解一元二次方程专项练习题(带答案)【40道】精编版

合集下载

九年级数学解一元二次方程专项练习题(带答案)【40道】 (1)

九年级数学解一元二次方程专项练习题(带答案)【40道】 (1)

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。

完整版)因式分解法解一元二次方程练习题及答案

完整版)因式分解法解一元二次方程练习题及答案

完整版)因式分解法解一元二次方程练习题及答案因式分解法解一元二次方程练题1.选择题1) 方程(x-16)(x+8)=0的根是( C )。

A。

x1=-16,x2=8B。

x1=16,x2=-8C。

x1=16,x2=-8D。

x1=-16,x2=-82) 下列方程4x2-3x-1=0,5x2-7x+2=0,13x2-15x+2=0中,有一个公共解是( B )。

A。

x=0B。

x=1C。

x=23) 方程5x(x+3)=3(x+3)解为( D )。

A。

x1=3/5,x2=-3/5B。

x=1/2C。

x1=-3/5,x2=-1/2D。

x1=-3/5,x2=-1/34) 方程(y-5)(y+2)=1的根为( A )。

A。

y1=5,y2=-2B。

y=5C。

y=-2D。

以上答案都不对5) 方程(x-1)2-4(x+2)2=0的根为( D )。

A。

x1=1,x2=-5B。

x1=-1,x2=-5C。

x1=1,x2=5D。

x1=-1,x2=56) 一元二次方程x2+5x=0的较大的一个根设为m,x2-3x+2=0的较小的根设为n,则m+n的值为( B )。

A。

1B。

2C。

-4D。

47) 已知三角形两边长为4和7,第三边的长是方程x2-16x+55=0的一个根,则第三边长是( D )。

A。

5B。

5或11C。

6D。

112.填空题1) 方程t(t+3)=28的解为4或-7.2) 方程(2x+1)2+3(2x+1)=0的解为-2或-4/3.3) 方程(2y+1)2+3(2y+1)+2=0的解为-3或-5/2.4) 关于x的方程x2+(m+n)x+mn=0的解为-m或-n。

5) 方程x(x-5)=5-x的解为-1或5.3.用因式分解法解下列方程:1) x(x+12)=0,解为x=0或x=-12.2) (2x+1)(2x-1)=0,解为x=1/2或x=-1/2.3) (2y+1)(2y+5)=0,解为y=-1/2或y=-5/2.4) (x-7)(x+3)=0,解为x=7或x=-3.5) (x-1)(x+3)=12,解为x=2或x=-4.6) (3x+1)(x-1)=0,解为x=-1/3或x=1.7) (5x+3)(2x-1)=0,解为x=-3/5或x=1/2.8) (x-1-5)(x-1+4)=0,解为x=-2或x=6.4.用适当方法解下列方程:(略)5.解关于x的方程:1) x^2 - 4ax + 3a^2 = 1 - 2a;将等式右边的常数项移到左边,得到 x^2 - 4ax + 3a^2 + 2a - 1 = 0,然后使用求根公式得到x = 2a ± √(a^2 + 1)。

最新九年级数学解一元二次方程专项练习题(带答案)【40道】

最新九年级数学解一元二次方程专项练习题(带答案)【40道】

最新九年级数学解一元二次方程专项练习题(带答案)【40道】1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x .9、【答案】(1)01=x ,142=x (2)31=-x ,92=-x (3)71=-x ,82=x (4)11=x ,542=-x (5)91=x ,452=-x (6)61=x ,342=x (7)41=-x ,52=-x (8)41=-x ,322=x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x .9、【答案】(1)01=x ,142=x (2)31=-x ,92=-x (3)71=-x ,82=x (4)11=x ,542=-x (5)91=x ,452=-x (6)61=x ,342=x (7)41=-x ,52=-x (8)41=-x ,322=x。

