2.1不等式的基本性质

合集下载

不等式的基本性质ppt课件

不等式的基本性质ppt课件

(2)能正确应用性质对不等式进行变形;
注意事项
当不等式两边都乘以(或除以)同 一个数 时,一定要看清是正数还是负数;对于未给定 范围的字母,应分情况讨论.
P9:习题2.1 第1、2、3题
1、比较a与a+2的大小;
2、比较2与2+a的大小。
1、解: ∵ 0< 2, ∴ a < a+2 2、解:若a <0,则 2+a <2; 若a > 0,则 2+a > 2; 若a = 0,则 2+a = 2;
§2.1 不等式的基本性质
读书改变命运 !刻苦成就事 业 !!态度决定一切!!!
由a+5=b+5, 能得到a=b?
由a-5=b-5, 能得到a=b? 由5a=5b, 能得到a=b?
由–8a=–8b, 能得的基本性质吗?
等式的性质1:等式的两边都加上(或减去) 同一个整式,等式仍然成立. 等式的性质2:等式的两边都乘以(或除以) 同一个不为0的数,等式仍然成立.
试比较5a与3a 的大小。 解:∵ 5 > 3 ∴ 5a 3a 想想:这种解法对吗?如果正确,说 出它根据的是不等式的哪一条基本性 质;如果不正确,请说明理由。 答:这种解法不正确,因为字母 a的取值范 围我们并不知道。如果 a 0,那么 5a 3a ; 如果 a 0 ,那么 3a 5a 。
(1)掌握不等式的三条性质,尤其是性质3; (2)能正确应用性质对不等式进行变形;
本节重点
(1)掌握不等式的三条性质,尤其是性质3; 不等式的三条性质是: ① 、不等式的两边都加上(或减去)同一 个 数或同一个整式,不等号的方向不变; ② 、不等式的两边都乘以(或除以)同一 个 正数,不等号的方向不变; ③ 、*不等式的两边都乘以(或除以)同 一个负数,不等号的方向要改变 ;

人教高中数学不等式的基本性质PPT完美版

人教高中数学不等式的基本性质PPT完美版
例题讲解 例1、比较两数(a+1)2与 a2-a+1值的大小。
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版
练习 比较两数(a2 +1)2与 a4+a2+1的值的大小。
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版
例题讲解

6.不能把质朴、理性的爱国主义视为 民粹主 义、狭 隘民族 主义, 同时应 防止各 种形式 的民粹 主义和 极端民 族主义 行为。

7. 众多短视频平台成为人们的消遣神 器,但 如果缺 乏内容 创新和 内涵续 航,短 视频的 发展将 不容乐 观。

8. 在这个浅表性阅读时代,越是具有 艺术美 感、内 容穿透 力和人 文内涵 的走心 作品越 能获得 观众的 认可。
性质5:如果a>b>0,c>d>0,那么ac>bd.不等式的叠乘性质
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版 人教高中数学不等式的基本性质PPT完 美版
谢谢
人教高中数学不等式的基本性质PPT完 美版 人教高中数学不等式的基本性质PPT完 美版

1.中美贸易摩擦已升级为舆论战,坚 持正确 舆论导 向、弘 扬爱国 主义精 神尤为 重要。

2.爱国主义精神具有深厚的历史性, 极强的 传承力 、感染 力,以 及坚韧 性,顽 强性和 理性。

3.爱国主义精神,是在中国共产党近 百年之 奋斗史 中不断 形成, 积聚与 升华而 成的。

4.面对史上规模最大的贸易战,中国 政府和 人民最 重要的 是“集中 力量做 好自己 的事”

不等式的基本性质

不等式的基本性质
=2x2-3x-5-2x2+3x
=-5<0
∴(2x-5)(x+1)<2x2-3x
亲爱的同学们,下节课见!
第二章 不等式
2.1 不等式的基本性质
1.作差比较法:比较两个实数的大小,可以通过考察它们的差来实现.
对于两个任意的实数a和b,有:a-b>0⇔a>b;
a-b=0⇔a=b;
a-b<0⇔a<b.
2.不等式的性质.
(1)性质1(加法法则):如果a>b,那么a+c>b+c.
(2)性质2(乘法法则):如果a>b,c>0,那么ac>bc;

√ )
2.如果a>b,且c>d,那么a+c>b+d.

√ )
3.如果a>b,且c>d,那么ac>bd.

× )
三、选择题
1.已知a>b,且ac>bc,那么(
A. c>0
B. c=0
A ).
C. c<0
2.若m>3,则下列不等式中必定成立的是(
A. m>0
B. m-3<0
3.如果a>b,那么(
A. ac<bc
(4)设a>b,则-2a< -2b,
(5)设x<y,则1-2x>1-2y,
1 1
(6)设x>y>0,则 < .

2.根据条件,写出x的取值范围:
(1)x+4>7, x>3
(2)2x-1<3,x<2
(3)3-2x>5, x<-1
(4)2-x<x-4, x>3
二、判断题
1.如果a<b,且b<c,那么a<c.


