信号与系统连续时间信号和系统时域分析
第二章 信号与系统的时域分析
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t
x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,
连续时间系统的时域分析实验报告
连续时间系统的时域分析实验报告实验目的本实验旨在通过对连续时间系统的时域分析,研究信号在时域上的特性,包括信号的时域图像、平均功率、能量以及系统的时域响应。
实验原理连续时间系统是指输入输出都是连续时间信号的系统。
在时域分析中,我们关注的是信号在时间上的变化情况。
通过观察信号的时域图像,我们可以了解信号的波形和时域特性。
实验装置与步骤实验装置•函数发生器•示波器•连接线实验步骤1.将函数发生器和示波器连接起来,并确保连接正常。
2.设置函数发生器的输出信号类型和幅度,选择合适的频率和幅度。
3.打开示波器并调整合适的触发方式和触发电平。
4.观察示波器上的信号波形,并记录下观察到的时域特性。
实验数据与分析实验数据根据实验装置和步骤,我们得到了如下的实验数据:时间(ms)电压(V)0 01 12 23 14 05 -1实验分析根据实验数据,我们可以绘制出信号的时域图像。
从图像中可以看出,信号在时域上呈现出一个周期性的波形,且波形在[-1, 2]范围内变化。
由此可知,输入信号是一个连续时间周期信号。
接下来,我们可以计算信号的平均功率和能量。
平均功率表示信号在一个周期内平均消耗的功率,而能量表示信号的总能量大小。
首先,我们计算信号的平均功率。
根据公式,平均功率可以通过信号在一个周期内的幅值的平方的平均值来计算。
在本实验中,信号的周期为5ms,幅值范围为[-1, 2],所以信号的平均功率为:平均功率= (∫[-1, 2] x^2 dx) / T由此可知,信号的平均功率为(1^2 + 2^2 + 1^2 + 0^2 + (-1)^2) / 5 = 1.2。
接下来,我们计算信号的能量。
根据公式,信号的能量可以通过信号在时间上的幅值的平方的积分来计算。
在本实验中,信号在整个时间范围内的幅值范围为[-1, 2],所以信号的能量为:能量= ∫[-1, 2] x^2 dx由此可知,信号的能量为(1^2 + 2^2 + 1^2 + 0^2 + (-1)^2) = 7。
信号与系统的分析方法有时域,变换域两种
§2-3 Z反变换
一.定义:
已知X(z)及其收敛域,反过来求序列x(n) 的变换称作Z反变换。
记作:x(n) Z [ X ( z )]
1
z变换公式:
正:X ( z )
n
x ( n) z n ,
R x z Rx
1 反:x(n) X ( z ) z n 1dz, c ( Rx , Rx ) 2j c
j Im[ z ]
z 收敛域: a
0
a
z
Re[ z ]
*收敛域一定在模最大的极点所在的圆外。
[例2-3]求序列 x(n) b u(n 1) 变换及收敛域。
n
x ( n)
n
b nu (n 1) z n
b 1 z (b 1 z ) 2 (b 1 z ) n
§2-1 引言
信号与系统的分析方法有时域、变换域两种。 一.时域分析法 1.连续时间信号与系统: 信号的时域运算,时域分解,经典时域 分析法,近代时域分析法,卷积积分。 2.离散时间信号与系统: 序列的变换与运算,卷积和,差分方程 的求解。
二.变换域分析法
1.连续时间信号与系统: 信号与系统的频域分析、复频域 分析。
2.离散时间信号与系统: Z变换,DFT(FFT)。 Z变换可将差分方程转化为代数方程。
§2-2 Z变换的定义及收敛域
一.Z变换定义: 序列的Z变换定义如下:
X ( z ) Z [ x(n)]
n
x ( n) z
n
*实际上,将x(n)展为z-1的幂级数。
ze ze
jT ST
[例2-5]利用部分分式法,求X ( z) 1 (1 2 z 1 ) (1 0.5z 1 ) , 的z反变换。 解:
信号与系统第三章
设 f (t) 2 a 2, b 1 则有
dy(t) 2 y(t) 2 dt
已知初始值 y(0) 4 求 t 0时系统的响应 y(t)
解:第一步,由方程可知系统的特征方程为 2 0
2 由此可得系统的齐次解为
2
处理教研室
第三章 连续信号与系统的时域分析
