间为t=α2πT即α越大,粒子在磁场中运行的时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R=2a,此时圆心角αm为120°,即最长运行时间为T3,因T=2πRv=4πav所以粒子在磁场中运动的最长时间为4πa3v。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理电磁学部分试题选填空题(把答案填在题中的括号内)。
0.1.1如图3-51所示,在厚金属板M附近放置一个负点电荷Q,比较图中a、b、c三点的场强E a、E b、E c大小关系为();电势U a、U b、U c高低关系为().图3-510.1.2带电量为q1、q2,质量分别为m1和m2的两带异种电荷的粒子,其中q1=2q2,m1=4m2,均在真空中.两粒子除相互之间的库仑力外,不受其它力作用.已知两粒子到某固定点的距离皆保持不变,由此可知两粒子一定做()运动,该固定点距两带电粒子的距离之比L1∶L2=().0.1.3在一次雷雨闪电中,两块云之间的电势差均为109V,从一块云移到另一块云的电量均为30C,则在这次闪电中放出的能量是()J.0.1.4如图3-52所示,在电场为竖直方向的匀强电场中,质量为m、带电量为-q的质点P,沿直线AB斜向下运动,直线AB与竖直方向间的夹角为θ,若AB长度为L,则A、B两点间的电势差为().图3-520.1.5用三个完全相同的金属环,将其相互垂直放置,并把相交点焊接起来成为如图3-53所示的球形骨架,如整个圆环的电阻阻值为4Ω,则A、C间的总电阻阻值R AC=()。
(A、B、C、D、E、F为六个相交焊接点,图中B点在外,D点在内)图5-530.1.6电路如图3-54所示,R1=R3=R,R2=2R,若在b、d间接入理想电压表,读数为();若在b、d间接入内阻为R的电压表,读数为()。
图5-540.1.7如图3-55所示的图线,a是某电源的U-I图线,b是电阻R的U-I图线,这个电源的内电阻等于( ),用这个电源和两个电阻R串联成闭合电路,电源输出的电功率等于( )。
图3-550.1.8如图3-56所示电路中,已知R1=100Ω,右边虚线框内为黑盒,情况不明,今用电压表测得U AC=10V,U CB=40V.则A、B间总电阻R AB是( )。
图5-560.1.9电饭锅工作时有两种状态:一种是锅内水烧干前的加热状态,另一种是锅内水烧干后的保温状态。
如图3-57所示是电饭锅电路的示意图,S是感温材料制造的开关,R1是电阻,R2是加热用的电阻丝,那么当开关S接通时,电饭锅所处的工作状态为()。
如果要使R2在保温状态时的功率是加热状态时的1/9,那么R1/R2=()。
图3-570.1.10某商场安装了一台倾角为30°的自动扶梯,这个自动扶梯在输入电压为380V的电动机带动下以0.40m/s的恒定速率向斜上方运动,电动机的最大输出功率为,不载人时电动机中的电流为 A,若载人时扶梯的运动速率和不载人时相同,则这台自动扶梯可同时承载的最多人数为( ).(设人的平均质量为60kg,g=10 m/s2)0.1.11某段陡峭的河床,上、下游水面高度差为 m,上游河水水速为 m/s,水面宽为,平均水深为,若将该段河水的机械能全部转化为电能,发电功率可达( )kW.发电时若发电机输出功率仅为上述功率的一半,一昼夜发电机输出电能约为( )kW·h.(取两位有效数字)0.1.12如图3-58所示电路中,电池的电动势ε,内阻为r,接在电池两端的电阻为R。
各量都用国际单位表示,将电量为q的正电荷由A点沿路径ARB移到B点,电场力做的功等于( )。
而将此正电荷由A点沿电池的内电路移动到B点,电场力做的功等于( )。
图3-580.1.13如图3-59所示电路,电源电动势为ε,内电阻为r,R0为定值电阻,变阻器的最大阻值为R,已知R>R0>r。
图3-59(1)当变阻器阻值调至R1=( )时,电源输出的最大功率为P1=( )。
(2)当变阻器阻值调至R2=( )时,变阻器上消耗的最大功率为P2=( )。
0.1.14如图3-60所示的电路中,电源由6个电动势ε0= V,内电阻r0=Ω的相同电池串联而成,定值电阻R1=Ω、R2=6 Ω,R2允许消耗的最大电功率P MAX=3.375W,R3是可变电阻,若R3=12 Ω时,电源的输出功率P=( ),若要使R2消耗功率达到最大电功率,则R3阻值应调至( )Ω.图3-600.1.15如图3-61所示电路中,电源电动势ε=6 V,内阻r=Ω,R1=500 Ω,R2=5 Ω,R3=3000 Ω,电流表内阻RA=20 Ω,电压表内阻RV=500 kΩ,合上开关S接通电源,试估算出电压表示数为( )V,电流表示数为( )A。
