统计过程分析控制图系数表
SPC统计过程控制图
30
25 25
21 20 20 17
15 15
12
10 6
5
0 0
8 1 0
极差 1.1192
0.500
0.000
1
2
3
4
5
6
UCLr
AveR
LCLr
Data Values
1
27.52 27.61 28.52
2
26.85 27.53 27.32
3
27.92 26.85 26.93
4
27.40 28.35 28.30
28.5600
26.6200
均值 27.6335
28.000 27.500 27.000 26.500 26.000 25.500
1
3.000 2.500 2.000 1.500 1.000
LSL
USL 极差均值
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 (R)
D2 值
(n=4)
能力指数
上限
(CPU) 能力指数
下限
(CPL) 能力参数
过程能力
性能比率
标准差异
标准差异
变差 (n变差 (n) 性能参数
性能比率
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 性能指数
数据点
统计过程控制之通用控制图
统计过程控制(SPC)与休哈特控制图(三)第六章通用控制图世界各国的控制图大多采用3σ方式。
在应用控制图时,需要计算控制图的控制界限并根据实测数据计算出所控制的统计量,在控制图中描点。
这两项都需要一定的工作量,尤其是p图与pn图、u图与c图,由于控制界限计算公式中含有样本大小n,控制界线随着n的变化而呈凹凸状,作图十分不便,也难于判稳、判异。
若n变化不大,虽可用n 的平均数n代替n,但不精确,当点子接近控制界限时有误报与漏报异常的可能。
1981年我国张公绪教授与阎育苏教授提出的通用控制图解决了上述问题。
在通用控制图上,控制界线是直线,而且判断异常的结果也是精确的。
通用控制图已于1986年发布为国家标准GB6381。
通用控制图主要包括两个内容:标准变换和直接打(描)点法。
一、标准变换与通用图所谓随机变量的标准变换是指经过变换后随机变量的平均值变成0、方差变成1的变换,即:变换后的随机变量=(随机变量一μ)/σ这是可以理解的。
随机变量的取值减去其平均值后的平均值应为0;其次,分母为标准差,也就是说用标准差作尺度,这样,变换后的标准差应为1。
现在,对3σ控制界限的一般公式UCL=μ+3σCL=μLCL=μ-3σ进行标准变换,于是得到UCLt=(UCL-μ)/σ=3CLt=(UCL-μ)/σLCLt=(UCL+μ)/σ=3式中,下标t表示标准变换后,也表示通用的“通"。
这样,任何3σ控制图都统一变换成式(3.6. 1一2)的控制图,称为通用控制图。
通用图的优点是控制界限统一成3,0,-3,可以事先印好,简化控制图,节省管理费用,在图上容易判断稳态和判断异常。
通用图的缺点是在图中打(描)点也需要经过标准变换,计算要麻烦些。
为了解决这个问题,需要应用直接打点法。
二、直接打点法控制图判断异常的准则主要有下列两点:(1)点子出界或恰在控制界限上;(2)界内点子的排列非随机。
前者对于点子位置要求精确,后者对于点子位置要求相对精确就可以了。
控制图八大判异准则+控制图制作模版
控制图八大判异准则-精简顺口溜版控制图八大判异准则-精简顺口溜版口决:(就三句,很简单吧!只要记住以下兰色部分的三句话就行了,不过第一次要对照下面附件中的图看才明白。
)23456,AC连串串(连增或连减);81514,缺C全C交替转;9单侧,一点在外。
控制图八大判异准则提练(口决、图片对应项目):1、2/3A(连续3点中有2点在中心线同一侧的B区外<即A区内>)2、4/5C(连续5点中有4点在中心线同一侧的C区以外)3、6连串(连续6点递增或递减,即连成一串)4、8缺C(连续8点在中心线两侧,但没有一点在C区中)5、9单侧(连续9点落在中心线同一侧)6、14交替(连续14点相邻点上下交替)7、15全C(连续15点在C区中心线上下,即全部在C区内)8、1界外(1点落在A区以外)解说:23456,AC连串串(连增或连减);---2/3、4/5、6分别对应A、C、连串串;即2/3A;4/5C;6连串。
81514,缺C全C交替转---8、15、14分别对应缺C、全C、交替转;即8缺C;15全C;14上下交替。
9单侧,一点在外---9点在同一侧;一点出A区外。
第四节控制图1控制图——过程控制的工具。
用来表示一个过程特性的图象。
它有两个基本用途:①用来判断过程是否一直受统计控制。
②用来帮助过程保持受控状态。
2控制图的构成:UCLCLLCL取样时间①收集:收集数据并画在图上。
②控制:根据过程数据计算试验控制线识别变差特殊原因并采取措施。
③分析及改进:确定普通变差的大小,并采取减少它的措施。
重复三个阶段,从而不断改进过程。
3控制图的益处:①供正在进行过程控制的操作者使用。
②有助于过程在质量上和成本上能持续地、可预见的保持下去。
③使过程达到:——更高的质量。
——更低的单件成本。