教学重点:
1、常微分方程的建立及其解的基本特点; 2、阶跃响应和冲激响应的概念; 3、卷积及其在系统分析中的应用。
2020/6/7
信号
3
处理教研室
应用实例:汽车点火系统
汽车点火系统主要由电源(蓄电池和发电机)、电阻、 点火开关、点火线圈、分压器等组成。
系数 a,b都是常量。系统的阶数就是其数学模型——
微分方程的阶数。
而 n 阶常系数线性微分方程的一般形式为
an
dn y(t) dt n
an1
dn1 y(t) dt n1
L
a1
dy(t) dt
a0
y (t )
bm
dm f (t) dt m
bm1
dm1 f (t) dt m1
L
b1
df (t) dt
b0
即yf’(0+) = yf’(0-) = 0,yf(0+) = yf(0-) = 0
对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6
不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3,
于是有
yf(t)=Cf1e-t + Cf2e-2t + 3
代入初始值求得
信号与系统分析第二章 连续时间系统的时域分析
第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。
《信号与系统》第四章
图 两个矢量正交
矢量的分解
c2V2
V
V2
2
o
1
V1
c1V1
图 平面矢量的分解
c3V3
V3
V
o V1
V2
c2V2
c1V1
V c1V1 c2V2 c3V3
图 三维空间矢量的分解
推广到n维空间
1 正交函数的定义
在区间 (t1,t内2 ),函数集 {0 (t),1(t中),的,各N个(t)函} 数间,若满足下列 正交条件:
➢在波形任一周期内,其第二个半波波形与第一个半波波形相同;
x(t) x(t T0 / 2)
➢这时x(t)是一个周期减半为
的周期非正弦波,其基波频率
为
,即其只含有偶次谐T0波2;
20
4.4波形对称性与傅里叶系数
4 奇半波对称
➢在波形任一周期内,其第二个半周波形恰为第一个半周波形的
负值; x(t) x(t T0 / 2)
交函数集 {0 (t),1(t), ,N (t)} 是完备的,即再也找不到一个函数 (t)
能满足
t2
(t)
* m
(t
)dt
0
t1
m 0,1, , N
则在区间 (t1,t2 ) 内,任意函数x(t)可以精确地用N+1个正交函数地加权和
表示:
N
x(t) c00 (t) c11(t) cN N (t) cnn (t)
T0
3 傅里叶级数系数的确定
➢正弦—余弦形式傅里叶级数的系数
2Bk
2 T0
x(t) cos k0tdt
T0
2Dk
2 T0
x(t) sin k0tdt
信号与系统公式总结
信号与系统公式总结在信号与系统的学习过程中,公式总结是非常重要的,它可以帮助我们更好地理解和掌握知识。
下面将对信号与系统中常见的公式进行总结,希望能够对大家的学习有所帮助。
一、基本概念公式总结。
1. 信号的分类:连续时间信号,x(t)。
离散时间信号,x[n]2. 基本信号:单位冲激函数,δ(t)或δ[n]阶跃函数,u(t)或u[n]3. 基本性质:奇偶性,x(t) = x(-t),x[n] = x[-n]周期性,x(t) = x(t+T),x[n] = x[n+N]二、时域分析公式总结。
1. 基本运算:时移性质,x(t-t0)或x[n-n0]反褶性质,x(-t)或x[-n]放大缩小,Ax(t)或Ax[n]2. 基本运算公式:加法,x1(t) + x2(t)或x1[n] + x2[n]乘法,x1(t)x2(t)或x1[n]x2[n]三、频域分析公式总结。
1. 傅里叶变换:连续时间信号,X(ω) = ∫x(t)e^(-jωt)dt。
离散时间信号,X(e^jω) = Σx[n]e^(-jωn)。
2. 傅里叶变换性质:线性性质,aX1(ω) + bX2(ω)。
时移性质,x(t-t0)对应X(ω)e^(-jωt0)。
频移性质,x(t)e^(jω0t)对应X(ω-ω0)。
四、系统分析公式总结。
1. 系统性质:线性性,y(t) = ax1(t) + bx2(t)。
时不变性,y(t) = x(t-t0)对应h(t-t0)。
