弧长和扇形面积公式

合集下载

扇形面积公式和弧长公式

扇形面积公式和弧长公式

扇形面积公式和弧长公式扇形是圆周上两条半径之间的一段弧与半径所围成的区域。

计算扇形的面积和弧长是在几何学和物理学中常见的计算问题。

本文将介绍扇形面积公式和弧长公式,并提供计算示例。

扇形面积公式扇形的面积可以使用以下公式进行计算:$A = \\frac{1}{2}r^2\\theta$其中,A表示扇形的面积,r表示扇形的半径,$\\theta$表示扇形对应的圆心角(以弧度为单位)。

要计算扇形的面积,首先需要确定扇形的半径和圆心角。

将这些值代入公式,即可得出扇形的面积。

以下是一个计算扇形面积的示例:假设扇形的半径为5cm,圆心角为45°(将角度转换为弧度)。

代入公式可得:$A = \\frac{1}{2} \\cdot 5^2 \\cdot \\frac{45}{180} \\pi = \\frac{25}{4} \\pi\\approx 19.63 cm^2$因此,扇形的面积约为19.63平方厘米。

弧长公式扇形的弧长可以使用以下公式进行计算:$L = r\\theta$其中,L表示扇形的弧长,r表示扇形的半径,$\\theta$表示扇形对应的圆心角(以弧度为单位)。

要计算扇形的弧长,同样需要知道扇形的半径和圆心角。

将这些值代入公式,即可得出扇形的弧长。

以下是一个计算扇形弧长的示例:假设扇形的半径为8cm,圆心角为60°(将角度转换为弧度)。

代入公式可得:$L = 8 \\cdot \\frac{60}{180} \\pi = \\frac{4}{3} \\pi \\approx 4.19 cm$因此,扇形的弧长约为4.19厘米。

总结扇形的面积和弧长可以通过相应的公式进行计算。

在计算前,需要确定扇形的半径和圆心角,并将角度转换为弧度。

扇形是几何学和物理学中常见的形状,计算其面积和弧长有助于解决相关问题。

在实际应用中,扇形的面积和弧长公式可以用于计算圆盘的扇形部分面积和弧长,可以用于设计扇形的织物、纸板或金属板的尺寸,也可以用于计算扇形的力学特性和运动学问题。

弧度制弧长面积公式

弧度制弧长面积公式

弧度制弧长面积公式弧度制是一种角度度量方式,常用于计算圆周上弧长和扇形面积。

弧度制将一个圆的弧长定义为它所对应的圆心角的弧度数。

圆周上弧长的计算公式:L=rθ其中,L表示弧长,r表示半径,θ表示所对应圆心角的弧度数。

扇形面积的计算公式:A=1/2r²θ其中,A表示扇形面积,r表示半径,θ表示所对应圆心角的弧度数。

弧度制的优势在于其计算公式简洁且易于使用,在数学和物理学中被广泛应用。

与角度制不同,弧度制的计算直接依赖于圆心角的弧度数,更符合数学的逻辑。

在实际应用中,常常需要将角度制转换为弧度制,这可以通过以下公式实现:radian = (π/180)°其中,radian表示弧度,°表示角度。

例如,将一角度为30°的角转换为弧度,其对应的弧度为:radian = (π/180) * 30 ≈ 0.523 rad反之,将弧度制转换为角度制可以使用以下公式:degree = (180/π) rad其中,degree表示角度,rad表示弧度。

例如,将一个弧度为π/6的角转换为角度,其对应的角度为:degree = (180/π) * (π/6)= 30°弧度制的引入可以更好地揭示圆的本质特征和数学性质,有助于简化计算和推导,同时也方便了圆周上弧长和扇形面积的计算。