公式法解一元二次方程专项练习106题(有答案过程)ok

公式法解一元二次方程专项练习106题(有答案过程)ok

公式法解一元二次方程专项练习106题(有答案)1.2x2﹣7x+3=0(公式法)2.2t2﹣t﹣3=0,3.2x2﹣7x+4=0.4.2x2+2x=15.5y+2=3y2.6.x2+3x﹣4=07. 2x2﹣4x﹣1=08.2x2﹣x﹣2=0.9.2x2﹣5x+1=0.10.x2﹣1=4x.11.x2+3x﹣3=0 12.3x2﹣4x﹣2=0.13.x2+x﹣4=0.14.2x2﹣6x+3=0.15.2x2﹣3x﹣1=0.16.2x2﹣2x﹣1=017.3x2﹣4x﹣1=0.18.2x2﹣x﹣4=019.2x2+x﹣2=020.3x2+6x﹣4=021.x2﹣x﹣3=0.22.3x2+4x﹣4=0,23.(3x﹣1)(x+2)=11x﹣4.24.2x2﹣5x﹣1=0.25..26.3x2+4x+5=0.28.x2﹣x﹣4=0.29..30.2x2﹣2x﹣1=031.3x2+7x+10=1﹣8x.32.5x2﹣3x+2=0.33. 5x2﹣3x=x+1134.x2+3x+1=0,35.4x2=2x+136.5x2﹣3x=x+1.37.3x2+7x+4=038.2x2﹣3x﹣1=0(用公式法)39.3x2+5x+1=0;40.x2﹣4x+1=041. x2﹣4x+5=0 42. x2+5x+3=043.2x2﹣3x﹣6=0.44.3x2+4x+1=0 45.x2﹣4x﹣8=0 46.2x2﹣x﹣2=047.3x2+2(x﹣1)=0.48.x2﹣4x﹣7=049.y2﹣2y﹣4=050.x2﹣3x=2 51.2x2+x ﹣=0.52.x 2x+1=053.2x2﹣9x+8=0;54. x2﹣6x+1=0;55. x2+x﹣1=0;56. 2x2﹣6x+3=0;57.2x(x+4)=1 58.3x2+5(2x+1)=0.59.2x2﹣4x﹣1=060.3x2﹣6x﹣4=061.x2+2x﹣5=0 62.x2﹣4x﹣3=063.4x2﹣3x﹣1=063. x2+2x﹣2=0;64. y2﹣3y+1=0;65. x2+3=2x .66.x2﹣4x=﹣367. 3x2﹣2x﹣1=0;68.;69. 2x2﹣7x+5=0;70. 2x2﹣7x﹣18=0.71. (x+1)(x+3)=6x+4;73. x2﹣(2m+1)x+m=0.74. x(x+8)=16,75. x2﹣4x=4;76. 2x2﹣2x+1=0,77. 5x2+2x﹣1=078. 6y2+13y+6=079. 3•x2+6x+9=780. 2x2﹣3x+1=0;81. 2y(y﹣1)+3=(y+1)2.82. x2=3x+1;83. (t+1)(t﹣3)=﹣t(3﹣3t).84.x2﹣2ax﹣b2+a2=0.85. 3x2=2﹣5x;86. y2﹣4y=1;87. (x+1)(x﹣1)=2x.88.(2x﹣1)2﹣7=3(x+1);89.x2﹣6x+11=0 90 . 5x2﹣8x+2=0.91.x2﹣3x+1=0.92.x2=5﹣12x93. x2+x﹣1=0 94.3x2﹣4x﹣1=0 95.3x2+2(x﹣1)=0,96.97.3x2﹣4x﹣1=098.99. .101.2x2+5x﹣1=0.102.2x2﹣x﹣1=0.103..104.3x2+5x﹣1=0.105.5x2﹣8x+2=0,106.3x2+7x+10=1﹣8x,参考答案:1.2x2﹣7x+3=0(公式法)a=2,b=﹣7,c=3,∴b2﹣4ac=(﹣7)2﹣4×2×3=49﹣24=25>0,方程有两个不相等的实数根,即:,x1=3,2.2t2﹣t﹣3=0,∵a=2,b=﹣1,c=﹣3,∴x===,3.2x2﹣7x+4=0.∵a=2,b=﹣7,c=4,b2﹣4ac=49﹣32=17,∴x==,∴,∴x1=,x2=4.2x2+2x=1由原方程,得2x2+2x﹣1=0,∴该方程的二次项系数a=2,一次项系数b=2,常数项c=﹣1;∴x===,∴x1=,x2=5.5y+2=3y2.移项,3y2﹣5y﹣2=0,a=3,b=﹣5,c=﹣2,b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴x=,∴x1=2,x2=﹣;6.x2+3x﹣4=0a=1,b=3,c=﹣4,△=9+4×1×4=25>0,∴x==,∴x1=﹣4,x2=1.7. 2x2﹣4x﹣1=0a=2,b=﹣4,c=﹣1,△=16+4×2=24>0,∴x==1±,∴x1=1+,x2=1﹣8.2x2﹣x﹣2=0.∵a=2,b=﹣1,c=﹣2,∴b2﹣4ac=17>0∴x=.即x1=,x2=9.2x2﹣5x+1=0.∵a=2,b=﹣5,c=1,∴b2﹣4ac=17,∴x=,∴x1=,x2=10.x2﹣1=4x.原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣11.x2+3x﹣3=0a=1,b=3,c=﹣3;∵b2﹣4ac=9+12=21>0∴=∴,12.3x2﹣4x﹣2=0.a=3,b=﹣4,c=﹣2,△=b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40>0,x==,x1=,x2=13.x2+x﹣4=0.∴x==,∵x1=﹣2,x2=.14.2x2﹣6x+3=0.∵a=2,b=﹣6,c=3∴x=∴x1=,x2=;15.2x2﹣3x﹣1=0.a=2,b=﹣3,c=﹣1,∴△=9+8=17,∴x=,x1=,x2=16.2x2﹣2x﹣1=0a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=17.3x2﹣4x﹣1=0.∵一元二次方程3x2﹣4x﹣1=0的二次项系数a=3,一次项系数b=﹣4,常数项c=﹣1,∴x===,∴x1=,x2=18.2x2﹣x﹣4=0∵2x2﹣x﹣4=0,∴=,∴x1=,19.2x2+x﹣2=0∵a=2,b=1,c=﹣2(1分)∵b2﹣4ac=12﹣4×2×(﹣2)=17>0(2分)∴(4分)∴,20.3x2+6x﹣4=0∵a=3,b=6,c=﹣4,∴b2﹣4ac=62﹣4×3×(﹣4)=84,∴x==,即x1=,x2=﹣21.x2﹣x﹣3=0.∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>0,∴x==,∴x1=,x2=.22.3x2+4x﹣4=0,这里a=3,b=4,c=﹣4,b2﹣4ac=42﹣4×3×(﹣4)=64,x=,x1=,x2=﹣223.(3x﹣1)(x+2)=11x﹣4.3x2+6x﹣x﹣2=11x﹣4,整理得3x2﹣6x+2=0,∵△=(﹣6)2﹣4×3×2=12,∴x==∴x1=,x2=24.2x2﹣5x﹣1=0.2x2﹣5x﹣1=0,∵b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=33,∴x=,即x1=,x2=25..