2. 系统时域分析:离散卷积,y[n] = Σx[k]h[n-k]连续卷积,y(t) = ∫x(τ)h(t-τ)dτ。
3. 系统频域分析:系统函数,H(ω) = Y(ω)/X(ω)。
五、采样定理公式总结。
1. 采样定理:连续信号采样,x(t)对应x[n],x[n] = x(nT)。
重建滤波器,h(t) = Tsinc(πt/T)。
六、傅里叶级数公式总结。
1. 傅里叶级数:周期信号的傅里叶级数展开。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统MATLAB实验-实验三 连续时间系统的时域分析
四、实验内容1、一系统满足微分方程''()5'()6()()(1)y t y t y t u t u t++=--(1)求出该系统的零状态响应的解析表达式y zs(t),并用向量表示法绘制响应曲线。
(2)用lsim求出该系统的零状态响应;利用(1)所得结果画出该系统的零状态响应。
比较二者是否相同。
%用向量表示法绘制响应曲线clearclc%函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解。
如果有初始条件,则求出特解%MATLAB常微分方程符号解的语法是:dsolve('equation', 'condition')%其中,equation代表常微分方程式,且以Dy代表一阶微分项y',D2y代表.一阶微分项y", condition则为初始条件。
disp('零状态响应');a=dsolve('D2y+5*Dy+6*y = u(t)-u(t-1)','y(0) = 0','Dy(0)=0')%用lsim求出该系统的零状态响应clearclcdisp('用线性常系数微分方程描述LTI系统');t=-6:0.001:6;sys=tf([1],[1 5 6]);ft2=((t>=0)-(t>=1));%ft2=heaviside(t)-heaviside(t-1);y1=lsim(sys,ft2,t);plot(t,y1);xlabel('x');ylabel('y1');title('零状态响应');grid on%axis([0, t(end), -1.1, 1.1])%axis一般用来设置axes的样式,包括坐标轴范围,可读比例等2、如图所示电路,其中121,1,1,2,L H C F R R ===Ω=Ωf(t)是输入信号,y(t)是输出响应。
信号与系统——连续时间线性定常系统时域分析
对于输入 t ,其特解为 B t t 0 0 ,单位冲激响应为 h1 (t ) e t u(t ) , 则 y1 (t ) h1 (t ) v(t ) e (t )u (t )v( )d e
0 t t
n 1
0 ,求 y (t) =
?
(1)求齐次解:由微分方程列特征方程 n an1 n1 a1 a0 0 ,求出 n 个特
i t 征根 i,i 1,, n ,则齐次解为 yh t i 1 Ae ,有 n 个待定系数 Ai,i 1,, n ;对于 i
v d 。综上有:
零状态 t 1 t v t e t v d e u t v t 0 p
e
0
t
v t d
(3-14)
由(3-14)式可进一步推得下面的(3-19)式。 § 3.2 LTI 系统的响应 LTI 系统的微分方程:
(3-11) (3-12)
若(t)、(0)已知,则(t)、(t)可确定。 注: (3-11)的两项分别是状态向量的零输入响应与零状态响应; (3-12)的两项分别是输出向量的零输入响应与零状态响应。 LTI 系统的微分方程模型: 具有 n 个独立储能元件的单输入单输出(SISO)系统,输出输入关系为:
不同的物理系统,输入-输出方程可能相同,但含义不同
对 H p 因式分解,基本单元为 H1 (p)
1 。 H1 (p) 对输入 v t 作用产 p
生输出 y1 (t )
1 v(t ) ,即 y1 (t ) y1 (t ) v(t ) ,齐次解 y1h (t ) e t u(t ) ; p
信号与系统中的连续时间系统分析
信号与系统中的连续时间系统分析信号与系统是电子工程、自动控制等领域重要的基础学科,与我们日常生活息息相关。
在信号与系统中,连续时间系统分析是其中的重要内容之一。
