高考物理知识专题整理大全十八:物理光学
高中物理光学知识点总结
光学知识点复习一折射率1.定义:光从真空射入某种介质,入射角的正弦跟折射角的正弦之比,叫做介质的折射率.注意:指光从真空射入介质.2.公式:n=sini/sin γ(光从真空进入介质) n 0sin 1C v c ='==λλ,折射率总大于1.即n >1.3种介质相比较,折射率较大的叫光密介质,折射率较小的叫光疏介质.二全反射1.全反射现象:光照射到两种介质界面上时,光线全部被反射回原介质的现象. 2.全反射条件:光线从光密介质射向光疏介质,且入射角大于或等于临界角. 3.临界角公式:光线从某种介质射向真空(或空气)时的临界角为C , 则sinC=1/n 4.光导纤维全反射的一个重要应用就是用于光导纤维(简称光纤)。
光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质。
光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射。
这样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出 三、棱镜与光的色散 1.棱镜对光的偏折作用一束白光经三棱镜折射后发生色散现象,在光屏上形成七色光带(红光偏折最小,紫光偏折最大。
) 2学结论:紫光折射率最大,频率最大;波长,在介质中的波速、双缝干涉条纹间距、全反射临界角最小 四、光的干涉1定义:两列波在相遇的叠加区域,某些区域使得“振动”加强,出现亮条纹;某些区域使得振动减弱,出现暗条纹。
振动加强和振动减弱的区域相互间隔,出现明暗相间条纹的现象。
这种现象叫光的干涉现象。
2产生稳定干涉的条件:两列波频率相同,相位差恒定。
(两个振动情况总是相同的波源,即相干波源)3⑴亮纹,两束光叠加干涉加强; ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍时,两束光叠加干涉减弱, 条纹间距[相邻亮纹(暗纹)间的距离] 公式x=dLλ. (缝屏间距L ,双缝间距d) 单色光作双缝干涉实验时,屏的中央是亮纹,两边对称地排列明暗相同且间距相等的条纹用白光作双缝干涉实验时,屏的中央是白色亮纹,两边对称地排列彩色条纹,离中央白色亮纹最近的是紫色亮纹。
高考物理光学知识点
高考物理光学知识点光学是物理学的一个重要分支,研究光的传播、反射、折射、衍射、干涉等现象以及光的颜色等特性。
在高考中,光学是物理科目的一项重要内容,掌握光学知识点对于取得高分至关重要。
本文将详细介绍高考物理光学的主要知识点,包括光的本质、光的传播、光的反射与折射、光的成像、光的干涉和衍射等。
一、光的本质1. 光的波粒二象性:根据光的性质,光既可以表现为波动也可以表现为微观粒子,这种二象性称为光的波粒二象性。
2. 光速:光在真空中的传播速度是恒定的,称为光速,在真空中的光速为3.00×10^8m/s。
二、光的传播1. 狭缝衍射:当光通过一个具有宽度接近光的波长的狭缝时,光将经历衍射现象,形成明暗相间的衍射条纹。
2. 双缝干涉:当光通过两个狭缝时,如果两个狭缝的宽度、间距等条件满足一定的条件,光将发生干涉现象,形成明暗相间的条纹。
3. 波前:波动在空间中传播时,所有点都是该波动的振动状态一致的点的 ** ,称为波前。
4. 光的直线传播:在均匀介质中,光沿着直线传播,这是由于光的波长远远小于大多数物体的尺寸。
三、光的反射与折射1. 反射定律:入射角等于反射角,即入射光线和反射光线在反射面上的法线上的角度相等。
2. 折射定律:折射光线和入射光线在折射面上的法线上的角度满足折射定律:n₁sinθ₁=n₂sinθ₂,其中n₁和n₂分别为入射介质和折射介质的折射率,θ₁和θ₂分别为入射角和折射角。
3. 全反射:当光从光密介质射向光疏介质时,入射角超过临界角时,发生全反射现象。
4. Snell定律:也称为折射定律,描述了光从一种介质进入另一种介质发生折射时的规律。
四、光的成像1. 构成成像的条件:光通过透明介质时,需要满足一定条件才能形成清晰的像,包括光线传播要沿着一定的路径,光线要交叉或平行,还有光线要汇聚在一点上等。
2. 凸透镜成像:凸透镜是一种中间厚度较薄的透镜,通过它可以形成实像和虚像。
3. 凹透镜成像:凹透镜是一种中间厚度较薄的透镜,通过它可以形成直立、缩小、虚像。
物理光学知识归纳总结
物理光学知识归纳总结一、光的本质与传播光的实质是电磁波,它是由电场和磁场相互垂直并向垂直传播的电磁波所组成。
光的传播具有直线传播、波动传播和光线传播三种形式。
二、光的反射与折射1. 光的反射:当光线从一种介质射向另一种介质时,遇到分界面时会发生反射。
根据入射角与法线的夹角关系,可以得到反射角与入射角相等的经验规律。
2. 光的折射:当光线从一种介质射向另一种介质时,遇到分界面时会发生折射。
根据斯涅尔定律,可以得到入射角、折射角及两种介质的折射率之间的关系。
三、光的干涉与衍射1. 光的干涉:当两束或多束光线同时作用于同一位置时,会产生干涉现象。
根据干涉现象可以推导出叠加原理和干涉条纹的产生。
2. 光的衍射:当光通过一个小孔或者通过障碍物的边缘时,会出现衍射现象。
衍射现象可以解释光的直线传播的限制性和光的波动性。
四、光的偏振与旋光现象1. 光的偏振:光的振动方向,可以沿任意方向存在的非偏振光,也可以沿一个特定方向振动的偏振光。
偏振光可以通过偏光片进行选择性透过或者阻挡。
2. 光的旋光现象:某些物质具有旋光性质,当光通过旋光物质时,光的振动方向会发生旋转。
五、光的色散与光的色彩1. 光的色散:光线在不同介质中传播时,不同频率的光会有不同的折射率,从而导致光的色散现象。
2. 光的色彩:光的色彩由不同波长的光组成,根据太阳光的色散现象,可以得到光的色彩顺序为红橙黄绿蓝靛紫。
六、光的成像与光学仪器1. 光的成像:光通过凸透镜或者凹透镜时,可以形成实像或者虚像。
根据薄透镜成像公式可以计算出物距、像距和透镜焦距之间的关系。
2. 光学仪器:利用光的传播、折射和成像原理,可以制造出各种光学仪器,如显微镜、望远镜、投影仪等。
七、光的衍射光栅与光的激光1. 光的衍射光栅:光通过光栅时,会出现衍射现象。