∵a=1,b=,c=﹣20,b2﹣4ac=()2﹣4×1×(﹣20)=100>0,∴x=,x=,解得x1=﹣+5,x2=﹣﹣5.26.3x2+4x+5=0.∵△=42﹣4×3×5=﹣44<0,∴方程没有实数根.27.x2﹣4x﹣2=0.∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6,∴x===2±,∴x1=2+,x2=2﹣.28.x2﹣x﹣4=0.a=1,b=﹣1,c=﹣4.b2﹣4ac=1+16=17>0.∴=∴x1=,x2=29..由原方程,得t2+2t﹣2=0,这里a=1,b=2,c=2.则t===﹣,即t1=t2=﹣30.2x2﹣2x﹣1=0∵a=2,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,∴x===,∴x1=,x2=31.3x2+7x+10=1﹣8x.原方程可化为x2+5x+3=0,解得:32.5x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×5×2<0,∴此方程无解33. 5x2﹣3x=x+11(公式法)5x2﹣3x=x+11,整理得:5x2﹣4x﹣11=0,这里a=5,b=﹣4,c=﹣11,∵△=16+220=236,∴x==,则x1=,x2=34.x2+3x+1=0,这里a=1,b=3,c=1,∵△=b2﹣4ac=9﹣4=5,∴x=,则x1=,x2=35.4x2=2x+1移项得:4x2﹣2x﹣1=0,∵b2﹣4ac=(﹣2)2﹣4×4×(﹣1)=20,∴x==,∴x1=,x2=36.5x2﹣3x=x+1.方程化简为:5x2﹣4x﹣1=0,这里a=5,b=﹣4,c=﹣1,∵△=b2﹣4ac=(﹣4)2﹣4×5×(﹣1)=36>0,∴x==,∴x1=1,x2=﹣.37.3x2+7x+4=03x2+7x+4=0,∵a=3,b=7,c=4,∴b2﹣4ac=49﹣48=1>0,∴x=,∴x1=﹣1,x2=﹣.38.2x2﹣3x﹣1=0(用公式法)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17,∴x==,所以x1=,x2=39.3x2+5x+1=0;∵原方程的二次项系数a=3,一次项系数b=5,常数项c=1,∴原方程的根是:x==,即x=;40.x2﹣4x+1=0a=1,b=﹣4,c=1,∴x====2±;41. x2﹣4x+5=0a=1,b=﹣4,c=5,∵△=b2﹣4ac=16﹣20=﹣4<0,∴次方程无解.42. x2+5x+3=0a=1,b=5,c=3,∴x===43.2x2﹣3x﹣6=0.这里a=2,b=﹣3,c=﹣6,∵△=b2﹣4ac=9+48=57,∴x=,则x1=,x2=44.3x2+4x+1=0(用公式法)∵二次项系数a=3,一次项系数b=4,常数项c=1,∴△=b2﹣4ac=42﹣4×3×1=4>0∴x==∴x1=﹣1 x2=﹣;45.x2﹣4x﹣8=0(公式法)∵方程x2﹣4x﹣8=0的二次项系数a=1、一次项系数b=﹣4、常数项c=﹣8,∴x===2±2,∴x1=2+2,x2=2﹣2;46.2x2﹣x﹣2=0a=2,b=﹣1,c=﹣2,∵b2﹣4ac=(﹣1)2﹣4×2×(﹣2)=1+16=17>0,∴x==,∴x1=,x2=47.3x2+2(x﹣1)=0.整理得,3x2+2x﹣2=0,∵a=3,b=2,c=﹣2,△=b2﹣4ac=4+24=28,x==,解得x1=,x2=48.x2﹣4x﹣7=0∵x2﹣4x﹣7=0的二次项系数是a=1、一次项系数是b=﹣4、常数项是c=﹣7,∴x===2±,∴x1=2+,x2=2﹣49.y2﹣2y﹣4=0(公式法)由原方程知,二次项系数a=1,一次项系数b=﹣2,常数项c=﹣4,∴x==,∴,∴x1=1+,x2=1﹣;50.x2﹣3x=2x2﹣3x﹣2=0,∵a=1,b=﹣3,c=﹣2,∴x===,∴x1=,x2=51.2x2+x ﹣=0.∵关于x的一元二次方程2x2+x ﹣=0的二次项系数a=2,一次项系数b=1,常数项c=﹣,∴原方程的根是:=,即x=52.x 2x+1=0这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣153.2x2﹣9x+8=0;∵a=2,b=﹣9,c=8∴x=,x1=,x2=;54. x2﹣6x+1=0;∵a=1,b=﹣6,c=1∴x=,∴x1=3+2,x2=3﹣2;55. x2+x﹣1=0;∵a=1,b=1,c=﹣1,∴x==;56. 2x2﹣6x+3=0;∵a=2,b=﹣6,c=3,∴x===;57.2x(x+4)=12x2+8x﹣1=0,∵a=2,b=8,c=﹣1,△=b2﹣4ac=64+8=72,∴x===.即x1=,x2=58.3x2+5(2x+1)=0.3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x1=,x2=59.2x2﹣4x﹣1=0(公式法)解:这里a=2,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,∴x==,∴x1=,x2=60.3x2﹣6x﹣4=0(公式法)3x2﹣6x﹣4=0,这里a=3,b=﹣6,c=﹣4,∵b2﹣4ac=36+48=84>0,∴x==,则x1=,x2=61.x2+2x﹣5=0∵a=1,b=2,c=﹣5,b2﹣4ac=24,∴x==﹣1,即x1=,x2=﹣1.62.x2﹣4x﹣3=0由题意得:a=1,b=﹣4,c=﹣3,∴x====2±63.4x2﹣3x﹣1=0a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.63. x2+2x﹣2=0;这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;64. y2﹣3y+1=0;这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴y=,∴y1=,y2=;65. x2+3=2x .移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根66.x2﹣4x=﹣3移项,得x2﹣4x+3=0.∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴x==,∴x1=1,x2=367. 3x2﹣2x﹣1=0;∵a=3,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×3×(﹣1)=16,∴x===,∴x1=1,x2=﹣.68.;∵a=2,b=﹣1,c=﹣,∴b2﹣4ac=(﹣1)2﹣4×2×(﹣)=5,∴x==,∴x1=,x2=.69. 