图3-610.1.16如图3-62所示电路,电源电动势ε=6 V,内阻r=1 Ω,电阻R1=3 Ω,R2=2 Ω,电容器的电容C=μF.开关S是闭合的。
现将开关S断开,则断开K后,电源释放的电能为( )。
图3-620.1.17某大楼安装了一台升降机,该升降机在电压为380V的电动机带动下以1m/s的恒定速率沿竖直方向上升,电动机的最大输出功率为 kW.不载人时测得电动机中的电流为5A,若载人时升降机的速率和不载人时相同,则这台升降机载10人时,电动机的输出功率为()kW,这台升降机可同时乘载的最多人数为()人(设人的平均质量为60 kg,g=10m/s2,电动机的内阻和一切摩擦不计).0.1.18一个定值电阻接到电压为U的交流电路上时,流过它的电流为I,如果将一台理想变压器的原线圈接到同一交流电路,副线圈接该定值电阻,这时原线圈的电流为I/4,则这时通过该电阻的电流为( );当副线圈上改接阻值为原电阻4倍的电阻时,变压器的输入功率为( ).0.1.19一降压变压器副线圈中有一个抽头如图3-63所示,已知线圈匝数之比n1∶n2∶n3=54∶3∶1.当S接1时电压表读数为16 V,灯泡正常发光.当S接2时电流表的读数减少了32.4mA,这一过程中原线圈的输入电压U1不变.由此可求得灯泡的额定功率为( ).图3-630.1.20如图3-64,电压为U的两平行带电板间相距4r,两板正中间有半径为r的金属网状圆筒,圆筒内有垂直纸面的匀强磁场,上板在圆筒正中心的上方有一小孔B,则圆筒中心点O的电场强度为( ).若一带正电q,质量为m的微粒(不计重力),从小孔处以初速为零进入电场,并从A点进入金属网,从D点离开金属网,CD是金属网的水平直径的连线,则AB两点的电势差为( );金属网中的磁感强度为( ).图3-640.1.21在真空中半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感强度B=0.2T,方向如图3-65所示.一带正电粒子以速度V0=1.2×106m/s的初速度从磁场边界上的直径ab一端a点射入磁场,已知该粒子荷质比q/m=103C/kg,不计粒子重力,则粒子在磁场中运动的最长时间为( ).图3-650.1.22如图3-66所示,铜棒ab长m,质量为6×10-2kg,两端与长为1m的轻铜线相连.静止于竖直平面上.整个装置处在竖直向下的匀强磁场中,磁感强度B= T.现接通电源,使铜棒中保持有恒定电流通过,铜棒发生摆动.已知最大偏转角为37°,则在此过程中铜棒的重力势能增加了( )J;通电电流的大小为( )A.(不计空气阻力,sin37°=,cos37°=0.8,g取10m/s2)图3-660.1.23如图3-67所示,边长为20 cm的正方形单匝线圈abcd靠墙根斜放,线圈平面与地面间夹角为30°,该区域有B= T方向水平向右的匀强磁场,现将cd边向右拉,ab边经秒着地,那么该过程中线框里产生的平均感应电动势的大小为( )V.图3-670.1.24如图3-68所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( );它们离开磁场时的速度方向互成( )角.图3-680.1.25一个带电粒子A在强磁场中做匀速圆周运动,运动半径为R,在某点与一静止的带电粒子B发生了碰撞而结合在一起后运动半径仍为R,但转动方向相反,如图3-69所示.则A、B两粒子所带电量大小之比qA∶qB=( ).碰撞前后做圆周运动的周期T1和T2的关系是T1( )T2(填“<”、“=”或“>”).图3-690.1.26绝缘的光滑半圆形轨道竖直放置在电场强度为5×104V/m的匀强电场中,如图3-70所示,电场线竖直向下,在环壁的最高点A处有一质量为2×10-5kg、带电量为2.0×10-9C的小球,由静止开始滑下,轨道半径为2m,则通过最低点C时,小球对环的压力为________N(g取10m/s2).图3-700.1.27空间有一个水平向里的有界匀强磁场,如图3-71所示,一刚性正方形线圈,质量为m,边长为l,从磁场上方距磁场上界h1处自由落下(线圈总沿竖直面运动).