光栅是由很多平行的有规律的线条或者孔洞组成的光学元件,可以分散多种频率的光,并形成光的衍射光谱。
2. 光的激光:激光是一种具有高度相干性和单一频率的光。
高三物理光学知识点汇总总结
高三物理光学知识点汇总总结光学是物理学中非常重要的一个分支,研究光的传播、反射、折射、干涉和衍射等现象,涉及到许多常见的物理现象和实践应用。
在高三的物理学习中,光学知识是必不可少的一部分,下面将对高三物理光学知识点进行汇总总结。
1. 光的传播光是一种电磁波,不需要介质来传播。
光在真空中的传播速度是恒定的,约为3.0×10^8 m/s,记作c。
光的传播是以直线传播的,具有沿直线传播的特性。
2. 光的反射光在遇到边界面时,部分或全部被反射回来,这种现象称为光的反射。
光的反射遵循反射定律,即入射光线、反射光线和法线三者在同一平面上,入射角等于反射角。
3. 光的折射光在从一种介质传播到另一种介质时,会发生折射现象。
光的折射遵循斯涅尔定律,即入射光线、折射光线和法线三者在同一平面上,入射角和折射角之间满足折射定律:n₁sinθ₁= n₂sinθ₂,其中n₁和n₂分别是两种介质的折射率,θ₁和θ₂分别是入射角和折射角。
4. 光的干涉光的干涉是指两束光波相遇产生的干涉现象。
干涉分为两种类型:相干干涉和非相干干涉。
相干干涉是指两束光波的相位差保持不变,非相干干涉是指两束光波的相位差随时间变化。
5. 光的衍射光的衍射是指光通过小孔或绕过障碍物时发生的传播现象。
光的衍射现象具有波的性质,使光波能够绕过障碍物的边缘,出现在本来没有直射光的地方。
6. 透镜透镜是一种能够使光线发生折射的光学元件。
常见的透镜有凸透镜和凹透镜。
凸透镜能够使平行光线聚焦到焦点处,用于放大物体;凹透镜能够使平行光线发散,用于缩小物体。
7. 光的颜色光的颜色是由光的频率决定的,频率越高,光的颜色越偏蓝;频率越低,光的颜色越偏红。
从频率最低到最高,分别是红橙黄绿青蓝紫。
8. 光的偏振光的偏振是指在某一方向上的光波振动,其他方向上的分量被滤除。
光的偏振可以通过偏振片实现,偏振片能够将自然光变为偏振光。
这些是高三物理光学知识的一些重点和难点。
高考物理知识大全十八:物理光学
高考物理知识大全十八:物理光学物理光学是物理学中的一个重要分支,主要研究光的传播、反射、折射、干扰、衍射、偏振等现象。
下面将介绍一些常见的物理光学知识。
1.光的传播光是一种电磁波,它可以在真空中或介质中传播。
在真空中,光传播速度为299792458m/s,符号为c,是自然界中速度最快的物体。
在介质中,光的传播速度会受到介质光密度的影响。
2.光的反射当一束光线照射到平滑的表面上时,光线会反射回去。
反射的规律可以用反射定律来描述,即入射角等于反射角,入射光线、反射光线和法线在同一平面内。
4.光的干涉当两束光线相遇时,它们会互相干涉。
如果两束光线处于同相位,它们会相互增强,形成明纹;如果两束光线处于反相位,它们会相互抵消,形成暗纹。
干涉实验可以用干涉仪来进行。
当光线通过一个小孔或经过一个细缝时,它会发生衍射现象。
衍射现象的形成可以用赫姆霍兹衍射公式来描述,即衍射角正比于波长,反比于衍射孔或衍射缝的直径。
6.光的偏振光在传播过程中,由于波的振动方向不同,光的振动方向也不同。
光的振动方向恒定的光称为偏振光。
偏振光的光学性质与非偏振光有所不同,例如偏振光可以被偏振器过滤。
7.全反射全反射是光线从光密度较大的介质向光密度较小的介质传播时出现的现象。
当入射角大于一定角度时,光线将完全反射回来,而不再发生折射。
全反射的角度称为临界角。
8.光的色散光在不同介质中的光速不同,导致不同波长的光在折射或反射时的折射角不同,这种现象被称为光的色散。
光的色散是光谱分析的基础,也是彩虹产生的原理。
以上就是物理光学中的一些基础知识,掌握这些知识对于理解光学现象和应用都有很大的帮助。
高考物理知识点总结光学
高考物理知识点总结光学高考物理知识点总结——光学在物理这门学科中,光学是一个关键的知识点。
它涉及了光的特性、光的传播、光的反射与折射等内容。
掌握光学的基础知识对于高考来说至关重要。
本文将对高考物理中光学相关的知识点进行总结。
1. 光的特性光是一种电磁波,具有波粒二象性。
光的波动特性可以通过光的干涉、衍射、偏振等现象进行研究。
光的粒子特性可以体现在光的能量量子化以及光的光电效应等实验中。
2. 光的传播光在真空中的传播速度是恒定且最快的,即光速。
光在不同介质中的传播速度会发生改变,根据折射定律可以确定光的传播路径。
光的线性传播可以通过光的直线传播和反射传播进行研究。
3. 光的反射光在边界面上发生反射时,按照反射定律,入射光线、反射光线和法线在同一平面上,并且入射角等于反射角。
光的反射可以解释很多现象,比如镜面反射、漫反射等。
4. 光的折射光从一种介质传播到另一种介质时,会发生折射现象。
根据折射定律,入射光线、折射光线和法线在同一平面上,并且入射角、折射角和介质的折射率之间满足一定的关系。
光的折射可以解释很多现象,比如光的全反射、光的透视等。
5. 光的成像光的成像是指通过光线的传播来观察物体的形象。
根据成像特点,可以将成像分为实像和虚像。
实像是在成像界面上得到的,可以被屏幕等物体接收到;虚像则是通过延长光线来得到的,无法被屏幕等物体接收到。
光的成像可以通过透镜的折射和反射原理进行解释。
6. 光的仪器应用光学在现实生活中有很多仪器应用。
例如,显微镜通过光的折射和放大来观察微小物体;望远镜通过光的反射和折射来观察遥远的天体;光电子学利用光的光电效应来进行信息传输和检测等。
这些仪器的工作原理都基于光学的原理。
7. 光学实验在学习光学过程中,实验是非常重要的。
通过参与光学实验,学生可以更好地理解光学的原理和现象。
例如,通过干涉实验可以观察到光的波动性;通过衍射实验可以观察到光的波动性的特殊现象。
光学实验可以加深学生对光学知识的理解,同时也培养了学生的动手能力和实验能力。
高中物理光学知识点总结归纳
高中物理光学知识点总结归纳光学是研究光的发射、传播、反射、折射、干涉、衍射、偏振、吸收及光与物质相互作用的基本规律的科学。
在高中物理中,光学是一个重要的内容,其中包含了很多基本的概念和原理。
以下是高中物理光学相关的知识点总结归纳。