本文将着重介绍连续时间系统分析的基本概念、方法和应用。
一、连续时间系统的概念连续时间系统是指信号的取样频率大于或等于连续时间信号的变化频率,信号在任意时间均有定义并连续可取值。
连续时间系统包括线性系统和非线性系统两种,其中线性系统是一类常见且具有重要意义的系统。
二、连续时间系统的表示连续时间系统可以通过微分方程或差分方程来表示,其中微分方程常用于描述线性时不变系统,而差分方程常用于描述线性时变系统。
在实际应用中,可以通过拉普拉斯变换或傅里叶变换对连续时间系统进行分析和求解。
三、连续时间系统的性质连续时间系统具有多种性质,包括线性性、时不变性、因果性、稳定性等。
其中线性性是指系统对输入信号的响应是可叠加的,时不变性是指系统的输出与输入之间的关系不随时间的推移而改变。
四、连续时间系统的频域分析连续时间系统的频域分析是通过傅里叶变换来实现的,可以将时域中的信号转换为频域中的频谱。
通过频域分析,我们可以获得系统的幅频特性和相频特性,进一步了解系统对不同频率信号的响应。
五、连续时间系统的时域分析连续时间系统的时域分析是通过微分方程或差分方程来实现的,可以确定系统的时域特性。
通过时域分析,我们可以获得系统的阶数、单位阶跃响应、单位冲激响应等关键信息。
六、连续时间系统的应用连续时间系统的分析在实际应用中具有广泛的应用价值。
例如,在通信系统中,我们需要对信号进行调制、解调、编码、解码等处理,这些过程都需要借助连续时间系统的分析方法。
此外,连续时间系统的分析也在信号处理、图像处理、音频处理等领域有着重要的应用。
结语:连续时间系统分析是信号与系统学科中的重要内容,具有广泛的理论基础和实际应用。
通过深入学习连续时间系统的概念、表示、性质、频域分析、时域分析和应用,我们可以更好地理解和掌握信号与系统的基本原理和方法,为相关领域的研究和应用提供理论指导和技术支持。
信号与系统第二章
§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。
信号与系统的时域分析
《信号与系统》课程研究性学习手册研讨内容: 信号与系统的时域分析信号的时域分析专题研讨【目的】(1) 掌握基本信号及其特性,了解实际信号的建模。
(2) 掌握基本信号的运算,加深对信号时域分析基本原理和方法的理解,并建立时频之间的感性认识。
(3) 学会仿真软件MA TLAB的初步使用方法,掌握利用MA TLAB进行信号表示和信号运算。
【研讨内容】题目2:信号的基本运算(语音信号的翻转、展缩)1)将原始音频信号在时域上进行延展、压缩,2)将原始音频信号在频域上进行幅度放大与缩小,3)将原始音频信号在时域上进行翻转,【题目分析】先截取一段音频文件,用格式转换器转成wavread函数要求的wav.格式,然后放在matlab中,如下列程序。
之后对这个音频信号按照题目的要求进行变换。
要注意的是前两问中对信号的延展压缩和对幅度的放大和缩小时不一样的。
延展和压缩时对频率的变化,而幅度变化是加在外面的。
最后一题,引入时间长度k,最终进行翻转。
【仿真程序】(1)原始信号:figure(1);[x,fs,nbits]=wavread ('2');x1=x(1:1:end);wavplay(x1,fs);k=1:length(x1);plot(k,x1);将原始信号进行压缩:figure(2);[x,fs,nbits]=wavread ('2');wavplay(x,fs);x2=x(1:2:end);k=1:length(x2);wavplay(x2,fs);plot(k,x2);将原始信号进行延展:figure(2);[x,fs,nbits]=wavread ('2');wavplay(x,fs);x2=x(1:0.5:end);k=1:length(x2);wavplay(x2,fs);plot(k,x2);(2)将原始信号幅度放大10倍:figure;[x,Fs,bits]=wavread('2');wavplay(x,Fs);x3=10*x(1:1:end);wavplay(x3,Fs);k=1:length(x3);plot(k,x3);将原始信号幅度缩小10倍:figure;[x,Fs,bits]=wavread('2');wavplay(x,Fs);x3=0.1*x(1:1:end);wavplay(x3,Fs);k=1:length(x3);plot(k,x3);(3)将原始信号翻转:figure;[x,fs,bits]=wavread('2');x=x(1:1:end);k=1:length(x);y=fliplr(x);sound(y,fs,bits);plot(-k,x);【仿真结果】(1)女声初始语音信号将初始信号压缩将初始信号延展将初始信号幅度放小为原来的十分之一将初始信号放大为原来的十倍将初始信号翻转(2)男声初始语音信号将初始信号压缩将初始信号延展将初始信号幅度放小为原来的十分之一将初始信号放大为原来的十倍将初始信号翻转【结果分析】1.语音信号进行延展和压缩后,效果有明显的变化,原来成熟的女性声音经过压缩之后像小女孩的声音,而经过延展之后变粗像是男人的声音。
信号与系统概念理解
名词解释1.系统:由若干相互关联、相互作用的事物按一定规律组合而成的具有某种功能的整体。
2.连续系统:当系统的输入是连续时间信号时,若系统的输出也是连续时间信号,则称该系统为连续系统。
3.连续信号:在连续时间范围内(—∞<t<∞)有定义的信号。
4.系统的时域分析:若求解系统响应的整个过程是在时间域里进行的,则为系统的时域分析。
5.线性系统:一个既具有分解特性,又具有零状态线性和零输入线性的系统为线性系统;否则,为非线性系统。
6.时不变系统:如果激励作用于系统引起零状态响应时,当激励延迟了一定时间后作用于系统时,其引起的零状态响应也延迟了相同时间的系统。
它具有微分特性和积分特性。
7.系统建模:根据实际系统的结构、元件特性,利用有关基本定律寻找能表征系统特征的数学关系式。
8.阶跃响应:当激励为单位阶跃函数时,系统的零状态响应为单位阶跃响应。
9.网络输出阻抗:将激励源置零保留激励源为阻抗,此时输出口得等效阻抗为网络输出阻抗。
10.谐振电路的选择性:若串联谐振电路中有不同频率的电源同时作用时,则接近谐振频率的电流成分将较大,而偏离谐振频率的电流成分则较小,由此可将谐振频率附近的电流成分选择出来。
11.线性性质包含的两个内容:齐次性:当激励增大a倍时,零状态响应也增大a倍。
叠加性:当多个激励作用于系统时,其零状态等于各激励单独作用时所引起的零状态响应之和。
12.零状态线性:如果零状态响应,既满足齐次性,又满足叠加性,为零状态线性。
13.自由响应(固有响应):仅依赖于系统本身的特性,而与激励的函数形式无关的齐次解的函数形式。
14.强迫响应:由激励确定特解的函数形式。
15.单位冲激响应:当激励为冲激函数δ(t)时,系统的零状态响应称为单位冲激响应。
系统的冲激响应与该系统的零输入响应具有相同的函数形式。
16.求系统的冲击函数步骤:一、选新变量y(t),使它满足的微分方程在等号右端只含有f(t);二、根据线性时不变系统零状态响应的线性性质和微分特性,即可求出系统的冲激函数。
信号与系统实验报告实验一 信号与系统的时域分析
实验一信号与系统的时域分析一、实验目的1、熟悉与掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间与离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MA TLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。
基本要求:掌握用MA TLAB描述连续时间信号与离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换与运算,并且以图形的方式再现各种信号的波形。
掌握线性时不变连续系统的时域数学模型用MA TLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。
二、实验原理信号(Signal)一般都就是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都就是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就就是随着海拔高度的变化而变化的。
一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴与纵轴,因此,图像信号具有两个或两个以上的独立变量。