三、解答题
比较大小.
1.x2+1与(x+1)2,其中x>0.
解:∵(x2+1)-(x+1)2
=x2+1-(x2+2x+1)

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

A.x2>y2
B.ax>ay
C.x+5>y+5
D.x+2y>3y
【解析】 B选项中,当a=0时,ax=ay,故选项B不成立.
2.a、b、c 为实数,且 c≠0,下列命题中正确的是( D ) A.a>b⇒ac>bc B.ac<bc⇒a<b C.a>b⇒1a<1b D.a>b⇒ca2>cb2 【解析】 利用不等式的性质或举反例进行判断,取 a=2、b=-1、c=-1 来检验,对 A 有ac<bc,故 A 错;对 B 有 a>b,故 B 错;对 C 有a1>1b,故 C 错;对 D,∵ c≠0,∴ c12>0,由不等式的性质知,选项 D 正确.
【融会贯通】 比较大小. (1)( 2+ 3)2 与 4+2 6; (2)2x2+5x+6 与(x+3)(x+2),x∈R. 解:(1)∵( 2+ 3)2-(4+2 6)=(5+2 6)-(4+2 6)=1>0,∴( 2+ 3)2 >(4+2 6). (2)∵(2x2+5x+6)-(x+3)(x+2)=(2x2+5x+6)-(x2+5x+6)=x2≥0, ∴(2x2+5x+6)≥(x+3)(x+2).
2.1 不等式的基本性质
知识点1 知识点2 知识点3 知识点4 知识点5
1.不等式的概念 用不等号“≠、>、<、≥、≤”表示不等关系的式子叫做不等 式.如:f(x)>g(x),f(x)≤g(x),等等.
知识点1 知识点2 知识点3 知识点4 知识点5
2.几个恒不等式 任意实数的平方不小于0,即a2≥0. 任意实数的绝对值不小于0,即|a|≥0.
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
【解析】 根据不等式的性质可知,a>3 且 b>3⇒a+b>6 成立,a>3 且 b

中职数学2.1不等式的基本性质课件

中职数学2.1不等式的基本性质课件

例3
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
用符号“ ”或“ ”填空,并说明利用了不等式的哪(几)条
基本性质.
(2)如果 > ,那么 + 4
+ 2;
(2)根据不等式性质1,不等式 > 两边同时加上4,不等号
方向不变,即 + 4 > + 4,
又因为 + 4 > + 2,所以根据不等式性质3,可以得到
当>0时,点和点同时向右平移个单
位,即可到达点′和点′的位置;
当<0时,点和点同时向左平移
个单位,即可到达点′和点′的位置.
显然,两种情况中,点′点′的左右位置与点和点的情况相同.
2.1不等式的性质 —不等式的性质
性质3
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
5
2
例1 比较 7 与 3 的大小.
解 因为 5 2 15 14 15 14 1 0
7
3
21
5 2
所以

7 3
21
21
21
,
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
大于b(或b小于a).
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
因为实数与数轴上的点是一一对应的,对于任意实数,都可以
在数轴上找到对应的点和,如图所示.

不等式的基本性质

不等式的基本性质

a>b>0,c>d>0 如果a>b,c>d,那么ac>bd是否成立? 如果a>b>0,那么1/a<1/b是否一定成立? 如果a<b<0,那么1/a>1/b是否一定成立? 同号倒数改向性 例:若a、bR,请写出不等式a>b和1/a>1/b同时成立的 充要条件。
正数同向相乘法性
例 求证:如果a>b>0,那么a2>b2。 如果a>b>0,那么an>bn。(nN*)
7、已知三个不等式:(1)ab>0;(2)-c/a<-d/b;
(3)bc>ad,以其中两个作为条件,余下一个作为结论, 则可以组成多少个真命题? 8、已知命题甲:a>b,命题乙:1/a<1/b, 命题丙:c/a2>c/b2。 (1)若甲是乙的必要非充分条件,求a、b应满足的条件; (2)若a<0,b<0,判断丙是甲的什么条件,并加以证明。 9、(1)设2<a5,3b<10,求a+b、a-b及a/b的取值范围; (2)若二次函数f(x)的图像过原点,且1f(-2) 2, 3f(3)
2、如果a>b,那么a+c>b+c。
3、如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc。 4、如果a>b,c>d,那么a+c>b+d。 5、如果a>b>0,c>d>0,那么ac>bd。 6、如果a、b同号,那么1/a<1/b。
7、如果a>b>0,那么an>bn (nN*) 。
4、解关于x的不等式:(1)ax+4<2x+a2,其中a>2 (2)m(x+2)>x+m。

2.1不等式的基本性质(习题)

2.1不等式的基本性质(习题)

+≥−
移项,得
− ≥ − −
合并同类项,得
−≥ −
系数化为1,得

∴ 不等式的解集为{| ≤ }
()−< ( − ).
解:去括号,得
−< −
移项,得
−−< − −
合并同类项,得
− < −
系数化为1,得




∴ 不等式的解集为{| ≥ }
பைடு நூலகம்
4.若代数式 − 与代数式5 −之和不大于2,求的取值范围.
解:由题意得
( − ) − (−) ≤
∴ − − + ≤
∴ − − ≤
∴ − ≤
∴≥−
∴ 的取值范围为{| ≥ −}
B能力提升
1.设, 是两个不相等的实数,比较 − 与的大小.
正确
(4)若 > 且 < ,那么−> −;
正确
2.用符号“>”或“<”填空.
<
(1)


,

>
(2)如果 > ,那么, −
+ >


>−, +
+ , − +
+>,
<− +.
3.解下列不等式.
+
()
≥ − ;