在物理学和工程学领域中,弧度制的应用更加广泛。

例如,在力学中,角加速度的计算需要使用弧度制,通过简洁的计算公式可以直接得到加速度的值。

在电磁学中,计算电磁波的波长和波速也常常使用弧度制。

总结起来,弧度制是一种角度度量方式,通过直接使用圆心角的弧度数,简化了计算和推导,并获得了更好的数学性质和物理应用。

弧度制的公式包括圆周上弧长和扇形面积的计算公式,可以用于解决相关数学和物理问题。

弧长公式扇形面积公式弧度制

弧长公式扇形面积公式弧度制

弧长公式扇形面积公式弧度制
(最新版)
目录
1.引言
2.弧长公式
3.扇形面积公式
4.弧度制
5.结论
正文
1.引言
在数学中,扇形是一个非常基本的概念,它是由一条弧和经过这条弧两端的两条半径所围成的区域。

扇形的面积和弧长是计算扇形相关问题的重要工具,而弧度制则是一种用来度量角度的制度。

本文将介绍扇形的面积公式、弧长公式以及弧度制。

2.弧长公式
弧长公式是用来计算扇形弧长的公式,它的公式为:L = θr,其中 L 表示弧长,θ表示扇形角的弧度制表示,r 表示扇形的半径。

通过这个公式,我们可以计算出扇形中任意一段弧的长度。

3.扇形面积公式
扇形面积公式是用来计算扇形面积的公式,它的公式为:S = 1/2 ×r ×θ,其中 S 表示扇形的面积,r 表示扇形的半径,θ表示扇形角的弧度制表示。

通过这个公式,我们可以计算出扇形的面积。

4.弧度制
弧度制是一种用来度量角度的制度,它的单位是弧度。

在弧度制中,
一圆的周长被定义为 2πr,其中 r 表示圆的半径。

弧度制的应用使得计算扇形问题变得更加简便,因为它可以避免角度制中度数与弧度之间的转换。

5.结论
总结一下,扇形的面积公式和弧长公式是计算扇形相关问题的重要工具,而弧度制则为计算提供了便利。

扇形面积公式弧长公式

扇形面积公式弧长公式

扇形面积公式弧长公式
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形),它是由圆周的一部分与它所对应的圆心角围成。

扇形面积公式
S扇=LR/2(L为扇形弧长,R为半径)或π(R^2)*N/360(即扇
形的度数)
扇形是与圆形有关的一种重要图形,其面积与圆心角(顶角)、圆半径相关,圆心角为n°,半径为r的扇形面积为n/360*πr^2。

如果其顶角采用弧度单位,则可简化为1/2×弧长×(半径)
扇形还与三角形有相似之处,上述简化的面积公式亦可看成:1/2×弧长×(半径),与三角形面积:1/2×底×高相似。

