沪教版(上海)六年级数学第二学期-第七章 线段和角的画法-学案(无答案)
【沪教版】六年级数学下册《第七章 线段与角的画法》教学设计
A BBAAC CA a沪教版六年级教案第七章 7.1线段的大小的比较学习目标:1、 初步掌握线段大小比较的一般方法并会用数学符号表示;2、会用直尺、圆规等学习工具画一条线段等于已知线段,初步体验基本的作图语句;3、掌握两点间距离的概念,并理解“两点之间线段最短”的意义. 学习过程:一、线段、射线、直线 1、线段的表示方法:(1)我们可以用两个大写英文字母表示一条线段的两个端点.如图,记作:线段AB 或线段BA(2)用一个小写英文字母表示.如图,记作:线段a . 2、线段的延长线:线段向一方延伸的部分叫做线段的延长线. 延长线段AB 或反向延长线段BA. 延长线段BA 或反向延长线段AB. 3、射线的表示方法:线段向一方无限延伸所形成的图形叫做射线. 如图,记作:射线AC .点A 叫做射线AC 的端点,一条射线只有一个端点.如果只显示端点A ,不显示点C ,依然用两个大写英文字母表示.如图,记作射线AC .4、直线的表示方法:BABBAlA Ba线段向两方无限延伸所形成的图形叫做直线. 如图,记作:直线AB 或直线BA如果不显示点A 、点B ,依然用两个大写英文字母表示. 如图,记作:直线AB 或直线BA也可以用一个小写英文字母表示.如图,记作:直线l . 试一试: 1、填表: 2、根据要求画图:如图,已知线段AB ,延长线段AB 到点C ,使AC=5cm ,反向延长线段AB 到点D ,使AD=2cm.操作:画线段AB 和CD ,使端点...A .与端点...C .重合..,线段..AB ..与线段...CD ..叠合... 这时端点B 有几种可能的位置情况?例题1 如图,已知线段a , 用圆规、直尺画出线段AB , 使得AB =a .例题2 先观察估计图中线段a ,b 的大小,然后用比较线段大小的方法验证(1)(2)(3)ba你的估计,并用“ ”符号连结.例题3 如图,在教学楼到活动室之间有三条小路,如果把教学楼和活动室看作点,那么小路1是经过这两点的一条线段,请画出小路1,教学楼◆ _____确定一条____________________线段.◆ 联结两点的________的_________叫做两点之间的________. ◆ _______________________最短. 巩固练习:1、比较下列各图中两条线段AB 与CD 的大小.2、已知线段AB 、CD ,AB>CD ,(1)如果将CD 移动到AB 的位置,使点C 与点A 重合,CD 与AB 叠合,那么点D 的位置状况是__________________(2)如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,那么点B 的位置状况是__________________3、下列叙述正确的是( )A 、联结两点的直线叫做两点之间的距离.B 、联结两点的线段叫做两点之间的距离.C 、联结两点的直线的长度叫做两点之间的距离.D 、联结两点的线段的长度叫做两点之间的距离.7.2 画线段的和、差、倍学习目标:1、能用等式表示两条线段的和、差、倍关系并掌握用直尺、圆规作线段的和、差、倍;2、理解线段的中点的意义,能用数学符号语言表示线段的中点并能用直尺、圆规作线段中点; 学习过程: 一、新课探索1、观察:如图所示,A 、B 、C 三点在一条直线上, 1)图中有几条线段?2)这几条线段之间有怎样的等量关系?两条线段可以_____________,它们的和(或差)也是___________,其长度等于这两条线段_________的和(或差). 练习1:(书第90页练习7.2第1题) 例题1:如图,已知线段a 、b ,a(1)画出一条线段 , 使它等于a b +; (2)画出一条线段 , 使它等于a b -. 解:(1)①画___________;②在_________上顺次截取______________________; (2)①画_____________;②在___________上截取_______,在_______上截取___________; 思考1:已知线段a ,类比乘法的意义,你能讲出2a ,3a ,……,na (n 为正整数,且1n >)的含义吗?例题2 如图,已知线段a 、b ,画出一条线段,使它等于2a b -.思考2:如图,已知线段AB ,你能否在线段AB 的上找一点C ,使点C 把线段AB 分成相等的两条线段?将一条线段分成两条相等线段的点叫做这条线段的中点. 若已知点M 是线段AB 的中点,你能得到哪些等量关系?练习2:(书第90页练习7.2第2题) 练习3(书第91页练习7.2第4题)babABABMAB( )( )7.3 角的概念与表示学习目标:1、知道角的有关概念;2、掌握角的四种表示方法;3、在用含方向角的射线表示方向的过程中,感受实际问题与数学问题间的互相转化. 学习过程: 一、角的概念◆ 角是具有公共端点的两条射线组成的图形.角的形成过程:操作:把圆规的两只脚由并在一起到逐渐把一只脚旋转到另一个位置. ◆ 角是由___________绕着它的端点旋转到另一个位置所成的图形. 初始位置的那条射线叫做角的________,终止位置的那条射线叫做角的_________.角的始边转动到角的终边所经过的平面部分,叫做角的内部,简称角内,余BC下部分是角的外部,简称角外.二、角的表示方法(1)分别说出∠ABC 、∠POQ 、∠XYZ 的顶点和边. (2)特别地:我们书中所说的角,如不加以说明是指小于平角的角.(周角除外) 反馈练习:1FHG西东2、图中共有()个角,并分别表示出来.三、方位角读法:1、点A在点O的_____________方向2、点B在点O的_____________方向3、点C在点O的_____________方向4、画出表示南偏东50°的射线OP7.4角的大小的比较、画相等的角(1)学习目标:1、掌握角的大小的比较方法;2、会使用量角器画角.学习过程:一、学习新课:1、怎样比较两个角的大小?方法一:_______________2、使用量角器的操作方法:(1)将量角器的中心点与角的顶点重合;(对中)(2)将量角器的零度刻度线与角的一边重叠;(对边)(3)看角的另一边落在量角器的什么刻度线上。
沪教版数学六年级下册第七章《线段与角的画法》教学设计
沪教版数学六年级下册第七章《线段与角的画法》教学设计一. 教材分析《线段与角的画法》是沪教版数学六年级下册第七章的内容,本章主要让学生掌握线段的画法、角的画法和测量方法。
教材通过丰富的图片和实例,引导学生了解线段和角的基本概念,学会使用直尺、圆规等工具画线段和角,并能够进行简单的测量。
教材还注重培养学生的空间想象能力和几何思维,为初中阶段的学习打下基础。
二. 学情分析六年级的学生已经掌握了基本的画图技能,对线段和角的概念有一定的了解。
但是,部分学生可能对线段和角的画法以及测量方法还不够熟练,需要老师在教学中进行针对性的指导。
此外,学生的空间想象能力和几何思维能力还有待提高,教学中应注重培养学生的这些能力。
三. 教学目标1.知识与技能:学生会画线段和角,并能进行简单的测量。
2.过程与方法:学生通过观察、实践、探究,提高空间想象能力和几何思维能力。
3.情感态度与价值观:学生培养对数学的兴趣,增强团队协作和自主学习能力。
四. 教学重难点1.重点:线段和角的画法,测量方法。
2.难点:线段和角的概念理解,空间想象能力的培养。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生了解线段和角的应用。
2.实践教学法:让学生动手操作,提高画图技能。
3.问题驱动法:教师提出问题,引导学生思考和探究。
4.小组合作法:学生分组讨论,培养团队协作能力。
六. 教学准备1.教具:直尺、圆规、三角板、多媒体设备等。
2.学具:学生用书、练习本、铅笔、橡皮等。
3.教学课件:线段与角的画法动画演示、实例图片等。
七. 教学过程1.导入(5分钟)教师通过生活中的实例,如测量房间长度、计算三角形内角和等,引出线段和角的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师展示线段和角的画法动画演示,让学生直观地了解线段和角的画法。
同时,引导学生思考:如何用直尺和圆规画线段和角?3.操练(10分钟)学生分组讨论,尝试用直尺和圆规画线段和角。
难点详解沪教版(上海)六年级数学第二学期第七章线段与角的画法难点解析练习题(精选含解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,从点O出发的5条射线,可以组成的锐角的个数是()A.8 B.9 C.10 D.112、若一个角比它的余角大30°,则这个角等于()A.30°B.60°C.105°D.120°3、时钟在9:00时候,时针和分针的夹角是()A.30°B.120°C.60°D.90°4、已知100AOB ∠=︒,过点O 作射线OC 、OM ,使20AOC ∠=︒、OM 是BOC ∠的平分线,则BOM ∠的度数为( )A .60︒B .60︒或40︒C .120︒或80︒D .40︒5、下列说法正确的是( )A .若10x +=,则1x =B .若1a >,则1a >C .若点A ,B ,C 不在同一条直线上,则AC BC AB +>D .若AM BM =,则点M 为线段AB 的中点6、如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE =90°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和360°;④若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B 、C 、D 、E 的距离之和最大值为15,最小值为11,其中说法正确的个数有( )A .1个B .2个C .3个D .4个7、有两根木条,一根AB 长为80cm ,另一根CD 长为130cm ,在它们的中点处各有一个小圆孔M 、N (圆孔直径忽略不计,M 、N 抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN 是( )A .25cmB .25cm 或105cmC .105cmD .50cm 或210cm8、如图,点O 在直线AB 上,OC OD ⊥,若150AOC ∠=︒,则BOD ∠的大小为( )A .30°B .40°C .50°D .60°9、若∠α=73°30',则∠α的补角的度数是( )A .16°30'B .17°30'C .106°30'D .107°30'10、若∠A 与∠B 互为补角,且∠A =28°,则∠B 的度数是( )A .152°B .28°C .52°D .90°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若α=25°57′,则2α的余角等于_____.2、如图,点A ,O ,E 在同一直线上,∠AOB=40°,∠EOD=30°,OD 平分∠COE ,则∠COB =__________度.3、比较大小:3625︒'__________36.25︒(填“>”,“<”或“=”).4、计算:450"=①________________︒;10②点15分时,时针和分针的夹角是_____度.5416'12︒"=③______︒.5、双减政策实施后,我校调查到学生睡眠时间一般在晚上9点20分,时针与分针的夹角是______度.三、解答题(5小题,每小题10分,共计50分)1、如图,已知线段AB ,延长线段BA 至C ,使CB =43AB .(1)请根据题意将图形补充完整.直接写出AC AB= _______; (2)设AB = 9cm ,点D 从点B 出发,点E 从点A 出发,分别以3cm/s ,1cm/s 的速度沿直线AB 向左运动.①当点D 在线段AB 上运动,求AD CE的值; ②在点D ,E 沿直线AB 向左运动的过程中,M ,N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD 的三等分点时,求MN 的长.2、已知:如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒3︒的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒6︒的速度旋转,如图2,设旋转时间为(0t 秒30t ≤≤秒).(1)则MOA ∠=______度,NOB ∠=______度(用含t 的代数式表示);(2)在运动过程中,当AOB ∠达到81︒时,求t 的值;(3)在旋转过程中是否存在这样的t ,使得2NOB AOB ∠=∠,如果存在,直接写出t 的值;如果不存在,请说明理由.3、已知:如图,AOB ∠被分成::2:3:4AOC COD DOB ∠∠∠=,OM 平分AOC ∠,ON 平分DOB ∠,且90MON ∠=︒,求AOB ∠的度数.4、如图,已知三点A 、B 、C .(1)连接AC .(2)画直线BC .(3)画射线AB .5、 如图,已知线段AC =12cm ,点B 在线段AC 上 ,满足BC =12AB .(1)求AB 的长;(2)若D 是AB 的中点,E 是AC 的中点,求DE 的长.-参考答案-一、单选题1、C【分析】每一条射线都分别与其它的射线组成一个角,如图所示,若从点O出发的n条射线,可以组成角的个数是()12 n n-【详解】解:组成角的个数是()()155110 22n n-⨯-==故选C.【点睛】此题主要考查了角的概念以及应用,要熟练掌握.利用公式:从点O出发的n条射线,组成角的个数为()12n n-,是解决问题的关键.2、B【分析】设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.【详解】解:设这个角为α,则它的余角为:90°-α,由题意得,α-(90°-α)=30°,解得:α=60°,故选:B【点睛】本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.3、D【分析】利用钟表表盘的特征:每相邻两个大格之间的夹角为30°,当时钟在9:00时候,时针指向9,分针指向12,中间恰好有3格,据此解答即可.【详解】解:时钟在9:00时候,时针指向9,分针指向12,钟表12个大格,每相邻两个大格之间的夹角为30°,因此时钟在9:00时候时针与分针的夹角正好为90°,故选:D.【点睛】本题考查钟表时针与分针的夹角,理解钟表盘上角的特点是解题关键.4、B【分析】考虑线段OC在角的内部和外部两种情况,每一种情况都用角的定义和角平分的定义求解,经计算结果为20°或40°.【详解】解:当OC在∠AOB的内部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°﹣20°=80°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC∠=40°;当OC在∠AOB的外部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°+20°=120°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC∠=60°;综合所述∠BOM的度数有两个,为60°或40°;故选:B.【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是分类计算角的大小.5、C【分析】根据解方程、绝对值、线段的中点等知识,逐项判断即可.【详解】解:A. 若10x +=,则1x =-,原选项错误,不符合题意;B. 若1a >,则1a >或1a <-,原选项错误,不符合题意;C. 若点A ,B ,C 不在同一条直线上,则AC BC AB +>,符合题意;D. 若AM BM =,则点M 为线段AB 的中点,当A 、B 、M 不在同一直线上时,点M 不是线段AB 的中点,原选项错误,不符合题意;故选:C .【点睛】本题考查了解方程、绝对值、线段的中点等知识,解题关键是熟记相关知识,准确进行判断.6、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F 在线段CD 上时点F 到点B 、C 、D 、E 的距离之和最小,当点F 和E 重合时,点F 到点B 、C 、D 、E 的距离之和最大计算即可判断④.【详解】解:①以B 、C 、D 、E 为端点的线段BC 、BD 、BE 、CE 、CD 、DE 共6条,故此说法正确;②图中互补的角就是分别以C 、D 为顶点的两对邻补角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故此说法正确;③由∠BAE =90°,∠CAD =40°,根据图形可以求出∠BAC +∠DAE +∠DAC +∠BAE +∠BAD +∠CAE =3∠BAE +∠CAD =310°,故此说法错误;④如图1,当F 不在CD 上时,FB +FC +FD +FE =BE +CD +2FC ,如图2当F 在CD 上时,FB +FC +FD +FE =BE +CD ,如图3当F 与E 重合时,FB +FC +FE +FD =BE +CD +2ED ,同理当F 与B 重合时,FB +FC +FE +FD =BE +CD +2BC ,∵BC =2,CD =DE =3,∴当F 在的线段CD 上最小,则点F 到点B 、C 、D 、E 的距离之和最小为FB +FE +FD +FC =2+3+3+3=11,当F 和E 重合最大则点F 到点B 、C 、D 、E 的距离之和FB +FE +FD +FC =17,故此说法错误. 故选B .【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.7、B【分析】根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时;作出相应图形,结合图形求解即可.【详解】解:根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时,由图可得:()111113080252222MN CN AM CD AB cm =-=-=⨯-⨯=;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时,由图可得:()1111130801052222MN CN BM CD AB cm =+=+=⨯+⨯=;∴两根木条的小圆孔之间的距离MN 是25cm 或105cm .故选:B .【点睛】题目主要考查线段两点间的距离,理解题意,分类讨论,作出相应图形是解题关键.8、D【分析】根据补角的定义求得∠BO C 的度数,再根据余角的定义求得∠BOD 的度数.【详解】解:∵150AOC ∠=︒,∴∠BO C =180°-150°=30°,∵OC OD ⊥,即∠COD =90°,∴∠BOD =90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.9、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C .【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.10、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.二、填空题1、38°6′【分析】根据余角的和等于90°列式计算即可求解.【详解】解:∵α=25°57′,∴2α=51°54′,∴2α的余角=90°﹣51°54′=38°6′.故答案为:38°6′.【点睛】此题主要考查角度的计算,解题的关键是熟知余角的性质.2、80【分析】利用角平分线的含义先求解,COE 再利用平角的含义与角的和差关系求解BOC ∠即可.