——更高的有效能力。
④为讨论过程的性能提供共同的语言。
⑤区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。
XbarR控制图过程统计分析、控制培训课件
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之 处,请联系网站或本人删除。
管制图的分类-计量值和计数值
计数值管制图 用于非可量化的产品特行,如:不良数,缺点
等间断行数据 具体分为:
1-P -管制图-不良率管制图 2-Pn -管制图-不良数管制图 3-C -管制图-缺点数管制图 4-U-管制图-单位缺点数管制图 其中以 P-管制图使用最普遍
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之 处,请联系网站或本人删除。
管制图
管制图的实施循环 在制程中,定时定量随机抽样本 抽取样本做管制特性的测量 将结果绘制于管制图上 判别有无工程异常或偶发性事故 对偶发性事故或工程异常采取措施 a 寻找原因 b 改善对策 c 防止再发根本对策
案例
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之 处,请联系网站或本人删除。
案例
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之 处,请联系网站或本人删除。
案例
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之 处,请联系网站或本人删除。
案例
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之 处,请联系网站或本人删除。
案例
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之 处,请联系网站或本人删除。
Thank you
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之 处,请联系网站或本人删除。
P 管制图制作方法
P 管制图又称不良率管制图.可用在产品不良率,人员考勤 等方面
统计过程控制(SPC)
21
22
1447
1720
1278
1472
2272
2190
1480
1859
1619.25
1810.25
994
718
903
903
2060.6
2060.6
0
0
23
24 25
829
429 1479
1613
312 1529
719
1408 1217
1758
1236 1729
1229.75
846.25 1488.5
SPC(统计过程控制)
根据上海思科统计质量咨询服务有限公司 俞钟行老师讲课整理
内容:
1.SPC(统计过程控制)概述 2.Xbar-R控制图和Xbar-s控制图 3.XmR(即X-RS)控制图 4.分析用控制图和控制用控制图 5.过程能力指数Cp、Cpk 6.过程性能指数Pp、Ppk 7.p控制图(含标准化的应用) 8.控制图判异准则 9.应用和滥用SPC(统计过程控制) 10.测试设备校正(美国“质量”杂志SPC案例2001年) 11.短流程的加工(美国“质量”杂志SPC案例2000年)
n
A3
2 2.659 0 3.267
3 1.954 0 2.568
B3
B4
计算结果(1)
Number 1 2 3 4 5 S 412.8 142.5 494.9 550.9 291.5 Sbar 405.3 405.3 405.3 405.3 405.3 B4Sbar 918.4 918.4 918.4 918.4 918.4 B3Sbar 0 0 0 0 0 Xbarbar 1400.96 1400.96 1400.96 1400.96 1400.96 Xbar+a3Sbar 2060.796172 2060.796172 2060.796172 2060.796172 2060.796172 Xbar-a3Sbar 741.1238285 741.1238285 741.1238285 741.1238285 741.1238285 Xbar 1182.5 1125.5 1435.5 1050.25 1062.25
统计过程控制-SPC
99.73 99.865 99.86501
99.86501
1.33
99.994 99.99683
99.99683
1.67
99.99994
99.99997
2.00
99.9999998
PPT文档演模板
统计过程控制-SPC
设备能力指数Cmk
PPT文档演模板
统计过程控制-SPC
何时应用Cmk指数
Ø 新机器验收时 Ø 机器大修后 Ø 新产品试产时 Ø 产品不合格追查原因时 Ø 在设备和模具结合在一起考虑时
PPT文档演模板
统计过程控制-SPC
控制图及Cpk实际操作
PPT文档演模板
统计过程控制-SPC
控制图及Cpk实际操作
在福利彩票37选7+1的玩法中每个号码出 现的概率是一样的,那么它还有什么规律呢?