解:去分母,得
第二章 不等式
2 . 1 不 等 式 的 基 本 性 质 ( 习 题 )
A知识巩固
习题2.1
1.判断下列结论是否正确,并说明理由.
(1)如果 > , c>0

不等式的基本性质

不等式的基本性质

第二章 不等式2.1 不等式的基本性质一、教学目的:首先让学生掌握不等式的一个等价关系,了解并会证明不等式的基本性质1、2、3。

二、教学重点:比较实数的大小、不等式的基本性质。

三、教学难点:会比较两个实数的大小。

四、教学过程:2课时一、引入新课1.世界上所有的事物不等是绝对的,相等是相对的。

2.过去我们已经接触过许多不等式 从而提出课题二、几个与不等式有关的名称 (例略)1.“同向不等式与异向不等式”2.“绝对不等式与矛盾不等式”三、不等式的一个等价关系(充要条件)1.从实数与数轴上的点一一对应谈起0>-⇔>b a b a 0=-⇔=b a b a 0<-⇔<b a b a2.应用:例一 比较)5)(3(-+a a 与)4)(2(-+a a 的大小解:(取差))5)(3(-+a a - )4)(2(-+a a07)82()152(22<-=-----=a a a a∴)5)(3(-+a a <)4)(2(-+a a例二 已知x ≠0, 比较22)1(+x 与124++x x 的大小解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=∵0≠x ∴02>x 从而22)1(+x >124++x x小结:步骤:作差—变形—判断—结论例三 比较大小1.231-和10 解:∵23231+=- ∵02524562)10()23(22<-=-=-+ ∴231-<102.a b 和ma mb ++ ),,(+∈R m b a 解:(取差)a b -m a m b ++)()(m a a a b m +-= ∵),,(+∈R m b a ∴当a b >时a b >m a m b ++;当a b =时a b =m a m b ++;当a b <时a b <ma mb ++ 3.设0>a 且1≠a ,0>t 比较t a log 21与21log +t a 的大小解:02)1(212≥-=-+t t t ∴t t ≥+21 当1>a 时t a log 21≤21log +t a ;当10<<a 时t a log 21≥21log +t a 课堂练习:P33页练习2.1.2、不等式的基本性质1.性质1(传递性):如果b a >,c b > 那么c a >证:∵b a >,c b > ∴0>-b a ,0>-c b∵两个正数的和仍是正数 ∴+-)(b a 0)(>-c b0>-c a ∴c a >2.性质2(加法法则):如果b a >,.c b c a +>+证明3. 性质3(乘法法则):如果b a >,bc c c >>a 0,则;如果b a >,bc c c ∠∠a 0,则;文字归纳不等式性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.例1 利用不等式的性质,填”>”,“<”(1)若a>b,则2a+1 2b+1;(2)若-1.25y<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0,c<0,则(a-b)c 0.变式训练 :用“>”或“<”在横线上填空,并在题后括号内填写理由.(1) 3a 3b;( ) (2) a -8 b -8; ( ) (3) -2a -2b;( ) (4) 2a -5 2b -5;( ) (5) -3.5a -1 -3.5b -1. ( )课堂练习:P36页练习 P37页的习题五、归纳小结:1.本节重点(1)掌握不等式的三条基本性质,尤其是性质3;(2)能正确应用性质对不等式进行变形;2.注意事项(1)要反复对比不等式性质与等式性质的异同点;(2)当不等式两边都乘以(或除以)同一个数时,一定要看清是正数还是负数;对于未给定范围的字母,应分情况讨论.。

中职数学(基础模块)2.1不等式的基本性质

中职数学(基础模块)2.1不等式的基本性质
不等式的基本性质与其他数学知识的联系
不等式的基本性质定义
不等式的基本性质分类
练习题
汇报人:
性质3:不等式的同乘性
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
以上是关于“性质3:不等式的同乘性”的介绍内容,希望对您有所帮助。
性质:当两个不等式相乘时,如果两个不等式都是正数或都是负数,则它们的乘积仍然是正数或负数。
定义:不等式的同乘性是指当两个不等式相乘时,如果两个不等式都是正数或都是负数,则它们的乘积仍然是正数或负数。
利用不等式性质比较大小
定义:不等式是数学中比较两个数大小关系的数学符号。
性质:不等式的性质有对称性、传递性、可加性和同向不等式的可乘性。
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
应用:不等式的同乘性在解决不等式问题时非常有用,可以用来化简不等式或比较大小。 以上是关于“性质3:不等式的同乘性”的介绍内容,希望对您有所帮助。
证明:设a>b>0,c>d>0,则ac>bc>0,bc>bc+d>0,ac>bc+d>0,因此ac>bc+d>0,即不等式的同乘性成立。
不等式的基本性质:对于任意两个实数a和b,如果a>b且c>d,则a+c>b+d
不等式的基本性质:对于任意两个正实数a和b,如果a>b,则ac>bc

《数学 基础模块》上册 2.1.1不等式的基本性质(作差比较法)