1. 光的传播性质:光在真空中的传播速度是恒定的,约为3.0 × 10^8 m/s。
光的传播是直线传播,具有直线传播性。
光的传播是各向同性的,没有优先方向。
2. 光的反射:光线从光疏介质到光密介质界面,发生反射时,入射角等于反射角,反射光线在入射平面上。
光线从光密介质到光疏介质界面,发生反射时,入射角等于反射角,反射光线在入射平面上。
光线从光密介质到光疏介质界面,折射光线在入射面的法线上,折射定律描述了光线折射的规律。
3. 光的折射:光的折射定律:光线在通过光疏介质和光密介质的界面时,入射角、折射角和介质折射率之间的关系为: n₁sinθ₁=n₂sinθ₂,其中n₁和n₂分别为两个介质的折射率,θ₁和θ₂分别为入射角和折射角。
4. 光的干涉:光的干涉是指两束或多束光相互叠加形成干涉图案的现象。
干涉可以分为两种类型:构成干涉的光线之间相位差恒定的干涉(相干干涉)和相位差不恒定的干涉(非相干干涉)。
5. 光的衍射:光的衍射是指光通过物体的孔或者经过物体的边缘时发生的一种现象,导致光的传播方向发生弯曲和分散。
衍射现象只有在波长与物体尺度相接近时才会显现出来。
6. 光的偏振:光的偏振是指光中的电场矢量只在某一个方向上振动的现象。
光的偏振可以通过偏振镜或者偏振片进行实验观察和研究。
偏振光在通过偏振片时,只有与偏振方向一致的光被透过,其他方向的光被吸收或者反射。
7. 光的吸收与发射:光与物质相互作用时,会发生光的吸收和发射。
物质的颜色是由于物体对不同波长的光的吸收和反射,吸收的光能量被转化为物体的内能。
物体的发光是由于外界能量激发物体的原子或者分子,使其由激发态返回到基态释放出能量。
物理高考光学知识点归纳总结
物理高考光学知识点归纳总结光学是物理学中关于光的传播、反射、折射、干涉、衍射等现象和规律的研究。
在高考中,光学是一个重要的知识点,涉及光的性质、光的传播规律以及光学仪器等内容。
本文将对物理高考中的光学知识点进行归纳总结,以便广大考生更好地复习和应对考试。
一、光的性质1. 光的波粒性:光既具有波动性质,也具有粒子性质。
在某些实验中,光表现出波动特点,如干涉、衍射现象;而在其他实验中,光则表现出粒子特点,如光电效应和康普顿散射。
2. 光的传播速度:光在真空中的传播速度是恒定的,约为3.00 ×10^8 m/s。
在介质中传播时,光的传播速度会减小,根据折射定律可以计算出光在介质中的传播速度。
二、光的反射与折射1. 光的反射:光在与介质交界的表面上发生反射现象,其反射角等于入射角。
根据反射定律,可以计算出光的入射角、反射角和法线之间的关系。
2. 光的折射:光从一种介质射入另一种介质时,会发生折射现象。
根据斯涅尔定律,可以计算出光的折射角和入射角之间的关系。
三、光的干涉与衍射1. 光的干涉:当两个或多个光波相遇时,会出现干涉现象。
干涉分为构造干涉和破坏性干涉两种类型。
构造干涉可以形成亮条纹或彩色条纹,破坏性干涉则会形成暗条纹或黑白条纹。
2. 光的衍射:当光通过一个孔径或者绕过障碍物时,会发生衍射现象。
衍射使光波朝不同方向传播,使得光具有弯曲、弯折的特性。
四、光学仪器1. 凸透镜:凸透镜是一种凸面向上的透镜,通过凸透镜可以进行放大、缩小以及成像等操作。
凸透镜分为凸透镜和凹透镜两种类型,其中凸透镜可以形成实像和虚像,凹透镜只能形成虚像。
2. 显微镜:显微镜是一种利用光学放大物体细节的仪器。
显微镜通常由目镜、物镜、镜筒和底座等部分组成,通过透镜组合和光的折射来实现对物体的放大观察。
3. 望远镜:望远镜是一种利用光学放大远处物体的仪器。
望远镜分为折射式望远镜和反射式望远镜两种类型,通过透镜或反射镜来实现对远处物体的放大观察和成像。
物理高考光学知识点汇总
物理高考光学知识点汇总光学是物理学中的一个重要分支,涉及到光的传播、反射、折射、干涉、衍射等现象。
在高考物理中,光学作为一个重要的考点,经常出现在试题中。
下面是对物理高考光学知识点的汇总。
一、光的传播1. 光的直线传播:光线在各向同性介质中沿直线传播,遵循直线传播定律。
2. 光的反射:光线遇到边界面发生反射,遵循反射定律。
反射角等于入射角。
3. 光的折射:光线从一种介质传播到另一种介质时发生折射,遵循折射定律。
折射定律描述了入射角、折射角和两种介质的折射率之间的关系。
二、光的成像1. 球面镜成像:凸透镜和凹透镜都是球面镜。
物体与球面镜之间存在着一定的关系,通过这些关系可以确定成像的位置、性质等。
2. 成像公式:利用成像公式可以计算物体与球面镜之间的距离、焦距、成像位置等。
3. 光学仪器:光学仪器包括放大镜、显微镜和望远镜。
通过调整透镜与物体之间的距离,可以获得清晰的放大图像。
三、光的干涉和衍射1. 干涉现象:当两束相干光交叠在一起时,会出现干涉现象。
干涉分为干涉条纹、干涉条件等。
2. 杨氏干涉实验:通过杨氏干涉实验可以观察到干涉条纹的形成和变化规律。
3. 衍射现象:当光通过障碍物或经过狭缝时,会出现衍射现象。
衍射可以用于解释光的波动性。
四、光的偏振1. 光的偏振现象:光可以在某些介质中引起偏振现象,只能在某个方向上传播。
2. 偏振光的产生:通过偏振片可以实现对光的偏振操作。
3. 偏振现象的应用:偏振现象广泛应用于光学仪器、液晶显示器等领域。
五、光的光电效应1. 光电效应:当光照射到金属或者半导体表面时,会引起物质中自由电子的产生和流动。
2. 光电效应的规律:光电效应遵循爱因斯坦的光电方程和波动-粒子二象性原理。
3. 光电效应的应用:光电效应被广泛应用于太阳能电池、光电二极管等光电器件中。
综上所述,光学知识点在高考物理中占据重要的地位。
掌握这些知识点,对于解答光学相关的高考题目具有重要意义。
希望本文的光学知识点汇总能够帮助学生们更好地理解和应用光学知识,取得好成绩!。
物理高考光学知识点总结
物理高考光学知识点总结一、光的本质1. 光的波动说光的波动说是光的传播的一个重要概念。
它认为光是由一连串振动的电场和磁场相互作用而传播的一种电磁波。
这种电磁波的传播速度与真空中的光速相等。
根据电磁波理论,光具有波长、频率和振幅等特性,能够发生干涉、衍射和偏振现象。
2. 光的粒子说光的粒子说是爱因斯坦提出的,他认为光是由许多小粒子组成的,并提出了光电效应的解释。