若线圈刚好匀速穿过磁场区域,则有界磁场的宽度h2=( );线圈穿过磁场过程中产生的内能为( ).图3-710.1.28两块面积为S的平行板,彼此相距l,板间通入已电离的气流,气流速度为v,两板间存在一磁感强度为B的磁场,磁场方向与气流垂直,如图3-72所示.把两板与外电阻R连接起来,在磁场力作用下,气流中的正、负离子分别向两板移动形成电流,这个装置就是磁流体发电机.设气体的导电率(电阻率的例数)为σ,流过外电阻R的电流强度I应等于( ).图3-720.2选择题:在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.0.2.1如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近验电器上部的金属板时,金属箔张开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化从图3-1的①~④四个选项中选取一个正确的答案.[]图3-1A.图①B.图②C.图③D.图④0.2.2下列关于静电场的说法中正确的是[]0.2.3A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点0.2.4B.正电荷只在电场力作用下,一定从高电势向低电势运动0.2.5C.场强为零处,电势不一定为零;电势为零处,场强不一定为零0.2.6D.初速为零的正电荷在电场力作用下不一定沿电场线运动0.2.7在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则[]0.2.8A.a点的电势一定高于b点的电势0.2.9B.带电粒子的电势能一定减少0.2.10C.电场强度一定等于ΔE/dq0.2.11D.a、b两点间的电势差大小一定等于ΔE/q0.2.12将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[]0.2.13A.它们的相互作用力不断减少0.2.14B.它们的加速度之比不断减小0.2.15C.它们的动量之和不断增加0.2.16D.它们的动能之和不断增加0.2.17如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上的某点为圆心做匀速圆周运动,以下说法正确的是[]图3-2A.它们所需要的向心力不相等B.它们做圆周运动的角速度相等C.它们的线速度与其质量成反比D.它们的运动半径与电荷量成反比0.2.18如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[]图3-3A.b点场强B.c点场强C.b点电势D.c点电势0.2.19A、B两个小球带有同种电荷,放在光滑的绝缘水平面上,A的质量为m,B的质量为2m.它们相距为d,同时由静止释放,在它们距离到2d时,A的加速度为a,速度为v,则[]0.2.20A.此时B的速度为v/20.2.21B.此时B的加速度为a/20.2.22C.此过程中电势能减少(5/8)mv20.2.23D.此过程中电势能减少(3/4)mv20.2.24如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说法正确的是[]图3-4A.将P从B点由静止拉到A点,水平拉力最少做功2μmgsB.将P从B点由静止拉到A点,水平拉力做功μmgsC.P从A点运动到B点,电势能增加μmgsD.P从A点运动到B点,电势能减少μmgs0.2.25如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q,整个装置处于水平向右的匀强电场中,电场强度为E.[]图3-5A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mgB.若剪断悬线,则小球做曲线运动C.若剪断悬线,则小球做匀速运动D.若剪断悬线,则小球做匀加速直线运动0.2.26节日采灯是由若干只小灯泡串联接到照明电路上的,现有下列四组灯泡供选用,较为合适的是[]0.2.27A.10只“12V10W”B.10只“220V15W”0.2.28C.15只“15V3WD.30只“9V2W”0.2.29将一个6V、6W的小灯甲连接在内阻不能忽略的电源上,小灯恰好正常发光,现改将一个6V、3W的小灯乙连接到同电源上,则[]0.2.30A.