2x2﹣7x+5=0;∵a=2,b=﹣7,c=5,∴b2﹣4ac=(﹣7)2﹣4×2×5=9,∴x==,∴x1=,x2=1.70. 2x2﹣7x﹣18=0.∵a=2,b=﹣7,c=﹣18,∴b2﹣4ac=(﹣7)2﹣4×2×(﹣18)=193,∴x==,∴x1=,x2=71. (x+1)(x+3)=6x+4;去括号,移项方程化为一般式为:x2﹣2x﹣1=0,∵a=1,b=﹣2,=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8 ∴x===1±,∴x1=1+,x2=1﹣;72. x2+2(+1)x+2=0;∵a=1,b=2(+1),c=2,∴b2﹣4ac=[2(+1)]2﹣4×1×2=16,∴x===﹣(+1)±2,∴x1=﹣﹣3,x2=﹣+1;73. x2﹣(2m+1)x+m=0.∵a=1,b=﹣(2m+1),c=m,∴b2﹣4ac=[﹣(2m+1)]2﹣4×1×m=4m2+1,∴x=,∴x1=,x2=74. x(x+8)=16,x2+8x﹣16=0,a=1,b=8,c=﹣16,b2﹣4ac=82﹣4×1×(﹣16)=128>0,x=,x1=﹣4+4,x2=﹣4﹣4;75. x2﹣4x=4;x2﹣4x﹣4=0;a=,b=﹣4,c=﹣4,b2﹣4ac=(﹣4)2﹣4××(﹣4)=48>0,x==±,x1=+,x2=﹣;76. 2x2﹣2x+1=0,a=2,b=﹣2,c=1,b2﹣4ac=(﹣2)2﹣4×2×1=0,x1=x2=.77. 5x2+2x﹣1=0∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0∴x1•x2=∴x1=.78. 6y2+13y+6=0∵a=6,b=13,c=6,∴△=b2﹣4ac=169﹣4×6×6=25>0∴x=∴x1=﹣,x2=﹣.79. 3•x2+6x+9=7整理,得:x2+6x+2=0∴a=1,b=6,c=2∴△=b2﹣4ac=36﹣4×1×2=28>0∴x1•2==﹣3±∴x1=﹣3+,x2=﹣3﹣.80. 2x2﹣3x+1=0;根据原方程,得a=2,b=﹣3,c=1,∵b2﹣4ac=9﹣4×2×1=1>0,∴x=,x==.∴x1=1,x2=;81. 2y(y﹣1)+3=(y+1)2.由原方程,得2y2﹣2y+3=y2+2y+1,即y2﹣4y+2=0,∴a=1,b=﹣4,c=2.b2﹣4ac=(﹣4)2﹣4×1×2=8>0.∴x=x==∴x1=2+,x2=2﹣.82. x2=3x+1;方程化为x2﹣3x﹣1=0,∴a=1,b=﹣3,c=﹣1,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13.∴x1=.83. (t+1)(t﹣3)=﹣t(3﹣3t).方程化为2t2﹣t+3=0,a=2,b=﹣1,c=3b2﹣4ac=1﹣4×2×3=﹣23<0,∴原方程无实数根84.x2﹣2ax﹣b2+a2=0.∵a=1,b=﹣2a,c=﹣b2+a2∴b2﹣4ac=4a2+4b2﹣4a2=4b2∴x==a±|b|.85. 3x2=2﹣5x;a=3,b=5,c=﹣2 b2﹣4ac=52﹣4×3×(﹣2)=25+24=49>0.x==.所以x1=﹣2,x2=.86. y2﹣4y=1;原方程变形为:3y2﹣8y﹣2=0.a=3,b=﹣8,c=﹣2.b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=64+24=88.x==.所以x1=,x2=.87. (x+1)(x﹣1)=2x.原方程变形x2﹣2x﹣1=0.a=1,b=﹣2,c=﹣1.b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8+4=12>0.所以x==.故x1=+,x2=﹣.88.(2x﹣1)2﹣7=3(x+1);整理,得4x2﹣7x﹣9=0,因为a=4,b=﹣7,c=﹣9.所以x=89.x2﹣6x+11=0由原方程,知a=,b=﹣6,c=11将其代入求根公式x=,得x=,∴原方程的根是:x1=4,x2=90 . 5x2﹣8x+2=0.这里a=5,b=﹣8,c=2,∵b2﹣4ac=64﹣40=24>0,∴x==,则x1=,x2=.91.x2﹣3x+1=0.x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=92.x2=5﹣12x方程化为一般形式为:x2+12x﹣5=0,∴a=1,b=12,c=﹣5,∴△=122﹣4×1×(﹣5)=4×41>0,∴x===﹣6±,所以x1=﹣6+,x2=﹣6﹣.93. x2+x﹣1=0解:x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.94.3x2﹣4x﹣1=0解:3x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴原方程的解是:x1=,x2=,这里a=2,b=﹣2,c=1,∴b2﹣4ac=﹣4×2×1=4,∴x==,∴x1=,x2=,∴原方程的解是x1=,x2=95.3x2+2(x﹣1)=0,整理得:3x2+2x﹣2=0,这里a=3,b=2,c=﹣2,∵△=b2﹣4ac=4+24=28,∴x==,则x1=,x2=96.方程整理得:x2﹣2x+1=0,这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣1.97.3x2﹣4x﹣1=03x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0,∴x==,则x1=,x2=98.2x2﹣x+1=0a=2,b=﹣,c=1△=10﹣8=2x=∴x1=,x2=99. .解:整理得:x2﹣2x﹣1=0,∴b2﹣4ac=﹣4×1×(﹣1)=12,∴x==±,∴x1=+,x2=﹣100.3x2﹣4x﹣1=0.3x2﹣4x﹣1=0,a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x1=,x2=101.2x2+5x﹣1=0.∵a=2,b=5,c=﹣1,△=b2﹣4ac=25+8=33,∴x===.即x1=,x2=102.2x2﹣x﹣1=0.∵原方程的二次项系数a=2,一次项系数b=﹣1,常数项c=﹣1,∴x===,∴x1=1,x2=﹣.103..∵a=2,b=﹣,c=﹣,∴△=(﹣)2﹣4×2×(﹣)=6>0,x==.104.3x2+5x﹣1=0.∵一元二次方程3x2+5x﹣1=0的二次项系数a=3,一次项系数b=5,常数项c=﹣1,∴x===,∴x1=,x2=.105.5x2﹣8x+2=0,a=5,b=﹣8,c=2,b2﹣4ac=(﹣8)2﹣4×5×2=24>0,x==,x1=,x2=.106.3x2+7x+10=1﹣8x,整理得:x2+5x+3=0,解得:x==,即:x1=,x2=;。