【详解】 解: ∠EOD=30°,OD 平分∠COE ,260,COE DOE∠AOB=40°,180406080,BOC AOE AOB COE故答案为:80【点睛】本题考查的是角平分线的含义,平角的含义,角的和差运算,掌握“利用角的和差关系求解BOC ∠”是解本题的关键.3、>【分析】根据角度的大小来判断角的大小.【详解】∵36.25360.253615'︒=︒+︒=︒∴3625361536.25'︒>︒='︒故答案为:>.【点睛】本题考查角度大小比较,解题的关键是根据度分秒把两个角度统一成一样的形式.4、0.125 142.5 54.27①根据1603600'''︒==换算求解即可;②根据题意计算出15分时时针转动的角度和分针转动的角度,然后求解即可;③根据1603600'''︒==换算求解即可.【详解】①∵1603600'''︒== ∴4504500.1253600⎛⎫''=︒=︒ ⎪⎝⎭; ②当10点时,分针和时针的夹角为60°,∵时针1小时转30°,分针1小时转360°,∴时针1分钟转动的角度=30600.5÷︒=︒,分针1分钟转动的角度=360606︒÷=︒,∴当10点15分时,时针转动了150.57.5⨯︒=︒,分针转动了15690⨯︒=︒,∴时针和分针的夹角为60907.5142.5︒+︒-︒=︒;③∵1603600'''︒==, ∴16125416'125454.27603600⎛⎫⎛⎫︒"=︒+︒+︒=︒ ⎪ ⎪⎝⎭⎝⎭. 故答案为:0.125;142.5;54.27.【点睛】此题考查了角度之间的转化,钟表中时针和分针夹角的计算,解题的关键是熟练掌握角度的单位之间的进制以及钟表中时针和分针夹角的和差关系.5、160【分析】钟表的一周360°,分成12个大格,求出每个大格的度数是30°,根据时针与分诊的格数解答即可.解:∵两个大格之间的角的度数是30°,∴9点20分,钟表上时针与分针所成的夹角是5×30°+13×30°=160°,故答案为:160.【点睛】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°是解决问题的关键.三、解答题1、(1)13,(2)3,(3)12cm 或24cm .【分析】(1)根据线段的和差倍分关系即可得到结论;(2)①设运动的时间为t 秒,表示出线段长即可得到结论;②分3BD CD =和3BD CB =两种情况,根据三等分点求出BD 的长,进而求出运动时间,求出MD 、NB 的长即可.【详解】解:(1)图形补充完整如图,∵CB =43AB ,∴CA =13BC AB AB -=, 13AC AB =, 故答案为:13;(2)①AB = 9cm ,由(1)得,133CA AB ==(cm ),设运动的时间为t 秒, (93)DA t =-cm ,(3)CE t =-cm , 93=33AD t CE t-=-,②当3BD CD =时,∵AB = 9cm , 3CA =cm ,∴212CB CD ==cm ,∴6CD =cm ,318BD CD ==cm ,运动时间为:18÷3=6(秒),则6AE =cm ,15BE BA AE =+=cm ,3ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴ 1.5DM =cm , 4.5BN =cm ,12MN BD DM BN =--=cm ,当3BD CB =时,∵AB = 9cm , 3CA =cm ,∴12CB =cm ,∴336BD CB ==cm ,运动时间为:36÷3=12(秒),则12AE =cm ,21BE BA AE =+=cm ,15ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴7.5DM =cm , 4.5BN =cm ,24MN BD DM BN =--=cm ,综上,MN 的长是12cm 或24cm .【点睛】本题考查了线段的计算,解题关键是准确识图,熟练表示出线段长.2、(1)3t ,6t ;(2)11秒或29秒;(3)存在,15秒或30秒【分析】(1)根据题意进行求解即可;(2)分两种情况进行讨论:①当OA 与OB 重合前;②当OA 与OB 重合后,列出相应的方程求解即可;(3)分两种情况进行讨论:①当OA 与OB 重合前;②当OA 与OB 重合后,列出相应的方程求解即可.【详解】解:(1)由题意得:3MOA t ∠=︒,6NOB t ∠=︒,故答案为:3t ,6t ;(2)①OA 与OB 重合前,有:3681180t t ++=,解得:11t =,②当OA 与OB 重合后,有:3681180t t +-=,解得:29t =,故t 的值为11秒或29秒;(3)①当OA 与OB 重合前,有:()6218036t t t =--,解得:15t =,②当OA 与OB 重合后,有:()6231806t t t ⎡⎤=--⎣⎦,解得:30t =,故t 的值为15秒或30秒.【点睛】本题主要考查一元一次方程的应用,解答的关键是理解清楚题意,找到等量关系列出方程. 3、135°【分析】根据三角成比例设2,3,4,AOC x COD x DOB x 则9AOB x ∠=,将90MON ∠=︒作为等量关系列出方程,解方程求解x ,从而可得答案.【详解】解: ::2:3:4AOC COD DOB ∠∠∠=设2,3,4,AOC x COD x DOB x 则9AOB x ∠=,则∵OM 平分AOC ∠,ON 平分DOB ∠, ∴11,222MOC AOC x NOD BOD x , ∴326MON x x x x ∠=++=,又∵90MON ∠=︒,∴690x =︒,∴15x =︒,∴135AOB ∠=︒.【点睛】本题考查角平分线的定义,角的和差运算关系,掌握“设合适的未知数,利用角的和差关系列方程”是解本题的关键.4、(1)见解析;(2)见解析;(3)见解析【分析】(1)直接连接AC 即可;(2)由直线的定义,画出直线BC 即可;(3)由射线的定义,画射线AB 即可;【详解】:(1)如图;(2)如图;(3)如图【点睛】本题考查了作图——复杂作图、直线、射线、线段,解决本题的关键是准确画图. 5、(1)8cm(2)2cm【分析】(1)根据BC =12AB 可得23AB AC =,代入计算即可; (2)根据中点分别求出AD 和AE 的长,即可得到DE 的长.(1) 1 2BC AB = 2212833AB AC cm ∴==⨯= (2)∵D 是AB 的中点142AD AB cm ∴== ∵E 是AC 的中点162AE AC cm ∴== 2DE AE AD cm ∴=-=【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.。
2022年沪教版(上海)六年级数学第二学期第七章线段与角的画法重点解析试题(含详细解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒ C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠2、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'3、如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE =90°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个4、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹D.植树时,只要定出两棵树的位置就能确定同一行树所在的直线5、下列说法正确的是()A.画一条长2cm的直线B.若OA=OB,则O是线段AB的中点C.角的大小与边的长短无关D.延长射线OA6、如图,点C,D在线段AB上,且AC=CD=DB,点E是线段AB的中点.若AD=8,则CE的长为()A.2 B.3 C.4 D.57、下列图形中能用∠1,∠AOB,∠O三种方法表示同一个角的图形是()A.B.C .D .8、如图,点O 在直线AB 上,OC OD ⊥,若150AOC ∠=︒,则BOD ∠的大小为( )A .30°B .40°C .50°D .60°9、木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是( ).A .两点之间,线段最短B .线动成面C .经过一点,可以作无数条直线D .两点确定一条直线10、如图,货轮在O 处观测到岛屿B 在北偏东45°的方向,岛屿C 在南偏东60°的方向,则∠BOC 的大小是( )A .75°B .80°C .100°D .105°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 比较大小:3815︒'___38.15︒(填写“>”、“ =”、“ <”).2、3830'=___°.3、怀柔北部山区的分水岭隧道全长3333米,是我区最长的隧道.建成后有效缩短了我区北部乡镇居民往返怀柔城区的路程.如图,你能用学过的数学知识来解释走分水岭隧道与原盘山路相比缩短路程的原因吗?_________________________________.4、若5318α'∠=︒,则α∠的余角为______度.5、计算:18⎛⎫︒= ⎪⎝⎭_____'. 三、解答题(5小题,每小题10分,共计50分)1、作图题:已知:如图,是由三条线段a ,b ,c 首尾顺次相连而成的封闭图形(三角形),求作:线段DE ,使DE =b +c -a2、如图,点C 是线段AB 上的一点,延长线段AB ,使BD CB =.(1)请依题意补全图形(用尺规作图,保留作图痕迹);(2)若7AD =,3AC =,求线段DB 的长.3、已知A ,B ,C ,O ,M 五点在同一条直线上,且AO =BO ,BC =2AB .(1)若AB =a ,求线段AO 和AC 的长;(2)若点M 在线段AB 上,且AM =m ,BM =n ,试说明等式MO =12|m ﹣n |成立;(3)若点M 不在线段AB 上,且AM =m ,BM =n ,求MO 的长.4、如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若42AOB ∠=︒,36DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,且30DOE ∠=︒,求AOC ∠的度数.5、 如图,已知线段AC =12cm ,点B 在线段AC 上 ,满足BC =12AB .(1)求AB 的长;(2)若D 是AB 的中点,E 是AC 的中点,求DE 的长.-参考答案-一、单选题1、C【分析】根据直角的性质及各角之间的数量关系结合图形求解即可.【详解】解:∵直角三角板,∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒,即180BAE DAC ∠+∠=︒.故选:C .【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键.2、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.3、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F 在线段CD 上时点F 到点B 、C 、D 、E 的距离之和最小,当点F 和E 重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.【详解】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,∵BC=2,CD=DE=3,∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.故选B.【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.4、B【分析】由题意可得A,B,D选项都与直线相关联,而C选项与距离相关,可以用“两点之间,线段最短”来解析,从而可得答案.解:用两个钉子就可以把木条固定在墙上,可用基本事实“两点决定一条直线”来解释,故A不符合题意;把弯曲的公路改直,就能缩短路程,可用基本事实“两点之间,线段最短”来解释,故B符合题意;锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹,可用基本事实“两点决定一条直线”来解释,故C不符合题意;植树时,只要定出两棵树的位置就能确定同一行树所在的直线,可用基本事实“两点决定一条直线”来解释,故D不符合题意;故选B【点睛】本题考查的是两点之间,线段最短,两点决定一条直线,理解生活中的现象所反应的几何原理是解本题的关键.5、C【分析】根据线段的长度、两点间的距离、角的概念对各个选项进行判断即可.【详解】解:A、直线是无限长的,直线是不可测量长度的,所以画一条2cm长的直线是错误的,故本选项不符合题意;B、若OA=OB,则O不一定是线段AB的中点,故本选项不符合题意;C、角的大小与边的长短无关,故本选项符合题意;D、延长射线OA说法错误,射线可以向一个方向无限延伸,故本选项不符合题意;故选:C.【点睛】此题主要考查线段的长度、两点间的距离、角的性质与特点,解题的关键是熟知各自的性质特点进行6、A【分析】根据线段中点的定义,可得AC=CD=DB=4,代入数据进行计算即可得解求出AB的长;再求出AE的长,最后CE=AE-AC.【详解】解:∵AC=CD=DB,点E是线段AB的中点,∴AD=AC+CD=8.AC=CD=DB=4,AB=6,∴AB=3AC=12,AE=12则CE=AE-AC=6-4=2.故选:A.【点睛】本题考查了线段的和差,两点间的距离,主要利用线段中点的定义,比较简单,准确识图是解题的关键.7、B【分析】利用角的定义及表示方法,进行判断即可得出结果.【详解】解:A、图中角只能表示为:∠1,∠AOB,故错误;B、图中角可表示为:∠1,∠AOB,∠O,故正确;C、图中角可表示为:∠1,∠AOB,故错误;D、图中角可表示为:∠1,∠AOB,故错误.故答案为:B.【点睛】本题主要考察的是角的表示方法,确定顶点即角的两边是解题的关键.8、D【分析】根据补角的定义求得∠BO C 的度数,再根据余角的定义求得∠BOD 的度数.【详解】解:∵150AOC ∠=︒,∴∠BO C =180°-150°=30°,∵OC OD ⊥,即∠COD =90°,∴∠BOD =90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.9、D【分析】找准题中所给情境的关键词“画两个点”、“过这两点弹出一条墨线”即可得出结论.【详解】根据题意可知,木匠师傅先在木板上画两个点,然后过这两点弹出一条墨线.利用的是经过两点有且只有一条直线,简称:两点确定一条直线.故选:D .【点睛】本题是通过生活情境说出数学原理.关键在于抓住关键词.10、A在正北和正南方向上分别确定一点A 、D ,根据方位角定义,求出AOB ∠、COD ∠的度数,再利用角的关系,求出∠BOC 的大小即可.【详解】解:在正北和正南方向上分别确定一点A 、D ,如下图所示:由题意可知:45AOB ∠=︒,60COD ∠=︒,18075BOC AOB COD ∴∠=︒-∠-∠=︒,故选:A .【点睛】本题主要是考查了方位角的定义,以及角之间的关系,熟练利用方位角的定义,求解对应角度,是解决该题的关键.二、填空题1、>【分析】根据角度制的换算关系即可得.【详解】解:381538(1560)︒'=︒+÷︒38.2538.15=︒>︒,故答案为:>.【点睛】本题考查了角的度数大小比较,熟练掌握角度制是解题关键.2、38.5【分析】根据1度等于60分,1分等于60秒,由大单位转换成小单位乘以60,小单位转换成大单位除以60,按此转化即可.【详解】解:∵30'3060=()°=0.5°,∴38°30'=38°+0.5°=38.5°.故答案为:38.5.【点睛】本题考查了角度制的换算,相对比较简单,注意以60为进制即可.3、两点之间,线段最短【分析】依据线段的性质,即可得出结论.【详解】解:走分水岭隧道与原盘山路相比缩短路程,其道理用数学知识解释的是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】本题考查了线段的性质.熟记两点之间线段最短是解决本题的关键.4、36.7【分析】根据余角的定义计算即可.【详解】解:∵5318α'∠=︒=53.3°,∴α∠的余角=90°-53.3°=36.7°,5、7.5【分析】根据角度制的进率进行计算即可.【详解】 解:10.1257.58⎛⎫'︒=︒= ⎪⎝⎭, 故答案为:7.5.【点睛】本题主要考查了角度制的换算,熟知角度制的进率是解题的关键.三、解答题1、见解析【分析】利用尺规作图解答,作射线DM ,在射线上分别截取DQ=b ,QF=c ,FE=a ,则DE = b +c -a .【详解】解:线段 DE 即为所求.【点睛】此题考查了尺规作图,正确掌握截取线段的方法及线段的和差关系是解题的关键.2、(1)作图见解析;(2)2【分析】(1)根据题干的语句作图即可;(2)先求解线段4,CD = 再结合,BC BD = 从而可得答案.【详解】解:(1)如图,线段BD 即为所求作的线段,(2) 7AD =,3AC =,734,CD AD AC,BC BD = 1 2.2BD CD 【点睛】本题考查的是作一条线段等于已知线段,线段的和差倍分关系,掌握“画一条线段等于已知线段”是解本题的关键. 3、(1)12a ;3a 或a ;(2)见解析;(3)()1+2MO m n = 【分析】(1)分情况讨论当点C 在点B 右侧和左侧时,根据已知等量关系即可求解;(2)由题意知点M 在线段AB 上,分别将M 点在O 点左右两侧时MO 的长度用m 、n 表示出来,再讨论m n <和m n >时,MO 的值即可;(3)当点M 不在线段AB 上,则M 在A 左边或B 右边,根据题干数量关系分别求出两种情况时MO 的值即可.【详解】解:∵AO =BO ,AB =a , ∴11=22AO BO AB a == , 当点C 在点B 右侧时,如下图所示:∵BC =2AB ,AB =a ,∴233AC AB BC AB AB AB a =+=+== ,当点C 在点B 左侧时,如下图所示:∵BC =2AB ,AB =a ,∴2AC BC AB AB AB AB a =-=-==,∴线段AO 的长为12a ,线段AC 的长为3a 或a ; (2)当M 点在O 点左侧时,如下图所示:∵AO =BO , ∴12AO AB = ,∴MO AO AM =-()111111222222AB AM AM BM AM AM BM AM BM AM =-=+-=+-=- , ∵AM m BM n ==, , ∴()111222MO n m n m =-=- , 当M 点在O 点右侧时,如下图所示:∵AO =BO , ∴12BO AB = , ∴MO BO BM =- ,()111111222222AB BM AM BM BM AM BM BM AM BM =-=+-=+-=- , ∵,AM m BM n == , ∴()111222MO m n m n =-=- , 综上,当AM BM < 即m n < 时,()12MO n m =-, 当AM BM > 即m n > 时,()12MO m n =-, ∴12MO m n =-; (3)当点M 在A 点左侧时,如下图所示:∵AO =BO , ∴12AO AB = , ∴+MO AO AM =()111111+++222222AB AM BM AM AM BM AM AM BM AM ==-+=-=, ∵,AM m BM n ==, ∴()111++222MO n m m n ==, 当点M 在B 点右侧时,如下图所示:∵AO =BO , ∴12BO AB = , ∴+MO BO BM = ,()111111222222AB BM AM BM BM AM BM BM AM BM =+=-+=-+=+ , ∵,AM m BM n ==, ∴()111++222MO m n m n ==, 综上,()1+2MO m n =. 【点睛】 本题考查两点间距离,利用线段中点的性质、线段的和差分情况讨论是解题关键.4、(1)78°;(2)80°.【分析】(1)根据角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)结合图形可得BOD BOC DOC ∠=∠+∠,然后将角度代入计算即可;(2)由互补可得180AOD BOD ∠+∠=︒,结合图形可得:AOD AOC COD ∠=∠+∠,BOD BOC COD ∠=∠+∠,由角平分线定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得12BOC AOC ∠=∠,利用等量代换得出321802AOC DOE ∠+∠=︒,将已知角度代入求解即可. 【详解】解:(1)OB 是AOC ∠的平分线,且42AOB ∠=︒,OD 是COE ∠的平分线,且36DOE ∠=︒,∴42AOB BOC ∠=∠=︒,36COD DOE ∠=∠=︒,∴423678BOD BOC DOC ∠=∠+∠=︒+︒=︒,∴78BOD ∠=︒;(2)∵AOD ∠与BOD ∠互补,∴180AOD BOD ∠+∠=︒,由图知:AOD AOC COD ∠=∠+∠,BOD BOC COD ∠=∠+∠, 由角平分线定义知:12BOC AOC ∠=∠, ∴11802AOC DOE AOC DOE ∠+∠+∠+∠=︒, 即321802AOC DOE ∠+∠=︒,∵30DOE ∠=︒,∴32301802AOC ∠+⨯︒=︒,即80AOC ∠=︒.【点睛】题目主要考查角平分线及互补的定义,角度之间的计算,理解题意,找准角度进行计算是解题关键. 5、(1)8cm(2)2cm【分析】(1)根据BC =12AB 可得23AB AC =,代入计算即可; (2)根据中点分别求出AD 和AE 的长,即可得到DE 的长.(1) 1 2BC AB = 2212833AB AC cm ∴==⨯= (2)∵D 是AB 的中点142AD AB cm ∴== ∵E 是AC 的中点162AE AC cm ∴== 2DE AE AD cm ∴=-=【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.。