根据正态分布的中心极限定理,不管X服 从什么分布,只要n足够大,Xbar就一定服从 正态分布。37选7+1中,每次选出8个号码,那 么,n=8是不是足够大?Xbar(8)是不是服从正 态分布呢?
Ø 1924年,美国的休哈特博士提出将3Sigma原理 运用于生产过程当中,并发表了著名的“控制图 法”,对过程变量进行控制,为统计质量管理奠定 了理论和方法基础。
PPT文档演模板
统计过程控制-SPC
SPC的作用
Ø 确保过程持续稳定、可预测。 Ø 提高产品质量、生产能力、降低成本。 Ø 为过程分析提供依据。 Ø 区分变差的特殊原因和普通原因,作
(Process Capability) 的距离,用Z来表示。
PPT文档演模板
统计过程控制-SPC
正态分布
假如对一个要求长度为20.30的零件进行测 量,共测量75次,得到的数据范围如下,对次 数比例的统计直方图如下页所示:
统计过程控制(SPC)
(3) 偏态型
偏态型:不是正态分布,不服从统计规律,可能的原因是:
1)习惯作业造成作业方法不对。 2)工具、夹具、模具已经磨损或松动。
(4) 离岛型 离岛型:不是正态分布,不服从统计规律,可能的原因是: 1)数据输入人员在输入的过程中,可能把10.01输 10.10或1.01。 2)过程中其他物料混入。 3)机台设备在过程中出现特殊原因,产生了变异。
直方图(频数分布图)的制作步骤
收集同一类型的数据; 计算极差(全距); 设定组数,计算组距、组界、中心值; 制作频数表; 按频数值比例画横坐标、纵坐标; 按纵坐标画出每个矩形的角度,代表落在 此矩形中的点数; 判续直方图(对过程状态分析)。
直方图举例 为考核某齿轮尺寸的质量水平, 随机在一批产品中抽样测得数据 100个,此产品规格为: 24.5±6.0mm。
1、SPC简介
统计过程控制的英文全名为: Statistical Process Conrtol 缩写为SPC。
美国贝尔试验室的休哈特博士在二十世纪二十年代研究过 程时,首先区分了可控制和不可控制的变差,这就是今天 我们所说的普通原因变差和特殊原因变差; 聪明的休哈特发明了一个简单有力的工具来区分他们—— 控制图; 从那时起,在美国和其他国家,尤其是日本,成功地把控 制图应用于各种过程控制场合,经验表明当出现特殊原因 变差时,控制图能有效地引起人们注意,以便及时地寻找 采取措施。
2、直方图
直方图是针对某产品或过程的特性值,利用常态分布(也 叫正态分布)的原理,把50个以上的数据进行分组,并 算出每组出现的次数,再用类似的直方图形描绘在横轴上。 通过直方图,可将杂乱无章数据,解析出规则性,也可以 一目了然地看出数据的中心值及数据的分布情形。 在制造业,现场的管理干部经常都要面对许多数据,这些 数据大多来自制造加工过程的抽样测量得到,对于这些凌 乱的数据,如果制作成直方图,并借助对直方图的观察, 可以了解产品质量分布的规律,知道其是否变异,并进一 步分析判断整个生产过程是否正常,问题点在哪里,为研 究过程能力提供依据。
统计过程控制标准
统计过程控制标准2007-08-30发布 2007-08-30实施统计过程控制标准1范围本标准规定了各冰箱工厂规范运用统计质量控制方法,分析、监控和改进关键工序能力,以达到对关键质量特性预警目的,控制过程质量水平。
本标准适用于工厂工作制造过程关键工序和关键特性的质量控制要求。
2引用标准GB/T4091-2001《常规控制图》3定义3.1 统计过程控制(Statistical Process Control):简称 SPC ,是指利用统计技术对过程中的各个阶段进行监控,从而达到保证产品质量的目的。
3.2过程能力:也称为工序能力,是指过程加工质量方面的能力,它是衡量过程加工内在一致性的,是稳态下的最小波动。
3.3过程(工序)能力指数:简称CPK ,是指运用统计方法计算得出,数值表示其工序稳定生产合格产品的能力,具体CPK计算方法见4.4.2。
3.4控制图(Control Chart):对过程质量特性记录评估,以监察过程是否处于受控状态的一种统计方法图,图上标有根据那个特性收集到的一些统计数据,如一条中心线,一条或两条控制限(分别用上控制限UCL和下控制限LCL表示)。
它有两个基本的用途:一是用来判定一个过程是否一直受统计控制;二是用来帮助过程保持受控状态。
3.5计量型数据:指某种量具、仪器测定的数据,这类数据可取某一区间内地的任一实数。