(完整)一元二次方程100道计算题练习(附答案)

(完整)一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=16 6、2(2x -1)-x (1-2x)=07、x 2 =64 8、5x 2—52=0 9、8(3 —x )2–72=010、3x (x+2)=5(x+2) 11、(1-3y)2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2—x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x —4=0 24、x 2—3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=—1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x —1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x (5—x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)235、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x —3)2042=-x x 3(1)33x x x +=+x 2—23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x —3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x(x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0。

一元二次方程计算题专题训练试题精选附答案

一元二次方程计算题专题训练试题精选附答案

一元二次方程计算题专题训练试题精选附答案一. 解答题(共30小题)1. (2015•诏安县校级模拟)解方程:(x+1)2﹣9=0.2. (2015•诏安县校级模拟)解方程: 4x2﹣20=0.3. (2015•东西湖区校级模拟)解方程: (2x+3)2﹣25=04. (2015•铜陵县模拟)解方程: 4(x+3)2=25(x﹣2)2.5. (2015•岳池县模拟)解方程(2x﹣3)2=x2.6. (2015春•北京校级期中)解方程: (x﹣1)2=25.7. (2013秋•云梦县校级期末)解下列方程:(1)用直接开平方法解方程:2x2﹣24=0 (2)用配方法解方程:x2+4x+1=0.8. (2014秋•锡山区期中)解方程:(1)(x﹣2)2=25;(2)2x2﹣3x﹣4=0;(3)x2﹣2x=2x+1;(4)2x2+14x﹣16=0.9. (2014秋•丹阳市校级期中)选择合适的方法解一元二次方程:①9(x﹣2)2﹣121=0;②x2﹣4x﹣5=0.10. (2014秋•万州区校级期中)按要求解答:(1)解方程:(x+3)2﹣2=0;(2)因式分解:4a2﹣(b2﹣2b+1).11. (2014秋•海口期中)解下列方程:(1)x2﹣16=0;(2)x2+3x﹣4=0.12. (2014秋•海陵区期中)解下列一元二次方程:(1)x2﹣3=0 (2)x2﹣3x=0.13. (2014秋•滨湖区期中)解下列方程(1)2x2﹣=0;(2)2x2﹣4x+1=0(配方法)(3)2(x﹣3)2=x(x﹣3);(4)3y2+5(2y+1)=0 (公式法).14. (2014秋•昆明校级期中)解方程: 9(x+1)2=4(x﹣2)2.15. (2014秋•深圳校级期中)解方程: (2x﹣3)2=25.16. (2014秋•北塘区期中)(1)2(x﹣1)2=32 (2)2(x﹣3)2=x(x﹣3)(3)2x2﹣4x+1=0 (4)x2﹣5x+6=0.17. (2014秋•福安市期中)解方程:(1)(x+1)2=2;(2)x2﹣2x﹣3=0 (用适当的方法)18. (2014秋•华容县月考)用适当的方法解下列方程:(1)(2﹣3x)2=1;(2)2x2=3(2x+1).19. (2014秋•宝应县校级月考)解方程:(1)(2x﹣1)2﹣9=0 (2)x2﹣x﹣1=0.20. (2014秋•南华县校级月考)解方程:(1)(x+8)(x+1)=0 (2)2(x﹣3)2=8(3)x(x+7)=0 (4)x2﹣5x+6=0(5)3(x﹣2)2=x(x﹣2)(6)(y+2)2=(3y﹣1)2.21. (2014秋•广州校级月考)解方程:(1)x2﹣9=0;(2)x2+4x﹣1=0.22. (2013秋•大理市校级期中)解下列方程:(1)用开平方法解方程: (x﹣1)2=4 (2)用配方法解方程: x2﹣4x+1=0 (3)用公式法解方程: 3x2+5(2x+1)=0 (4)用因式分解法解方程: 3(x﹣5)2=2(5﹣x)23. (2012秋•浏阳市校级期中)用适当的方法解方程:(1)9(2x﹣5)2﹣4=0;(2)2x2﹣x﹣15=0.24. (2013秋•玉门市校级期中)(2x﹣3)2﹣121=0.25. (2015•蓬溪县校级模拟)(2x+3)2=x2﹣6x+9.26. (2015•泗洪县校级模拟)(1)x2+4x+2=0 (2)x2﹣6x+9=(5﹣2x)2.27. (2015春•慈溪市校级期中)解方程:(1)x2﹣4x﹣6=0 (2)4(x+1)2=9(x﹣2)2.28. (2015春•北京校级期中)解一元二次方程:(1)(2x﹣5)2=49 (2)x2+4x﹣8=0.29. (2015春•北京校级期中)解一元二次方程(1)y2=4;(2)4x2﹣8=0;(3)x2﹣4x﹣1=0.30. (2015•黄陂区校级模拟)解方程: x2﹣3x﹣7=0.一元二次方程计算题专题训练试题精选附答案参考答案与试题解析一. 解答题(共30小题)1. (2015•诏安县校级模拟)解方程:(x+1)2﹣9=0.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:先移项, 写成(x+a)2=b的形式, 然后利用数的开方解答.解答:解: 移项得, (x+1)2=9,开方得, x+1=±3,解得x1=2, x2=﹣4.解得x1=2,x2=﹣4.解得x1=2,x2=﹣4.点评:(1)用直接开方法求一元二次方程的解的类型有: x2=a(a≥0);ax2=b(a, b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a, c同号且a≠0).法则: 要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.(2)运用整体思想, 会把被开方数看成整体.(3)用直接开方法求一元二次方程的解, 要仔细观察方程的特点.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.2. (2015•诏安县校级模拟)解方程: 4x2﹣20=0.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:先变形得到x2=5, 然后利用直接开平方法求解.解答:解: 由原方程, 得x2=5,所以x1= , x2=﹣.所以x1= ,x2=﹣.所以x1=,x2=﹣.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.3. (2015•东西湖区校级模拟)解方程: (2x+3)2﹣25=0考点:解一元二次方程-直接开平方法. 菁优网版权所有专题:计算题.分析:先移项, 写成(x+a)2=b的形式, 然后利用数的开方解答.解答:解: 移项得, (2x+3)2=25,开方得, 2x+3=±5,解得x1=1, x2=﹣4.解得x1=1,x2=﹣4.解得x1=1,x2=﹣4.点评:(1)用直接开方法求一元二次方程的解的类型有: x2=a(a≥0);ax2=b(a, b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a, c同号且a≠0).法则: 要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.(2)运用整体思想, 会把被开方数看成整体.(3)用直接开方法求一元二次方程的解, 要仔细观察方程的特点.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4. (2015•铜陵县模拟)解方程: 4(x+3)2=25(x﹣2)2.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:两边开方, 即可得出两个一元一次方程, 求出方程的解即可.解答:解: 4(x+3)2=25(x﹣2)2,开方得:2(x+3)=±5(x﹣2),解得:, .解得:,.解得: ,.解得:,.点评:本题考查了解一元二次方程的应用, 解此题的关键是能把一元二次方程转化成一元一次方程, 难度适中.5. (2015•岳池县模拟)解方程(2x﹣3)2=x2.考点:解一元二次方程-直接开平方法. 菁优网版权所有专题:计算题.分析:利用直接开平方法解方程.解答:解: 2x﹣3=±x,所以x1=3, x2=1.所以x1=3,x2=1.所以x1=3,x2=1.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.6. (2015春•北京校级期中)解方程: (x﹣1)2=25.考点:解一元二次方程-直接开平方法. 