2022年精品解析沪教版(上海)六年级数学第二学期第七章线段与角的画法综合训练试题(无超纲)
沪教版(上海)六年级数学第二学期第七章线段与角的画法综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列结论中,正确的是()A.过任意三点一定能画一条直线B.两点之间线段最短C.射线AB和射线BA是同一条射线D.经过一点的直线只有一条2、时钟在9:00时候,时针和分针的夹角是()A.30°B.120°C.60°D.90°3、如图,点G是AB的中点,点M是AC的中点,点N是BC的中点,则下列式子不成立的是()A.MN=GB B.CN=12(AG﹣GC)C.GN=12(BG+GC)D.MN=12(AC+GC)4、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是()A.152°B.28°C.52°D.90°5、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为()A .75°14′B .59°86′C .59°46′D .14°46′6、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒ C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠7、已知A 、B 、C 、D 为直线l 上四个点,且6AB =,2BC =,点D 为线段AB 的中点,则线段CD 的长为( )A .1B .4C .5D .1或58、下列语句,正确的是( )A .两点之间直线最短B .两点间的线段叫两点之间的距离C .射线AB 与射线BA 是同一条射线D .线段AB 与线段BA 是同一条线段 9、如图,延长线段AB 到点C ,使BC =12AB ,点D 是线段AC 的中点,若线段BD =2cm ,则线段AC 的长为( )cm .A .14B .12C .10D .810、如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠相等的是( ).A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果一个角的补角是120°,那么这个角的余角为______.2、如图,将一块直角三角板的直角顶点放在直尺的一边上,如果26448'∠=︒,那么1∠=______.3、如图,点C ,D 在线段BE 上(C 在D 的左侧),点A 在线段BE 外,连接AB ,AC ,AD ,AE ,已知∠BAE = 120°,∠CAD = 60°,有下列说法:①直线CD 上以B ,C ,D ,E 为端点的线段共有6条;②作∠BAM =12∠BAD ,∠EAN =12∠EAC .则∠MAN =30°;③以A 为顶点的所有小于平角的角的度数和为420°;④若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B ,C ,D ,E 的距离之和最大值为17,最小值为11.其中说法正确的有 _____ .(填上所有正确说法的序号)4、如图,12BC AB,D为AC的中点,DC=6,则AB的长为_________.5、如图,在∠AOB的内部有3条射线OC、OD、OE,若∠AOC=70°,∠BOE=1n∠BOC,∠BOD=1n∠AOB,则∠DOE=________°.(用含n的代数式表示)三、解答题(5小题,每小题10分,共计50分)1、如图,延长线段AB到点C,使BC=2AB,M、N分别为AB、AC的中点,且MN=6cm,分别求AB、BN、AC的长度.2、如图,OC是∠AOB的平分线,且∠AOD=90°,∠COD=27°.求∠BOD的度数.3、如图,已知线段a与线段b,点O在直线MN上,点A在直线MN外.(1)请利用直尺和圆规,按照下列要求作图(保留作图痕迹,不写作法).①作线段OA;②在射线OM上作线段OB=a,并作直线AB;③在射线ON上取一点C,使OC=b,并作射线AC;(2)写出图中的一个以A为顶点的锐角:.4、线段与角的计算.(1)如图1,CE是线段AB上的两点,D为线段AB的中点.若AB=6,BC=2,且AE:EC=1:3,求EC的长;(2)如图2,O为直线AB上一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE.若∠BOC+∠FOD=117°,求∠BOE的度数.5、如图,已知OC是∠AOB内部的一条射线,OD是∠AOB的平分线,∠AOB=5∠BOC且∠BOC=24°,求∠COD的度数.-参考答案-一、单选题1、B【分析】根据两点确定一条直线,两点之间线段最短,射线的表示方法,端点字母必须在前面,经过一点的直线有无数条进行分析即可.【详解】解:A、过任意两点一定能画一条直线,故原说法错误;B、两点之间线段最短,说法正确;C、射线AB和射线BA不是同一条射线,故原说法错误;D、经过一点的直线有无数条,故原说法错误;故选:B.【点睛】此题主要考查了线段、射线、直线,关键是掌握直线和线段的性质,掌握射线的表示方法.2、D【分析】利用钟表表盘的特征:每相邻两个大格之间的夹角为30°,当时钟在9:00时候,时针指向9,分针指向12,中间恰好有3格,据此解答即可.【详解】解:时钟在9:00时候,时针指向9,分针指向12,钟表12个大格,每相邻两个大格之间的夹角为30°,因此时钟在9:00时候时针与分针的夹角正好为90°,故选:D.【点睛】本题考查钟表时针与分针的夹角,理解钟表盘上角的特点是解题关键.3、D【分析】由中点的定义综合讨论,一一验证得出结论.【详解】解:A、∵点G是AB的中点,点M是AC的中点,点N是BC的中点,∴GB=12AB,MC=12AC,NC=12BC,∴MN=MC+NC=12AC+12BC=12AB,∴MN=GB,故A选项不符合题意;B、∵点G是AB的中点,∴AG=BG,∴AG-GC=BG-GC=BC,∵NC=12 BC,∴NC=12(AG-GC),故B选项不符合题意;C、∵BG+GC=BN+NC+CG+GC=2CN+2CG=2GN,∴GN=12(BG+GC),故C选项不符合题意;D、∵MN=12AB,AB=AC+CB,∴MN=12(AC+CB),∵题中没有信息说明GC=BC,∴MN=12(AC+GC)不一定成立,故D选项符合题意.故选:D.【点睛】本题主要考查了线段的数量关系和线段中点的定义,要求学生灵活掌握线段之间的计算和应用整体思想解题.4、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.5、C【分析】观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.【详解】解:∠β=180°﹣90°﹣∠α=90°﹣30°14′=59°46′.故选:C .【点睛】本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.6、C【分析】根据直角的性质及各角之间的数量关系结合图形求解即可.【详解】解:∵直角三角板,∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒,即180BAE DAC ∠+∠=︒.故选:C .【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键.7、D【分析】根据题意分两种情况考虑,讨论点C的位置关系,即点C在线段AB上,或者在线段AB的延长线上.【详解】解:因为点D是线段AB的中点,AB=3,所以BD=12分两种情况:①当点C在线段AB上时,CD=BD-BC=3-2=1,②当点C在线段AB的延长线上时,CD=BD+BC=3+2=5.故选:D.【点睛】本题考查两点间的距离,解决本题的关键是掌握线段的中点定义以及运用分类讨论的数学思想.8、D【分析】根据线段、射线与两点之间的距离等性质依次判断即可.【详解】解:A、两点之间线段最短,选项错误;B、两点间的线段长度叫两点之间的距离,选项错误;C、射线AB与射线BA不是同一条射线,方向相反,选项错误;D、线段AB与线段BA是同一条线段,选项正确,故选:D.【点睛】题目主要考查线段、射线、两点间的距离的性质,熟练掌握各个性质是解题关键.9、B【分析】设BC xcm =,根据题意可得2AB xcm =,3AC xcm =,由D 是AC 的中点, 1.5DC xcm =,由图可得DC BC DB -=,代入求解x ,然后代入3AC xcm =求解即可.【详解】解:设BC xcm =, ∵12BC AB =, ∴2AB xcm =,∴3AC AB BC xcm =+=,∵D 是AC 的中点, ∴1 1.52DC AC xcm ==, ∵DC BC DB -=,∴1.52x x -=,解得:4x cm =,∴312AC x cm ==,故选:B .【点睛】本题主要考查的是两点间的距离,掌握图形间线段之间的和差关系是解题的关系.10、C【分析】根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.解:A 、α∠+β∠=180°−90°=90°,互余;B 、α∠+β∠=60°+30°+45°=135°;C 、根据同角的余角相等,可得α∠=β∠;D 、α∠+β∠=180°,互补;故选:C .【点睛】本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.二、填空题1、故答案为39;【点睛】本题主要考查余角及角的单位与角度制,熟练掌握余角及角的运算是解题的关键.30.30°度【分析】根据余角、补角的定义可直接进行求解.【详解】解:由一个角的补角是120°可知这个角的度数为18012600︒-︒=︒,∴这个角的余角为906030︒-︒=︒;故答案为30°.【点睛】本题主要考查余角、补角,熟练掌握余角、补角的性质是解题的关键.2、2512'︒##160'︒=,由1902∠=︒-∠可以求出1∠的值.【详解】解:1902∠=︒-∠1906448896064482512''''∴∠=︒-︒=︒-︒=︒12251225()25.260'︒=︒+︒=︒ 故答案为:2512'︒(或25.2).【点睛】本题考察了角度的转化.解题的关键在于明确160'︒=.3、①③④【分析】①按照一定的顺序数出线段的条数即可;②图中互补的角就是分别以C 、D 为顶点的两对邻补角,由此即可确定选择项;③根据角的和与差计算即可;④分两种情况探讨:当F 在线段CD 上最小,点F 和E 重合最大计算得出答案即可.【详解】解:①以B 、C 、D 、E 为端点的线段BC 、BD 、BE 、CE 、CD 、DE 共6条,故①正确;②如图所示,当AM 、AN 在三角形外部时,∠BAD +∠EAC=120°+60°=180°,∠BAM +∠EAN =12∠BAD +12∠EAC=90°,∠MAN =360°-120°-90°=150°.∠MAN ≠30°;故②不正确;③由∠BAE=120°,∠DAC=60°,根据图形则有∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=120°+120°+120°+60°=420°,故③正确;④当F在线段CD上,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=11,当F和E重合,则点F到点B、C、D、E的距离之和最大为FB+FE+FD+FC=8+0+6+3=17,故④正确.故答案为:①③④.【点睛】此题分别考查了线段、角的和与差以及角度的计算,解题时注意:互为邻补角的两个角的和为180°.4、8【分析】先根据D为AC的中点,DC=6求出AC的长,再根据BC=12AB得出AB=23AC,由此可得出结论.【详解】解:∵D为AC的中点,DC=6,∴AC=2CD=12.∵12 BC AB=∴2212833AB AC==⨯=.故答案为:8.【点睛】本题考查线段中点的有关计算,能根据图形得出各线段之间的和、差及倍数关系是解答此题的关键.5、70 n【分析】根据角的和差即可得到结论.【详解】解:∵∠BOE=1n∠BOC,∴∠BOC=n∠BOE,∴∠AOB=∠AOC+∠BOC=70°+n∠BOE,∴∠BOD=1n∠AOB=70n︒+∠BOE,∴∠DOE=∠BOD-∠BOE=70n︒,故答案为:70n.【点睛】本题考查了角的计算,正确的识别图形是解题的关键.三、解答题1、AB,BN,AC的长度分别为6cm、3cm、18cm.【分析】由题意直接根据线段的中点定义和已知线段的长度进行分析计算即可求解.【详解】解:设线段AB的长度为x,则线段BC的长度为2x,AC的长度为3x,∵N是AC的中点,∴AN=32x,M是AB的中点,AM=12x,∵MN=AN-AM∴32x-12x=6∴x=6.∴AB=6cm.BN=AN-AB=32x-x=12x=3cm.AC=3x=18cm.答:AB,BN,AC的长度分别为6cm、3cm、18cm.【点睛】本题考查两点间的距离和中点有关的线段长度,解决本题的关键是掌握中点的定义.2、36°【分析】利用余角的性质,角的平分线的定义,角的和差计算法则计算即可.【详解】∵∠AOD=90°,∠COD=27°,∴∠AOC=∠AOD-∠COD=90°-27°=63°;∵OC是∠AOB的平分线,∴∠AOC=∠BOC=63°;∴∠BOD=∠BOC -∠COD=63°-27°=36°.【点睛】本题考查了几何图形中的角的计算,角的平分线即把一个角分成两个相等的角的射线,余角的性质,正确理解图形和图形中的角的关系是解题的关键.3、(1)①见解析;②见解析;③见解析(2)∠BAO【分析】①连接OA,即可求解;②以O为圆心,线段a长为半径画弧交射线OM于点B,然后过点A、B作直线AB,即可求解;③以O为圆心,线段b长为半径画弧交射线ON于点C,然后过点A、C作射线AC,即可求解;(2)根据锐角的定义,即可求解.(1)解:①线段OA即为所求,如图所示:②线段OB,直线AB即为所求,如图所示:③点C,射线AC即为所求,如图所示:(2)∠BAO(答案不唯一).【点睛】本题主要考查了尺规作图——作一条线段等于已知线段,画射线、直线、线段,熟练掌握作一条线段等于已知线段的作法,直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段是解题的关键.4、(1)3;(2)18︒.【分析】(1)根据题意可求出AC 的长,再根据:1:3AE EC =,即可确定:3:4EC AC =,从而即可求出EC 的长;(2)由角平分线的性质即可推出12BOE DOE BOD ∠=∠=∠,12AOF EOF AOE ∠=∠=∠.根据题意可知12FOD AOE BOE ∠=∠-∠,180AOE BOE ∠=︒-∠,即推出3902FOD BOE ∠=︒-∠.由题意还可推出 902BOC BOE ∠=︒-∠,最后根据117BOC FOD ∠+∠=︒,即可求出∠BOE 的大小.【详解】解:(1)∵62AB BC ==,,∴624AC AB BC =-=-=.∵:1:3AE EC =,∴:3:4EC AC =,即:43:4EC =,∴3EC =.(2)∵OE 平分∠BOD ,OF 平分∠AOE , ∴12BOE DOE BOD ∠=∠=∠,12AOF EOF AOE ∠=∠=∠. ∵12FOD EOF DOE AOE BOE ∠=∠-∠=∠-∠,180AOE BOE ∠=︒-∠, ∴13(180)9022FOD BOE BOE BOE ∠=︒-∠-∠=︒-∠. ∵902BOC COD BOD BOE ∠=∠-∠=︒-∠, ∴3(902)(90)1172BOE BOE ︒-∠+︒-∠=︒,∴18BOE ∠=︒.【点睛】本题考查线段的和与差,成比例线段,角平分线的性质以及角的运算.利用数形结合的思想是解答本题的关键.5、∠COD =36°【分析】由题意易得∠AOB =120°,然后根据角平分线的定义可知∠BOD =60°,进而问题可求解.【详解】解:∵∠AOB =5∠BOC 且∠BOC =24°,∴∠AOB =120°,∵OD 是∠AOB 的平分线, ∴1602BOD AOB ∠=∠=︒, ∴36COD BOD BOC ∠=∠-∠=︒.【点睛】本题主要考查角平分线的定义及角的和差关系,熟练掌握角平分线的定义及角的和差关系是解题的关键.。
2022年最新沪教版(上海)六年级数学第二学期第七章线段与角的画法必考点解析试题(名师精选)