《数学 基础模块》上册 2.1.1不等式的基本性质(作差比较法)
2.1不等式的基本性质(一)
教学目标
知识目标:
理解作差比较实数大小的方法.
能力目标:
能够应用作差法判断任意两个实数的大小.
情感目标:
主动参与学习,感受数学在生活中的应用,提升数学思维能力与计算技能.
教学重点
作差比较法.
教学难点
作差比较法.
教学备品
教学课件.
课时安排
1课时.
教学过程
教学过程
教学意图
情境引入
巩固知识,提升知识的应用能力.
2006年7月12日,在国际田联超级大奖赛洛桑站男子110米栏比赛中,我国百米跨栏运动员刘翔以12秒88的成绩夺冠,并打破了尘封13年的世界记录12秒91,为我国争得了荣誉.
如何体现两个记录的差距?
知识探究
通常利用观察两个数的差的符号,来比较它们的大小.因为12.88−12.91=−0.03<0,所以得到结论:刘翔的成绩比世界记录快了0.03秒.
ห้องสมุดไป่ตู้变换练习,体会作差比较法的应用技巧,突破重难点。
归纳小结
本次课学了哪些内容?重点和难点各是什么?
(1)本次课学了哪些内容?
(2)在学习方法上有哪些体会?
加深学生对于本节课知识的理解,培养学生自主学习的能力,提升学习主动性。
布置作业
(1)书面作业:教材习题一
(2)实践调查: 探究生活中作差比较法的应用
强化练习
教材练习
P321、2
及时练习,巩固新知.
难点突破
本次课重难点:作差比较法.
强化练习
比较下列各对实数的大小:
(1) 与 ;(2) 与 ;
(3)当 时,比较 与 的大小.
解析:(1)例1、2中是比较任意两个实数的大小,可直接根据作差比较法进行判断.

2.1不等式的基本性质高中

2.1不等式的基本性质高中

(1)作差; 常用手段:配方法,因式分
(2)变形;
解法。
常见形式:变形为常数;
(3)定号;
一个常数与几
(4)下结论;
个平方和; 几个因式的积。
作商比较两数大小的依据
若 b0
(1) a 1 a b b
(2) a 1 a b b
(3) a 1 a b b
例1:已知a 0,1 b 0 ,那么在
三、例题分析:
例2:(2)已知2x 4y 1 ,比较 x2 y2
作与差210比的较大法:小__xx2_2_y_y2_2__121_0 _
注:特殊值 法容易漏“=”
20

x2

(1 4

1 2
x)2

1(条件 20
2x

4y=1
的应用)
5 x2 - 1 x+ 1 5(x2 - 1 x+ 1 ) 4 4 80 4 5 100
3b 4
1 1 1(乘法单调性)
4 Q2

a
b
3
3

1

-
a

(1 乘法法则)
2b
1 a 1(乘法单调性)
b2
三、例题分析:
例5:已知 2 a 3, 4 b 3,求 a b, a b, a , ab, b2 的取值范围。
ba
解:(4)Q 4 b 3 3 b 4(乘法单调性)
• 上式中的左边反映的是实数的运算性质, 而右边则是实数的大小顺序,合起来就成 为实数的运算性质与大小顺序之间的关系。 这一性质不仅可以用来比较两个实数的大 小,而且是推导不等式的性质,不等式的 证明,解不等式的主要依据。

专题2.1不等式及不等式的基本性质(举一反三)(北师大版)(原卷版)

专题2.1不等式及不等式的基本性质(举一反三)(北师大版)(原卷版)