菁优网版权所有专题:计算题.分析:两边开方, 即可得出两个一元一次方程, 求出方程的解即可.解答:解: 开方得: x﹣1=±5,解得:x1=6, x2=﹣4.解得:x1=6,x2=﹣4.解得: x1=6,x2=﹣4.解得:x1=6,x2=﹣4.点评:本题考查了解一元二次方程的应用, 题目是一道比较典型的题目, 难度不大.7. (2013秋•云梦县校级期末)解下列方程:(1)用直接开平方法解方程: 2x2﹣24=0(2)用配方法解方程:x2+4x+1=0.考点:解一元二次方程-直接开平方法;解一元二次方程-配方法. 菁优网版权所有分析:(1)先将常数项移到等式的右边, 然后化未知数的系数为1, 通过直接开平方求得该方程的解即可;(2)先将常数项1移到等式的右边, 然后在等式的两边同时加上一次项系数一半的平方, 即利用配方法解方程.(2)先将常数项1移到等式的右边,然后在等式的两边同时加上一次项系数一半的平方,即利用配方法解方程.(2)先将常数项1移到等式的右边,然后在等式的两边同时加上一次项系数一半的平方,即利用配方法解方程.解答:解: (1)由原方程, 得2x2=24,∴x2=12,直接开平方, 得x=±2 ,∴x1=2 , x2=﹣2 ;(2)由原方程, 得x2+4x=﹣1,等式的两边同时加上一次项系数一半的平方, 得x2+4x+4=3, 即(x+2)2=3;∴x+2=±,∴x1=﹣2+ , x2=﹣2﹣.∴x1=﹣2+ ,x2=﹣2﹣.∴x1=﹣2+,x2=﹣2﹣.点评:本题考查了解一元二次方程﹣﹣配方法、直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a, b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a, c同号且a≠0).法则:要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.8. (2014秋•锡山区期中)解方程:(1)(x﹣2)2=25;(2)2x2﹣3x﹣4=0;(3)x2﹣2x=2x+1;(4)2x2+14x﹣16=0.考点:解一元二次方程-直接开平方法;解一元二次方程-公式法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)利用直接开平方法, 两边直接开平方即可;(2)利用公式法, 首先计算出△, 再利用求根公式进行计算;(3)首先化为一元二次方程的一般形式, 计算出△, 再利用求根公式进行计算;(4)首先根据等式的性质把二次项系数化为1, 再利用因式分解法解一元二次方程即可.(4)首先根据等式的性质把二次项系数化为1,再利用因式分解法解一元二次方程即可.(4)首先根据等式的性质把二次项系数化为1,再利用因式分解法解一元二次方程即可.解答:解: (1)两边直接开平方得: x﹣2=±5,x﹣2=5, x﹣2=﹣5,解得:x1=7, x2=﹣3;(2)a=2, b=﹣3, c=﹣4,△=b2﹣4ac=9+4×2×4=41,x= = ,故x1= , x2= ;(3)x2﹣2x=2x+1,x2﹣4x﹣1=0,a=1, b=﹣4, c=﹣1,△=b2﹣4ac=16+4×1×1=20,x= = =2 ,故x1=2 , x2=2﹣;(4)2x2+14x﹣16=0,x2+7x﹣8=0,(x+8)(x﹣1)=0,x+8=0, x﹣1=0,解得:x1=﹣8, x2=1.解得:x1=﹣8,x2=1.解得: x1=﹣8,x2=1.解得:x1=﹣8,x2=1.点评:此题主要考查了一元二次方程的解法, 关键是熟练掌握一元二次方程的解法, 并能熟练运用.9. (2014秋•丹阳市校级期中)选择合适的方法解一元二次方程:①9(x﹣2)2﹣121=0;②x2﹣4x﹣5=0.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:①先移项, 再两边开方即可;②先把方程左边因式分解, 得出x+1=0, x﹣5=0, 再分别计算即可.②先把方程左边因式分解,得出x+1=0,x﹣5=0,再分别计算即可.②先把方程左边因式分解,得出x+1=0,x﹣5=0,再分别计算即可.解答:解: ①9(x﹣2)2﹣121=0,9(x﹣2)2=121,(x﹣2)2= ,x﹣2=±,x1= , x2=﹣;②x2﹣4x﹣5=0,(x+1)(x﹣5)=0,x+1=0, x﹣5=0,x1=﹣1, x2=5.x1=﹣1,x2=5.x1=﹣1,x2=5.点评:此题考查了解一元二次方程, 用到的知识点是用直接开方法和因式分解法, 关键是根据方程的特点选择合适的解法.10. (2014秋•万州区校级期中)按要求解答:(1)解方程: (x+3)2﹣2=0;(2)因式分解:4a2﹣(b2﹣2b+1).考点:解一元二次方程-直接开平方法;因式分解-运用公式法. 菁优网版权所有分析:(1)首先把方程右边化为(x+a)2=b, 在两边直接开平方即可;(2)首先把4a2﹣(b2﹣2b+1)化为4a2﹣(b﹣1)2, 再利用平方差公式进行分解即可.(2)首先把4a2﹣(b2﹣2b+1)化为4a2﹣(b﹣1)2,再利用平方差公式进行分解即可.(2)首先把4a2﹣(b2﹣2b+1)化为4a2﹣(b﹣1)2,再利用平方差公式进行分解即可.解答:解: (1)(x+3)2=2,(x+3)2=4,x+3=±2,x+3=2, x+3=﹣2,解得:x1=﹣1, x2=﹣5;(2)4a2﹣(b2﹣2b+1)=4a2﹣(b﹣1)2=(2a+b﹣1(2a﹣b+1).(2)4a2﹣(b2﹣2b+1)=4a2﹣(b﹣1)2=(2a+b﹣1(2a﹣b+1).点评:此题主要考查了直接开平方法解一元二次方程, 以及因式分解, 解这类问题要移项, 把所含未知数的项移到等号的左边, 把常数项移项等号的右边, 化成x2=a(a≥0)的形式, 利用数的开方直接求解.11. (2014秋•海口期中)解下列方程:(1)x2﹣16=0;(2)x2+3x﹣4=0.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)首先把﹣16移到方程右边, 再两边直接开平方即可;(2)首先把等号左边分解因式可得(x+4)(x﹣1)=0, 进而得到x+4=0, x﹣1=0, 再解一元一次方程即可.(2)首先把等号左边分解因式可得(x+4)(x﹣1)=0,进而得到x+4=0,x﹣1=0,再解一元一次方程即可.(2)首先把等号左边分解因式可得(x+4)(x﹣1)=0,进而得到x+4=0,x﹣1=0,再解一元一次方程即可.解答:解: (1)x2=16,两边直接开平方得: x=±4,故x1=4, x2=﹣4;(2)(x+4)(x﹣1)=0,则x+4=0, x﹣1=0,解得:x1=﹣4, x2=1.解得:x1=﹣4,x2=1.解得: x1=﹣4,x2=1.解得:x1=﹣4,x2=1.点评:此题主要考查了一元二次方程的解法, 关键是掌握直接开平方法和因式分解法解一元二次方程.12. (2014秋•海陵区期中)解下列一元二次方程:(1)x2﹣3=0(2)x2﹣3x=0.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有专题:计算题.分析:(1)先移项得到x2=3, 然后利用直接开平方法解方程;(2)利用因式分解法解方程.(2)利用因式分解法解方程.解答:解: (1)x2=3,x=±,所以x1= , x2=﹣;(2)x(x﹣3)=0,x=0或x﹣3=0,所以x1=0, x2=3.所以x1=0,x2=3.所以x1=0,x2=3.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式, 那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式, 那么nx+m=±.也考查了因式分解法解一元二次方程.13. (2014秋•滨湖区期中)解下列方程(1)2x2﹣=0;(2)2x2﹣4x+1=0(配方法)(3)2(x﹣3)2=x(x﹣3);(4)3y2+5(2y+1)=0 (公式法).考点:解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程-因式分解法. 菁优网版权所有专题:计算题.分析:(1)方程变形后, 利用直接开平方法求出解即可;(2)方程利用配方法求出解即可;(3)方程利用因式分解法求出解即可;(4)方程利用公式法求出解即可.(4)方程利用公式法求出解即可.解答:解: (1)方程变形得: x2= ,开方得: x=±;(2)方程变形得: x2﹣2x=﹣,配方得: x2﹣2x+1= , 即(x﹣1)2= ,开方得: x﹣1=±,解得: x1=1+ , x2=1﹣;(3)方程变形得: 2(x﹣3)2﹣x(x﹣3)=0,分解因式得: (x﹣3)(2x﹣6﹣x)=0,解得: x1=3, x2=6;(4)方程整理得: 3y2+10y+5=0,这里a=3, b=10, c=5,∵△=100﹣60=40,∴y= = .∴y==.点评:此题考查了解一元二次方程﹣直接开平方法, 熟练掌握平方根定义是解本题的关键.14. (2014秋•昆明校级期中)解方程: 9(x+1)2=4(x﹣2)2.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:两边开方, 即可得出两个一元一次方程, 求出方程的解即可.解答:解: 两边开方得: 3(x+1)=±2(x﹣2),即3(x+1)=2(x﹣2), 3(x+1)=﹣2(x﹣2),解得:x1=﹣7, x2= .解得:x1=﹣7,x2= .