沪教版(上海)六年级数学第二学期第七章线段与角的画法必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,用同样大小的三角板比较∠A和∠B的大小,下列判断正确的是()A.∠A>∠B B.∠A<∠BC.∠A=∠B D.没有量角器,无法确定2、如图,货轮在O处观测到岛屿B在北偏东45°的方向,岛屿C在南偏东60°的方向,则∠BOC的大小是()A .75°B .80°C .100°D .105°3、如图,::2:3:4AOB BOC COD ∠∠∠=,射线OM 、ON 分别平分AOB ∠与COD ∠,MON ∠是直角,则COD ∠的度数为( )A .70°B .62°C .60°D .58°4、如图,已知AO ⊥OC ,OB ⊥OD ,∠COD =38°,则∠AOB 的度数是( )A .30ºB .145ºC .150ºD .142º5、建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是( )A .两点之间,线段最短B .过一点有且只有一条直线和已知直线平行C .垂线段最短D .两点确定一条直线6、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒ C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠7、如图所示,∠COD 的顶点O 在直线AB 上,OE 平分∠COD ,OF 平分∠AOD ,已知∠COD =90°,∠BOC =α,则∠EOF 的度数为( )A .90°+αB .90°+2αC .45°+αD .90°﹣2α 8、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为( )A .75°14′B .59°86′C .59°46′D .14°46′9、下列的四个角中,是图中角的补角的是( )A.B.C.D.10、如图,从点O出发的5条射线,可以组成的锐角的个数是()A.8 B.9 C.10 D.11第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,线段AB=10,若点C为线段BD中点,线段BC=4.5,则线段AD的长为______.2、如图,在灯塔O处观测到轮船A位于北偏西55°24′的方向上,同一时刻轮船B在灯塔O的正南方向上,(1)55°24′=_____°;(2)∠AOB=_____°.3、15.7°=______度______分.4、如图,从学校A到书店B有①②共2条路线,最短的是①号路线,得出这个结论的根据是:______.5、已知∠1=71°,则∠1的补角等于__________度.三、解答题(5小题,每小题10分,共计50分)1、根据题意,补全解题过程.如图,点C为线段AB上一点,D为线段AC的中点,若AD=3,BC=2,求BD的长.解:∵D 为线段AC 的中点,AD =3,∴CD = = .( )∵BD = + ,BC =2,∴BD = .2、如图,直线AB ,CD 相交于点O ,90FOD ∠=︒,OF 平分AOE ∠.(1)写出图中所有与AOD ∠互补的角;(2)若120AOE ∠=︒,求BOD ∠的度数.3、已知:如图,AOB ∠被分成::2:3:4AOC COD DOB ∠∠∠=,OM 平分AOC ∠,ON 平分DOB ∠,且90MON ∠=︒,求AOB ∠的度数.4、(1)读语句,并画出图形:三条直线AB ,BC ,AC 两两相交,在射线AB 上取一点D (不与点A 重合),使得BD =AB ,连接CD .(2)在(1)的条件下,回答问题:①用适当的语句表述点D 与直线BC 的关系: ; ②若AB =3,则AD = .5、一次数学课上,老师给同学们出了这样一道数学题:已知∠AOB =100°,OC 、OD 是∠AOB 内部的两条射线,且∠COD =20°,OE 平分∠AOC ,OF 平分∠BOD ,求∠EOF 的度数.小明说本题的答案是40°,小红说本题的答案是60°.老师告诉学生,小明和小红的答案都是正确的.请你根据图形,写出解题过程.-参考答案-一、单选题1、B【分析】根据角的比较大小的方法进行比较即可.【详解】解:∵三角板是等腰直角三角形,每个锐角为45°,根据三角板和角的比较大小的方法可得:∠B<45°<∠A,则∠A<∠A;故选:B.【点睛】本题考查了角的比较大小,熟练掌握方法是解题的关键.2、A【分析】在正北和正南方向上分别确定一点A 、D ,根据方位角定义,求出AOB ∠、COD ∠的度数,再利用角的关系,求出∠BOC 的大小即可.【详解】解:在正北和正南方向上分别确定一点A 、D ,如下图所示:由题意可知:45AOB ∠=︒,60COD ∠=︒,18075BOC AOB COD ∴∠=︒-∠-∠=︒,故选:A .【点睛】本题主要是考查了方位角的定义,以及角之间的关系,熟练利用方位角的定义,求解对应角度,是解决该题的关键.3、C【分析】设∠AOB 的度数为2x °,则∠BOC 的度数为3x °,∠COD 的度数为4x °,根据射线OM ,ON 分别平分∠AOB 与∠COD 即可得出∠BOM =x °,∠CON =2x °,再根据∠MON =∠CON +∠BOC +∠BOM =90°即可得出关于x 的一元一次方程,解方程求出x 的值,即可得【详解】解:设∠AOB=2x°,则∠BOC=3x°,∠COD=4x°,∵射线OM、ON分别平分∠AOB与∠COD∠AOB=x°∴∠BOM=12∠CON=1∠COD=2x°2∵∠MON=90°∴∠CON+∠BOC+∠BOM=90°∴2x+3x+x=90解得:x=15∴∠COD=4x=15°×4=60°.故选C【点睛】本题主要考查了角平分线的性质和角的和差关系,能根据图形准确找出等量关系列出方程是解题的关键.4、D【分析】根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=52°,然后计算∠AOC+∠BOC即可.【详解】解:∵AO⊥OC,OB⊥OD,∴∠AOC=∠DOB=90°,而∠COD=38°,∴∠BOC=90°-∠COD=90°-38°=52°,∴∠AOB =∠AOC +∠BOC =90°+52°=142°.故选:D .【点睛】本题考查了余角的概念:若两个,角的和为90°,那么这两个角互余.5、D【分析】根据两点确定一条直线解答即可;【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是两点确定一条直线;故选:D【点睛】本题考查了两点确定一条直线的应用,正确理解题意、掌握解释的方法是关键.6、C【分析】根据直角的性质及各角之间的数量关系结合图形求解即可.【详解】解:∵直角三角板,∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒,即180BAE DAC ∠+∠=︒.故选:C .【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键.7、B【分析】先利用∠COD =90°,∠BOC =α,求出∠BOD 的度数,再求出∠AOD 的度数,利用角平分线,分别求出∠FOD 和∠EOD 的度数,相加即可.【详解】解:∵∠COD =90°,∠BOC =α,∴∠BOD =90°-∠BOC =90°-α,∴∠AOD =180°-∠BOD =90°+α,∵OF 平分∠AOD , ∴114522DOF AOD α∠=∠=︒+,∵OE 平分∠COD , ∴1452DOE COD ∠=∠=︒, ∴∠EOF =∠FOD +∠DOE =90°+2α; 故选:B .【点睛】 本题考查了角平分线的计算,解题关键是准确识图,弄清角之间的和差关系.8、C【分析】观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.【详解】解:∠β=180°﹣90°﹣∠α=90°﹣30°14′=59°46′.故选:C.【点睛】本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.9、D【分析】根据补角性质求出图中角的补角即可.【详解】解:∵图中的角为40°,它的补角为180°-40°=140°.故选择D.【点睛】本题考查补缴的性质,掌握补角的性质是解题关键.10、C【分析】每一条射线都分别与其它的射线组成一个角,如图所示,若从点O出发的n条射线,可以组成角的个数是()12 n n-【详解】解:组成角的个数是()()155110 22n n-⨯-==故选C.【点睛】此题主要考查了角的概念以及应用,要熟练掌握.利用公式:从点O 出发的n 条射线,组成角的个数为()12n n -,是解决问题的关键. 二、填空题1、1【分析】先根据线段中点的定义求出BD =9,则AD =AB -BD =1.【详解】解:∵点C 为线段BD 中点,线段BC =4.5,∴BD =2BC =9,∴AD =AB -BD =1,故答案为:1.【点睛】本题主要考查了与线段中点有关的计算,熟知线段中点的定义是解题的关键.2、55.4 124.6【分析】(1)根据角度制的进率进行求解即可;(2)=552455.4AOD '︒=︒∠,∠COD =∠COB =90°,则===124.6AOB AOC COB COD AOD COB +-+︒∠∠∠∠∠∠.【详解】解:(1)552455.4'︒=︒,故答案为:55.4;(2)由题意得=552455.4AOD '︒=︒∠,∠COD =∠COB =90°,∴∠===124.6AOB AOC COB COD AOD COB +-+︒∠∠∠∠∠∠,故答案为:124.6.【点睛】本题主要考查了方位角,角度制,解题的关键在于能够熟练掌握角度制的进率.3、15 42【分析】①度、分、秒是60进制.②在进行度、分、秒运算时,由低级单位向高级单位转化或由高级单位向低级单位转化要逐级进行.【详解】15.7°=15°+0.7°0.7°=42'故为15°42'故答案为①15②42【点睛】本题考查角度制的换算,掌握进制和换算方法是本题关键.4、两点之间,线段最短【分析】根据两点之间,线段最短作答即可.【详解】解:如图,从学校A到书店B有①②共2条路线,最短的是①号路线,得出这个结论的根据是:两点之间,线段最短;故答案为:两点之间,线段最短.【点睛】本题考查了线段的性质,解题关键是明确两点之间,线段最短.5、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.三、解答题1、AD,3,线段中点定义,CD,BC,5【分析】根据线段中点定义求出CD,代入BD=CD+BC求出即可.【详解】解:∵D为线段AC的中点,AD=3,∴CD=AD=3.(线段中点定义)∵BD=CD+BC ,BC =2,2、(1)AOC ∠,BOD ∠,DOE ∠;(2)30°【分析】(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF =∠EOF ,根据垂直的定义可得∠COF =∠DOF =90°,然后根据等角的余角相等求出∠DOE =∠AOC ,从而最后得解;(2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答.【详解】解:(1)因为直线AB ,CD 相交于点O ,所以AOC ∠和BOD ∠与AOD ∠互补.因为OF 平分AOE ∠,所以AOF EOF ∠=∠.因为90FOD ∠=︒,所以18090COF FOD ∠=︒-∠=︒.因为90AOC COF AOF EOF ∠=∠-∠=︒-∠,90DOE FOD EOF EOF ∠=∠-∠=︒-∠,所以AOC DOE ∠=∠,所以与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠.(2)因为OF 平分AOE ∠,所以111206022AOF AOE ∠=∠=⨯︒=︒,由(1)知,90COF ∠=︒,所以906030AOC COF AOF ∠=∠-∠=︒-︒=︒,由(1)知,AOC ∠和BOD ∠与AOD ∠互补,所以30BOD AOC ∠=∠=︒(同角的补角相等).【点睛】本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD 互补的第三个角.3、135°【分析】根据三角成比例设2,3,4,AOC x COD x DOB x 则9AOB x ∠=,将90MON ∠=︒作为等量关系列出方程,解方程求解x ,从而可得答案.【详解】 解: ::2:3:4AOC COD DOB ∠∠∠=设2,3,4,AOC x COD x DOB x 则9AOB x ∠=,则∵OM 平分AOC ∠,ON 平分DOB ∠, ∴11,222MOC AOC x NOD BOD x , ∴326MON x x x x ∠=++=,又∵90MON ∠=︒,∴690x =︒,∴15x =︒,∴135AOB ∠=︒.【点睛】本题考查角平分线的定义,角的和差运算关系,掌握“设合适的未知数,利用角的和差关系列方程”是解本题的关键.4、(1)画图见解析;(2)①点D 在直线BC 外;②6【分析】(1)先画三条两两相交的直线,交点分别为,,,A B C 再在射线AB 上截取,BD AB = 连接CD 即可;(2)①根据点D 与直线BC 的位置可得答案;②由AB =3,,AB BD = 结合线段的和差(或线段的中点的含义)可得答案.【详解】解:(1)如图,(2)①由图形可得:点D在直线BC外,故答案为:点D在直线BC外AB AB BD②3,,33 6.AD AB BD故答案为:6【点睛】本题考查的是画直线,线段,直线,射线,线段的概念,点与直线的位置关系,线段的和差,线段中点的含义,掌握“直线,射线,线段的基础概念与画图”是解本题的关键.5、见解析【分析】分两种情况,射线OC在OD的上方,射线OC在OD的下方,根据角平分线的定义和角的和差解答即可.【详解】解:分两种情况:当射线OC在OD的上方,如图1:∵∠AOB=100°,∠COD=20°,∴∠AOC+∠BOD=∠AOB﹣∠COD=80°,∵OE平分∠AOC,OF平分∠BOD,∴∠COE=12∠AOC,∠DOF=12∠BOD,∴∠COE+∠DOF=12∠AOC+12∠BOD=40°,∴∠EOF=∠COE+∠DOF+∠COD=60°,当射线OC在OD的下方,如图2:∵∠AOB=100°,∠COD=20°,∴∠AOC+∠BOD=∠AOB+∠COD=120°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC,∠BOF=12∠BOD,∴∠AOE+∠BOF=12∠AOC+12∠BOD=60°,∴∠EOF=∠AOB﹣(∠AOE+∠BOF)=40°,综上所述:∠EOF的度数为60°或40°..【点睛】此题考查了角度的计算,角平分线的性质,正确理解题意,确定各角度的位置关系是解题的关键.。
沪教版数学六年级(下)第七章线段与角的画法参考答案
数学六年级(下) 第七章 线段与角的画法7.2 画线段的和、差、倍(1)一、填空题1. 叫做这条线段的中点。
2. 已知线段a ,2a 的含义是 ,3a 的含义是 ,na 的含义是 。
3. 两条线段可以 ,它们的和(或差)也是 ,其长度等于这两条线段的 。
4. 如图,AB+AC______BC (选填“>”或“<”),理由是 。
ABCA B DC第4题 第6题 第8题5. 已知线段AB ,延长AB 到C ,使BC=AB ,在线段AB 的反向延长线上截取AD=AC ,则有DB:AB=_________,CD:BD=___________。
6. 如图,已知AB:AC=1:3,AC:AD=1:4,且AB+AC+AD=48,则AB=_____,BC=______,CD=_______。
7. 两条相等的线段AB 、CD 有三分之一部分重合,M 、N 分别为AB 、CD 的中点,若MN=12cm ,则AB 的长为_________。
8. 如图所示,A 、B 、C 三点在一条直线上,图中有 条线段,分别是 ;这些线段之间的等量关系是:AB+BC= ,AC-BC= , AC-AB= 。
9. 根据右图填空:AB+BC= ;AD= +CD ;CD=AD- ;BD=CD+ =AD- ; AC-AB+CD= =BC+ .第9题 第10题10. 如图,点M 是线段AB 的中点,用符号表示有 种表示法,分别是 , , , , 。
11.如图,点M 是线段PQ 的中点。
若PM=6cm ,则MQ= cm ,这是因为 = ;若PM=6cm.则PQ= cm,这是因为 = ;若PQ=12cm.则MQ= cm,这是因为 = 。
第11题 第12题 12. 已知,如图点C 是线段AD 的中点,AC=211cm, BC=512cm,那么AD= cm ,BD= cm 13.根据所示图形填空。
已知线段a 、b ,且a>2b,画一条线条段,使它等于a-2b 。
新版沪教版六年级数学下册第七章线段与角教案及习题(2020新教材)
第七章线段与角知识归纳一、线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
1、线段的表示:可以用表示短点的两个字母A、B表示,记作线段AB或可以用一个小写的英文字母,如a,表示,记作线段a2、线段的特点:1)有线长度,可以测量2)有两个端点3、线段的性质:1) 两点之间线段最短。
2)连接两点间线段的长度叫做这两点间的距离,可以记作d 。
3)★直线没有距离。
射线也没有距离。
因为,直线没有端点,射线只有一个端点,可以无限延长。
而线段不可以延长。
4、线段大小的比较:1)度量法2)叠合法3)观察法★“两点之间线段最短”5、画线段的和、差、倍将一条线段分成两条相等线段的点叫做这条线段的中点线段中点的表示:1)观察法2)折叠法3)度量法线段的中点是一个重要的概念,要使学生会用语言描述并掌握以下两点:(1)如图1∵C为AB中点(2)如图1∴C为AB中点.二、角:角是具有公共端点的两条射线组成的图形,公共端点叫做角的顶点,两条射线叫做角的边或可以这样说:角是有一条射线绕着它的端点旋转到另一个位置所成的图形处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边。