根据光的粒子说,光的能量和动量能够解释光的反射、折射、全反射等现象。
3. 光的波粒二象性根据量子力学的研究发现,光既具有波动特性,也具有粒子特性,这就是光的波粒二象性。
在某些实验中,观察到光呈现出波动特性;在其他实验中,又表现出粒子特性。
因此,光的波粒二象性是光的最本质的特性之一。
二、光的传播1. 光的波动传播根据波动传播理论,光在真空中传播时的速度是一个物理常数,即光速。
光的波长和频率与光速有确定关系,即c=λf,其中c为光速,λ为波长,f为频率。
根据光波动说,光的传播遵循波动光学定律,能够发生干涉、衍射和偏振等现象。
2. 光的光子传播根据光的粒子说,光是由光子组成的,光子既有波动性,也有粒子性。
光子传播的速度也是光速。
在一些实验中,光呈现出了粒子特性,例如光的电子效应,这些都可以用光子说来解释。
三、光的反射和折射1. 光的反射定律光在与介质界面发生反射时,遵循反射定律:入射角等于反射角。
反射定律是光学的一个基本定律,用来描述光在介质界面上的反射规律。
根据反射定律,可以用光线追迹法来分析反射光线的方向。
2. 光的折射定律光在与介质界面发生折射时,遵循折射定律:折射角的正弦与入射角的正弦成比例。
折射定律描述了光在介质界面上的折射规律,可以用来计算光在不同介质中的传播路径。
3. 全反射现象当光从光密介质向光疏介质入射时,当入射角大于临界角时,光将发生全反射而无折射现象。
全反射现象是光学中的一个重要现象,用于光纤通信、护眼镜等应用。
四、光的成像1. 光的成像规律光的成像规律包括像的位置规律、像的性质规律和像的大小规律。
高考物理光学知识点总结归纳
高考物理光学知识点总结归纳光学是物理学的一个重要分支,主要研究光的传播、反射、折射、干涉、衍射、偏振等现象。
在高考物理考试中,光学是一个重要的知识点,常常出现各种与光的性质、光的传播和光的应用相关的题目。
下面将对高考物理光学知识点进行总结归纳。
一、光的特性1. 光的波粒二象性:根据实验观测,光既具有波的特性,如干涉和衍射现象,又具有粒子的特性,如光的能量以光子的形式传递。
2. 光的传播速度:在真空中,光的传播速度为299792458 m/s,即光速。
3. 光的光谱:光的光谱包括可见光、红外线、紫外线、X射线和γ射线等,其中可见光是人眼所能感知到的。
二、光的反射与折射1. 光的反射定律:入射角等于反射角,即光线入射到光滑平面上时,入射角和反射角之间的关系为θi=θr。
2. 光的折射定律:折射定律描述了光从一种介质进入另一种介质时的偏折现象,即折射角的正弦与入射角的正弦成正比,其关系为n₁sinθ₁=n₂sinθ₂,其中n₁和n₂分别为两个介质的折射率。
三、凸透镜与凹透镜1. 凸透镜:凸透镜的中心厚度较薄,外缘较厚,能使平行光线通过后会聚于一点,称为焦点。
凸透镜常用于放大物体、成像等。
2. 凹透镜:凹透镜的中心厚度较厚,外缘较薄,能使平行光线通过后发散,不会聚焦于一点,而是在透镜后产生视物偏离的效果。
四、光的干涉与衍射1. 光的干涉:干涉是指两个或多个光波在一定条件下叠加产生相互影响的现象。
常见的干涉现象有等厚干涉和薄膜干涉。
2. 光的衍射:衍射是指当光线通过一个孔径或物体边缘时,发生弯曲和散射的现象。
光的衍射常见的例子有单缝衍射和双缝干涉。
五、偏光与光的偏振1. 偏光现象:偏光是指只有特定方向上的光波可以通过的现象。
常见的偏光现象有偏振片的使用以及光的反射产生的偏振现象。
2. 光的偏振:光的偏振是指使波、光等沿着特定方向上的振动,常用偏振片实现。
光学作为物理学的重要分支,对科学研究和现实生活都有着重要的应用价值。
高三物理光学知识点总结归纳
高三物理光学知识点总结归纳在高三物理学习中,光学是一个重要的知识点。
它涉及到光的传播、折射、反射以及成像等内容。
本文将对高三物理光学知识点进行总结和归纳,以帮助同学们更好地理解和记忆相关知识。
一、光的传播光是一种电磁波,它能够在真空和各种介质中传播。
光线的传播遵循直线传播的原则,也就是光在空间中传播的路径是直线。
二、光的折射光线在从一种介质传播到另一种介质时,会因为介质的光密度不同而改变传播方向,这个现象称为光的折射。
光的折射遵循斯涅尔定律,即折射角与入射角之间的正弦比等于两种介质的折射率之比。
三、光的反射光线从一种介质射向另一种介质时,如果没有穿透并改变介质,会发生光的反射。
当入射角等于反射角时,光线成为正反射。
当入射角大于反射角时,光线成为斜反射。
四、成像成像是光学中非常重要的一个概念,它涉及到光线在各种光学仪器中的传播和折射。
在凸透镜中,我们常常研究物距、像距和焦距之间的关系。
通过凸透镜的规律,可以得出物距、像距和焦距之间的公式。
五、光的色散光的色散是指当光通过介质时,波长不同的光线在同一介质中的传播速度不同,从而使光线产生弯曲现象。
不同颜色的光线受到不同程度的折射和偏转,导致光的分离。
六、光的波动性和粒子性光既有波动性又有粒子性,这是由于光既可以表现为波动传播,又可以表现为光子的粒子特性。
这个概念在光的双缝干涉和光电效应等实验中得到了很好的验证。
七、光的干涉和衍射光的干涉是指两束或多束光线之间的相互作用,产生明暗、干涉条纹等现象。
光的衍射是指光通过孔隙或物体边缘时,发生弯曲和辐射现象。
这两个现象都是光学中重要的实验现象。
八、光的偏振光的偏振是指只在一个特定平面上振动的光。
光的偏振可以通过偏振片来实现。
常见的偏振现象包括偏振光的传播、偏振光的解析和偏振光的旋转等。
在高三物理中,光学知识点的理解和掌握是至关重要的。
通过对光的传播、折射、反射、成像、色散、波动性和粒子性、干涉、衍射、偏振等知识点的学习和实践,同学们可以更好地理解和应用这些知识。
高考物理光学知识点汇总
高考物理光学知识点汇总在高中物理中,光学是一个重要的分支,它探讨了光的产生、传播和相互作用的规律。
在高考中,物理光学是一个必考的内容,掌握好光学知识点对于取得好成绩至关重要。
本文将对高考物理光学的知识点进行汇总,帮助同学们复习备考。
1. 光的反射光的反射是光学中最基础的知识点之一。
光线在与介质接触面发生反射时,遵循反射定律,即入射光线、反射光线和法线三者在同一平面内,入射角等于反射角。
反射有两种类型:镜面反射和漫反射。