专题2.1 不等式及不等式的基本性质【十大题型】【北师大版】【题型1 不等式的概念及意义】 (1)【题型2 取值是否满足不等式】 (1)【题型3 根据实际问题列出不等式】 (2)【题型4 在数轴上表示不等式】 (2)【题型5 利用不等式的性质判断正误】 (3)【题型6 利用不等式性质比较大小】 (4)【题型8 利用不等式性质证明(不)等式】 (5)【题型9 利用不等式性质求取值范围或最值】 (6)【题型10 不等关系的简单应用】 (6)【题型1 不等式的概念及意义】【例1】(2022春•郏县期中)在数学表达式:①﹣3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3中,不等式有()A.1个B.3个C.4个D.5个【变式11】(2022春•苍溪县期末)下列式子是不等式的是()A.x+4y=3B.x C.x+y D.x﹣3>0【变式12】(2022春•平泉市期末)某种牛奶包装盒上表明“净重205g,蛋白质含量≥3%”.则这种牛奶蛋白质的质量是()A.3%以上B.6.15gC.6.15g及以上D.不足6.15g【变式13】(2022春•曲阳县期末)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是.【题型2 取值是否满足不等式】【例2】(2022春•卧龙区期中)下列数值﹣2、﹣1.5、﹣1、0、1、1.5、2中能使1﹣2x>0成立的个数有个.【变式21】(2022春•泸县期末)x=3是下列哪个不等式的解()A.x+2<4B.1x>3C.2x﹣1<3D.3x+2>103【变式22】(2022春•雁塔区校级期中)下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.3【变式23】(2022春•夏津县期中)请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:;(2)﹣2,﹣1,0,1都是不等式的解:;(3)0不是这个不等式的解:.【题型3 根据实际问题列出不等式】【例3】(2022春•川汇区期末)小丽和小华先后进入电梯,当小华进入电梯时,电梯因超重而警示音响起,且这个过程中没有其他人进出,已知当电梯乘载的重量超过300公斤时警示音响起,且小丽、小华的体重分别为40公斤,50公斤,若小丽进入电梯前,电梯内已乘载的重量为x公斤,则所有满足题意的x 可用下列不等式表示的是()A.210<x≤260B.210<x≤300C.210<x≤250D.250<x≤260【变式31】(2022•南京模拟)据深圳气象台“天气预报”报道,今天深圳的最低气温是25℃,最高气温是32℃,则今天气温t(℃)的取值范围是()A.t<32B.t>25C.t=25D.25≤t≤32【变式32】(2022春•玉田县期末)用不等式表示“a是负数”应表示为.【变式33】(2022秋•婺城区校级期末)某种药品的说明书上贴有如图所示的标签,一次服用药品的剂量设为x,则x的取值范围是.【题型4 在数轴上表示不等式】【例4】(2022•嘉善县模拟)数轴上所表示的关于x的不等式组的解集为.【变式41】(2022春•永丰县期中)不等式x≥a的解集在数轴上表示如图所示,则a=.【变式42】(2022秋•衢州期中)在数轴上表示下列不等式(1)x<﹣1 (2)﹣2<x≤3.【变式43】(2022•防城港模拟)在数轴上表示﹣2≤x<1正确的是()A.B.C.D.【题型5 利用不等式的性质判断正误】【例5】(2022春•雁塔区校级期中)如果有理数a<b,那么下列各式中,不一定成立的是()A.3﹣a>3﹣b B.a2<ab C.2a<2b D.−a3>−b3【变式51】(2022•禅城区校级三模)下列结论中,正确的是()A.若a>b,c≠0,则ac>bc B.若ab<0,则a>0,b<0 C.若a>0,b<0,则ab<0D.若ab>1,则a>b【变式52】(2022春•大埔县期末)下列结论正确的有(填序号).①如果a>b,c<d,那么a﹣c>b﹣d;②如果a>b,那么ab >1;③如果a>b,那么1a<1b;④如果ac2<bc2,那么a<b.【变式53】(2022春•天津期末)判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则a(c2+1)>b(c2+1)(6)若a>b>0,则1a <1b..【题型6 利用不等式性质比较大小】【例6】(2022春•闵行区期中)如果7x<4时,那么7x﹣31.(填“>”,“=”,或“<”).【变式61】(2022春•辉县市期中)若a<b,用“>”或“<”填空(1)a﹣4b﹣4(2)a5b 5(3)﹣2a﹣2b.【变式62】(2022春•饶平县校级期末)要比较两个数a、b的大小,有时可以通过比较a﹣b与0的大小来解决:(1)如果a﹣b>0,则a>b;(2)如果a﹣b=0,则a=b;(3)如果a﹣b<0,则a<b.若x=2a2+3b,y=a2+3b﹣1,试比较x、y的大小.【变式63】(2022春•濉溪县期中)如果a>b,那么a(a﹣b)b(a﹣b)(填“>”或“<”)【题型7 利用不等式性质化简不等式】【例7】(2022秋•余杭区期中)利用不等式的性质解不等式:﹣5x+5<﹣10.【变式71】(2022秋•郴州校级月考)把下列不等式化成x>a或x<a的形式.(1)2x+5>3;(2)﹣6(x﹣1)<0.【变式72】(2022秋•余杭区期中)试依据不等式的基本性质,把下列不等式化为x>a或x<a的形式(a 为常数).(1)13x >−23x ﹣2(2)12x ≤12(6﹣x ) 【变式73】(2022秋•湖州期中)根据不等式的性质把下列不等式化成x >a 或x <a 的形式.(1)x+7>9(2)6x <5x ﹣3(3)15x <25. 【题型8 利用不等式性质证明(不)等式】【例8】(2022春•西城区校级期中)阅读下列材料,解决问题:【问题背景】小明在学习完不等式的性质之后,思考:“如何利用不等式的性质1和2证明不等式的性质3呢?”在老师的启发下,小明首先把问题转化为以下的形式:①已知:a >b ,c <0.求证:ac <bc .②已知:a >b ,c <0.求证:a c <b c . 【问题探究】(1)针对①小明给出如下推理过程,请认真阅读,并填写依据:∵c <0,即c 是一个负数∴c 的相反数是正数,即﹣c >0∵a >b∴a •(﹣c )>b •(﹣c )(依据: )即﹣ac >﹣bc不等式的两端同时加(ac +bc )可得:﹣ac +(ac +bc )>﹣bc +(ac +bc )(依据: )合并同类项可得:bc >ac即:ac <bc 得证.(2)参考(1)的结论或证明方法,完成②的证明.【变式81】(2022春•武侯区期末)求证:如果a >b ,e >f ,c >0,那么f ﹣ac <e ﹣bc .【变式82】(2022春•江西期末)已知:b<c,1<a<b+c<a+1,求证:b<a.【变式83】(2022春•夏津县期中)已知实数a,b,c满足:a+b+c=0,c>0,3a+2b+c>0.求证:(1)a>c;<−1.(2)﹣2<ba【题型9 利用不等式性质求取值范围或最值】【例9】(2022春•龙凤区期中)已知实数x,y,z满足x+y=3,x﹣z=6.若x≥﹣2y,则x+y+z的最大值为()A.3B.4C.5D.6【变式91】(2022春•郫都区校级期中)若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是.【变式92】(2022•天门校级自主招生)已知正数a、b、c满足a2+c2=16,b2+c2=25,则k=a2+b2的取值范围为.【变式93】(2022春•朝阳区校级期中)已知a,b,c为整数,且a+b=2006,c﹣a=2005,若a<b,求a+b+c的最大值.【题型10 不等关系的简单应用】【例10】(2022春•饶平县校级期末)有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?【变式101】(2022春•巩义市期末)如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为()A.D<B<A<C B.B<D<C<A C.B<A<D<C D.B<C<D<A【变式102】(2022春•兰山区期末)根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种方法就是求差法比较大小.请运用这种方法解决下面这个问题:制作某产品有两种用料方案,方案一:用4块A型钢板,8块B型钢板;方案二:用3块A型钢板,9块B型钢板.每块A型钢板的面积比每块B型钢板的面积小.方案一总面积记为S1,方案二总面积记为S2,则S1S2(填“>,<或=”).【变式103】(2022•苏州自主招生)5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a米,后两名的平均身高为b米.又前两名的平均身高为c米,后三名的平均身高为d米,则()A.a+b2>c+d2B.c+d2>a+b2C.c+d2=a+b2D.以上都不对。