小灯乙可能正常发光0.2.31B.小灯乙可能因电压过高而烧毁0.2.32C.小灯乙可能因电压较低而不能正常发光0.2.33D.小灯乙一定正常发光0.2.34在总电压不变的条件下,黄昏时电灯比深夜暗,是因为黄昏时[]0.2.35A.线路中总电阻变大,电流变小0.2.36B.总电流一定,支路增多分去了电流0.2.37C.干线电流过大,线路损失电压增大0.2.38D.总电阻变小,每支路电流增大0.2.39灯泡中灯丝断了,将灯丝搭接起来再用,则以下判断正确的是[]0.2.40A.比原来更亮0.2.41B.比原来更暗0.2.42C.搭接起来的地方容易烧断,其他地方不易断0.2.43D.搭接起来的地方不容易断,其他地方容易烧断0.2.44用三个电动势均为1.5V、内阻均为0.5Ω的相同电池串联起来作电源,向三个阻值都是1Ω的用电器供电,要想获得最大的输出功率,在如图3-6所示电路中应选择的电路是[]图3-60.2.45在LC振荡电路中,L是电感线圈的自感系数,C是由a和b组成的平行板电容器的电容,在t1时刻,电路中电流不为零,而电容器的a板带电量为+q,经过一段时间到t2时刻,a板第一次带-q的电量,则可能是[]0.2.46A.t2-t1=2π0.2.47B.t2-t1=π0.2.48C.在t1和t2时刻电路中的电流方向相同0.2.49D.在t1和t2时刻电路中的电流方向相反0.2.50LC电路中产生了振荡电流,其中电容器的上极板带电情况如图3-7(a)中q-t图象所示,当LC电路中的某时刻电流方向与电容器极板带电性质如图3-7(b)所示,则此时刻为[]图3-7A.Oa时间段中的某一时刻B.ab时间段中的某一时刻C.bc时间段中的某一时刻D.cd时间段中的某一时刻0.2.51如图3-8为LC振荡电路某时刻的电流方向,且电流正在减小,则[]图3-8A.电容器C的上板带正电B.电感L中的磁通量变化率正在变大C.电场能正在向磁场能转化D.该电路向真空中辐辐电磁波的波长与电容量C成正比0.2.52如图3-9甲所示,在LC振荡电路中,通过P点的电流i变化规律如图3-9乙所示,且把通过P点向右的电流规定为电流i的正方向,则下述正确的是[]图3-9A.0.5s至1s之间,电容器C在放电B.0.5s至1s之间,电容器C的上极板带正电C.1s至1.5s之间,Q点电势比P点的电势高D.1s至1.5s之间,电场能正在转变成磁场能0.2.53如图3-10所示的电路中,R1、R2、R3、R4、R5为阻值固定的电阻,R6为可变电阻,A为内阻可忽略的电流表,V为内阻很大的电压表,电源的电动势为,内阻为r.当R6的滑动触头P向a端移动时[]图3-10A.电压表V的读数变小B.电压表V的读数变大C.电流表A的读数变小D.电流表A的读数变大0.2.54如图3-11所示的电路中,滑动变阻器的滑片P从a滑向b的过程中,3只理想电压表的示数变化的绝对值分别为ΔU1、ΔU2、ΔU3,下列各值可能出现的是[]图3-11A.ΔU1=3V、ΔU2=2V、ΔU3=1VB.ΔU1=1V、ΔU2=3V、ΔU3=2VC.ΔU1=0.5V、ΔU2=1V、ΔU3=1.5VC.ΔU1=0.2V、ΔU2=1V、ΔU3=0.8V0.2.55如图3-12甲所示电路中,电流表A1与A2内阻相同,A2与R1串联,当电路两端接在电压恒定的电源上时,A1示数为3A,A2的示数为2A;现将A2改为与R2串联,如图3-12乙所示,再接在原来的电源上,那么[]图3-12A.A1的示数必增大,A2的示数必减小B.A1的示数必增大,A2的示数必增大C.A1的示数必减小,A2的示数必增大D.A1的示数必减小,A2的示数必减小0.2.56如图3-13所示为白炽灯L1(规格为“220V,100W”)、L2(规格为“220V,60W”)的伏安特性曲线(I-U图象),则根据该曲线可确定将L1、L2两灯串联在220V的电源上时,两灯的实际功率之比大约为[]图3-13A.1∶2B.3∶5C.5∶3D.1∶30.2.57如图3-14所示的电路中,当R1的滑动触头移动时[]图3-14A.R1上电流的变化量大于R3上电流的变化量B.R1上电流的变化量小于R3上电流的变化量C.R2上电压的变化量大于路端电压的变化量D.R2上电压的变化量小于路端电压的变化量0.2.58电饭锅工作时有两种状态:一种是锅内水烧干前的加热状态,另一种是锅内水烧干后保温状态,如图3-15所示是电饭锅电路原理示意图,S是用感温材料制造的开关.