镜面反射指的是光线在光洁平面上的反射,反射角等于入射角,反射光线呈现镜面效果;漫反射指的是光线在不规则表面上的反射,反射光线呈现散乱的效果。
2. 光的折射光的折射是光线从一个介质传播到另一个介质时的现象。
当光线由一种介质进入另一种介质时,会根据折射定律发生偏折,即入射角、折射角和介质折射率之间的关系:n1sinθ1 = n2sinθ2。
其中,n1和n2分别是两种介质的折射率,θ1和θ2分别是入射角和折射角。
光的折射可以解释许多现象,例如光的成像、水中看到的物体偏移等。
3. 光的干涉光的干涉是光学中的一个重要现象。
它指的是两个或多个光波相遇产生相互干涉的现象。
干涉可以分为构造干涉和破坏干涉。
构造干涉是指两个波源相干产生干涉,形成亮度变化或条纹;破坏干涉指的是由于两个或多个波源相位差的存在,导致光波的干涉减弱或抵消。
常见的干涉现象有杨氏双缝干涉、牛顿环等。
4. 光的衍射光的衍射是光学中的另一个重要现象。
它指的是光通过一个缝口或物体边缘时发生弯曲和扩散的现象。
根据波的衍射公式,衍射现象的程度与波长和衍射孔大小有关。
较小的波长和较大的衍射孔会产生更明显的衍射效果。
光的衍射可以解释一些天文现象,如太阳的周围产生彩色光环。
5. 光的偏振光的偏振是指光波中振动方向的特性。
一般来说,光波是沿着垂直于传播方向的所有方向振动的,称为自然光。
而经过特定方式处理的光波只在一个方向上振动,称为偏振光。
光的偏振可以通过偏光片进行实验观察和应用。
物理高三光学知识点归纳总结
物理高三光学知识点归纳总结光学是物理学中的重要分支,研究光的传播、折射、反射、干涉、衍射等现象。
高三阶段是学生备战高考的关键时期,为了帮助同学们系统地回顾和掌握光学知识点,本文将对光学的重要概念和定律进行归纳总结。
旨在帮助同学们迅速回顾光学知识,巩固自己的学习成果。
1. 光的传播光是电磁波,在真空中的传播速度为光速c。
它在光密介质和光疏介质中的传播速度分别为v1、v2,并遵循折射定律:n1sinθ1=n2sinθ2。
其中,n1和n2分别为两介质的折射率,θ1和θ2分别为入射角和折射角。
2. 光的反射光在平面镜上的反射遵循反射定律:入射角等于反射角。
根据反射定律,可以推导出光的像和像的性质,如实像、虚像、放大、缩小等。
3. 物体在镜中的像的位置根据物像关系公式:1/f=1/v+1/u,可以确定物体在镜中的像的位置。
其中,f为镜的焦距,v为像的距离,u为物的距离。
通过镜的凹凸性质可以判断像的位置是实像还是虚像。
4. 透镜的成像规律透镜也可以成像,利用透镜成像的关键是掌握透镜的成像规律。
透镜成像的关键是根据物距、像距和焦距之间的关系进行计算。
对于凸透镜而言,物距u为正,像距v和焦距f的关系遵循公式:1/f=1/v-1/u。
而对于凹透镜而言,物距u为负。
5. 干涉现象干涉是光学中重要的现象之一,可以通过干涉来研究光的波动性质。
常见的干涉现象有双缝干涉和薄膜干涉。
双缝干涉是指光通过两个狭缝后呈现出干涉条纹的现象。
薄膜干涉是指光在薄膜中的反射和折射造成的干涉现象。
6. 衍射现象衍射是光通过障碍物的缝隙或物体边缘时发生的现象。
常见的衍射现象有单缝衍射和双缝衍射。
单缝衍射是指光通过一个狭缝后发生的衍射现象,而双缝衍射是指光通过两个狭缝后发生的衍射现象。
7. 光的偏振偏振是指光中的电场矢量振动方向具有特定的方向性。
光的偏振态有线偏振、圆偏振和椭圆偏振三种。
偏振片可以通过选择性地吸收非偏振光,从而得到特定偏振方向的光。
高中物理光学知识点总结归纳
高中物理光学知识点总结归纳光学是一门研究光的传播、反射、折射、干涉、衍射、偏振和光的相互作用等现象的学科。
高中物理光学作为物理学的一个重要分支,是高中物理课程中的一个重点内容。
下面将对高中物理光学的知识点进行总结归纳。
一、光的传播和光的直线传播1. 光的传播方式:光波是一种横波,光在真空中直线传播,而在介质中会发生折射。
2. 光的传导速度:光在真空中传播的速度是光速,约为3.0×10^8 m/s。
3. 光的直线传播:光的传播遵循直线传播原理,可以用光的直线传播原理来解释光的传播路径及直线传播的条件。
二、反射和折射1. 反射现象:光线遇到介质边界时,部分或全部被折回原来的介质中,这种现象叫做反射。
2. 反射定律:入射光线、法线和反射光线三者在同一平面上,入射角等于反射角。
3. 折射现象:光线由一个介质射入另一个介质时,经过一个表面,一部分光线发生偏离,这种现象叫做折射。
4. 折射定律:折射光线、入射光线和法线三者在同一平面上,折射角和入射角的正弦之比等于两种介质的折射率之比。
5. 折射率:介质的折射率是指光在该介质中传播速度与光在真空中传播速度之比。
6. 全反射:当光从折射率较大的介质射向折射率较小的介质时,如果入射角大于临界角,光将发生全反射。
三、光的干涉和衍射1. 干涉现象:光的波动性质使得光波能够互相叠加和干涉,形成明暗交替的干涉条纹。
2. 干涉条件:干涉需要两个或多个光源和接收屏幕,光源之间的波长差别要小,以保证形成干涉现象。
3. 干涉现象的解释:干涉现象可以用光的波动性来解释,即光的波峰与波谷相互叠加或相互抵消。
4. 衍射现象:光通过一个小孔或绕过物体时,会产生弯曲和传播的现象,这种现象叫做衍射。
5. 衍射图样:衍射光线经过狭缝或物体时,会发生弯曲和互相干涉,形成一系列亮暗相间的衍射图样。
6. 衍射的条件:光波通过小孔或物体时,波长与孔径(或物体尺寸)的比值要接近1,以保证发生衍射现象。
高中物理光学考点总结归纳
高中物理光学考点总结归纳光学是物理学中一门重要的学科,主要研究光的传播规律和光与物质相互作用的过程。
在高中物理教学中,光学是一个重要的考点,涉及到许多基础的光学知识和实验技巧。
本文将对高中物理光学的考点进行总结归纳,以帮助同学们更好地复习和备考。
1. 光的传播规律1.1 直线传播:光在同一均匀介质中沿直线传播。
1.2 折射定律:光线从一种介质射入另一种介质时,入射角、折射角和介质折射率之间满足正弦关系。
1.3 反射定律:入射角等于反射角,光线的传播方向与平面镜法线平行。
2. 物体成像2.1 凸透镜成像:凸透镜有放大和缩小的成像特点。
对于物体在无穷远处,凸透镜成像在焦点处或凸透镜后。