北师大版中职数学基础模块上册:2.1.1不等式的基本性质(教案)

北师大版中职数学基础模块上册:2.1.1不等式的基本性质(教案)
课 题
2.1.1不等式的基本性质
课 型
新授课
课 时
1
授课班级
授课时间
授课教师
教材分析
教材来源:“十四五”职业教育国家规划教材,人民教育出版社出版,高中一年级基础模块上册第二章;
教材内容:包括不等式的基本性质、区间、一元二次不等式、含绝对值的不等式、不等式的应用;
地位与作用:不等式是数学中的重要内容,它具有应用广泛、变换灵活的特点,是研究数量大小关系的必备知识,与数学的其他分支内容有着密切的联系,也是学习高等数学的基础和工具.本单元在初中学习的基础之上,进一步学习不等式பைடு நூலகம்基本性质、区间、一元二次不等式、含绝对值的不等式等,学习根据数量关系列出相应的不等式,并利用这些不等式找到问题的解决方案,提升数学运算、直观想象、逻辑推理和数学建模等核心素养.
2.掌握不等式的基本性质的推论;
教学方法
讲授法、谈话法、谈论法
课前准备
教师:认真备课,设计教学方法,创设问题情境,做好授课过程中出现的突发状况预案;
学生:认真预习教材,标记预习中不清楚、模糊的知识点,准备笔记本;
教学媒体
教学课件PPT、多媒体展板
教学过程
第一课时
教学环节
教师活动设计
学生活动设计
设计意图
若c<0,根据性质3,有ac<bc.
若c=0,则有ac=bc=0,所以ac=bc.
例2已知a>b,比较a-1与b-2的大小.
解因为a>b,-1>-2,
根据推论1,有a+(-1)>6+(-2),
即a-1>b-2.
学生分组讨论、交流,并请同学上台黑板作答,并进行讲解
通过课后习题的解答,巩固学生对本节课知识的掌握,及时纠正学习过程中的错误

不等式的基本性质

不等式的基本性质
等价于方程:如果 ax = b 对于某个实数 x成立,那么 a = b(a,b ≠ 0)
等价于方程:如果 ax = b 对于某个实数 x不成立,那么 a ≠ b(a,b ≠ 0) 正值不等式的可加性:如果 a > b 和 c > d,那么 ac > bd。当且仅当 a > b > 0 和 c > d > 0时成立
5<7
x^2 +:2 > 3y^2 - 1
1.1 不等式的概念与表达
第一个不等式表示5小于7,而 第二个不等式表示一个表达式
x^2 + 2大于另一个表达式 3y^2 - 1
PART 2
1.2 不等式的性质
1.2 不等式的性质
不等式具有以 下基本性质
1.2 不等式的性质
反身性:对于任何实数 x,都有 x ≥ x 对称性:如果 x > y,那么 y < x,反之亦然 传递性:如果 x > y 且 y > z,那么 x > z
正值不等式的可乘性:如果 a > b > 0 和 c > d > 0,那么 ac > bd。当且仅当 a/d > b/c 时成立 正值不等式的可除性:如果 a > b > 0 和 c > d > 0,那么 ac/bd > 1。当且仅 当 ac > bd 时成立。如果 ac < bd,那 么 ac/bd < 1 正值不等式的可幂性:如果 a > b > 0 和 n 是正整数,那么 a^n > b^n。当且 仅当 n 是偶数时,等号成立
加法单调性:如果 x > y 且 z 为任意实数或整式,那么 x + z > y + z 乘法单调性:如果 x > y > 0 且 z 为任意实数或整式,那么 xz > yz