扇形弧长公式
L是弧长,n是扇形圆心角,π是圆周率,R是扇形半径。

弧长L=2×圆心角的角度(角度制)×圆周率π3.14×半径
/360°
弧长L=圆心角的角度(角度制)×圆周率π3.14×半径/180°。

弧长公式和面积公式

弧长公式和面积公式

弧长公式和面积公式
圆弧的弧长公式和面积公式:
1、已知弧长L与半径R:S扇形=1/2LR。

2、已知弧所对的圆心角n°与半径。

S扇形=nπR^2/360。

弧形计算公式:S=1/2LR=nπR²/360(L是弧长,R是半径)。

弧长计算公式:L=n(圆心角度数)×π(1)×r(半径)/180(角度制),L=α(弧度)×r(半径)(弧度制)。

其中n是圆心角度数,r 是半径,L是圆心角弧长。

弧形面积的计算方法
弧长、两弧点间的距离、弧高这三个条件知道任意两个就够了。

(1)由已知弧长和已知弦长(两弧点间的距离)求得圆半径和弧所对的圆心角的度数。

(2)由半径和圆心角求得扇形面积和三角形面积。

(3)扇形面积减去三角形的面积的弧形的面积。

弧长与扇形面积的计算

弧长与扇形面积的计算

弧长与扇形面积的计算扇形是我们在几何学中常常遇到的一种形状,它可以看作是一个圆周上的一部分。

而在计算扇形相关的问题时,我们经常需要计算扇形的弧长和面积。

本文将介绍如何准确计算弧长和扇形面积,并给出具体的计算公式和实例。

一、弧长的计算方法1. 弧长的定义在圆上取定一个弧,这个弧所对应的圆周长度就是该弧的弧长。

通常用字母 L 表示弧长。

2. 弧长的计算公式假设圆的半径为 r,弧的角度为θ(单位为弧度),则弧长 L 可以通过以下公式计算:L = rθ3. 弧度与角度的转换角度是我们常见的度量角的单位,而弧度是另一种角的度量方式。

它们之间的转换关系如下:1个弧度≈ 57.3度1度≈ 0.017弧度4. 弧长的计算实例例子:一个圆的半径为 5 cm,其中的扇形角度为 60 度,求该扇形的弧长。

解:首先将角度转换为弧度:θ = 60 度× 0.017 ≈ 1.047 弧度然后利用弧长的计算公式进行计算:L = 5 cm × 1.047 ≈ 5.24 cm所以,该扇形的弧长约为 5.24 cm。

二、扇形面积的计算方法1. 扇形面积的定义扇形面积指的是一个圆的部分与圆心相连的区域的面积。

通常用字母 S 表示扇形面积。

2. 扇形面积的计算公式假设圆的半径为 r,扇形的角度为θ(单位为弧度),则扇形面积 S 可以通过以下公式计算:S = 0.5r²θ3. 扇形面积的计算实例例子:一个圆的半径为 8 cm,其中的扇形角度为 120 度,求该扇形的面积。

解:首先将角度转换为弧度:θ = 120 度× 0.017 ≈ 2.094 弧度然后利用扇形面积的计算公式进行计算:S = 0.5 × 8 cm × 8 cm × 2.094 ≈ 66.912 cm²所以,该扇形的面积约为 66.912 cm²。

三、弧长和扇形面积的关系弧长和扇形面积之间存在着一定的关系。

弧长与扇形面积的计算

弧长与扇形面积的计算

弧长与扇形面积的计算扇形是在平面上由圆心和圆上两点之间的弧所围成的图形。

而弧长和扇形面积的计算是在几何学中常见的计算问题,并且在日常生活中也有广泛的应用。

本文将分别介绍弧长和扇形面积的计算方法。

一、弧长的计算方法对于给定圆的半径 r 和圆心角θ(单位为弧度),我们可以通过以下公式来计算弧长:l = r * θ其中,l 表示弧长。

半径和圆心角是计算弧长的基本要素,通过将半径与圆心角相乘,即可得到弧长。

例如,如果给定圆的半径 r = 5 cm,圆心角θ = π/3(60度),代入公式可得:l = 5 * π/3 ≈ 5.24 cm所以,这个圆的弧长约为 5.24 cm。

二、扇形面积的计算方法扇形是由圆心、圆上两点和与圆心连线所围成的图形。

我们可以通过以下公式来计算扇形的面积:A = (1/2) * r^2 * θ其中,A 表示扇形面积。

半径和圆心角也是计算扇形面积的基本要素,通过将半径的平方乘以圆心角的一半,即可得到扇形的面积。

例如,如果给定圆的半径 r = 5 cm,圆心角θ = π/3(60度),代入公式可得:A = (1/2) * 5^2 * π/3 ≈ 8.64 cm^2所以,这个圆的扇形面积约为 8.64 平方厘米。

三、应用举例1. 一个钟表的秒针长 6 cm,求秒针划过的弧长和所扫过的扇形面积。

根据题意可知,这是一个半径为 6 cm 的圆。

由于钟表秒针划过的角度为 360 度(2π 弧度),所以:弧长l = 6 * 2π ≈ 37.68 cm扇形面积A = (1/2) * 6^2 * 2π = 36π ≈ 113.1 平方厘米所以,秒针划过的弧长约为 37.68 cm,扫过的扇形面积约为 113.1平方厘米。