如轴的直径,电阻的阻值,材料的强度等,这类特性数据常服从正态分布,通常用两张图(推荐使用 Xbar-R 控制图)。
3.6 计数型数据:指通过数数的方法获得的。
常取 0 , 1 , 2 等非负整数。
如一批产品中的不合格品数,铸件上的气孔数等,这类特性数据只需要用一张控制图(推荐使用 P 控制图)。
3.7子组:用来分析过程能力的一个或多个事件或测量。
通常选用合理分组使得每个子组内的变差尽量小(代表普通原因的变差),同时使得各子组间过程能力的变化(即特殊原因变差)不一样。
合理子组一般由连续的零件组成,尽管有时采用随机抽样。
统计过程控制图
偶然因素 、异常因素
偶然因素(随机因素)
1、对生产过程一直起作用的因素。如材料成分、规格、 硬度等的微小变化;设备的微小震动;刃具的正常磨 损;夹具的弹性变型及微小松动;工人操作的微小不 均匀性等;
2、对质量波动的影响并不大,不超出工序规格范围; 3、因素的影响在经济上并不值得消除; 4、在技术上也是难以测量、难以避免的; 5、偶然因素造成的质量特性值分布状态不随时间的变化
控制图的样本与样本容量
x s
xR
X~
Me R
x MR
步骤5:作分析用控制图并判断工 序是否处于稳定状态
• 在坐标图上画出三条控制线,控制中线一般以
细实线表示,控制上下线以虚线表示。
• 将预备数据各样本的参数值在控制图中打点。 • 根据控制图的判断规则判断工序状态是否稳定,
若判断工序状态不稳定,应查明原因,消除不 稳定因素,重新收集预备数据,直至得到稳定 状态下分析用控制图;若判断工序处于稳定状 态,继续以下程序。
标准差控制图的失控会影响到均值控制图,因为均 值控制图的上、下限依赖于标准差控制图。
应先分析标准差控制图,后分析均值控制图。
8种异常波动模式
1点超出控制界限 连续9点在中心线的同侧 连续7点呈上升或下降趋势 连续14点交替上升下降 连续3点中有2点处于上(或下)部A区 连续5点中有4点在C区之外同侧 连续15点在中心线附件的C区内 连续8点在中心线两侧而无1点在C区
1
3 c4
1 c42
4. 作分析用控制图
c4、A3、B3、B4 通过附录的
“计量值控制 系数表”查得。
5. 判断生产过程是否处于统计控制状态
6. 当生产过程不处于控制状态时,应采取措施
QC七大手法(分层法、控制图、调查表)
(3)设定检查表格式
次品检查表
部门: 日期: 班别 : 负责人:
日期 次品项目 露肉 露骨
合计
扇形未打开 扇形缺失 其它次品
合计
(4)实施检查
次品检查表
部门:质量部
班别 :白班
日期:2014.6.20-2014.6.22 次品项目 负责人:
日期
6.20
6.21 13kg 20kg 5kg 2kg 10kg 50kg
四.注意事项
1.根据调查的目的,对调查的项目进行合理的分类 及分层,比如按照人员、设备、材料、方法、环 境等进行分层。 2.要做到简单易懂,能一目了然。 3.使检查记录的项目没有遗漏 ,并且标明调查目 的、人、时间等
4.最好做出合计、平均、比例等计算栏,以使记录 或检查容易计算。
QC七工具之层别法
根据柏拉图分析得出:在2014.1-5月湖北同星原料异物 中软骨占比例最多。
四.运用层别法的注意事项
1.在数据收集之前就应该用层别法; 2.层别的方向尽可能多; 3.每次层别的结果未必都一定有用。
• QC七工具之控制图
主 要 内 容:
一、定 义
二、原
三、目 四、类 五、做
理
的 型 法
六、判 断 准 则
例1.常见的缺陷统计表
淤血
不可接受缺陷
露肉 随机抽取 一袋产品 扇形缺失 称量并记 没有打开宽 录结果 淤血
一般缺陷(可接 受
红斑 无红斑 露肉 露骨
例2.过程监控表
产品留样及报废记录
生产日期 产品名称 数量 留样人 存放位置 备注
2.检查用 • 是指把事先规定的项目罗列在表格上,按照 事先罗列的项目对事件进行一一检查确认。 • 如:生产前检查表、设备点检表、体检表。 • 好处是:会对事情的确认有帮助,无论谁做 都能够事先预防事故。
测量过程的统计控制-控制图
测量过程的统计控制—控制图1、控制图的概念控制图(又称休哈特控制图)是对测量过程是否处于统计控制状态的一种图形记录。
它能判断并提供测量过程中是否存在异常因素的信息,以便于查明产生异常的原因,并采取措施使测量过程重新处于统计控制状态。