角的始边转动到角的终边所经过的平面部分叫做角的内部,简称角内部OBADC OBA1、 角的表示:1)角一般用三个大写英文字母表示,如下图记作∠AOB ,也可以记作∠O如果以点O 为顶点的角有多个,那么其中任何一个角必须用三个大写英文字母表示,而不能简单记作∠O2)也可以在角的内部标上一个小写的希腊字母,如α(读alpha )、β(读beta )、γ(读gamma )……,或者标上一个数字,如1、2、3……2、角的大小的比较 1)度量法 2)叠合法3、余角、补角(1) 如果两个角的和是一个平角,那么这两个角叫做互为补角.简称“互补”. (2) 如果两个角的和是一个直角,那么这两个角叫做互为余角,简称“互余”. (3) 补角、余角的性质★ 同角或等角的补角相等’;同角或等角的余角相等. 4、方位角方位角一般以正北、正南为基准,描述物体运动方向. 方位角α的取值范围为0900≤≤α 即“北偏东⨯⨯度”、“北偏西⨯⨯度”、“南偏东⨯⨯度”、“南偏西⨯⨯度”,★ “北偏东45度”为东北方向、“北偏西045度”西北方向、“南偏东045度”为东南方向、“南偏西045度”为西南方向. 5.画角的和、差、倍讲角平分线时既要会用文字表述又要掌握以下两点: (1)如图2∵ OC 平分∠AOB .(2)如图2∴OC 平分∠AOB典型例题【例1】 如右图所示,是线段的中点,则,.【例2】 如图,已知是线段上的两点,是的中点,是的中点,若,求线段的长. .【例3】 如图,已知线段AB 上依次有三个点把线段AB 分成2:3:4:5四个部分,,求BD 的长度.【例4】 线段上有两点、,,,,求的长.M A B 1______2A M =2_____2_____A B ==,B C A D M A B NC D ,M N a B C b==A D M D,,C D E 56AB =A B P Q 26A B =14AP =11PQ =B Q【例5】 已知:A ,B ,C ,D 四点共线,若3cm AB =,2cm BC =,4cm CD =,画出图形,求AD长.【例6】 如图所示,90AOB COD ∠=∠=︒,160AOD ∠=︒,求BOC ∠度数.【例7】 BOC ∠为AOC ∠外的一个锐角,射线OM 、ON 分别平分AOC ∠、BOC ∠.()190AOB ∠=°,30BOC ∠=°,求MON ∠的度数; ()2AOB α∠=,30BOC ∠=°,求MON ∠的度数;()390AOB ∠=°,BOC β∠=,还能否求出MON ∠的度数吗?若能,求出其值,若不能,说明理由.()4从前三问的结果你发现了什么规律?(5)若BOC ∠为AOC ∠内的一个锐角呢?【例8】 如图,OM 平分AOB ∠,ON 平分COD ∠,若50MON ∠=︒,10BOC ∠=︒, 求AOD ∠的小.C【例9】 如图10,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠的度数.课堂练习1 1、如图,,,点B 、O 、D 在同一直线上,则的度数为( ) (A ) (B ) (C ) (D )2、如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则(1)∠AOC 的补角是 ; (2) 是∠AOC 的余角; (3)∠DOC 的余角是 ; (4)∠COF 的补角是 .ND OABC D 图图13、如图,点A 、O、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE ,求∠COB 的度数4、如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠ 的度数.5、如图8,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.7、把一张正方形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG =______.8、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD .EA O图 8A CBEFB '9、如图14,将一副三角尺的直角顶点重合在一起. (1)若∠DOB 与∠DOA 的比是2∶11,求∠BOC 的度数.(2)若叠合所成的∠BOC =n°(0<n<90),则∠AOD 的补角的度数与∠BOC 的度数之比是多少?★10 .角的个数的数法按逆时针、按顺时针一点引出n 条射线共形成)1(21-n n 个角. 如图,在图(a),在角内引一条射线时,图中共有(1+2)个角; 在图(b)中,在角内引两条射线时,图中共有(1+2+3)个角;在图(c)中,在角内引三条射线时,图中共有多少个角?如果在角内引n 条射线(n 为自然数)时,则共有几个角?(a) (b) (c)★11. 钟表上的时针、分针和秒针我们把钟表看成一个圆周,其上共有12个大格,故每个大格度数为003012360=,每个大格中又有5个小格,故每个小格度数为06530=(1)10:00时,时钟的时针与分针所成的角度是_____.(2)时间为三点半时,钟表时针和分针所成的角为______,由2点到7点半,时针转过的角度为______.(3)12时时,钟表上的时针与分针重合,问每多长时间两针再重合?(4)分针和秒针每隔多长时间重合一次?课堂练习21、如图,点C 在线段AB 上,AC = 8厘米,CB = 6厘米,点M 、N 分别是AC 、BC 的中点。
沪教版小学六年级下册第七章线段与角教案及习题1
沪教版小学六年级下册第七章线段与角教案及习题1一、教案1. 教学目标•了解线段和角的概念;•掌握线段和角的基本性质;•能够运用线段和角的知识进行简单的计算。
2. 教学重点•理解线段和角的定义;•掌握线段和角的基本性质。
3. 教学难点•运用线段和角的性质进行计算。
4. 教学准备•教师准备好教案、黑板、白板等教学工具;•学生准备好教材、作业本等学习资料。
5. 教学过程步骤一:导入•教师引导学生回顾上节课所学的点、线、面等基本概念,并提问:“在日常生活中,你们经常碰到哪些线段和角呢?”让学生思考并回答。
步骤二:引入新知•教师出示一张图,上面有两条线段和一个角,让学生观察图形并回答以下问题:–你们觉得什么是线段?–你们觉得什么是角?–这两条线段有什么相同和不同的地方?–这个角有什么特点?•教师根据学生的回答,引出线段和角的定义,并记录在黑板或白板上。
步骤三:线段和角的性质•教师将线段的性质分为长度和方向两个方面进行讲解,并通过实例演示如何计算线段的长度。
•教师将角的性质分为大小和方向两个方面进行讲解,并通过实例演示如何计算角的大小。
•教师提示学生,线段和角的性质可以通过图形来表示和计算。
学生可以在作业本上完成相关的练习。
步骤四:巩固练习•教师提供一些练习题,让学生在作业本上进行练习,并在课堂上进行解答。
•教师可以根据学生的答题情况给予一些提示和指导,并进行讲解和讨论。
步骤五:小结•教师对本节课的内容进行小结,强调线段和角的重要性和应用价值。
6. 拓展延伸•学生可以在课后继续进行线段和角的相关练习,扩展和巩固所学的知识。
•学生可以通过互联网搜索相关的线段和角的应用案例,并进行分享和讨论。
二、习题11.已知线段AB的长度为12cm,线段CD的长度为8cm,请问线段AB 和线段CD哪个更长?答案:线段AB更长,因为12cm > 8cm。
2.一个完整的圆共有多少度?答案:一个完整的圆共有360度。
3.已知角A的度数为45°,请问这个角是什么类型的角?答案:这个角是锐角。
沪教版数学六年级下册第七章《线段与角的画法》教学设计
沪教版数学六年级下册第七章《线段与角的画法》教学设计一. 教材分析沪教版数学六年级下册第七章《线段与角的画法》的内容包括线段的画法、角的画法以及线段和角的基本性质。
这部分内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析六年级的学生已经掌握了初步的画图技巧,对于线段和角的概念有一定的了解。
但是,对于如何准确地画出线段和角,以及线段和角的基本性质,还需要进一步的指导和练习。
三. 教学目标1.掌握线段的画法,能够准确地画出给定长度的线段。
2.掌握角的画法,能够准确地画出给定度数的角。
3.理解线段和角的基本性质,能够运用这些性质进行简单的证明和计算。
四. 教学重难点1.线段的画法,特别是对于不同长度线段的画法。
2.角的画法,特别是对于不同度数角的画法。
3.线段和角的基本性质的理解和运用。
五. 教学方法采用讲解法、演示法、练习法、讨论法等相结合的方法,通过教师的引导和学生的积极参与,使学生掌握线段和角的画法以及基本性质。
六. 教学准备1.准备相关的教学PPT,包括线段的画法、角的画法以及线段和角的基本性质的讲解和示例。
2.准备一些实际的线段和角,以便进行演示和练习。
3.准备一些练习题,以便进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个实际问题引入线段和角的概念,例如:“小明家和学校之间的距离是200米,请你画出这条线段。
”让学生思考和讨论如何画出这条线段,从而激发学生的学习兴趣。
2.呈现(15分钟)讲解线段的画法,包括如何使用尺子和圆规准确地画出给定长度的线段。
同时,展示一些实际的线段,让学生进行观察和理解。
3.操练(10分钟)让学生分组进行练习,每组给定一个长度,要求学生互相合作,使用尺子和圆规画出这个长度的线段。
教师巡回指导,解答学生的问题,并给予评价和反馈。
4.巩固(5分钟)讲解角的画法,包括如何使用尺子和圆规准确地画出给定度数的角。
同时,展示一些实际的角,让学生进行观察和理解。
沪教版小学数学六年级下册沪教版线段与角的画法练习知识点总结教案
O
东东东东
A
三、测试 1、用量角器分别量出下图中∠B、∠A、∠ACD 的大小,指出最大的角.
A
A
B
C
D
B
C
D
2、根据图形,写出 OC 与∠AOB 的位置关系,并用数学符号写出∠AOB 与∠COB 的大小关系.
TB:小初高题库
A C
C
A
沪教版小学数学
A(C)
O
B
O
B
O
B
3、用量角器画∠AOB=35°,以 OB 为一边,在∠AOB 的外部画∠BOC=55°,比较一下∠AOC 与三角板的直角的大 小.
M
E
F
① _________________________________________________________________; ② _________________________________________________________________. 数学符号语言(用“>”、“<”或“=”填空):MF_____EF, ME_____MF. 3、用直尺、圆规按要求画图,理解比较线段大小的方法:
7、用量角器量图中的角,30°的角有( 的角有( )个.
)个,60°的角有(
)个,90°的角有(
)个,120°
『知识拓展』 8、学校的绿化带有一个花坛,花坛的各种变长都相等,相邻的两条边的夹角都是120°,其中的一条边AB 长5.5米,按比例画出图形,花坛的周长是多少米?
2、如图:已知点C是线段AB的中点,AC=_____,AB=2_____=2_____,
1
AB=_____=_____.
2
A
A
A
2021-2022学年沪教版(上海)六年级数学第二学期第七章线段与角的画法课时练习练习题(无超纲)
沪教版(上海)六年级数学第二学期第七章线段与角的画法课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、时钟在9:00时候,时针和分针的夹角是()A.30°B.120°C.60°D.90°2、如图,货轮在O处观测到岛屿B在北偏东45°的方向,岛屿C在南偏东60°的方向,则∠BOC的大小是()A.75°B.80°C.100°D.105°3、如图,甲从A处出发沿北偏东60°向走向B处,乙从A处出发沿南偏西30°方向走到C处,则∠BAC的度数是 ( )A .160B .150C .120D .904、下列图中的1∠也可以用O ∠表示的是( )A .B .C .D .5、下列说法中正确的是( )A .射线OA 与射线AO 是同一条射线B .若ac bc =,则a b =C .连接点A 与点B 的线段,叫做A ,B 两点的距离D .若甲看乙的方向为北偏东30,则乙看甲的方向是南偏西306、已知1∠和2∠互余,且14017'∠=︒,则2∠的补角是( )A .4943'︒B .8017'︒C .13017'︒D .14043'︒7、下列说法正确的是( )A .画一条长2cm 的直线B .若OA =OB ,则O 是线段AB 的中点C .角的大小与边的长短无关D .延长射线OA8、如图,::2:3:4AOB BOC COD ∠∠∠=,射线OM 、ON 分别平分AOB ∠与COD ∠,MON ∠是直角,则COD ∠的度数为( )A .70°B .62°C .60°D .58°9、∠A 的余角是30°,这个角的补角是( )A .30°B .60°C .120°D .150°10、如图,从A 到B 有4条路径,最短的路径是③,理由是( )A .因为③是直的B .两点确定一条直线C .两点间距离的定义D .两点之间线段最短第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,25AOC ∠=︒,90COD ∠=︒,点A 、O 、B 在同一直线上,那么BOD ∠=_________°.2、某校八年级在下午4:30开展“阳光体育”活动,下午4:30这一时刻,时钟上分针与时针所夹的角为_____度.3、如图,点C、D在线段AB 上.AC=8cm,CD=5cm,AB=16cm,则图中所有线段的和是___cm.4、将一根木条钉在墙上,至少需要两根钉子,其数学原理是 _____.5、如果一个角余角的度数为42°51′,那么这个角补角的度数_______________.三、解答题(5小题,每小题10分,共计50分)1、如图:A、B、C、D四点在同一直线上.若AC BD=.(1)比较线段的大小:AB CD(填“>”、“=”或“<”);(2)若34BC AC=,且8AC=cm,求AD的长.2、如图,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)若∠AOD = 34°,求∠BOC ;(2)猜想∠AOC 与∠BOD 的关系,并给与证明.3、已知:OC ,OD 是∠AOB 内部的射线,OE 平分∠AOC ,OF 平分∠BOD .(1)若∠AOB =120°,∠COD =30°,如图①,求∠EOF 的度数;(2)若∠AOB =α,∠COD =β,如图②、图③,请直接用含α、β的式子表示∠EOF 的大小.4、已知线段AB ,点C 在线段BA 的延长线上,且AC =12AB ,若点D 是BC 的中点,AB =12cm ,求AD 的长.5、如图,已知点M 在射线BC 上,点A 在直线BC 外.(1)画线段BA ,连接AC 并延长AC 到N ,使3CN AC =;(2)在(1)的条件下用尺规作CMP A ∠=∠.且点P 在线段AC 的延长线上.(保留作图痕迹.不写作法)-参考答案-一、单选题1、D【分析】利用钟表表盘的特征:每相邻两个大格之间的夹角为30°,当时钟在9:00时候,时针指向9,分针指向12,中间恰好有3格,据此解答即可.【详解】解:时钟在9:00时候,时针指向9,分针指向12,钟表12个大格,每相邻两个大格之间的夹角为30°,因此时钟在9:00时候时针与分针的夹角正好为90°,故选:D.【点睛】本题考查钟表时针与分针的夹角,理解钟表盘上角的特点是解题关键.2、A【分析】在正北和正南方向上分别确定一点A、D,根据方位角定义,求出AOB∠、COD∠的度数,再利用角的关系,求出∠BOC的大小即可.【详解】解:在正北和正南方向上分别确定一点A、D,如下图所示:由题意可知:45AOB ∠=︒,60COD ∠=︒,18075BOC AOB COD ∴∠=︒-∠-∠=︒,故选:A .【点睛】本题主要是考查了方位角的定义,以及角之间的关系,熟练利用方位角的定义,求解对应角度,是解决该题的关键.3、B【分析】根据方向角的意义,求出∠BAE ,再根据角的和差关系进行计算即可.【详解】由方向角的意义可知,∠NAB =60°,∠SAC =30°,∴∠BAE =90°-60°=30°,∴∠BAC =∠BAE +∠EAS +∠SAC=30°+90°+30°=150°,故选:B .【点睛】本题考查方向角,理解方向角的意义以及角的和差关系是正确解答的关键.4、A【分析】如果顶点上只有一个角,可以用一个大写字母表示;如果不止一个角,就用三个大写字母表示,若∠1=∠O,则选项正确.【详解】解:A中∠1=∠O,正确,故符合要求;B中∠1=∠AOB≠∠O,错误,故不符合要求;C中∠1=∠AOC≠∠O,错误,故不符合要求;D中∠1=∠BOC≠∠O,错误,故不符合要求;故选A.【点睛】本题考查了角的表示.解题的关键在于正确的表示角.5、D【分析】根据射线的定义、等式的性质、两点之间的距离及方位角进行判断即可.【详解】解:A 、射线OA 与射线AO 是不同的两条射线,说项说法错误,不符合题意;B 、若ac bc =且0c ≠时,则a b =,说项说法错误,不符合题意;C 、连接点A 与点B 的线段的长度,叫做A ,B 两点的距离,说项说法错误,不符合题意;D 、若甲看乙的方向为北偏东30,则乙看甲的方向是南偏西30,选项说法正确,符合题意; 故选D .【点睛】本题考查了直线、射线、角的相关知识,解题的关键是掌握相关性质.6、C【分析】由余角的定义得∠2=90°-∠1,由补角的定义得2∠的补角=90°+∠1,再代入∠1的值计算.【详解】解:∵1∠和2∠互余,∴∠2=90°-∠1,∴2∠的补角=180°-∠2=180°-(90°-∠1)=180°-90°+∠1=90°+∠1,∵14017'∠=︒,∴2∠的补角=90°+4017'︒=13017'︒,故选C .【点睛】本题考查了余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.7、C【分析】根据线段的长度、两点间的距离、角的概念对各个选项进行判断即可.【详解】解:A、直线是无限长的,直线是不可测量长度的,所以画一条2cm长的直线是错误的,故本选项不符合题意;B、若OA=OB,则O不一定是线段AB的中点,故本选项不符合题意;C、角的大小与边的长短无关,故本选项符合题意;D、延长射线OA说法错误,射线可以向一个方向无限延伸,故本选项不符合题意;故选:C.【点睛】此题主要考查线段的长度、两点间的距离、角的性质与特点,解题的关键是熟知各自的性质特点进行分析判断.8、C【分析】设∠AOB的度数为2x°,则∠BOC的度数为3x°,∠COD的度数为4x°,根据射线OM,ON分别平分∠AOB与∠COD即可得出∠BOM=x°,∠CON=2x°,再根据∠MON=∠CON+∠BOC+∠BOM=90°即可得出关于x的一元一次方程,解方程求出x的值,即可得【详解】解:设∠AOB=2x°,则∠BOC=3x°,∠COD=4x°,∵射线OM、ON分别平分∠AOB与∠COD∠AOB=x°∴∠BOM=12∠COD=2x°∠CON=12∵∠MON=90°∴∠CON+∠BOC+∠BOM=90°∴2x+3x+x=90解得:x=15∴∠COD=4x=15°×4=60°.故选C【点睛】本题主要考查了角平分线的性质和角的和差关系,能根据图形准确找出等量关系列出方程是解题的关键.9、C【分析】根据一个角的补角比这个角的余角大90︒列式计算即可得解.【详解】解:一个角的余角是30,∴这个角的补角是3090120︒+︒=︒.故选:C.【点睛】本题考查了余角和补角,解题的关键是熟记概念并理清余角和补角的关系.10、D【分析】根据两点之间,线段最短即可得到答案.【详解】解:∵两点之间,线段最短,∴从A 到B 有4条路径,最短的路径是③,故选D .【点睛】本题主要考查了两点之间,线段最短,熟知两点之间,线段最短是解题的关键.二、填空题1、115【分析】先求出∠AOD 的度数,再根据∠BOD =180°-∠AOD 求出答案.【详解】解:∵25AOC ∠=︒,90COD ∠=︒,∴∠AOD =∠COD -∠AOC =65°,∵∠AOB =180°,∴∠BOD =180°-∠AOD =115°,故答案为:115.【点睛】此题考查了几何图形中角度的计算,正确掌握各角度的位置关系是解题的关键.2、45【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:∵四点半的时候,时针指向4和5的中点,分针指向6,∴此时时针与分针相隔1.5个大格数,∴时针与分针的夹角=30°×1.5=45°,故答案为:45.【点睛】本题主要考查了钟面角,解题的关键在于能够熟练掌握4点半时,时针和分针的位置.3、53【分析】先求出BD的长,再求出AD及CB的长,再将所有线段相加即可.【详解】解:∵AC=8cm,CD=5cm,AB=16cm,∴BD=AB-AC-CD=3cm,∴AD=AC+CD=13cm,CB=CD+BD=8c m,∴图中所有线段的和是AC+CD+BD+AD+CB+A B=8+5+3+13+8+16=53cm,故答案为:53.【点睛】此题考查了线段的加减关系,正确掌握各线段的位置及数量关系及图中线段的数量是解题的关键.4、两点确定一条直线【分析】将一根木条钉在墙上,至少需要两根钉子,是因为经过两点有且只有一条直线.【详解】解:将一根木条钉在墙上,至少需要两根钉子,其数学原理是:两点确定一条直线,故答案为:两点确定一条直线.【点睛】本题考查了直线的性质:两点确定一条直线,把数学知识和生活实际紧密联系起来是关键.5、132°51′【分析】先根据题意求出这个角的度数,再根据补角的定义求解即可.【详解】解:∵一个角的余角的度数是42°51′,∴这个角为90°-42°51′=47°9′,∴这个角的补角的度数是180°-47°9′=132°51′.故答案为:132°51′.【点睛】本题考查了与余角、补角有关的计算,正确计算是解题的关键.三、解答题1、(1)=;(2)10cm【分析】(1)利用等式的性质解答;(2)根据34BC AC=,且8AC=cm,求出BC及CD的长度,由此得到AD的长.