2. 一个花坛的半径为 8 m,其中一只喷泉将水喷进半径为 5 m 的圆形区域内,求喷泉围成的扇形面积。

根据题意可知,花坛的半径为 8 m,喷泉喷入的区域为半径为 5 m的圆形区域。

圆的弧长与扇形面积计算

圆的弧长与扇形面积计算

圆的弧长与扇形面积计算
圆是几何学中常见的形状,其弧长和扇形面积的计算是基础的几何学知识。

在本文中,我们将讨论如何计算圆的弧长和扇形面积。

一、圆的弧长计算
在计算圆的弧长时,我们需要知道圆的半径(r)以及弧度(θ)。

弧度是度数的一种换算方式,1弧度(rad)等于57.3度(°)。

圆的弧长(s)可以通过以下公式计算:
s = r × θ
其中,s表示圆的弧长,r表示圆的半径,θ表示圆的弧度。

例如,如果我们知道半径为5cm的圆的弧度θ为π/3,那么可以通过代入公式计算出弧长。

s = 5cm × π/3≈ 5.24cm
所以,圆的弧长为约5.24cm。

二、扇形面积的计算
扇形是以圆心角为顶点的圆弧所围成的图形。

在计算扇形面积时,我们需要知道圆的半径(r)以及圆心角的度数(θ)。

扇形的面积(A)可以通过以下公式计算:
A = (θ/360°) × πr²
其中,A表示扇形的面积,r表示圆的半径,θ表示圆心角的度数。

例如,如果我们知道半径为8cm的圆的圆心角度数θ为60°,那么可以通过代入公式计算出扇形面积。

A = (60°/360°) × π × 8cm² ≈ 13.09cm²
所以,扇形的面积为约13.09cm²。

综上所述,我们可以使用特定的公式来计算圆的弧长和扇形面积。

这些计算对于解决实际问题和理解几何学概念非常有帮助。

希望通过本文的介绍,您能更好地掌握圆的弧长和扇形面积的计算方法。

扇形面积和弧长的计算

扇形面积和弧长的计算

扇形面积和弧长的计算
扇形是一个由圆心和两个半径所构成的区域。

在进行扇形面积和弧长的计算时,我们需要知道扇形的半径和夹角。

1.扇形面积的计算:
扇形面积可以通过圆的面积和夹角来计算。

圆的面积公式为:
S=π*r^2
扇形面积可以根据圆的面积和夹角的比例来计算。

假设扇形的夹角为θ,那么扇形面积S'与圆的面积S的比例为θ/360°。

因此,扇形面积的计算公式为:
S'=(θ/360°)*S
=(θ/360°)*π*r^2
其中,S'为扇形的面积。

2.弧长的计算:
扇形的弧长是指扇形内圆弧的长度。

弧长的计算需要知道扇形的半径和夹角。

圆的周长公式为:
C=2*π*r
扇形的弧长可以根据圆的周长和夹角的比例来计算。

假设扇形的夹角为θ,那么扇形的弧长L与圆的周长C的比例为θ/360°。

因此,扇形弧长的计算公式为:
L=(θ/360°)*C
=(θ/360°)*2*π*r
其中,L为扇形的弧长。

需要注意的是,角度应该以弧度制来进行计算。

弧度制与角度制之间的换算关系为2π rad = 360°,即1 rad ≈ 57.3°。

如果给定的夹角是以角度制表示,则需要将其转化为弧度制进行计算。

弧长扇形面积公式

弧长扇形面积公式

弧长扇形面积公式
弧长扇形面积公式是指一个扇形中弧的角度和长度是已知的情况下,对应的面积计算公式。

它常用于计算几何图形的面积,比如圆的面积或者椭圆的面积。

具体内容如下:
一、弧长扇形面积公式
1. 公式推导:
(1)扇形面积S=R*R*θ/2
(其中,R为扇形半径,θ为一个扇形中弧的角度)
(2)弧长公式C=R*θ
(其中,C为扇形中弧的长度)
(3)将(1)与(2)结合,可求出弧长扇形面积公式:
S=C*R/2
2.实际应用:
(1)将锁链围成的一个扇形,给定了它的半径R和弧长C,则可以通过此公式计算扇形面积。