对于准确度较高及比较重要的测量过程,如有可能建议尽可能采用控制图对其测量过程进行连续和长期的统计控制。
2、核查装置测量结果除了会受到测量过程的影响外,还会受测量对象的影响,因此如果能找到一个比较稳定的核查装置并对其作连续的定期观测,则根据由定期观测结果计算得到的统计控制量(例如平均值,标准偏差,极差等)的变化情况可以推断出测量过程是否处于统计控制状态。
因此采用控制图方法来对测量过程进行统计控制的前提是具有一个量值稳定的核查装置。
3、控制图的分类根据控制对象的数据性质,即所采用的统计控制量来分类,在测量过程控制中常用的控制图有平均值—标准偏差控制图(x–s图)和平均值—极差控制图(x–R图)。
控制图通常均成对地使用,平均值控制图主要用于判断测量过程中是否受到不受控的系统效应的影响。
标准偏差控制图和极差控制图主要用于判断测量过程是否受到不受控的随机效应的影响。
标准偏差控制图比极差控制图具有更高的检出率,但由于标准偏差要求重复测量次数n≥10,对于某些测量过程可能难以实现。
而极差控制图一般要求n≥5,因此在测量过程考核中推荐采用平均值—标准偏差控制图,也可以采用平均值—极差控制图。
根据控制图的用途,可以分为分析用控制图和控制用控制图两类。
(1) 分析用控制图:用于对已经设计完成的测量过程或测量阶段进行分析,以评估测量过程是否稳定或处于受控状态。
(2) 控制用控制图:对于正在进行中的测量过程,可以在进行测量的同时进行过程控制,以确保测量过程处于稳定受控状态。
具体建立控制图时,应首先建立分析用控制图,确认过程处于稳定受控状态后,将分析用控制图的时间界限延长,于是分析用控制图就转化为控制用控制图。
第4章统计过程控制图
统计过程控制与产品检查的区别
统计过程控制虽然会带来一定程度的 预防成本的提高,但却能及早发现异常, 采取措施消除隐患,带来故障成本的大幅 度降低。因此对比产品检查,统计工序控
控制图的产生与定义
产生:控制图是由美国贝尔(Bell)
通信研究所的休哈特(W.A Shewhart)
博士发明的,因此也称休哈特控制图。
∴由偶然因素造成的质 量波动称为正常的 波动,这种波动一般通过公差加以反映,此
1. 在一定时间内对生产过程起作用的因素。 如材料成份、规格、 硬度的显著变化;设备、 工夹具安装、调整不当或损坏;刃具的过渡 磨损;工人违反操作规 程等;
2. 因素造成较大的质量波动,常常超出了规 格范统计量为纵坐标的平面坐 标系;
2
控制线:中心线CL、上控
制线UCL和下控制线LCL
3
控制图的类型
控制界限的确定原理—3σ原理
确定方法
休哈特控制图控制界限是以3σ原理确 定的。即以质量特性统计量的均值作为控 制中线CL; 在距均值±3σ处作控制上、 下线。由3σ原理确定的控制图可以在最 经济的条件下达到保证 生产过程稳定的目 的控制界限的重要性。
2 3 收集预备数据 4
各种控制图控制界限的计算方法及计算
(1)计算各样本参数(见控制图系数表) (2)
绘制程序
5 作分析用控制图并判断工序是否处于稳 定状态
6 与规格比较,确定控制用控制图 7
应用控制图制好后,即可用它控制工序, 使生产过程保持在正常状态。
步骤3:收集准备数据
收集预备数据的目的只为作分析用控制图以判断工序状 态。数据采集的方法是间隔随机抽样。为能反映工序总 体状况,数据应在10~15天内收集 ,并应详细地记录 在事先准备好的调查表内。数据收集的个数参下表。
计量型统计过程控制
第九页,共37页。
06-5
创建(chuàngjiàn)I-MR控制图
Sample 1 2 3 4 5 6 7
X 8 8.5 7.4 10.5 9.3 11.1 10.4
MR
0.5 1.1 3.1 1.2 1.8 0.7
3、计算(jìsuàn)所有个体值的平均数 X,X 将提供X图中的中心线。 1
X= ( 8 .0+8.5+7.4+10.5+9.3+11.1+10.4)=9.3 7
群体能够估计中心趋势和稳定性变化
X,R
第十七页,共37页。
06-9
X bar图
计量型控制图涉及连续性变量,其中所关注的 统计量是中心趋势和变异(散布(sànbù))。
X bar图随时测量变量的中心趋势。它使用来自 大小为N的样本的平均值,或X-bar。
图的中心线由平均值的长期平均水平或X-double bar描绘出来。
06-16
Xbar-S图
对于大小为2,3或4的子集,在精确度上几乎(jīhū)没 有差异.