解得: x1=﹣7,x2= .解得:x1=﹣7,x2=.点评:本题考查了解一元二次方程和解一元一次方程的应用, 解此题的关键是能把一元二次方程转化成一元一次方程.15. (2014秋•深圳校级期中)解方程: (2x﹣3)2=25.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:首先两边直接开平方可得2x﹣3=±5, 再解一元一次方程即可.解答:解: 两边直接开平方得: 2x﹣3=±5,则2x﹣3=5, 2x﹣3=﹣5,故x=4, x=﹣1.故x=4,x=﹣1.故x=4,x=﹣1.点评:此题主要考查了直接开平方法解一元一次方程, 解这类问题要移项, 把所含未知数的项移到等号的左边, 把常数项移项等号的右边, 化成x2=a(a≥0)的形式, 利用数的开方直接求解.16. (2014秋•北塘区期中)(1)2(x﹣1)2=32(2)2(x﹣3)2=x(x﹣3)(3)2x2﹣4x+1=0(4)x2﹣5x+6=0.考点:解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-因式分解法. 菁优网版权所有专题:计算题.分析:(1)方程变形后, 利用直接开平方法求出解即可;(2)方程变形后, 利用因式分解法求出解即可;(3)方程利用公式法求出解即可;(4)方程利用因式分解法求出解即可.(4)方程利用因式分解法求出解即可.解答:解: (1)方程变形得: (x﹣1)2=16,开方得: x﹣1=4或x﹣1=﹣4,解得: x1=5, x2=﹣3;(2)方程变形得: 2(x﹣3)2﹣x(x﹣3)=0,分解因式得: (x﹣3)(2x﹣6﹣x)=0,解得: x1=3, x2=6;(3)整理a=2, b=﹣4, c=1,∵△=16﹣8=8,∴x1= , x2= ;(4)分解因式得:(x﹣2)(x﹣3)=0,解得:x1=2, x2=3.解得:x1=2,x2=3.解得: x1=2,x2=3.解得:x1=2,x2=3.点评:此题考查了解一元二次方程﹣直接开平方法, 熟练掌握平方根定义是解本题的关键.17. (2014秋•福安市期中)解方程:(1)(x+1)2=2;(2)x2﹣2x﹣3=0 (用适当的方法)考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)两边直接开平方得x+1= , 再解一元一次方程即可;(2)首先把﹣3移到等号右边, 在把方程左边配方可得(x﹣1)2=4, 然后再两边直接开平方即可.(2)首先把﹣3移到等号右边,在把方程左边配方可得(x﹣1)2=4,然后再两边直接开平方即可.(2)首先把﹣3移到等号右边,在把方程左边配方可得(x﹣1)2=4,然后再两边直接开平方即可.解答:解: (1)x+1= ,x+1= , x+1=﹣,故x1=﹣1+x2=﹣1﹣;(2)x2﹣2x=3,x2﹣2x+1=3+1,(x﹣1)2=4,x+1=±2,则x+1=2, x+1=﹣2,故x1=3, x2=﹣1.故x1=3,x2=﹣1.故x1=3,x2=﹣1.点评:此题主要考查了直接开平方法和配方法解一元二次方程, 关键是掌握直接开平方法要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.18. (2014秋•华容县月考)用适当的方法解下列方程:(1)(2﹣3x)2=1;(2)2x2=3(2x+1).考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有专题:计算题.分析:(1)利用直接开平方法解方程;(2)先把方程化为一般式, 然后根据公式法解方程.(2)先把方程化为一般式,然后根据公式法解方程.(2)先把方程化为一般式,然后根据公式法解方程.解答:解: (1)2﹣3x=±1,所以x1= , x2=1;(2)2x2﹣6x﹣3=0,△=(﹣6)2﹣4×2×(﹣3)=60,x= = ,所以x1= , x2= .所以x1= ,x2= .所以x1=,x2=.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式, 那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式, 那么nx+m=±.也考查了公式法解一元二次方程.19. (2014秋•宝应县校级月考)解方程:(1)(2x﹣1)2﹣9=0(2)x2﹣x﹣1=0.考点:解一元二次方程-直接开平方法;解一元二次方程-公式法. 菁优网版权所有专题:计算题.分析:(1)方程利用直接开平方法求出解即可;(2)方程利用公式法求出解即可.(2)方程利用公式法求出解即可.解答:解: (1)方程变形得: (2x﹣1)2=9,开方得: 2x﹣1=3或2x﹣1=﹣3,解得: x1=2, x2=﹣1;(2)这里a=1, b=﹣1, c=﹣1,∵△=1+4=5,∴x= .∴x=.点评:此题考查了解一元二次方程﹣直接开平方法与公式法, 熟练掌握各种解法是解本题的关键.20. (2014秋•南华县校级月考)解方程:(1)(x+8)(x+1)=0(2)2(x﹣3)2=8(3)x(x+7)=0(4)x2﹣5x+6=0(5)3(x﹣2)2=x(x﹣2)(6)(y+2)2=(3y﹣1)2.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)、(3)、(4)、(5)利用因式分解法求解即可;(2)先将方程变形为(x﹣3)2=4, 再利用直接开平方法求解即可;(6)利用直接开平方法求解即可.(6)利用直接开平方法求解即可.解答:解: (1)(x+8)(x+1)=0,x+8=0或x+1=0,解得x1=﹣8, x2=﹣1;(2)2(x﹣3)2=8,(x﹣3)2=4,x﹣3=±2,解得x1=5, x2=﹣1;(3)x(x+7)=0,x=0或x+7=0,解得x1=0, x2=﹣7;(4)x2﹣5x+6=0,(x﹣2)(x﹣3)=0,x﹣2=0或x﹣3=0,解得x1=2, x2=3;(5)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,解得x1=2, x2=3;(6)(y+2)2=(3y﹣1)2,y+2=±(3y﹣1),解得y1=1.5, y2=﹣0.25,解得y1=1.5,y2=﹣0.25,点评:本题考查了利用因式分解法与直接开平方法解一元二次方程, 是基础知识, 需熟练掌握.21. (2014秋•广州校级月考)解方程:(1)x2﹣9=0;(2)x2+4x﹣1=0.考点:解一元二次方程-直接开平方法;解一元二次方程-配方法. 菁优网版权所有分析:(1)先移项, 然后利用直接开平方法解方程;(2)将一元二次方程配成(x+m)2=n的形式, 再利用直接开平方法求解.(2)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解.(2)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解.解答:解: (1)由原方程, 得x2=9,开方,得x1=3, x2=﹣3;(2)由原方程, 得x2+4x=1,配方,得x2+4x+22=1+22, 即(x+2)2=5,开方,得x+2=±,解得x1=﹣2 , x2=﹣2﹣.解得x1=﹣2 ,x2=﹣2﹣.解得x1=﹣2,x2=﹣2﹣.点评:本题考查了解一元二次方程﹣﹣配方法、直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a, b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a, c同号且a≠0).法则:要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.22. (2013秋•大理市校级期中)解下列方程:(1)用开平方法解方程: (x﹣1)2=4(2)用配方法解方程: x2﹣4x+1=0(3)用公式法解方程: 3x2+5(2x+1)=0(4)用因式分解法解方程: 3(x﹣5)2=2(5﹣x)考点:解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)用直接开平方法解方程: (x﹣1)2=4, 即解x﹣1=2或x﹣1=﹣2, 两个方程;(2)用配方法解方程: x2﹣4x+1=0, 合理运用公式去变形, 可得x2﹣4x+4=3, 即(x ﹣2)2=3;(3)用公式法解方程:3x2+5(2x+1)=0, 先去括号, 整理可得;3x2+10x+5=0, 运用一元二次方程的公式法, 两根为, 计算即可;(4)用因式分解法解方程:3(x﹣5)2=2(5﹣x), 移项、提公因式x﹣5, 再解方程.(4)用因式分解法解方程:3(x﹣5)2=2(5﹣x),移项、提公因式x﹣5,再解方程.(4)用因式分解法解方程: 3(x﹣5)2=2(5﹣x),移项、提公因式x﹣5,再解方程.(4)用因式分解法解方程:3(x﹣5)2=2(5﹣x),移项、提公因式x﹣5,再解方程.解答:解: (1)∵(x﹣1)2=4,∴x﹣1=±2, ∴x1=3, x2=﹣1.(2)∵x2﹣4x+1=0,∴x2﹣4x+4=3,∴(x﹣2)2=3, ∴,∴.(3)∵3x2+5(2x+1)=0,∴3x2+10x+5=0,∴a=3, b=10, c=5, b2﹣4ac=102﹣4×3×5=40,∴,∴.(4)∵3(x﹣5)2=2(5﹣x),∴移项, 得: 3(x﹣5)2+2(x﹣5)=0,∴(x﹣5)(3x﹣13)=0,∴x﹣5=0或3x﹣13=0,∴.