【详解】解:(1)∵AC BD=,∴AC-BC=BD-BC ,∴AB=CD ,故答案为:=;(2)∵34BC AC =,8AC =, ∴6BC =,∴AB AC BC =-86=-2=,∵AB CD =,∴2CD =,∴AD=AB+BC+CD =2+6+2=10(cm ).【点睛】此题考查了线段的加减计算,正确理解图形中各线段的位置关系是解题的关键.2、(1)∠BOC =34°;(2)∠AOC +∠BOD =180°,证明见解析.【分析】(1)首先根据三角尺的特点得到90AOB COD ∠=∠=︒,然后根据同角的余角相等即可求出∠BOC 的度数;(2)首先根据题意表示出90AOC AOD ∠=∠+︒,90BOD AOD ∠=︒-∠,相加即可求出∠AOC 与∠BOD 的关系.【详解】解:(1)∵90AOB COD ∠=∠=︒,∴90AOD BOD ∠+∠=︒,90COB BOD ∠+∠=︒∴34BOC AOD ∠=∠=︒;(2)∠AOC +∠BOD =180°,证明如下:∵90AOC AOD COD AOD ∠=∠+∠=∠+︒,90BOD AOB AOD AOD ∠=∠-∠=︒-∠∴9090180AOC BOD AOD AOD ∠+∠=∠+︒+︒-∠=︒.【点睛】此题考查了三角尺中角和和差计算,同角的余角相等,解题的关键是熟练掌握三角尺中角的度数,同角的余角相等.3、(1)75︒(2)22αβαβ+-, 【分析】(1)根据角平分线的定义可得,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,根据120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒建立方程求得45x y +=︒,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠(2)方法同(1)根据题意可得图②:22x y βα++=,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠,图③:22x y βα++=进而根据EOF EOC COD DOF ∠=∠-∠+∠即可求得EOF ∠,【详解】解:(1) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒,∠COD =30°,即2230120x y ++︒=︒45x y ∴+=︒∴EOF EOC COD DOF ∠=∠+∠+∠30453075x y =++︒=︒+︒=︒(2) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,AOB COD αβ∠∠=,=,如图②即AOB DOF FOB COD AOE COE α∠=∠+∠+∠+∠+∠=22x y βα∴++=2x y αβ-∴+=∴EOF EOC COD DOF ∠=∠+∠+∠22x y αβαβββ-+=++=+=∴EOF ∠=2αβ+如图③AOB DOF FOB COD AOE COE α∠=∠+∠-∠+∠+∠=22x y βα∴+-=2x y αβ+∴+=∴EOF EOC COD DOF ∠=∠-∠+∠22x y αβαβββ+-=+-=-=∴EOF ∠=2αβ-【点睛】本题考查了几何图形中角度计算,角平分线的意义,掌握角度的计算是解题的关键. 4、AD 的长为3cm .【分析】先根据线段的和差可得6cm,18cm AC BC ==,再根据线段中点的定义可得9cm BD =,然后根据AD AB BD =-即可得.【详解】 解:1,1cm 22A C A B A B ==, 6cm AC ∴=,18cm BC AB AC ∴=+=,点D 是BC 的中点,19cm 2BD BC ∴==, 1293(cm)AD AB BD ∴=-=-=,答:AD 的长为3cm .【点睛】本题考查了与线段中点有关的计算,熟练掌握线段之间的运算关系是解题关键.5、(1)作图见解析;(2)作图见解析【分析】(1)连接AB ,连接AC 并延长,AC 延长线上截取长为3AC 的线段即可;(2)在A 、M 点处以相同的长度画弧,用圆规量取弧与AC 和AB 的交点EF 的长度,在弧与MB 的交点G 处画弧;连接M 与两弧的交点H 并延长,延长线与AN 的交点即为P .【详解】解:(1)如图,BA ,CN 为所画.(2)如图,CMP ∠为所求.【点睛】本题考察了尺规作图.解题的关键与难点在于怎样将数量关系进行转化.。
2021-2022学年度沪教版(上海)六年级数学第二学期第七章线段与角的画法定向攻克试题(含解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法定向攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有两根木条,一根AB 长为80cm ,另一根CD 长为130cm ,在它们的中点处各有一个小圆孔M 、N (圆孔直径忽略不计,M 、N 抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN 是( )A .25cmB .25cm 或105cmC .105cmD .50cm 或210cm2、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒ C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠3、如图,AB =24,C 为AB 的中点,点D 在线段AC 上,且AD :CB =1:3,则DB 的长度是( )A .12B .15C .18D .204、钟表9时30分时,时针与分针所成的角的度数为( ) A .110°B .75°C .105°D .90°5、将一副直角三角板如图所示摆放,则图中ADC ∠的大小为( )A .75°B .120°C .135°D .150°6、已知线段AB =8cm ,BC =6cm ,点M 是AB 中点,点N 是BC 中点,将线段BC 绕点B 旋转一周,则点M 与N 的距离不可能是( ) A .1B .6C .7D .87、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( ) A .用两个钉子就可以把木条固定在墙上 B .把弯曲的公路改直,就能缩短路程C .锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹D .植树时,只要定出两棵树的位置就能确定同一行树所在的直线8、在同一平面内,已知60AOB ∠=︒,20COB ∠=︒,则AOC ∠等于( ). A .80°B .40°C .80°或40°D .20°9、如图,货轮在O 处观测到岛屿B 在北偏东45°的方向,岛屿C 在南偏东60°的方向,则∠BOC 的大小是( )A .75°B .80°C .100°D .105°10、下列说法中,正确的是( ) A .射线AB 和射线BA 是同一条射线 B .若AB BC =,则点B 为线段AC 的中点 C .点,,A B C 在一条直线上,则AB BC AC +=D .点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一块直角三角板的直角顶点放在直尺的一边上,如果26448'∠=︒,那么1∠=______.2、一副三角板按如图所示的方式摆放,且1∠的度数是∠2的3倍,则∠2的度数为________.3、8点20分,钟表上时针与分针所成的角是____度.4、计算90° - 29°18′的结果是 ___________.5、若5318α'∠=︒,则α∠的余角为______度. 三、解答题(5小题,每小题10分,共计50分)1、已知:AOB α∠=,AOC β∠=(其中αβ>,90β<︒ ),OD 平分BOC ∠.(1)如图①,若90α∠=︒,30β∠=︒,补全图形并求BOD ∠的度数;(2)如图②,若100α∠=︒,40β∠=︒,补全图形并直接写出BOD ∠的度数为______;(3)若AOB α∠=,AOC β∠=(其中αβ>,90β<︒),直接写出BOD ∠=_______(用含αβ,的代数式表示)2、如图1,已知∠AOB =120°,OC 是∠AOB 内的一条射线,且∠AOC =23∠AOB ,OD 平分∠AOC . (1)分别求∠AOB 的补角和∠AOC 的度数; (2)现有射线OE ,使得∠BOE =30°.①小明在图2中补全了射线OE ,根据小明所补的图,求∠DOE 的度数;②小静说:“我觉得小明所想的情况并不完整,∠DOE 还有其他的结果.”请你判断小静说的是否正确?若正确,请求出∠DOE 的其他结果;若不正确,请说明理由.3、如图,直线AB ,CD 相交于点O ,90FOD ∠=︒,OF 平分AOE ∠.(1)写出图中所有与AOD ∠互补的角; (2)若120AOE ∠=︒,求BOD ∠的度数.4、将三角板COD 的直角顶点O 放置在直线AB 上.(1)若按照图1的方式摆放,且∠AOC =52°,射线OE 平分∠BOC ,则∠DOE 的大小为______; (2)若按照图2的方式摆放,射线OE 平分∠BOC .请写出∠AOC 与∠DOE 度数的等量关系,并说明理由. 5、计算题:(1)471734293853''''''︒-︒; (2)23353107436''︒⨯-︒÷.-参考答案-一、单选题 1、B 【分析】根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时;作出相应图形,结合图形求解即可.【详解】解:根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时,由图可得:()111113080252222MN CN AM CD AB cm =-=-=⨯-⨯=;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时,由图可得:()1111130801052222MN CN BM CD AB cm =+=+=⨯+⨯=;∴两根木条的小圆孔之间的距离MN 是25cm 或105cm .故选:B . 【点睛】题目主要考查线段两点间的距离,理解题意,分类讨论,作出相应图形是解题关键. 2、C 【分析】根据直角的性质及各角之间的数量关系结合图形求解即可. 【详解】解:∵直角三角板, ∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒, 即180BAE DAC ∠+∠=︒. 故选:C . 【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键. 3、D 【分析】根据线段中点的定义可得BC=12AB,再求出AD,然后根据DB=AB-AD代入数据计算即可得解.【详解】解:∵AB=24,点C为AB的中点,∴BC=12AB=12×24=12,∵AD:CB=1:3,∴AD=13×12=4,∴DB=AB-AD=24-4=20.故选:D.【点睛】本题考查了两点间的距离,掌握线段中点的性质、灵活运用数形结合思想是解题的关键.4、C【分析】本题考查了钟表里的旋转角的问题,钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6︒.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30.也就是说,分针转动360︒时,时针才转动30,即分针每转动1︒,时针才转动1 () 12度,则问题可求解.【详解】解:9时30分时,时针指向9与10之间,分针指向6.钟表12个数字,每相邻两个数字之间的夹角为30,9∴时30分时分针与时针的夹角是3300.530105⨯︒+︒⨯=︒度.故选:C.【点睛】本题考查的是钟表表盘与角度相关的特征.能更好地认识角,感受角的大小.5、C【分析】根据题意得:∠ADB=45°,∠BDC=90°,从而得到∠ADC=∠ADB+∠BDC=135°,即可求解.【详解】解:根据题意得:∠ADB=45°,∠BDC=90°,∴∠ADC=∠ADB+∠BDC=45°+90°=135°.故选:C【点睛】本题主要考查了直角三角板中角的计算,熟练掌握一副直角三角板中每个角的度数是解题的关键.6、D【分析】正确画出的图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,求出线段MN的长度的最大和最小值即可.【详解】解:∵AB=8cm,BC=6cm,点M是AB中点,点N是BC中点,第一种情况:B在AC上,线段MN的长度最大,最大值为:MN=12AB+12BC=7;第二种情况:B在AC延长线上,线段MN的长度最小,最小值为:则MN=12AB﹣12BC=1.故选:D【点睛】本题考查了两点间的距离,解题关键是求出线段MN的长度的最大和最小值.7、B【分析】由题意可得A,B,D选项都与直线相关联,而C选项与距离相关,可以用“两点之间,线段最短”来解析,从而可得答案.【详解】解:用两个钉子就可以把木条固定在墙上,可用基本事实“两点决定一条直线”来解释,故A不符合题意;把弯曲的公路改直,就能缩短路程,可用基本事实“两点之间,线段最短”来解释,故B符合题意;锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹,可用基本事实“两点决定一条直线”来解释,故C不符合题意;植树时,只要定出两棵树的位置就能确定同一行树所在的直线,可用基本事实“两点决定一条直线”来解释,故D不符合题意;故选B【点睛】本题考查的是两点之间,线段最短,两点决定一条直线,理解生活中的现象所反应的几何原理是解本题的关键.8、C【分析】C点可能在OB上方也可能在OB下方,故应分类讨论计算.【详解】如图所示,当C点在OB上方,∠=∠-∠=60°-20°=40°则AOC AOB COB当C 点在OB 下方则'AOC AOB C OB ∠=∠+∠=60°+20°=80°故答案为:C .【点睛】本题考查了角的运算,考虑到C 点的有两种位置情况是解题的关键.9、A【分析】在正北和正南方向上分别确定一点A 、D ,根据方位角定义,求出AOB ∠、COD ∠的度数,再利用角的关系,求出∠BOC 的大小即可.【详解】解:在正北和正南方向上分别确定一点A 、D ,如下图所示:由题意可知:45AOB ∠=︒,60COD ∠=︒,18075BOC AOB COD ∴∠=︒-∠-∠=︒,故选:A .【点睛】本题主要是考查了方位角的定义,以及角之间的关系,熟练利用方位角的定义,求解对应角度,是解决该题的关键.10、D【分析】根据射线的定义,线段中点定义,线段的数量关系分别判断即可.【详解】解:A 、射线AB 和射线BA 不是同一条射线,故该项不符合题意;B 、若AB BC =,则点B 不一定为线段AC 的中点,故该项不符合题意;C 、点,,A B C 在一条直线上,则AB BC AC +=不一定成立,故该项不符合题意;D 、点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =,故该项符合题意; 故选:D .【点睛】此题考查了射线的定义,线段中点定义,线段的数量关系,正确理解题意并分析进行判断是解题的关键.二、填空题1、2512'︒##【分析】160'︒=,由1902∠=︒-∠可以求出1∠的值.【详解】解:1902∠=︒-∠1906448896064482512''''∴∠=︒-︒=︒-︒=︒12251225()25.260'︒=︒+︒=︒ 故答案为:2512'︒(或25.2).【点睛】本题考察了角度的转化.解题的关键在于明确160'︒=.2、22.5°#22.5度【分析】由题意可知,∠1 与∠2互余,可得1290∠+∠=︒,且132∠=∠ ,即可求出∠2的度数.【详解】解:由题意知1290132∠+∠=︒⎧⎨∠=∠⎩解得167.5222.5∠=︒⎧⎨∠=︒⎩ 故答案为:22.5°.【点睛】本题考查了与三角板有关的角度计算.解题的关键是找出角度之间的数量关系.3、130【分析】在8时20分时,时针过8,分针指向4,因为每一个大格子的夹角度数为360°÷12=30°,时针每小时走一个大格,即30°,20分钟走一小时的2060,即13,是30°×13=10°,所以时针过8成10°夹角,再加上从4到8有4个大格子的夹角的度数即可.【详解】解:在8时20分时,时针过8,在8与9之间,分针指向4,时针走20分所走的度数为30°×13=10°,分针与8点之间的夹角为4×30=120°,所以此时时钟面上的时针与分针的夹角是120°+10°=130°.故答案为: 130.【点睛】本题考查钟面角的计算;用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.4、6042︒'【分析】利用角的度数度分秒之间的进率,即可求解.【详解】解:902918'6042︒-︒=︒'.故答案为:6042︒'【点睛】本题主要考查了角的和与差,角的度数的单位换算,熟练掌握角的和与差,角的度数的单位换算进率是解题的关键.5、36.7【分析】根据余角的定义计算即可.【详解】解:∵5318α'∠=︒=53.3°,∴α∠的余角=90°-53.3°=36.7°,三、解答题1、(1)补全图形见解析;∠BOD =30°;(2)补全图形见解析;70°;(3)2αβ+或2αβ-.【分析】(1)先求出60BOC AOB AOC ∠=∠-∠=︒,再由角平分线的性质即可得到1302∠=∠=︒BOD BOC ;(2)先求出140BOC AOB AOC ∠=∠+∠=︒,再由角平分线的性质即可得到1702BOD BOC ∠=∠=︒; (3)分OC 在∠AOB 内部和外部两种情况讨论求解即可.【详解】解:(1)90AOB α∠==︒,30AOC β∠==︒,∴60BOC AOB AOC ∠=∠-∠=︒,∵OD 平分∠BOC , ∴1302∠=∠=︒BOD BOC ;(2) 100AOB α∠==︒,40AOC β∠==︒,∴140BOC AOB AOC ∠=∠+∠=︒,∵OD 平分∠BOC , ∴1=702BOD BOC =︒∠∠; 故答案为:70°;(3)如图1所示,当OC 在∠AOB 内部时,AOB α∠=,AOC β∠=,∴BOC AOB AOC αβ∠=∠-∠=-,∵OD 平分∠BOC , ∴122BOD BOC αβ-∠=∠=;如图2所示,当OC 在∠AOB 外部时,∵AOB α∠=,AOC β∠=,∴BOC AOB AOC αβ∠=∠+∠=+,∵OD 平分∠BOC , ∴1=22BOD BOC αβ+=∠∠; 故答案为:2αβ+或2αβ-.【点睛】本题主要考查了与角平分线有关的角度计算,解题的关键在于能够利用数形结合和分类讨论的思想求解.2、(1)80°;(2)①110°;②正确,50°【分析】(1)根据补角定义求解即可和已知条件直接求解即可;(2)①根据角平分线的定义求得∠AOD,进而求得∠BOD,根据∠DOE=∠BOD+∠BOE即可求得∠DOE;②根据题意作出图形,进而结合图形可知∠DOE=∠BOD-∠BOE即可求得∠DOE;【详解】解:(1)因为∠AOB=120°,所以∠AOB的补角为180°-∠AOB=60°.∠AOB,因为∠AOC=23×120°=80°;所以∠AOC=23(2)①因为OD平分∠AOC,∠AOC=80°,∠AOC=40°,所以∠AOD=12所以∠BOD=∠AOB-∠AOD=80°,所以∠DOE=∠BOD+∠BOE=110°;②正确;如图,射线OE还可能在∠BOC的内部,所以∠DOE =∠BOD -∠BOE =803050︒-︒=︒【点睛】本题考查了求一个角的补角,角平分线的定义,角度的计算,数形结合是解题的关键.3、(1)AOC ∠,BOD ∠,DOE ∠;(2)30°【分析】(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF =∠EOF ,根据垂直的定义可得∠COF =∠DOF =90°,然后根据等角的余角相等求出∠DOE =∠AOC ,从而最后得解;(2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答.