对于物体在凸透镜前,成像有放大、缩小和倒立的特点。
2.2 凹透镜成像:凹透镜成像总是产生倒立、缩小的虚像。
3. 光的干涉和衍射3.1 干涉:当两个光波相遇时,会产生干涉现象。
干涉实验中常用的装置包括双缝干涉、单缝衍射和牛顿环。
3.2 衍射:光通过孔径或物体的边缘时,会发生衍射现象。
常见的衍射实验有单缝衍射和双缝衍射。
4. 光的偏振4.1 偏振现象:光波中的振动方向不一致时,称为偏振现象。
4.2 偏振镜:通过透明介质的光线,经过偏振镜后,只有振动方向与偏振镜振动方向一致的成分透过。
5. 光的色散5.1 不同介质中光的折射率不同,光的波长也被分离成不同的颜色,称为色散现象。
5.2 折射光的色散:白光经过折射后,不同波长的光线具有不同的折射角。
5.3 衍射光的色散:当白光通过纹孔或衍射光栅时,发生衍射,不同波长的光线分得更开。
6. 光的介质中传播速度和光程差6.1 介质中的光速:不同介质中光的传播速度不同,一般情况下光在光疏介质中传播速度较大。
6.2 光程差:光线由一个介质射入另一个介质时,两个光线经过的路径长度之差称为光程差。
7. 光的波粒二象性7.1 光的波动性:光在干涉、衍射等实验中表现出波动性。
7.2 光的粒子性:光电效应、康普顿散射等实验表明光具有粒子性。
高考物理光学必考知识点归纳总结
高考物理光学必考知识点归纳总结光学是高考物理中的重要考点之一,掌握好光学的相关知识点,对于提高物理成绩至关重要。
本文将对高考物理光学必考的知识点进行归纳总结,以帮助同学们更好地复习和应对考试。
一、光的直线传播光的直线传播是光学中最基本的概念,也是高考物理中的重点考点。
光线在均匀介质中直线传播,但在光的传播过程中,会发生折射、反射等现象。
1. 折射定律光线从一介质进入另一介质时,入射角与折射角之间满足折射定律。
即:入射角的正弦与折射角的正弦的比值等于两介质的折射率之比。
2. 反射定律光线从一介质射向另一介质的分界面上时,入射角与反射角之间满足反射定律。
即:入射角等于反射角。
二、光的成像了解光的成像是理解光学的关键。
掌握光的成像规律能够帮助我们解决物体在光学仪器上的成像问题。
1. 凸透镜成像凸透镜是一种常见的光学元件,它可以将光线聚焦或发散。
根据凸透镜的物理特性,可以总结出以下凸透镜成像规律:- 物距大于焦距时(物距大于2倍焦距),凸透镜将形成一个倒立、减小、实的实像。
- 物距等于焦距时,凸透镜将形成一个无穷远处的平行光。
- 物距小于焦距时(物距小于2倍焦距),凸透镜将形成一个正立、放大、虚的虚像。
2. 凹透镜成像凹透镜也是一种重要的光学元件,它具有发散光线的特性。
凹透镜的成像规律如下:- 凹透镜无论物距大小,成像都是倒立、减小、虚的虚像。
三、色散现象色散现象是光学中的重要内容,我们常常可以在光的折射中观察到不同波长的光发生弯曲的现象。
色散现象可分为正常色散和反常色散。
1. 正常色散当光线从光密介质(如玻璃)射向光疏介质(如空气)时,波长较大的红光比波长较小的紫光折射角更小,发生正常色散。
2. 反常色散当光线从光疏介质射向光密介质时,波长较大的红光比波长较小的紫光折射角更大,发生反常色散。
四、光的干涉与衍射光的干涉与衍射是光学中的重要现象,了解光的干涉与衍射现象有助于我们理解和解释一些光学实验和现象。
高三物理光学知识点总结大全
高三物理光学知识点总结大全光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象。
在高三物理学习中,了解并掌握光学知识点是非常重要的。
下面,将对高三物理光学知识点进行全面总结。
第一部分:光线传播光线传播是光学的基础知识,了解光线的传播规律对于理解其他光学现象至关重要。
光线遵循直线传播的规律,与物体相互作用时会发生反射和折射。
1. 光的反射光的反射是指光线遇到界面,并从界面上的物体表面上反射回来。
光线的入射角等于反射角,入射光线、反射光线和法线在同一平面上。
2. 光的折射光的折射是指光线从一种介质传播到另一种介质时,方向的改变。
光线折射发生时,入射角、折射角和介质的折射率之间存在着关系,常用斯涅尔定律来描述。
第二部分:光的干涉和衍射光的干涉和衍射是光学中的重要现象,涉及到光的波动性。
干涉是指两个或多个波相遇产生的互相增强或互相抵消的现象,而衍射是指光通过一个或多个孔或障碍物后发生弯曲和扩散的现象。
3. 光的干涉光的干涉可以分为两种类型:干涉条纹和干涉色。
干涉条纹是由两束或多束相干光相遇产生的亮暗条纹,可以通过杨氏双缝干涉和牛顿环等实验观察到。
干涉色是指通过薄膜反射和折射所产生的有色光现象,如彩虹和油膜颜色。
4. 光的衍射光的衍射是指光通过一个或多个孔或障碍物后发生弯曲和扩散的现象。
衍射现象可以通过夫琅禾费衍射和菲涅耳衍射来观察和研究。
衍射可以解释为,当光波通过孔洞或物体的边缘时,波前发生了曲率和波束发散。
第三部分:光的色散和棱镜色散是光的折射率随着光的波长而变化而产生的现象,而棱镜是利用光的折射和反射来分解光的白光。
5. 光的色散光的色散是指光波折射率随波长而变化的现象。
通过光的折射定律和色散公式,可以计算光的折射率。
色散通常分为正常色散和反常色散两种类型。
6. 棱镜棱镜是利用光的折射和反射来分解光的白光,使其分成不同颜色的光。
棱镜可以分为三棱镜、棱台镜和棱形镜等多种类型。
通过棱镜实验,可以观察到光的分光效应和彩色光的成因。
高考物理光学学知识点
高考物理光学学知识点高考物理光学知识点1.光是一种电磁波,能产生干涉和衍射。
衍射有单缝和小孔,干涉有双缝和薄膜。
单缝衍射中间宽,干涉(条纹)间距差不多。
小孔衍射明暗环,薄膜干涉用处多。
它可用来测工件,还可制成增透膜。
泊松亮斑是衍射,干涉公式要把握。
〖选修3-4〗2.光照金属能生电,入射光线有极限。
光电子动能大和小,与光子频率有关联。
光电子数目多和少,与光线强弱紧相连。
光电效应瞬间能发生,极限频率取决逸出功。
高考物理应掌控光学物理公式1、光的折射定律2、全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角。