2.1(2)不等式的基本性质Ⅱppt课件

2.1(2)不等式的基本性质Ⅱppt课件

(C)a c b c
(D)
a c2 1

b c2 1
5
练习 1、下列结论能成立的是:(_1_)_(_3_)_(_4_)_ (1) a b a b
a (2)
c

b
d


ac

bd
a (3)
cபைடு நூலகம்

b
d


a3

d
3

b3

c3
ab (4)
cd

0 0
证明: 1 1 b a a b ab
b a 0, ab 0
1 1 0 ab
0 1 1
ab
如果a b 0,那么1 ____ 1 ( 0) ab
(同号倒数性质)
4
练习
1、如果x y, m n, 那么下列不等式中正确的是( B )
( A)x m y n (B)x m y n
糖水中加 糖变甜
b ab a 0
又b 0, c 0,b c 0
(b a)c 0 b(b c)
ac a bc b
问: b c __<___ b ?
ac
a
7
例2
a, b R ,比较a5 b5与a3b2 a2b3的大小
解:(a5 b5 ) (a3b2 a2b3 ) a3 (a2 b2 ) b3 (b2 a2 )
iff a b时等号成立
8
练习
ex1、比较两数 (a 1)2与a2 a 1的大小. ex2、比较两数 x2 3与3x的大小.
说明:

不等式的基本性质知识点总结

不等式的基本性质知识点总结
4.1 不等式的应用场景 不等式在数学、物理、经济等多个领域都 有广泛的应用。例如在解决实际问题时, 常常需要利用不等式的性质来找出最优解
4.2 实例分析 以一道具体的不等式问题为例,详细分析其 解题过程和思路,展示如何运用不等式的性 质进行解题。通过实例分析,加深对不等式 基本性质的理解和掌握
不等式的常见题型与解题技巧
如何激发对不等式学习的兴趣
A
学习不等式 需要耐心和
毅力
B
当我们遇到困 难时,不要轻 易放弃,而是 要坚持下去, 相信自己能够
解决问题
C
通过不断练习 和反思,我们 可以逐渐提高 自己的解决问
题的能力
总结与展望未来
12.1 总结
01
本文总结了不等式的基本性质、解法与变形、常见题型 与解题技巧等方面的知识点,并探讨了如何进一步提高 不等式问题的解决能力以及学习不等式的重要性和意义。 同时,也提出了一些激发对不等式学习兴趣的方法
不等式在实际生 活中的应用
7.1 经济学中的应用:在经济学中,不等式常被用来描述和解决资 源分配、市场供需、成本与收益等问题。例如,通过比较不同投资 方案的收益与成本,利用不等式来选择最优的投资方案
7.2 物理学中的应用:在物理学中,不等式被广泛应用于力学、 热学、电磁学等领域。例如,牛顿第二定律中的力与加速度的 关系就可以用不等式来描述
10.4 提高综合素质
学习不等式不仅可以提高我 们的数学能力,还可以培养 我们的耐心、毅力和创新精 神
通过解决复杂的问题,我们 可以锻炼自己的意志品质, 提高自己的综合素质
如何激发对不等式学习的兴趣
了解不等式在实际生活中的应用,可以激发我们对不等式学 习的兴趣。当我们知道所学知识能够解决实际问题时,自然 会产生学习的动力 参加数学竞赛和活动,可以让我们更好地了解数学的魅力, 提高解决数学问题的能力。在竞赛和活动中,我们可以结交 志同道合的朋友,共同探讨数学问题,分享解决问题的乐趣 寻找合适的学习资源,如教材、网络课程、学习 app 等, 可以帮助我们更好地学习不等式。同时,也可以通过参加学 习小组或找老师请教等方式,获取更多的学习帮助和支持