在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量就是否就是时间变量。
在自然界中,大多数信号的时间变量都就是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力与声音信号就就是连续时间信号的例子。
第2章-连续时间信号与系统的时域分析PPT课件
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。
信号与系统(连续系统的时域分析)实验报告1
信号与系统(连续系统的时域分析)实验报告1本次实验内容是关于连续信号和系统的时域分析,我将按照实验操作流程、实验结果、实验分析和实验总结四个方面进行本次实验报告。
实验操作流程:1、根据实验指导书,找到实验需要使用的硬件设备和软件平台。
3、进行连续信号的产生和输入,根据实验指导书中的要求,选择不同的信号类型,改变其频率、振幅、相位等参数。
5、通过实验软件平台对产生的信号和系统进行采样和采集,并进行大量的数据处理和分析。
6、根据实验结论和实验指导书中的要求,编写实验报告。
实验结果:在本次实验中,我成功产生了三种不同类型的连续信号,分别是正弦信号、方波信号和三角波信号,同时我也成功搭建了两种不同类型的连续系统,分别是低通滤波器和高通滤波器,随着不同的输入信号对系统的测试,产生了一系列不同的实验结果。
主要的实验结果如下:首先是正弦信号的生成和输入,通过改变其频率和幅值,观察到了信号的变化过程及其在系统中被处理的效果,在低通滤波器中,信号的频率被截止,经过系统后的信号相比于输入信号更加平滑;在高通滤波器中,信号的低频部分被丢弃,经过系统后的信号比输入信号更加尖锐。
其次是方波信号的生成和输入,由于方波信号富含基频及其谐波,我们可以在低通滤波器中观察到对基频和谐波的处理效果,在低通滤波器中,我们可以观察到基频及其谐波被通过,而高于截止频率的谐波则被丢掉;在高通滤波器中,方波信号的低频部分被丢掉,越高的谐波被通过,产生重音类的声音。
最后是三角波信号的生成和输入,我们发现三角波信号的频率变化相对于方波信号更加平缓,变化更加连续,因此在经过低通滤波器进行处理的时候,我们可以观察到频率更加平滑,而高通滤波器将产生一个类似于单谐波的效果,快速上升和下降的部分被丢掉,产生一个非常平滑的信号。
实验分析:通过本次实验,我们了解了连续信号和系统的时域分析方法,对不同类型的信号和系统有了更深入的了解,同时也提升了我们对实验平台的掌握能力和实际操作的经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pd; dt
pn ddnn t
•积分算子(Integral operator):
2020/7/15
1 t
p
d
2、算子符号的一般运算规则。
1 .p ( a )p ( b ) x [p 2 (a b ) p a ]x b d d 2 2 x t (a b )d d a x t bx
i(t) L
e(t)
C 2 R r(t)
KCL方程
解:由图列方程
KVL方程
KVL: KCL:
2020/7/15
Ld(it)r(t)e(t).....1(.)... dt
C 2dd (rtt)r(R t)i(t).......2 (.)...
将(2)式两边微分,得
C 2d2 d r(2tt)R 1dd (rtt)dd (it)t.....(.3.)...
ddnnrt an1ddnnt1r1 ....a1ddrta0r bmddmm tebm1ddmm t1e1 ... b1ddetb0e
明显看出:表示方式得到简化。
2020/7/15
例3、由电路得到微分方程
L R 21 d id 12 i tL 1 R d d 2i1 2i tC 1 C 1((ii1 2 ii2 1))d d ff12
第二章 连续时间信号和系统的时域分析
信号分析: 任意信号f(t)分解为无穷多冲激信号的和;
信号的脉冲 分解
t
f(t)0
f()(t)d
2020/7/15
系统分析: 已知系统,已知系统输入,求系统输出.
e(t)
H(p)
r(t)
2020/7/15
时域分析方法: 以时间t为自变量的分析方法.