当子集大小超过4时,标准差变得比极差愈加精确, 对于大于10的子集大小不应使用极差.
第三十二页,共37页。
极差vs标准差
指引(zhǐyǐn):使用标准差除非当…… 需要手动计算. 需要理解控制图的人不了解标准差.
LCL=9.31-(2.66*1.37)
UCL=12.95
LCL=5.67
(X图的系数(xìshù)通常为2.66)
对于MR图:
UCL=D4R
LCL=D4R(D3.D4是基于n=2)
UCL=3.267*1.37)
LCL=0*1.37)
UCL=4.48
统计过程控制SPC
UCL=77.20 UCL=77.20
X-Bar Chart for Process B
80 UCL=77.27
Sample Mean Sample Mean
Sample Mean
75 75
70
X=70.98 LCL=64.70
控制上限( 控制上限(UCL)
观测值
均值 控制下限( 控制下限(LCL)
0 5 10 15 20
观测数
非随机变量区域
UCL:Upper Control Limit LCL:Lower Control Limit
8
基础概念
SPC统计构成要素 SPC统计构成要素
随机变量区域
10 9 8 7 6 5 4 3 2 1 0
s
σ
s2 σ 2
R
显示Data的分散形态时 (分布的分散形态)
非对称 (不对称: Skewness) 尖尖的程度 (峰度 Kurtosis)
11
基础概念
中心极限定理
从总体中抽取的若干组样本(每组样本数量为n、均值为µ 、 标准差为σ )的均值抽样分布 (Xbar) 具有以下特征: 1. 抽样均值等于总体均值 均值等于总体均值µ; 2. 抽样方差小于总体方差 方差小于总体方差。 方差小于总体方差。 3. 若母体为正态分布,均值抽样也为正态分布; 若母体为非正态分布,且抽样数量等于或大于 30,则近似于正态分布。
+ 3s
Short Term Process Width Design Width – Voice Of Customer
24
过程能力
第三章 统计过程控制(SPC)与控制图
级别 I II
过程能力评价参考
过程能力过高(应视具体情况而定) 过程能力过高(应视具体情况而定)
过程能力充分, 过程能力充分,表示技术管理能力已很 好,应继续维持 过程能力较差, III 过程能力较差,表示技术管理能力较勉 强,应设法提高为II级 应设法提高为II级 过程能力不足, IV 过程能力不足,表示技术管理能力已很 差,应采取措施立即改善
TL
TU
TL
TU
TL
TU
无偏移单侧规范情况
只有上限要求,无下限要求
CPU=(TU- µ)/3 σ =(T
只有下限要求,无上限要求
CPU=(µ- TL )/3 σ =(µ
过程能力指数C 过程能力指数CP值的评价参考
Cp值范围 >1.67
[1.33,1.67) [1.0, 1.33) [0.67, 1.0)
控制图是如何贯彻预防原则的
对生产过程不断监控,有苗头就能够被察 觉
控制图是如何贯彻预防原则的
无预先征兆,突 然出现,采用20 然出现,采用20 字方针:
查出异因,采取 措施,保证消除, 不再出现,纳入 标准
统计控制状态
只有偶因 没有异因 控制的基准 是生产追求的目标
对产品的质量有99.73%的把握 对产品的质量有99.73%的把握 生产最经济 过程的变异最小
Tu +TL 18.025 +17.99 M= = =18.0075 = µ 2 2 T T −TL 18.025 −17.99 Cp = = U = = 0.897 6σ 6σ 2 p = 2Φ(−3Cp ) = 2Φ(−3×0.897) = 2Φ(−2.691) = 0.0072 q =1− 0.0072 = 0.9928