(2)将一个圆分为几个小扇形,给定了它们的弧长C,可以利用此公式求得每一个小扇形的面积。

二、弧长扇形面积公式的特点
1. 对角度θ和半径R在一定范围内,此公式都是成立的。

2. 弧长求面积的公式不依赖于图形的形状,无论是圆形、椭圆形等,只要是扇形的面积计算,都可以使用此公式。

3.该公式求得的结果是最精确的,解决了传统方法求和的误差很大的问题。

三、弧长扇形面积公式的优势
1.公式简单易懂,容易理解。

2.对偶结构其他几何图形,也可以利用此公式,得到更加准确结果。

3.可以节约计算时间和空间,减少了计算复杂度。

扇形的全部公式

扇形的全部公式

扇形的全部公式
扇形的全部公式:
1、扇形的面积公式:S=LR÷2 (R为扇形半径,L为扇形对应的弧长。

2、扇形的弧长=2πr×角度÷360
3、扇形周长=半径×2+弧长C=2r+(n÷360)πd=2r+(n÷180)πr
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

显然,它是由圆周的一部分与它所对应的圆心角围成。

《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形。

扇形周长
若半径为r,直径为d,扇形所对的圆心角的度数为n°。

C=2r+(n÷360)πd=2r+(n÷180)πr
扇形所对的圆心角的度数为n°,大圆半径为R,小圆半径为r。

C=2*(R-r)+π(R+r)/180*n
如果两个圆不是同心圆,角度分别为n,m。

大圆半径为R,小圆半径为r。

C=2*(R-r)+π(R*n+r*m)/180
扇形弧长
在圆上过2点的一段弧的长度叫做弧长。

n是圆心角度数,r是半径,α是圆心角弧度。

l=nπr÷180
l=n/180·πr
l=|α|r
l=n°πR÷180°。

圆的弧长与扇形面积计算

圆的弧长与扇形面积计算

圆的弧长与扇形面积计算圆是数学中的一个基本几何形状,具有许多重要的性质和特点。

其中,圆的弧长和扇形面积是圆的两个重要计算问题。

本文将介绍如何计算圆的弧长和扇形面积,并给出相应的计算公式和实例。

一、圆的弧长计算圆的弧长是圆上两个点之间的路径长度。

具体来说,弧长是从圆心沿圆周到达弧上某一点的路径长度。

我们可以通过圆的半径、直径或角度来计算圆的弧长。

1.1 通过半径计算假设半径为r的圆,要计算圆的弧长,可以使用以下公式:弧长= 2πr1.2 通过直径计算如果已知圆的直径d,可以通过以下公式计算圆的弧长:弧长= πd1.3 通过角度计算当我们知道圆心角的度数时,可以使用以下公式计算圆的弧长:弧长 = (θ/360)× 2πr其中,θ代表圆心角的度数。

下面举一个例子来说明如何计算圆的弧长:假设有一个半径为6cm的圆,我们要计算圆的1/4弧长,即圆心角为90度的弧长。

根据公式,弧长 = (90/360)× 2π × 6 = 3π ≈ 9.42cm二、扇形面积计算扇形是指由圆心、圆周上的两点以及与两点相连并且在圆上的弧段围成的封闭图形。

计算扇形的面积需要知道圆的半径和扇形对应的圆心角。

2.1 扇形面积的计算公式对于一个半径为r的扇形,其面积可以通过以下公式计算:扇形面积 = (θ/360)× πr²其中,θ代表扇形对应的圆心角的度数。

2.2 扇形面积的实例计算假设有一个半径为8cm的扇形,圆心角的度数为60度,我们可以使用公式计算扇形的面积:扇形面积 = (60/360)× π × 8² ≈ 33.51cm²通过上述计算,我们得到了由一个半径为8cm的扇形所围成的面积为约33.51平方厘米。