2.1不等式的基本性质2课时

2.1不等式的基本性质2课时

可乘性
< < < < < < < <
8__12 __12 <
数形结合思想
4.已知a 4.已知a<b和b<c,在数轴上如图表示. 已知 在数轴上如图表示.
a b c
由数轴上a 由数轴上a和c的位置关系,你能得出什么结论? 的位置关系,你能得出什么结论?
结论 不等式的传递性 不等式的基本性质4 不等式的基本性质4 若a<b和b<c,则a<c.
例题解析, 例题解析,当堂练习
下列说法错误的是( 下列说法错误的是( B ) 的是 A.由 +1)< +1)成立可推 成立可推a A.由a(m2+1)<b(m2+1)成立可推a<b成立 B.由 1)< 1)成立可推 成立可推a B.由a(m2-1)<b(m2-1)成立可推a<b成立 C.由 成立可推a C.由a(m+1)2<b(m+1)2成立可推a<b成立 D.由a(m+b)< (m+a)成立可推am<bm成立 成立可推am D.由a(m+b)<b(m+a)成立可推am<bm成立
(–4)__(– 6) 4)__ __( 8×(-4)_12×(-4) (– 4)×(-2)_(– 6)×(4)_12× 4)× 2)_ 6)× > < 8÷(-4)_12÷(-4) (– 4)÷(-2)< (– 6)÷(4)_12÷ 4)÷ 2)_ 6)÷ _ > 不等式的基本性质3 不等式的基本性质3 总结为:不等式的两边都乘以同一个负数 负数, 总结为:不等式的两边都乘以同一个负数,必须 把不等号的方向改变 方向改变. 把不等号的方向改变. 符号语言 即:如果a>b,且c<0, 如果a ac< 那么 ac<bc.
适当拓展
的最小值. 3、试求(x-1)2-4的最小值. 试求(x(x 变一变 试求-(x-1)2-4的最值. 试求-(x的最值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3页,共3页
第二章不等式
2.1 不等式的基本性质
【夯实基础】 一、选择题
1. 下列结论正确的是( )
A. 若ac <bc ,则a <b
B. 若a 2<b 2,则a <b
C. 若a >b ,c <0,则ac <bc
D. 若√a <√b ,则a >b 2. 下列命题中,正确的是( )
A. 若a >b ,c >d ,则a >c
B. 若ac >bc ,则a >b
C. 若a c 2<b
c 2,则a <b D. 若a >b ,c >
d ,则ac >bd
3. 如果a <b <0,那么下列不等式正确的是( )
A. ab >a 2
B. a 2<b 2
C. 1a <1
b
D. −1a <−1
b 4. 若a <0,−1<b <0,则下列不等式关系成立的是( )
A. ab 2<ab <a
B. a <ab <ab 2
C. ab 2<a <ab
D. a <ab 2<ab 5. a <b <0,下列不等式中成立的是( )
A. a
b <1
B. |a|>−b
C. 1
a <1
b
D. b 2>a 2 6. 若a >b >c ,则下列不等式中正确的是( )
A. ac >bc
B. a −b >b −c
C. a −c >b −c
D. a +c >b
7. 若a >b ,则下列正确的是( )
①a 2>b 2 ②ac >bc ③ac 2>bc 2 ④a −c >b −c . A. ④ B. ②③ C. ①④ D. ①②③④ 8. 已知a >b ,则下列不等式成立的是( )
A. 1a <1
b
B. 2−a <2−b
C. a 2>b 2
D. ac ≥bc 9. 若a 、b 、c 为实数,且a >b ,则下面一定成立的是( )
A. ac >bc
B. a 2>b 2
C. a +c >b
D. a −c >b −c 10. 已知a <b <0,则下列不等式成立的是
A. b a <a
b B. 1a <1
b C. ab <b 2
D. a 2<b 2
11. 已知a <b <0,则下列式子中恒成立的是( )
A. 1
a <1
b B. 1
a >1
b
C. a 2<b 2
D. a
b <1
12. 实数x,y 满足x >y >0,则( )
A. 1
x >1y B. √x −√y <√x −y C. (1
2)x >(1
2)y
D. x 2<xy
13. 已知a <b <0,则( )
A. a 2<ab
B. ab <b 2
C. a 2<b 2
D. a 2>b 2
14.若a,b,c为实数,且a<b<0,则下列命题正确的是
A. ac2<bc2
B. 1
a <1
b
C. b
a
>a
b
D. a2>ab>b2
15.如果a<0,b>0,那么,下列不等式中正确的是( )
A. 1
a <1
b
B. √−a<√b
C. a2<b2
D. |a|>|b|
16.若a<b<0,则下列不等式中成立的是( )
A. a2>b2
B. |a|<|b|
C. 1
a <1
b
D. a3>b3
17.下列叙述正确的是( )
A. 若|a|=|b|,则a=b
B. 若|a|=|b|,则a=±b
C. 若a<b,则|a|<|b|
D. 若|a|>|b|,则a>b
18.下列说法正确的是( )
A. a>b⇒ac2>bc2
B. a>b⇒a2>b2
C. a>b⇒
a3>b3 D. a2>b2⇒a>b
19.如果a<b<0,那么下列不等式不成立的是
A. |a|>|b|
B. 1
a−b >1
a
C. 1
a
>1
b
D. a2>b2
20.若a<0<b,则下列不等式一定成立的是()
A. 1
a >1
b
B. 1
a
<1
b
C. a2<b2
D. |a|>|b|
二、填空题
21.设M=5a2−a+1,N=4a2+a−1,则M,N的大小关系为______ .
22.设不等式ax2+bx+1>0的解集为(−1, 1
3
),则a×b=______.
23.比较大小:(x−2)(x+3)______ x2+x−7(填入“>”,“<”,“=”之一)
24.若不等式x2−(1+a)x+a<0的解集为(1,2),则a的值为.
25.如果a>b,那么1−2a与1−2b中较大的是___________ 。

26.比较大小:x2−4x______−8(填“>”或“<”).
27.√3+√6与√2+√7的大小关系为√3+√6____√2+√7
28.若a<b<0,则下列不等式中不能成立的是________.(写出所有符合要求的不等式
的序号)
①1
a >1
b
;②1
a−b
>1
a
;③|a|>|b|;④a2>b2
29.若a>b>0,则1
a n ______1
b n
(n∈N∗)(填“>”或“<”).
30.比较大小:(x−3)2______(x−2)(x−4).(填写“>”或“<”)
31.若x∈R,比较大小:x
1+x21 2 .
32.若P=√7−1,Q=√11−√5,则P与Q的大小关系是______.
33.若a>b>0,c>d>0,则a
d ______ b
c
(选>、<、≥、≤、=符号其中之一填空).
第2页,共3页
34.比较大小:(x−3)2______ x2−6x+8(填入“>”,“<”,“=”之一).
35.√2+√7与√3+√6的大小关系是__________(填“大于,等于,小于”中的一个)【能力提升】
三、解答题
36.已知x>1,比较x3+6x与x2+6的大小.
37.已知a,b是正数,且a≠b,比较a3+b3与a2b+ab2的大小.
38.比较a2+b2
2与(a+b
2
)2的大小.
39.(1)已知若a,b∈R求证:a2+4b2≥2b(a+b);(2)解关于x的不等式x
x−1
<1−a.40.设a=√3+2√2,b=2+√7,则a、b的大小关系为?并证明你的结论.
第3页,共3页。

相关文档
最新文档