3、双缝干涉的规律:①路程差S = (n=0,1,2,3--) 明条纹 (2n+1)(n=0,1,2,3--) 暗条纹相邻的两条明条纹(或暗条纹)间的距离:* =4、光子的能量: E = h = h ( 其中h 为普朗克常量,等于6.6310-34Js, 为光的频率)(光子的'能量也可写成: E = m c2 )(爱因斯坦)光电效应方程: Ek = h - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)5、物质波的波长:= (其中h 为普朗克常量,p 为物体的动量)高考物理光学记忆口诀1.自行发光是光源,同种匀称直线传。
假设是遇见障碍物,传播路径要转变。
反射折射两定律,折射定律是重点。
光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。
2.全反射,要牢记,入射光线在光密。
入射角大于临界角,折射光线无处觅。
高考物理规划1.第一轮复习:要完成对过去两年所学知识的梳理,建立自己的"错误集'。
2.第二轮复习:应着重于对主要知识点的查缺补漏,复习顺次是力学、电磁学、原子物理、热学的模块复习。
3.第三轮复习:以历年真题为主,以适量的题量保持做题手感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十八、物理光学一、知识网络二、画龙点睛概念一、光的波动性1、光的干涉(1)双缝干涉实验①装置:如图包括光源、单缝、双缝和屏双缝的作用是将一束光分为两束②现象:③干涉区域内产生的亮、暗纹A 、亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ= n λ(n=0,1,2,……)B 、暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即δ=)12(2-n λ(n=0,1,2,……)相邻亮纹(暗纹)间的距离λλ∝=∆dl x 。
用此公式可以测定单色光的波长。
用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。
④ 光的干涉现象说明了光具有波动性。
由于红光入射双缝时,条纹间距较宽,所以红光波长较长,频率较小 紫光入射双缝时,条纹间距较窄,所以紫光波长较短,频率较大 ⑤ 光的传播速度,折射率与光的波长,频率的关系。
a )v 与n 的关系:v =c nb )v ,λ和f 的关系:v =λf(3)薄膜干涉 ①现象: 单色光照射薄膜,出现明暗相等距条纹 白色光照射薄膜,出现彩色条纹 实例:动膜、肥皂泡出现五颜六色 ②发生干涉的原因:是由于前表面的反射光线和反表面的反射光线叠加而成(图1) ③应用:a) 利用空气膜的干涉,检验工作是否平整(图2)(图1) (图2) 若工作平整则出现等间距明暗相同条纹 若工作某一点凹陷则在该点条纹将发生弯曲若工作某一点有凸起,则在该点条纹将变为b) 增透膜例题:用绿光做双缝干涉实验,在光屏上呈现出绿、暗相间的条纹,相邻两条绿条纹间的距离为Δx 。
下列说法中正确的有A.如果增大单缝到双缝间的距离,Δx 将增大B.如果增大双缝之间的距离,Δx 将增大C.如果增大双缝到光屏之间的距离,Δx 将增大D.如果减小双缝的每条缝的宽度,而不改变双缝间的距离,Δx 将增大 解析:公式λdl x =∆中l 表示双缝到屏的距离,d 表示双缝之间的距离。
因此Δx 与单缝到双缝间的距离无关,于缝本身的宽度也无关。
本题选C 。
例题:登山运动员在登雪山时要注意防止紫外线的过度照射,尤其是眼睛更不能长时间被紫外线照射,否则将会严重地损坏视力。
有人想利用薄膜干涉的原理设计一种能大大减小紫外线对眼睛的伤害的眼镜。
他选用的薄膜材料的折射率为n =1.5,所要消除的紫外线的频率为8.1×1014Hz ,那么它设计的这种“增反膜”的厚度至少是多少?解析:为了减少进入眼睛的紫外线,应该使入射光分别从该膜的前后两个表面反射形成的光叠加后加强,因此光程差应该是波长的整数倍,因此膜的厚度至少是紫外线在膜中波长的1/2。
紫外线在真空中的波长是λ=c/ν=3.7×10-7m ,在膜中的波长是λ/=λ/n =2.47×10-7m ,因此膜的厚度至少是1.2×10-7m 。
2、光的衍射 (1)现象: ①单缝衍射 a) 单色光入射单缝时,出现明暗相同不等距条纹,中间亮条纹较宽,较亮两边亮 条纹较窄、较暗 b) 白光入射单缝时,出现彩色条纹 ② 园孔衍射: 光入射微小的圆孔时,出现明暗相间不等距的圆形条纹 ③ 泊松亮斑 光入射圆屏时,在园屏后的影区内有一亮斑 (2)光发生衍射的条件 障碍物或孔的尺寸与光波波长相差不多,甚至此光波波长还小时,出现明显 的衍射现象例题:平行光通过小孔得到的衍射图样和泊松亮斑比较,下列说法中正确的有A.在衍射图样的中心都是亮斑B.泊松亮斑中心亮点周围的暗环较宽C.小孔衍射的衍射图样的中心是暗斑,泊松亮斑图样的中心是亮斑D.小孔衍射的衍射图样中亮、暗条纹间的间距是均匀的,泊松亮斑图样中亮、暗条纹间的间距是不均匀的解析:从课本上的图片可以看出:A 、B 选项是正确的,C 、D 选项是错误的。
3、光的电磁说 ⑴麦克斯韦根据电磁波与光在真空中的传播速度相同,提出光在本质上是一种电磁波——这就是光的电磁说,赫兹用实验证明了光的电磁说的正确性。
⑵电磁波谱。
波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X 射线、⑶红外线、紫外线、X 射线的主要性质及其应用举例。
⑷实验证明:物体辐射出的电磁波中辐射最强的波长λm 和物体温度T 之间满足关系λm T = b (b 为常数)。
可见高温物体辐射出的电磁波频率较高。
在宇宙学中,可以根据接收到的恒星发出的光的频率,分析其表面温度。
⑸可见光频率范围是3.9-7.5×1014Hz ,波长范围是400-770nm 。
例题:为了转播火箭发射现场的实况,在发射场建立了发射台,用于发射广播电台和电视台两种信号。
其中广播电台用的电磁波波长为550m ,电视台用的电磁波波长为0.566m 。
为了不让发射场附近的小山挡住信号,需要在小山顶上建了一个转发站,用来转发_____信号,这是因为该信号的波长太______,不易发生明显衍射。