综上所述,我们介绍了圆的弧长和扇形面积的计算方法及相应的公式,并举例说明了如何应用这些公式进行具体计算。

掌握了这些计算方法,我们可以更好地理解和应用圆的相关性质,并在实际问题中灵活运用。

弧长及扇形面积计算公式

弧长及扇形面积计算公式

弧长及扇形面积计算公式弧长和扇形面积是与圆相关的重要概念之一、在数学和几何学中,弧长是圆的一部分,扇形面积是由圆心和弧所围成的。

1.弧长:在圆的外周上,如果我们将一个角度的度数分为360等份,每一等份就是一个角度的1/360。

如果我们从圆心引出一条线段,使其与圆周相交于两个点,并且这两个点与圆心之间的角度正好为1度(或1/360),那么这两个点之间的弧长就是圆周的1/360。

同样地,如果我们将这个角度分为n等份,那么每一等份所对应的弧长就是圆周的1/360(或2πr)乘以n。

我们可以使用以下公式计算弧长:弧长=弧度×半径s=rθ其中,s是弧长,r是半径,θ是弧度。

例如,如果半径为10的圆上的弧度为2π/3,我们可以计算出弧长为:s=10×(2π/3)≈20.942.扇形面积:扇形面积是由圆心和弧所围成的部分的面积。

要计算扇形面积,我们可以使用以下公式:扇形面积=1/2×弧长×半径A=1/2×s×r其中,A是扇形的面积,s是弧长,r是半径。

例如,如果半径为5的圆上的弧长为4.5,我们可以计算出扇形的面积为:A=1/2×4.5×5=11.25对于给定的圆的半径和弧度,我们可以使用以上公式来计算弧长和扇形面积。

这些公式在各种实际应用中都有重要的作用。

例如,在建筑和设计中,我们可能需要计算扇形的面积来确定房间的大小。

在物理学中,我们可能需要计算物体围绕圆周运动的路径长度。

在工程学中,我们可能需要计算扇形的面积来确定液体或气体的容积。

总结起来,弧长和扇形面积是与圆相关的重要概念。

通过使用弧长和扇形面积的计算公式,我们可以在几何学和数学中解决各种问题,并在实际应用中应用这些概念。

圆的弧长和扇形面积公式及变形

圆的弧长和扇形面积公式及变形

圆的弧长和扇形面积公式及变形
圆的弧长公式:圆的弧长等于半径与弧所对的圆心角的夹角度数的乘积,公式为L=θr(其中L表示弧长,r表示半径,θ表示圆心角的夹角度数)。

圆的扇形面积公式:圆的扇形面积等于半径的平方乘以圆心角的夹角度数除以360度,公式为S=1/2r²θ(其中S表示扇形面积,r 表示半径,θ表示圆心角的夹角度数)。