【详解】解:(1)因为直线AB ,CD 相交于点O ,所以AOC ∠和BOD ∠与AOD ∠互补.因为OF 平分AOE ∠,所以AOF EOF ∠=∠.因为90FOD ∠=︒,所以18090COF FOD ∠=︒-∠=︒.因为90AOC COF AOF EOF ∠=∠-∠=︒-∠,90DOE FOD EOF EOF ∠=∠-∠=︒-∠,所以AOC DOE ∠=∠,所以与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠.(2)因为OF 平分AOE ∠,所以111206022AOF AOE ∠=∠=⨯︒=︒,由(1)知,90COF ∠=︒,所以906030AOC COF AOF ∠=∠-∠=︒-︒=︒,由(1)知,AOC ∠和BOD ∠与AOD ∠互补,所以30BOD AOC ∠=∠=︒(同角的补角相等).【点睛】本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD互补的第三个角.4、(1)26°,(2)∠DOE=1∠AOC,理由见解析2【分析】(1)先根据邻补角定义求出∠BOC,根据角平分线定义求出∠COE,代入∠DOE=∠COD﹣∠COE求出即可;(2)由(1)的过程可得解.【详解】解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∵∠AOC=52°,∴∠BOC=128°.∵OE平分∠BOC,∠BOC,∴∠COE=12∴∠COE=64°.∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=26°,故答案为:26°.∠AOC,(2)∠DOE=12∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∴∠BOC =180°﹣∠AOC .∵OE 平分∠BOC ,∴∠COE =12∠BOC =90°﹣12∠AOC , ∵∠COD =90°,∴∠DOE =∠COD ﹣∠COE =90°﹣(90°﹣12∠AOC )=12∠AOC . 【点睛】本题考查了角平分线定义,角的有关计算等知识点,能正确求出∠COE 的度数是解此题的关键,求解过程类似.5、(1)173841'''︒;(2)524750'''︒【分析】根据角的运算的意义和度、分、秒的关系进行计算即可【详解】(1)471734293853467694293853173841'''''''''''''''︒-︒=︒-︒=︒;(2)233531074367045175710524750'''''''''︒⨯-︒÷=︒-︒=︒【点睛】此题考查度分秒之间的运算. 注意度、分、秒是60进制的.角度的运算规律:①两个度数相减,被减数可借1°转化为60',借1'转化为60'',再计算;②两个度数相加,度与度、分与分、秒与秒对应相加,秒的结果若满60则转化为分,分的结果若满60则转化为度;③度数乘一个数,则用度、分、秒分别乘这个数,秒的结果满60则转化为分,分的结果满60则转化为度;④度数除以一个数,则用度、分、秒分别除以这个数,秒不够则从分中转化,分不够则从度中转化。
2021-2022学年度沪教版(上海)六年级数学第二学期第七章线段与角的画法专项攻克试题(含详解)
沪教版(上海)六年级数学第二学期第七章线段与角的画法专项攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是()A.一点确定一条直线B.射线比直线短C.两点之间,线段最短D.若AB=BC,则B为AC的中点2、如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A .1个B .2个C .3个D .4个3、下列说法中正确的是( )A .射线OA 与射线AO 是同一条射线B .若ac bc =,则a b =C .连接点A 与点B 的线段,叫做A ,B 两点的距离D .若甲看乙的方向为北偏东30,则乙看甲的方向是南偏西304、下列说法中,正确的是( )A .相交的两条直线叫做垂直B .经过一点可以画两条直线C .平角是一条直线D .两点之间的所有连线中,线段最短5、下列图形中能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是( )A .B .C .D .6、如图,OA 是北偏东40°方向的一条射线,若∠AOB =90°,OB 的方向是( )A .西偏北50°B .东偏北50°C .北偏东50°D .北偏西50°7、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°8、下列说法中,正确的是( )A .射线AB 和射线BA 是同一条射线B .若AB BC =,则点B 为线段AC 的中点C .点,,A B C 在一条直线上,则AB BC AC +=D .点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =9、已知100AOB ∠=︒,过点O 作射线OC 、OM ,使20AOC ∠=︒、OM 是BOC ∠的平分线,则BOM ∠的度数为( )A .60︒B .60︒或40︒C .120︒或80︒D .40︒10、如图,下列说法中不正确的是( )A .1∠与AOB ∠是同一个角B .AOC ∠也可用O ∠来表示C .图中共有三个角:AOB ∠,AOC ∠,BOC ∠D .α∠与BOC ∠是同一个角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个角的度数为5218︒',则这个角的余角的度数为________.2、点CD 都在线段AB 上,且AB =30,CD =12,E ,F 分别为AC 和BD 的中点,则线段EF 的长为 _____ .3、如图,线段AC : CB = 2 : 3, AD : DB = 5 : 6, CD =3, 则线段AB 的长度为 ________ .4、小明同学在用一副三角尺“拼角”活动中,拼成了如图所示的有公共顶点A 的形状,其中∠C =30°,∠E =45°,则∠DAB ﹣∠EAC =_____°.5、OC 是∠AOB 的平分线,从点O 引出一条射线OD 、使∠BOD =13∠COD ,若∠BOD =15°,则∠AOB =_____°.三、解答题(5小题,每小题10分,共计50分)1、如图,已知不在同一条直线上的三点A ,B ,C .(1)延长线段BA 到点D ,使得AD AC AB =+(用尺规作图,保留作图痕迹);(2)若∠CAD 比∠CAB 大100︒,求∠CAB 的度数.2、如图:A 、B 、C 、D 四点在同一直线上.若AC BD =.(1)比较线段的大小:AB CD (填“>”、“=”或“<”);(2)若34BC AC =,且8AC =cm ,求AD 的长.3、已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE ,使60BOC EOD ∠-∠=︒.(1)如图①,若OD 平分BOC ∠,则AOE ∠的度数是_______;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置,且OD 在BOC ∠内部时,①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接..用含n 的代数式表示AOE ∠. 4、将三角板COD 的直角顶点O 放置在直线AB 上.(1)若按照图1的方式摆放,且∠AOC=52°,射线OE平分∠BOC,则∠DOE的大小为______;(2)若按照图2的方式摆放,射线OE平分∠BOC.请写出∠AOC与∠DOE度数的等量关系,并说明理由.CD ,求线段5、如图,B,C两点把线段AD分成2:3:4的三部分,点M为AD的中点,若8cmMC的长.-参考答案-一、单选题1、C【详解】解:A选项,两点确定一条直线,故A选项不符合题意;B选项,射线向一方无限延伸,不可度量;直线向两方无限延伸,不可度量,故B选项不符合题意;C选项,两点之间,线段最短,故C选项符合题意;D选项,A,B,C三点不一定共线,故D选项不符合题意.故选:C.【点睛】本题考查两点确定一条直线,射线和直线的联系与区别,两点之间线段最短,线段的中点(若点C把线段AB分成相等的两条线段AC和BC,点C叫做线段AB的中点),熟练掌握这些知识点是解题关2、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.【详解】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,∵BC=2,CD=DE=3,∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.故选B.【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.【分析】根据射线的定义、等式的性质、两点之间的距离及方位角进行判断即可.【详解】解:A 、射线OA 与射线AO 是不同的两条射线,说项说法错误,不符合题意;B 、若ac bc =且0c ≠时,则a b =,说项说法错误,不符合题意;C 、连接点A 与点B 的线段的长度,叫做A ,B 两点的距离,说项说法错误,不符合题意;D 、若甲看乙的方向为北偏东30,则乙看甲的方向是南偏西30,选项说法正确,符合题意; 故选D .【点睛】本题考查了直线、射线、角的相关知识,解题的关键是掌握相关性质.4、D【分析】利用线段、直线的有关概念进行分析判断即可.【详解】解:A 、只有当相交的两条直线有一个角是直角时,才能叫做垂直,错误;B 、经过一点可以画无数条直线,错误;C 、平角和直线是两种不同的概念,说平角是一条直线,错误;D 、两点之间的所有连线中,线段最短,是公理,正确.故选:D .【点睛】本题主要是考查了线段、直线的有关概念和性质.注意当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直.另外,熟练应用概念和性质进行求解,是解决本题的关键.【分析】利用角的定义及表示方法,进行判断即可得出结果.【详解】解:A、图中角只能表示为:∠1,∠AOB,故错误;B、图中角可表示为:∠1,∠AOB,∠O,故正确;C、图中角可表示为:∠1,∠AOB,故错误;D、图中角可表示为:∠1,∠AOB,故错误.故答案为:B.【点睛】本题主要考察的是角的表示方法,确定顶点即角的两边是解题的关键.6、D【分析】根据方位角的概念,写出射线OB表示的方向即可.【详解】解:如图:∵OA 是北偏东40°方向上的一条射线,∠AOB =90°,∴∠1=90°-40°=50°,∴射线OB 的方向角是北偏西50°,故选:D .【点睛】本题考查了方向角,解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.7、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A =37°,∴∠A 的补角的度数为180°-∠A =143°,故选D .【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.8、D【分析】根据射线的定义,线段中点定义,线段的数量关系分别判断即可.【详解】解:A 、射线AB 和射线BA 不是同一条射线,故该项不符合题意;B 、若AB BC =,则点B 不一定为线段AC 的中点,故该项不符合题意;C 、点,,A B C 在一条直线上,则AB BC AC +=不一定成立,故该项不符合题意;D 、点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =,故该项符合题意; 故选:D .【点睛】此题考查了射线的定义,线段中点定义,线段的数量关系,正确理解题意并分析进行判断是解题的关键.9、B【分析】考虑线段OC 在角的内部和外部两种情况,每一种情况都用角的定义和角平分的定义求解,经计算结果为20°或40°.【详解】解:当OC 在∠AOB 的内部时,如图所示:∵∠AOC =20°,∠AOB =100°,∴∠BOC =100°﹣20°=80°,又∵OM 是∠BOC 的平分线,∴∠BOM =12BOC ∠=40°;当OC 在∠AOB 的外部时,如图所示:∵∠AOC =20°,∠AOB =100°,∴∠BOC =100°+20°=120°,又∵OM 是∠BOC 的平分线,∴∠BOM =12BOC ∠=60°;综合所述∠BOM 的度数有两个,为60°或40°;故选:B .【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是分类计算角的大小.10、B【分析】根据角的表示方法依次判断.【详解】解:A 、1∠与AOB ∠是同一个角,故该项不符合题意; B 、AOC ∠也不可用O ∠来表示,故该项符合题意;C 、图中共有三个角:AOB ∠,AOC ∠,BOC ∠,故该项不符合题意;D 、α∠与BOC ∠是同一个角,故该项不符合题意;故选:B .【点睛】此题考查了角的表示方法:一个角可以用三个大写字母,一个大写字母,一个希腊字母或一个数字表示,正确掌握角的几种表示方法的特点是解题的关键.二、填空题︒'1、3742【分析】根据余角的定义:如果两个角的度数和为90°,那么这两个角互余,进行求解即可.【详解】解:90°-52°18′=37°42′,∴这个角的余角是37°42′,故答案为:37°42′.【点睛】本题考查了求一个角的余角,角度制的额计算,熟记余角的定义是解题的关键.2、21【分析】根据线段的和差,可得(AC+DB),根据线段中点的性质,可得(AE+BF),再根据线段的和差,可得答案.【详解】解:如图,AC+DB=AB﹣CD=30﹣12=18.由点E是AC的中点,点F是BD的中点,得∴AE+BF=1(AC+DB)=9.2EF=AB﹣(AE+BF)=30﹣9=21.如图,AC+DB=AB+CD=30+12=42.由点E是AC的中点,点F是BD的中点,得∴AE+BF=12(AC+DB)=21.EF=AB﹣(AE+BF)=30﹣21=9.故答案为:21或9.【点睛】本题考查了求线段长,利用线段的和差得出(AE+BF)是解题关键.3、55【分析】设AB=x,根据比值分别表示出AC、AD的长,然后根据AD-AC=CD列出关于x的方程,解出方程即可.【详解】解:设AB=x,∵AC:CB = 2 : 3,AD:DB = 5 : 6,CD=3,∴2255AC AB x==,551111AD AB x==,∵AD-AC=CD,即523 115x x-=,33x=,55x=解得:55故答案为:55【点睛】本题考查了线段之间的和倍差计算,一元一次方程的应用,分别表示出AC、AD的长并列出关于x的方程是解题的关键.4、15【分析】根据三角尺特殊角的度数求出∠BAC=60°,∠DAE=45°,进而将∠DAB﹣∠EAC转化为∠BAC﹣∠DAE即可.【详解】解:由三角尺的特殊角可知,∠BAC=60°,∠DAE=45°,∴∠DAB﹣∠EAC=∠BAC﹣∠DAE=60°﹣45°=15°,故答案为:15.【点睛】本题考查三角尺的度数计算,熟知三角尺各角的度数,能将∠DAB﹣∠EAC转化为∠BAC﹣∠DAE是解答的关键.5、60或120【分析】根据题意分类讨论当射线OB在OC和OD之间时和当射线OB在OC和OD之外时,画出图形,结合角平分线的性质即可解答.【详解】根据题意可分类讨论:①当射线OB 在OC 和OD 之间时,如图,∵15BOD ∠=︒,13BOD COD ∠=∠,∴45COD ∠=︒,∴451530BOC COD BOD ∠=∠-∠=︒-︒=︒.∵OC 是∠AOB 的平分线,∴223060AOB BOC ∠=∠=⨯︒=︒;②当射线OB 在OC 和OD 之外时,如图,∵15BOD ∠=︒,13BOD COD ∠=∠,∴45COD ∠=︒,∴451560BOC COD BOD ∠=∠+∠=︒+︒=︒.∵OC 是∠AOB 的平分线,∴2260120AOB BOC ∠=∠=⨯︒=︒.综上,可知AOB ∠的大小为60︒或120︒.故答案为:60或120【点睛】本题考查角的运算,角平分线的性质.利用数形结合和分类讨论的思想是解答本题的关键.三、解答题1、(1)见解析,(2)40°【分析】(1)先画射线BA ,在BA 延长线上截取AE =AC ,然后在线段AE 的延长线上截取ED =AB ;(2)利用邻补角的定义得到∠CAD +∠CAB =180°,再加上已知条件∠CAD ﹣∠CAB =100°,然后通过解方程组得到∠CAB 的度数.【详解】解:(1)如图,线段AD 为所作;(2)∵∠CAD ﹣∠CAB =100°,∠CAD +∠CAB =180°,∴100°+∠CAB +∠CAB =180°,2∠CAB =80°,∴∠CAB =40°.【点睛】本题题考查了画线段和求角度,解题关键是熟练掌握几何作图,明确角之间的数量关系.2、(1)=;(2)10cm【分析】(1)利用等式的性质解答;(2)根据34BC AC =,且8AC =cm ,求出BC 及CD 的长度,由此得到AD 的长. 【详解】解:(1)∵AC BD =,∴AC-BC=BD-BC ,∴AB=CD ,故答案为:=;(2)∵34BC AC =,8AC =, ∴6BC =,∴AB AC BC =-86=-2=,∵AB CD =,∴2CD =,∴AD=AB+BC+CD =2+6+2=10(cm ).【点睛】此题考查了线段的加减计算,正确理解图形中各线段的位置关系是解题的关键.3、(1)90︒;(2)①80°;②601201n AOE n ︒⋅∠=︒-+. 【分析】 (1)由题意根据角平分线可得∠BOD =30°,∠BOE =90°,进而可得∠AOE 的度数;(2)①由题意根据∠BOC =60°和∠COD :∠BOD =1:2可得∠BOD =40°,∠BOE =100°,进而可得∠AOE 的度数;②由题意根据∠BOC =60°和∠COD :∠BOD =1:n 可得60601n BOE n ︒⋅∠=︒++,再由①的思路可得答案. 【详解】解:(1)因为OD 平分BOC ∠,60BOC EOD ∠=∠=︒,所以30BOD ∠=︒,603090BOE ∠=︒+︒=︒,所以1809090AOE ∠=︒-︒=︒.故答案为:90︒;(2)①因为60BOC ∠=︒,:1:2COD BOD ∠∠=,所以40BOD ∠=︒,所以6040100BOE ∠=︒+︒=︒,所以18010080AOE ∠=︒-︒=︒. ②601201n AOE n ︒⋅∠=︒-+. 因为60BOC ∠=︒,:1:COD BOD n ∠∠=, 所以601n BOD n ︒⋅∠=+, 所以60601n BOE n ︒⋅∠=︒++, 所以60601806012011n n AOE n n ︒⋅︒⋅⎛⎫∠=︒-︒+=︒- ⎪++⎝⎭.【点睛】本题主要考查角的运算,注意掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.4、(1)26°,(2)∠DOE=1∠AOC,理由见解析2【分析】(1)先根据邻补角定义求出∠BOC,根据角平分线定义求出∠COE,代入∠DOE=∠COD﹣∠COE求出即可;(2)由(1)的过程可得解.【详解】解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∵∠AOC=52°,∴∠BOC=128°.∵OE平分∠BOC,∠BOC,∴∠COE=12∴∠COE=64°.∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=26°,故答案为:26°.∠AOC,(2)∠DOE=12∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∴∠BOC =180°﹣∠AOC .∵OE 平分∠BOC ,∴∠COE =12∠BOC =90°﹣12∠AOC , ∵∠COD =90°,∴∠DOE =∠COD ﹣∠COE =90°﹣(90°﹣12∠AOC )=12∠AOC . 【点睛】本题考查了角平分线定义,角的有关计算等知识点,能正确求出∠COE 的度数是解此题的关键,求解过程类似.5、线段MC 的长为1cm .【分析】根据已知条件“B 、C 两点把线段AD 分成2:3:4三部分”和“CD =8”易求线段AD =18.然后根据中点的性质知MD =12AD ,则由图中可以得到MC =MD −CD =1.【详解】解:设2AB xcm =,则3BC xcm =,4CD xcm =,AD AB BC CD =++,2349AD x x x x ∴=++= 48CD x ==,2x ∴=,918AD x ∴==. M 是AD 中点,192MD AD ∴==.∴=-=-=.MC MD CD cm981答:线段MC的长为1cm.【点睛】本题考查了两点间的距离.利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。