点评:本题综合考查对解方程的方法的灵活掌握情况, 解答时, 要先观察方程的特点, 再确定解方程的方法.23. (2012秋•浏阳市校级期中)用适当的方法解方程:(1)9(2x﹣5)2﹣4=0;(2)2x2﹣x﹣15=0.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:先观察方程然后再确定各方程的解法;(1)可用直接开平方法, (2)可用因式分解法解方程.解答:(1)解: 化简得: ,直接开平方得: ,解得:x1= , x2= ;(2)解: 因分式解得: (x﹣3)(2x+5)=0,x﹣3=0或2x+5=0,解得:.解得: .解得:.点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法, 配方法, 公式法, 因式分解法, 要根据方程的特点灵活选用合适的方法.24. (2013秋•玉门市校级期中)(2x﹣3)2﹣121=0.考点:解一元二次方程-直接开平方法. 菁优网版权所有专题:计算题.分析:先移项得到(2x﹣3)2=121, 然后方程两边开方得到两个一元一次方程2x﹣3=11或2x﹣3=﹣11, 再解一元一次方程即可.解答:解: ∵(2x﹣3)2=121,∴2x﹣3=11或2x﹣3=﹣11,∴x1=7, x2=﹣4.∴x1=7,x2=﹣4.∴x1=7,x2=﹣4.点评:本题考查了直接开平方法解一元二次方程:先把一元二次方程变形为x2=m(m≥0)的形式, 然后两边开方得到x1= , x2=﹣.25. (2015•蓬溪县校级模拟)(2x+3)2=x2﹣6x+9.考点:解一元二次方程-配方法. 菁优网版权所有分析:先把原方程的右边转化为完全平方形式, 然后直接开平方.解答:解: 由原方程, 得(2x+3)2=(x﹣3)2,直接开平方, 得2x+3=±(x﹣3),则3x=0, 或x+6=0,解得, x1=0, x2=﹣6.解得,x1=0,x2=﹣6.解得,x1=0,x2=﹣6.点评:本题考查了配方法解一元二次方程. 用配方法解一元二次方程的步骤: (1)形如x2+px+q=0型:第一步移项, 把常数项移到右边;第二步配方, 左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步, 直接开方即可.(2)形如ax2+bx+c=0型, 方程两边同时除以二次项系数, 即化成x2+px+q=0, 然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.26. (2015•泗洪县校级模拟)(1)x2+4x+2=0(2)x2﹣6x+9=(5﹣2x)2.考点:解一元二次方程-配方法. 菁优网版权所有分析:(1)本题二次项系数为1, 一次项系数为4, 适合于用配方法.(2)把方程左边化成一个完全平方式, 那么将出现两个完全平方式相等, 则这两个式子相等或互为相反数, 据此即可转化为两个一元一次方程即可求解.(2)把方程左边化成一个完全平方式,那么将出现两个完全平方式相等,则这两个式子相等或互为相反数,据此即可转化为两个一元一次方程即可求解.(2)把方程左边化成一个完全平方式,那么将出现两个完全平方式相等,则这两个式子相等或互为相反数,据此即可转化为两个一元一次方程即可求解.解答:解: (1)x2+4x+22=﹣2+22,即(x+2)2=2 ,x1=﹣2+ , x2=﹣2﹣;(2)(x﹣3)2=(5﹣2x)2,即(x﹣3+5﹣2x)(x﹣3﹣5+2x)=0,x1=2, x2= .x1=2,x2= .x1=2,x2=.点评:(1)本题考查了配方法解一元二次方程, 选择用配方法解一元二次方程时, 最好使方程的二次项的系数为1, 一次项的系数是2的倍数.(2)本题考查了因式分解法解一元二次方程, 解一元二次方程的基本思想是降次, 把一元二次方程转化为一元一次方程, 从而求解.(2)本题考查了因式分解法解一元二次方程,解一元二次方程的基本思想是降次,把一元二次方程转化为一元一次方程,从而求解.(2)本题考查了因式分解法解一元二次方程,解一元二次方程的基本思想是降次,把一元二次方程转化为一元一次方程,从而求解.27. (2015春•慈溪市校级期中)解方程:(1)x2﹣4x﹣6=0(2)4(x+1)2=9(x﹣2)2.考点:解一元二次方程-配方法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)移项, 配方, 开方, 即可得出两个一元一次方程, 求出方程的解即可.(2)先移项, 方程左边分解后, 利用两数相乘积为0, 两因式中至少有一个为0转化为两个一元一次方程来求解.(2)先移项,方程左边分解后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.(2)先移项,方程左边分解后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解: (1)由原方程, 得x2﹣4x=6,配方, 得x2﹣4x+4=6+4, 即(x﹣2)2=10,直接开平方, 得x﹣2=±,解得x1=2+ , x2=2﹣.(2)由原方程得到: [2(x+1)+3(x﹣2)][2(x+1)﹣3(x﹣2)]=0,整理, 得(5x﹣4)(﹣x+8)=0,解得x1= , x2=8.解得x1= ,x2=8.解得x1=,x2=8.点评:本题考查了解一元二次方程: 配方法和因式分解法. 用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项, 把常数项移到右边;第二步配方, 左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步, 直接开方即可.(2)形如ax2+bx+c=0型, 方程两边同时除以二次项系数, 即化成x2+px+q=0, 然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.28. (2015春•北京校级期中)解一元二次方程:(1)(2x﹣5)2=49(2)x2+4x﹣8=0.考点:解一元二次方程-配方法;解一元二次方程-直接开平方法. 菁优网版权所有分析:(1)两边开方, 即可得出两个一元一次方程, 求方程的解即可;(2)移项, 配方, 开方, 即可得出两个一元一次方程, 求出方程的解即可.(2)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.(2)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.解答:解: (1)(2x﹣5)2=49,2x﹣5=±3,x1=4, x2=1;(2)x2+4x﹣8=0,x2+4x=8,x2+4x+4=8+4,(x+2)2=12,x+2= ,x1=﹣2+2 , x2=﹣2﹣2 .x1=﹣2+2 ,x2=﹣2﹣2 .x1=﹣2+2,x2=﹣2﹣2.点评:本题考查了解一元二次方程的应用, 能选择适当的方法解一元二次方程是解此题的关键, 注意:解一元二次方程的方法有直接开平方法, 配方法, 公式法, 因式分解法.29. (2015春•北京校级期中)解一元二次方程(1)y2=4;(2)4x2﹣8=0;(3)x2﹣4x﹣1=0.考点:解一元二次方程-配方法;解一元二次方程-直接开平方法. 菁优网版权所有分析:(1)直接开平方即可求得x的值;(2)先移项, 化系数为1, 然后直接开平方来求x的值;(3)首先进行移项, 得到x2﹣4x=1, 方程左右两边同时加上4, 则方程左边就是完全平方式, 右边是常数的形式, 再利用直接开平方法即可求解.(3)首先进行移项,得到x2﹣4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.(3)首先进行移项,得到x2﹣4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.解答:解: (1)由原方程, 得y=±2,解得y1=2, y2=﹣2;(2)由原方程, 得4x2=8,x2=2,解得x1= , x2=﹣;(3)解: ∵x2﹣4x﹣1=0∴x2﹣4x=1∴x2﹣4x+4=1+4∴(x﹣2)2=5∴x=2±,∴x1=2+ , x2=2﹣.∴x1=2+ ,x2=2﹣.∴x1=2+,x2=2﹣.点评:本题考查了解一元二次方程的方法: 配方法、直接开平方法.总结: 配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时, 最好使方程的二次项的系数为1, 一次项的系数是2的倍数.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.30. (2015•黄陂区校级模拟)解方程: x2﹣3x﹣7=0.考点:解一元二次方程-公式法. 菁优网版权所有分析:利用求根公式x= 来解方程.解答:解: 在方程x2﹣3x﹣7=0中, a=1, b=﹣3, b=﹣7. 则x= = = ,解得x1= , x2= .解得x1= ,x2= .解得x1=,x2=.点评:本题考查了解一元二次方程﹣﹣公式法. 熟记公式是解题的关键.。

(完整版)一元二次方程100道计算题练习(附答案)

(完整版)一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1). 3(=11)2)(2答案第二章 一元二次方程备注:每题2.5分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档