圆的弧长和扇形面积的变形公式:当圆的弧长和扇形面积不同于标准形式时,可以通过变形公式求解。

如圆的弧长为L,圆心角的夹角度数为θ,则弧长对应的圆的半径为r=L/θ;若扇形的面积为S,圆心角的夹角度数为θ,则扇形对应圆的半径为r=√(2S/θ)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弧长公式
l nR 180
制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线的长度),再下料,这就涉及到计算弧长的 问题
例1、制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位: mm,精确到1mm)
弧长公式
l nR 180
2,有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81o,求这段圆弧的半径R(精确到0.1m)
如果两个轮 是等圆呢?
携手共进,齐创精品工程
Thank You
世界触手可及
25
O Rr
提高:已知正三角形ABC的边长为a,分别以A、B、C为圆心,以a/2为半径的圆相切于点D、 E、F,求图中 阴影部分的面积S.
皮带轮模型 如图,两个皮带轮的中心的距离为2.1m,直 径分别为0.65m和0.24m。(1)求皮带长(保 留三个有效数字);(2)如果小轮每分钟 750转,求大轮每分钟约多少转?
弧长和扇形面积公式
1
复习 1,已知⊙O半径为R,⊙O的周长C是多少?
C = 2πR
2,已知⊙O半径为R,⊙O的面积S是多少? S=πR2
如图,某传送带的一个转动轮的半径为10cm. 1.转动轮转一周,传送带上的物品A被传送多少厘米? 2.转动轮转1°,传送带上的物品A被传送多少厘米? 3.转动轮转n°,传送带上的物品A被传送多少厘米?
弧长公式
若设⊙O半径为R, n°的圆心角所对的 弧长为l,则
l nR 180
O

A
B
(1)在应用弧长公式 带单位的;
l
,进行计算时,要l注意公n式中Rn的意义.n表示1°圆心角的倍数,它是不 180
(2)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等 孤,而只有在同圆或等圆中,才可能是等弧.
例2 扇形AOB的半径为12cm, ∠AOB=120°,求AB的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到 0.1cm2).
A
B
O
1. 扇形面积大小( )
C
(A)只与半径长短有关
(B)只与圆心角大小有关
(C)与圆心角的大小、半径的长短有关
2. 如果半径为r,圆心角为n0的扇形的面积是S,那么n等于( )
如下图,由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。
B
弧 圆心角 OAຫໍສະໝຸດ B扇形 OA
扇形面积的大小到底和哪些因素有关呢? (当圆半径一定时)扇形的面积随着圆心角的增大而增大。
1. 圆心角是3600的扇形面积是多少? 2. 圆心角是1800的扇形面积是多少? 3. 圆心角是900的扇形面积是多少? 4. 圆心角是2700的扇形面积是多少?
n S扇形= S圆
360
n = πr2 360
在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗. 问:这只狗的最大活动区域有多大?如果这只狗只能绕柱子转过n°角,那么它的最大活动区域有多大?
n l弧= C圆
360
n S扇形= S圆
360
n = .πd 360
n = πr2 360
n = πr 180
-
=
1
rl
2
例1求图中红色部分的面积.(单位:cm,π 取3.14,得数保留整数)
解一(直接用扇形面积公式计算)
r=15cm ,
n S= πr2
360
n=360o-72o=288o
288 = ×3.14×152
360 ≈565(cm2)
解二 (间接求法) S扇形=S大圆-S小扇形
1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S扇=____. 2、已知半径为2的扇形,面积为_____,则它的圆心角的度数为_____.
练习:
3、已知半径为2的扇形,面积为 , 则这个扇形的弧长=____.
4 3
例4、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.
1个圆面积
1 个圆面积 4
1 个圆面积
2
3 个圆面积 4
圆心角是10的扇形面积是多少?
1 圆心角是10的扇形面积是圆面积的
360
圆心角为n0的扇形面积是多少?
n 圆心角是n0的扇形面积是圆面积的
360
如果用字母 S 表示扇形的面积,n表示圆心角的度数,r 表示圆半径,那么扇形 面积的计算公式是:
(A)
(B) (C)
(D)
B
360S πr
360S πr2
180S πr
3.如果一个扇形面积是它所在圆的面积的 ,则此扇形的圆心角( ) (A)300 (B)360 (C)450 (D)600
C 180S πr2
1 8
1.扇形的面积大小与哪些因素有关?
(1)与圆心角的大小有关
(2)与半径的长短有关
2.扇形面积公式与弧长公式的区别:
n l弧= C圆
360
n S扇形= S圆
360
3.扇形面积单位与弧长单位的区别: (1)扇形面积单位有平方的
(2)弧长单位没有平方的
例3、如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m.求截面上有水部分的面积(精 确到0.01m2)
练习:
相关文档
最新文档