解析:电磁波的波长越长越容易发生明显衍射,波长越短衍射越不明显,表现出直线传播性。
这时就需要在山顶建转发站。
因此本题的转发站一定是转发电视信号的,因为其波长太短。
例题:右图是伦琴射线管的结构示意图。
电源E 给灯丝K 加热,从而发射出热电子,热电子在K 、A 间的强电场作用下高速向对阴极A 飞去。
电子流打到A 极表面,激发出高频电磁波,这就是X 射线。
下列说法中正确的有A.P 、Q 间应接高压直流电,且Q 接正极B.P 、Q 间应接高压交流电C.K 、A间是高速电子流即阴极射线,从A 发出的是X 射线即一种高频电磁波 D.从A 发出的X 射线的频率和P 、Q 间的交流电的频率相同解析:K 、A 间的电场方向应该始终是向左的,所以P 、Q 间应接高压直流电,且Q 接正极。
从A 发出的是X 射线,其频率由光子能量大小决定。
若P 、Q 间电压为U ,则X 射线的频率最高可达Ue /h 。
本题选AC 。
⑸光谱③ 光谱分析:一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光, 所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行 光谱分析。
4、光的偏振⑴光的偏振也证明了光是一种波,而且是横波。
各种电磁波中电场E 的方向、磁场B 的方向和电磁波的传播方向之间,两两互相垂直。
⑵光波的感光作用和生理作用主要是由电场强度E 引起的,因此将E 的振动称为光振动。
⑶自然光。
太阳、电灯等普通光源直接发出的光,包含垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫自然光。
⑷偏振光。
自然光通过偏振片后,在垂直于传播方向的平面上,只沿一个特定的方向振动,叫偏振光。
自然光射到两种介质的界面上,如果光的入射方向合适,使反射和折射光之间的夹角恰好是90°,这时,反射光和折射光就都是偏振光,且它们的偏振方向互相垂直。
我们通常看到的绝大多数光都是偏振光。
例题: 有关偏振和偏振光的下列说法中正确的有A.只有电磁波才能发生偏振,机械波不能发生偏振B.只有横波能发生偏振,纵波不能发生偏振C.自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光D.除了从光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光 解析:机械能中的横波能发生偏振。
自然光不一定非要通过偏振片才能变为偏振光。
本题应选BD 。
二、光的粒子性 1、光电效应(1)光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。
(右图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电。
)(2)光电效应的实验规律: 装置: ①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。
②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。
③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),光振动垂光振动 在纸面与入射光强度成正比。
④金属受到光照,光电子的发射一般不超过10-9秒。
例题:对爱因斯坦光电效应方程E K= hν-W,下面的理解正确的有A.只要是用同种频率的光照射同一种金属,那么从金属中逸出的所有光电子都会具有同样的初动能E KB.式中的W表示每个光电子从金属中飞出过程中克服金属中正电荷引力所做的功C.逸出功W和极限频率ν0之间应满足关系式W= hν0D.光电子的最大初动能和入射光的频率成正比解析:爱因斯坦光电效应方程E K= hν-W中的W表示从金属表面直接中逸出的光电子克服金属中正电荷引力做的功,因此是所有逸出的光电子中克服引力做功的最小值。
对应的光电子的初动能是所有光电子中最大的。
其它光电子的初动能都小于这个值。
若入射光的频率恰好是极限频率,即刚好能有光电子逸出,可理解为逸出的光电子的最Array大初动能是0,因此有W= hν0。
由E K= hν-W可知E K和ν之间是一次函数关系,但不是成正比关系。
本题应选C。
例题:如图,当电键K断开时,用光子能量为2.5eV的一束光照射阴极P,发现电流表读数不为零。
合上电键,调节滑线变阻器,发现当电压表读数小于0.60V时,电流表读数仍不为零;当电压表读数大于或等于0.60V时,电流表读数为零。
由此可知阴极材料的逸出功为A.1.9eVB.0.6eVC.2.5eVD.3.1eV解析:电流表读数刚好为零说明刚好没有光电子能够到达阳极,也就是光电子的最大初动能刚好为0.6eV。
由E K= hν-W可知W=1.9 eV。
选A。
2、康普顿效应在研究电子对X射线的散射时发现:有些散射波的波长比入射波的波长略大。
康普顿认为这是因为光子不仅有能量,也具有动量。
实验结果证明这个设想是正确的。
因此康普顿效应也证明了光具有粒子性。
2、波动说在光电效应上遇到的困难波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。
所以波动说对解释上述实验规律中的①②④条都遇到困难3、光子说(1)量子论:1900年德国物理学家普郎克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量E=hv(2)光子论:1905年受因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。
即:E=hv其中h为普郎克恒量h=6.63×10-34JS4、光子论对光电效应的解释金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。
三、波粒二象性1、光的波粒二象性:干涉、衍射和偏振以无可辩驳的事实表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子;因此现代物理学认为:光具有波粒二象1 6性。