下列说法中正确的是[]图3-15A.其中R2是供加热用的电阻丝B.当开关S接通时电饭锅为加热状态,S断开时为保温状态C.要使R2在保温状态时的功率为加热状态时的一半,R1/R2应为2∶1D.要使R2在保温状态时的功率为加热状态时的一半,R1/R2应为(-1)∶10.2.59如图3-16所示M为理想变压器,电源电压不变,当变阻器的滑动头P向上移动时,读数发生变化的电表是[]图3-16A.A1B.A2C.V1D.V20.2.60如图3-17甲所示,两节同样的电池(内电阻不计)与滑线变阻器组成分压电路和理想变压器原线圈连接,通过改变滑动触头P的位置,可以在变压器副线圈两端得到图3-17乙中哪些电压[]图3-170.2.61如图3-18所示的电路中,L1和L2是完全相同的灯泡,线圈L的电阻可以忽略.下列说法正确的是[]图3-18A.合上开关S接通电路时,L1先亮,L2后亮,最后一样亮B.合上开关S接通电路时,L1和L2始终一样亮C.断开开关S切断电路时,L1立刻熄灭,L2过一会儿才熄灭D.断开开关S切断电路时,L1和L2都要过一会儿才熄灭0.2.62如图3-19所示,理想变压器的副线圈上通过输电线接有三个灯炮L1、L2和L3,输电线的等效电阻为R,原线圈接有一个理想的电流表.开始时,开关S接通,当S断开时,以下说法中正确的是[]图3-19A.原线圈两端P、Q间的输入电压减小B.等效电阻R上消耗的功率变大C.原线圈中电流表示数增大D.灯炮L1和L2变亮0.2.63要减小发射电磁波的周期,下列哪些办法是正确的[]0.2.64A.减小线圈的匝数0.2.65B.抽去线圈中的磁芯0.2.66C.降低电容器的充电电压0.2.67D.减小电容器的电容0.2.68无线电发射装置的振荡电路中的电容为30pF时,发射的无线电波的频率是1605kHz.若保持回路的电感不变,将电容调为270pF,这时发射的电波的波长为[]0.2.69A.62mB.187mC.560mD.1680m0.2.70如图3-20所示是一个理想变压器,A1、A2分别为理想的交流电流表,V1、V2分别为理想的交流电压表,R1、R2、R3均为电阻,原线圈两端接电压一定的正弦交流电源,闭合开关S,各交流电表的示数变化情况应是[]图3-20A.A1读数变大B.A2读数变大C.V1读数变小D.V2读数变小0.2.71如图3-21所示电路中,电源电动势为,内电阻为r,R1、R2为定值电阻,R3为可变电阻,C为电容器.在可变电阻R3由较小逐渐变大的过程中[]图3-21A.流过R2的电流方向是由b到aB.电容器被充电C.电容器的带电量在逐渐减少D.电源内部消耗的功率变大0.2.72如图3-22所示是一理想变压器的电路图,若初级回路A、B两点接交流电压U时,四个相同的灯泡均正常发光,则原、副线圈匝数比为[]?图3-22A.4∶1B.2∶1C.1∶3D.3∶10.2.73如图3-23所示,一个理想变压器的原、副线圈匝数之比为n1∶n2=10∶1,在原线圈上加220V的正弦交变电压,则副线圈两端c、d间的最大电压为[]图3-23A.22VB.22VC.零D.11V0.2.74如图3-24所示,某理想变压器的原、副线圈的匝数均可调节,原线圈两端电压为一最大值不变的正弦交流电,在其它条件不变的情况下,为了使变压器输入功率增大,可使[]图3-24A.原线圈匝数n1增加B.原线圈匝数n2增加C.负载电阻R的阻值增大D.负载电阻R的阻值减小0.2.75下列每组两个单位都能表示同一物理量的是[]0.2.76A.N·C-1与V·m-1B.J·C-1与Wb·S-10.2.77C.Wb·m2与N·A-1D.T·m2与v·s0.2.78在赤道附近有一竖直向下的匀强电场,在此区域内有一根沿东西方向放置的直导体棒,由水平位置自静止落下,不计空气阻力,则导体棒两端落地的先后关系是[]0.2.79A.东端先落地B.西端先落地0.2.80C.两端同时落地D.无法确定0.2.81两个相同的圆形线圈能在一个光滑的圆柱上自由移动,设大小不同的电流按如图3-25所示的方向通入线圈,则两线圈的运动情况是[]图3-25A.都绕圆柱转动B.彼此相向运动,具有大小相等的加速度C.彼此相向运动,电流大的加速度大D.