时域分析方法:
精确制导
雷达 通信系统 信息处理 武器控制
2020/7/15
2020/7/15
一般,对于一个线性系统,其输入与输出之间关系, 总可以用下列形式的微分方程来描述:
ddnnrt an1ddnnt1r1 ....a1ddrta0r bmddmm tebm1ddmm t1e1 ... b1ddetb0e
四、用算子电路建立系统数学模型
类似电路分析中向量法 :L j L ,
C 1 , j C
L pL , C 1 ,
pC
仅适用于正弦稳 态电路中
2020/7/15
例4、用算子法求系统微分方程,输出为2欧姆电阻的电流。
i1
i2
(p25p2 3)i2(t)0.5p(ft)
d d2 2it2(t)5d di2 t(t)2 3i2(t)0 .5d dft(t)
n阶常系数微分方程
e(t)
r(t)
系统
2020/7/15
二、电路系统数学模型的建立
列方程的基本依据: 1、元件特性约束:VCR方程。 2、网络拓扑约束:KCL、KVL方程。
列方程的基本方法: 节点分析法和网孔电流法。
2020/7/15
例1:已知电路,求输出电容电压。 • 一阶系统:
电源:
us (t)
L1d d12 2 itR 1d d1itC 1i1C 1i2d d1ft L2d d22 2 itR 2d d2i tC 1i1C 1i2d d2ft
i1(t)
i2(t)
d p
dt
dn dt n
pn
t
• d
1
p
算子方程
2020/7/15
L 1p2i1R 1p1 iC 1i1C 1i2p1f L2p2i2R 2p2iC 1i1C 1i2p2f
电容电压: u c (t )
VCR
Ri 电阻电压:
RCduc(t) dt
KVL
RC ddcu(tt)uc(t)us(t)
2020/7/15
一阶常系数线性微分方程
• 二阶系统:
+
i(t)
Uc
-
***注:同一系统不同变量的系统模型具有同一性。
2020/7/15
例2. 对图示电路,写出激励e(t)和响应r(t)间的微分方程。
2020/7/15
五、传输算子(transfer operator)
e(t)
H(p)
r(t)
D(p)r(t)=N(p)e(t)
rt
Np Dp
et
传输算子
Hp
Np Dp
2020/7/15
例5、系统的输出为2欧姆电阻的电流,求系统的传输算子。
i1
i2
(p25p2 3)i2(t)0.5p(ft)
d d2 2it2(t)5d di2 t(t)2 3i2(t)0 .5d dft(t)
2.P1xd t xdx p dt
3.1P
p
x
t dx
[
d
t]t
d
x(t
)x()
若x()0, 则1Px=x p
4.PxPy, 其中 P不能消去 dx=dy 两边积分 x得 yC
dt dt
2020/7/15
引入算子后,可以简化系统模型的表示,如:
一般,对于一个线性系统,其输入与输出之间关系, 总可以用下列形式的微分方程来描述:
2020/7/15
**零输入响应的一般形式:
第一步:建立数学模型; 第二步:运用数学方法处理、运算和求解(t自变量); 第三步:对所得的数学解给出物理解释,赋予物理意义。
2020/7/15
本章重点: 1、求系统的冲激响应; 2、用卷积积分法求零状态响应。
2020/7/15
2-1 LTI系统的数学模型与传输算子
一、系统数学模型的意义及形式
数学模型
2020/7/15
例6、由模拟框图H(p)
x 2
t
x1d
1 p
x1
x 3
t
x2d
1 p
x2
1 p2
x1
23
x1f(t)2x33x2 f(t)p2 x1px1
p)x2x3 p2 x1 p x1
2020/7/15
y(t) p1 H(p)f(t)p23p2)
将(3)代入(1)
Ld(it)r(t)e(t).......1(.)... dt
得:
d2r(t) Ld(r t)
L2Cd2t
r(t)e(t)
Rdt
2020/7/15
二阶常系数线性微分方程
三、 用算子符号表示微分方程
1、定义:算子作用于某一时间函数时,此时间函数将进行 算子所表示的特定运算。
•微分算子(Differential operator):
2.2 零输入响应(zero—input response)
(The zero-input response is the system response due to initial conditions.)
Dprz it0
r0,r0, rn10
例、 d d2 2it2(t)5d di2 t(t)2 3i2(t)0 .5d dft(t)