彼此相背运动,电流大的速度大0.2.82如图3-26甲所示,闭合导体线框abcd从高处自由下落,落入一个有界匀强磁场中,从bc边开始进入磁场到ad边即将进入磁场的这段时间里,在图3-26乙中表示线框运动过程中的感应电流-时间图象的可能是[]图3-260.2.83如图3-27所示,由一根绝缘导线绕成半径相同的两个小圆组成的如图所示形状的线圈水平放置,匀强磁场B垂直通过线圈平面,若将磁场的磁感强度从B增大到2B的过程中通过线圈的电量为Q,则下列哪些过程亦可使线圈中通过电量为Q[]图3-27A.保持磁场B不变,将线圈平面翻转90°B.保持磁场B不变,将线圈平面翻转180°C.保持磁场B不变,将线圈的一个小圆平面翻转180°D.保持磁场B不变,将线圈拉成一个大圆0.2.84如图3-28所示,abcd是粗细均匀的电阻丝制成的长方形线框,导体棒MN有电阻,可在ad边与bc边上无摩擦滑动,且接触良好,线框处在垂直纸面向里的匀强磁场中,在MN由靠近ab边处向dc边匀速滑动的过程中,下列说法正确的是[]图3-28A.矩形线框消耗的功率先减小后增大B.MN棒中的电流强度先减小后增大C.MN棒两端的电压先减小后增大D.MN棒上拉力的功率先减小后增大0.2.85用同样粗细的铜、铝、铁做成三根相同长度的直导线,分别放在电阻可以忽略不计的光滑水平导轨AB、CD上,如图3-29所示,使导线与导轨保持垂直.设竖直方向的匀强磁场垂直于导轨平面,且充满导轨所在空间,然后用外力使导线向右做匀速直线运动,且每次外力消耗的功率均相同,则[]图3-29A.铜导线运动速度最大B.铁导线运动速度最大C.三根导线上产生的感应电动势相同D.在相同的时间内,它们产生的热量相等0.2.86一平行板电容器充电后与电源断开,负极板接地.在两极板间有一正电荷(电量很小)固定在P点,如图3-30所示.以E表示两板间的场强,U表示电容器两板间的电压,W表示正电荷在P点的电势能.若保持负极板不动,将正极板移到图中虚线所示位置,则[]图3-30A.U变小,E不变B.E变大,W变大C.U变小,W不变D.U不变,W不变0.2.87如图3-31所示,有一固定的超导体圆环,在其右侧放着一条形磁铁,此时圆环中没有电流.当把磁铁向右方移走时,由于电磁感应,在超导体圆环中产生了一定的电流[]图3-31A.此电流方向如图中箭头所示,磁铁移走后,电流很快消失B.此电流方向如图中箭头所示,磁铁移走后,电流继续维持C.此电流方向与图中箭头方向相反,磁铁移走后,电流很快消失D.此电流方向与图中箭头方向相反,磁铁移走后,电流继续维持0.2.88如图3-32所示的哪些情况中,a、b两点的电势相等,a、b两点的电场强度矢量也相等[]图3-32A.平行板电容器带电时,极板间除边缘以外的任意两点a、bB.静电场中达到静电平衡时的导体内部的任意两点a、bC.离点电荷等距的任意两点a、bD.两个等量异号电荷间连线的中垂线上,与连线中点O等距的两点a、b0.2.89在图3-33中虚线所围的区域内,存在电场强度为E的匀强电场和磁感强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转.设重力可以忽略不计,则在这区域中E和B的方向可能是[]图3-33A.E和B都沿水平方向,并与电子运动方向相同B.E和B都沿水平方向,并与电子运动方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里0.2.90如图3-34所示,一个矩形闭合金属线圈abcd置于匀强磁场中,在外力作用下绕垂直于磁感线的轴OO′匀速转动,磁场方向如图,转动角速度大小为ω.已知线圈在转动过程中受到的磁力矩最大值为M0,则从图示位置开始计时,下面关于线圈受到的磁力矩m随时间t变化的关系正确的是[]图3-34A.m=M0sinωt·cosωtB.m=M0sin2ωtC.m=M0cos2ωtD.m=M0sin2ωt0.2.91在一根软铁棒上绕有一组线圈,a、c是线圈的两端,b为中心抽头,把a端和b抽头分别接到两条平行金属导轨上,导轨间有匀强磁场,方向垂直于导轨所在平面并指向纸内,如图3-35所示,金属棒PQ在外力作用下以图示位置为平衡位置左右做简谐运动,运动过程中保持与导轨垂直,且两端与导轨始终接触良好,下面的过程中a、c点的电势都比b点的电势高的是[]图3-35A.PQ从平衡位置向左边运动的过程中B.PQ从左边向平衡位置运动的过程中C.PQ从平衡位置向右边运动的过程中D.PQ从右边向平衡位置运动的过程中。