2021-2022学年度沪教版(上海)六年级数学第二学期第七章线段与角的画法必考点解析试卷
沪教版(上海)六年级数学第二学期第七章线段与角的画法必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,::2:3:4AOB BOC COD ∠∠∠=,射线OM 、ON 分别平分AOB ∠与COD ∠,MON ∠是直角,则COD ∠的度数为( )A .70°B .62°C .60°D .58°2、已知100AOB ∠=︒,过点O 作射线OC 、OM ,使20AOC ∠=︒、OM 是BOC ∠的平分线,则BOM ∠的度数为( )A .60︒B .60︒或40︒C .120︒或80︒D .40︒3、如图所示,∠COD 的顶点O 在直线AB 上,OE 平分∠COD ,OF 平分∠AOD ,已知∠COD =90°,∠BOC =α,则∠EOF 的度数为( )A .90°+αB .90°+2αC .45°+αD .90°﹣2α 4、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为( )A .75°14′B .59°86′C .59°46′D .14°46′5、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°6、如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .142°C .152°D .158°7、有两根木条,一根AB 长为80cm ,另一根CD 长为130cm ,在它们的中点处各有一个小圆孔M 、N (圆孔直径忽略不计,M 、N 抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN 是( )A .25cmB .25cm 或105cmC .105cmD .50cm 或210cm8、如果一个角的补角是这个角的4倍,那么这个角为( )A .36°B .30°C .144°D .150°9、已知1∠和2∠互余,且14017'∠=︒,则2∠的补角是( )A .4943'︒B .8017'︒C .13017'︒D .14043'︒10、如图,C 为线段AB 上一点,点D 为AC 的中点,且2AD =,10AB =.若点E 在直线AB 上,且1BE =,则DE 的长为( )A .7B .10C .7或9D .10或11第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果∠α是直角的14,则∠α的补角是______度. 2、点A ,B ,C 在同一条直线上,6cm =AB ,2cm BC =,M 为AB 中点,N 为BC 中点,则MN 的长度为________.3、已知∠1与∠2互余,若∠1=33°27′,则∠2的补角的度数是___________.4、如图,在灯塔O 处观测到轮船A 位于北偏西55°24′的方向上,同一时刻轮船B 在灯塔O 的正南方向上,(1)55°24′=_____°;(2)∠AOB =_____°.5、如图,将一副三角板的两个直角顶点重合摆放到桌面上,若3427'BOC ∠=︒,则AOD ∠=___________°.三、解答题(5小题,每小题10分,共计50分)1、如图,已知不在同一条直线上的三点A ,B ,C .(1)延长线段BA 到点D ,使得AD AC AB =+(用尺规作图,保留作图痕迹);(2)若∠CAD 比∠CAB 大100︒,求∠CAB 的度数.2、如图,网格中每个小格都是边长为1的正方形,点A 、B 、C 、D 都在网格的格点上.(1)过点C 画直线l ∥AB ;(2)过点B 画直线AC 的垂线,垂足为点E ;(3)比较大小:BA BE,理由是:;(4)若线段BC=5,则点D到直线BC的距离为.3、如图,已知线段AB上有两点C、D,且AC:CD:DB=2:3:4,E,F分别为AC、DB的中点,EF=12cm.(1)线段BC的长;(2)线段AB的长;(3)若点G在直线AB上,且GB=3cm,求线段DG的长.4、线段和角是我们初中数学常见的平面几何图形,它们的表示方法、和差计算以及线段的中点、角的平分线的概念等有很多相似之处,所以研究线段或角的问题时可以运用类比的方法.(1)如图1,已知点M是线段AC的中点,点N是线段BC的中点,若AB=10cm,BC=6cm,求线段MN的长;(2)如图1,已知点M是线段AC的中点,点N是线段BC的中点,若AB=10m,BC=x cm,求线段MN 的长;(3)如图2,OM平分∠AOC,ON平分∠BOC,设∠AOB=α,∠BOC=β,请用含α,β的代数式表示∠MON的大小.5、如图,点C、D是线段AB上两点,AC∶BC=3∶2,点D为AB的中点.(1)如图1所示,若AB=40,求线段CD的长.(2)如图2所示,若E为AC的中点,ED=7,求线段AB的长.-参考答案-一、单选题1、C【分析】设∠AOB的度数为2x°,则∠BOC的度数为3x°,∠COD的度数为4x°,根据射线OM,ON分别平分∠AOB与∠COD即可得出∠BOM=x°,∠CON=2x°,再根据∠MON=∠CON+∠BOC+∠BOM=90°即可得出关于x的一元一次方程,解方程求出x的值,即可得【详解】解:设∠AOB=2x°,则∠BOC=3x°,∠COD=4x°,∵射线OM、ON分别平分∠AOB与∠COD∠AOB=x°∴∠BOM=12∠COD=2x°∠CON=12∵∠MON=90°∴∠CON+∠BOC+∠BOM=90°∴2x+3x+x=90解得:x=15∴∠COD=4x=15°×4=60°.故选C【点睛】本题主要考查了角平分线的性质和角的和差关系,能根据图形准确找出等量关系列出方程是解题的关键.2、B【分析】考虑线段OC在角的内部和外部两种情况,每一种情况都用角的定义和角平分的定义求解,经计算结果为20°或40°.【详解】解:当OC在∠AOB的内部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°﹣20°=80°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC∠=40°;当OC在∠AOB的外部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°+20°=120°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC∠=60°;综合所述∠BOM 的度数有两个,为60°或40°;故选:B .【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是分类计算角的大小.3、B【分析】先利用∠COD =90°,∠BOC =α,求出∠BOD 的度数,再求出∠AOD 的度数,利用角平分线,分别求出∠FOD 和∠EOD 的度数,相加即可.【详解】解:∵∠COD =90°,∠BOC =α,∴∠BOD =90°-∠BOC =90°-α,∴∠AOD =180°-∠BOD =90°+α,∵OF 平分∠AOD , ∴114522DOF AOD α∠=∠=︒+,∵OE 平分∠COD , ∴1452DOE COD ∠=∠=︒, ∴∠EOF =∠FOD +∠DOE =90°+2α; 故选:B .【点睛】 本题考查了角平分线的计算,解题关键是准确识图,弄清角之间的和差关系.4、C【分析】观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.【详解】解:∠β=180°﹣90°﹣∠α=90°﹣30°14′=59°46′.故选:C.【点睛】本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.5、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.6、C【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【详解】解:∵∠AOC =∠DOB =90°,∠DOC =28°,∴∠AOB =∠AOC +∠DOB ﹣∠DOC =90°+90°﹣28°=152°. 故选:C . 【点睛】此题主要考查学生对角的计算的理解和掌握,找到公共角∠DOC 是解题的关键. 7、B 【分析】根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时;作出相应图形,结合图形求解即可.【详解】解:根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时,由图可得:()111113080252222MN CN AM CD AB cm =-=-=⨯-⨯=;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时,由图可得:()1111130801052222MN CN BM CD AB cm =+=+=⨯+⨯=;∴两根木条的小圆孔之间的距离MN 是25cm 或105cm .故选:B . 【点睛】题目主要考查线段两点间的距离,理解题意,分类讨论,作出相应图形是解题关键.8、A 【分析】设这个角为x ,则它的补角为180x ︒- ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解. 【详解】解:设这个角为x ,则它的补角为180x ︒- ,根据题意得: 1804x x ︒-= ,解得:36x =︒ . 故选:A 【点睛】本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键. 9、C 【分析】由余角的定义得∠2=90°-∠1,由补角的定义得2∠的补角=90°+∠1,再代入∠1的值计算. 【详解】解:∵1∠和2∠互余, ∴∠2=90°-∠1, ∴2∠的补角=180°-∠2 =180°-(90°-∠1) =180°-90°+∠1 =90°+∠1, ∵14017'∠=︒,∴2∠的补角=90°+4017'︒=13017'︒,故选C . 【点睛】本题考查了余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角. 10、C 【分析】由题意根据线段中点的性质,可得AD 、DC 的长,进而根据线段的和差,可得DE 的长. 【详解】解:∵点D 为AC 的中点,且2AD =, ∴2AD DC ==, ∵10AB =,∴6BC AB AD DC =--=, ∵1BE =,当E 在B 左侧,2617DE DC BC BE =+-=+-=, 当E 在B 右侧,2619DE DC BC BE =++=++=. ∴DE 的长为7或9. 故选:C. 【点睛】本题考查两点间的距离,解题的关键是利用线段的和差以及线段中点的性质. 二、填空题 1、157.5 【分析】先根据直角的14求出∠α,然后根据补角的定义求解即可.【详解】解:由题意知:∠α=90°×14=22.5°,则∠α的补角=180°-22.5°=157.5° 故答案为:157.5 【点睛】本题考查了角的和倍差的计算和补角的定义,熟练掌握计算方法是解题的关键. 2、2cm 或4cm 或2cm 【分析】分类讨论点C 在AB 上,点C 在AB 的延长线上,根据线段的中点的性质,可得BM 、BN 的长,根据线段的和差,可得答案. 【详解】解:(1)点C 在线段AB 上,如:点M 是线段AB 的中点,点N 是线段BC 的中点,MB 12=AB =3cm ,BN 12=CB =1cm , MN =BM ﹣BN =2cm ;(2)点C 在线段AB 的延长线上,如:点M 是线段AB 的中点,点N 是线段BC 的中点,MB 12=AB =3cm ,BN 12=CB =1cm , MN =MB +BN =4cm ,故答案为:2cm 或4cm . 【点睛】本题考查了两点间的距离,分类讨论是解题关键,根据线段中点的性质,线段的和差,可得出答案. 3、123°27′ 【分析】本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角. 【详解】解:∠1与∠2互余,且∠1=∠1=33°27′, 则∠2=90°-33°27′=56°33′,∠2的补角的度数为180°-56°33′=123°27′. 故答案为:123°27′. 【点睛】本题考查的是余角和补角的概念,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角. 4、55.4 124.6 【分析】(1)根据角度制的进率进行求解即可;(2)=552455.4AOD '︒=︒∠,∠COD =∠COB =90°,则===124.6AOB AOC COB COD AOD COB +-+︒∠∠∠∠∠∠.【详解】解:(1)552455.4'︒=︒,故答案为:55.4;(2)由题意得=552455.4AOD '︒=︒∠,∠COD =∠COB =90°, ∴∠===124.6AOB AOC COB COD AOD COB +-+︒∠∠∠∠∠∠, 故答案为:124.6.【点睛】本题主要考查了方位角,角度制,解题的关键在于能够熟练掌握角度制的进率. 5、145.55 【分析】由题意得90AOB COD ∠=∠=︒,结合图形可得90AOC BOC ∠=︒-∠,AOD AOC COD ∠=∠+∠,据此求解即可得. 【详解】解:由题意得90AOB COD ∠=∠=︒, ∵3427'BOC ∠︒=,∴90903427'5533'∠=︒-∠=︒-︒=︒AOC BOC ,∴5533'9014533'145.55∠=∠+∠=︒+︒=︒=︒AOD AOC COD , 故答案为:145.55. 【点睛】本题考查了角的计算,正确利用各个角之间的关系是解题关键.三、解答题1、(1)见解析,(2)40°【分析】(1)先画射线BA,在BA延长线上截取AE=AC,然后在线段AE的延长线上截取ED=AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180°,再加上已知条件∠CAD﹣∠CAB=100°,然后通过解方程组得到∠CAB的度数.【详解】解:(1)如图,线段AD为所作;(2)∵∠CAD﹣∠CAB=100°,∠CAD+∠CAB=180°,∴100°+∠CAB+∠CAB=180°,2∠CAB=80°,∴∠CAB=40°.【点睛】本题题考查了画线段和求角度,解题关键是熟练掌握几何作图,明确角之间的数量关系.2、(1)作图见解析;(2)作图见解析;(3)>,垂线段最短;(4)2.4【分析】(1)取格点T,直线直线CT即可;(2)利用数形结合的思想解决问题即可;(3)根据垂线段最短解决问题即可;(4)利用面积法构建方程求解即可.【详解】解:(1)如图,直线l即为所求;(2)如图,直线即为所求;(3)BA>BE(垂线段最短);故答案为:>,垂线段最短;(4)设点D到BC的距离为h,∵S△DCB=12×3×4=12×5×h,∴h=2.4,故答案为:2.4.【点睛】本题主要考查了作垂线,作图应用与设计,垂线段最短的应用,准确作图分析是解题的关键.3、(1)21cm;(2)27cm;(3)15或9cm【分析】设AC=2xcm,则线段CD=3xcm,DB=4xcm,AB=2x+3x+4x=9xcm,根据中点的性质求出x即可得解;【详解】解:设AC=2xcm,则线段CD=3xcm,DB=4xcm,AB=2x+3x+4x=9xcm,∵E 、F 分别是线段AC 、DB 的中点, ∴EC =12AC =xcm ,DF =12DB =2xcm , ∵EF =AB ﹣AE ﹣BF =9x ﹣x ﹣2x =12, ∴4x =12,解得x =3. (1)BC =9x ﹣2x =7x =21; 所以BC 的长度是21cm . (2)AB =9x =27; 所以AB 的长度是27cm .(3)当点G 在点B 的左边时,DG =DB +GB =12+3=15(cm ), 当点G 在点B 的右边时,DG =DB ﹣GB =12﹣3=9(cm ). 【点睛】本题主要考查了与线段中点有关的计算,准确分析计算是解题的关键. 4、(1)线段MN 的长为5cm ;(2)线段MN 的长为5cm ;(3)∠MON 可以用式子2α表示.【分析】(1)先求出16cm AC AB BC =+=,再由线段中点的定义得到1=8cm 2MC AC =,13cm 2NC BC ==,则5cm MN MC NC =-=; (2)同(1)求解即可;(3)先求出∠AOC =α+β,再由角平分线的定义得到()11=22MOC AOC αβ=+∠∠,11=22NOC BOC β=∠∠,则122MON MOC NOC AOC α∠=∠-=∠=∠.【详解】解:(1)∵10cm AB =,6cm BC ,∴16cm AC AB BC =+=, ∵M 、N 分别是AC 和BC 的中点, ∴1=8cm 2MC AC =,13cm 2NC BC ==, ∴5cm MN MC NC =-=; (2)∵10cm AB =,cm BC x =, ∴()10cm AC AB BC x =+=+, ∵M 、N 分别是AC 和BC 的中点, ∴11=5cm 22MC AC x ⎛⎫=+ ⎪⎝⎭,11cm 22NC BC x ==, ∴5cm MN MC NC =-=; (3)∵∠AOB=α,∠BOC=β, ∴∠AOC =α+β,∵OM 平分∠AOC ,ON 平分∠BOC ,∴()11=22MOC AOC αβ=+∠∠,11=22NOC BOC β=∠∠,∴122MON MOC NOC AOC α∠=∠-=∠=∠.【点睛】本题主要考查了与线段中点有关的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解. 5、 (1)4 (2)35 【分析】(1)根据AC ∶BC =3∶2,AB =40,可得24AC = ,再由点D 为AB 的中点.可得2201AD AB == ,即可求解;(2)设3,2AC x BC x == ,则5AB x =,根据点D 为AB 的中点.可得1522AD AB x == ,再由E 为AC 的中点,可得1322AE AC x == ,从而得到DE AD AE x =-=,即可求解. (1)解:∵AC ∶BC =3∶2,AB =40, ∴3402432AC =⨯=+ , ∵点D 为AB 的中点. ∴2201AD AB == , ∴4CD AC AD =-= ;(2)解:设3,2AC x BC x == ,则5AB x = ,∵点D 为AB 的中点. ∴1522AD AB x == , ∵E 为AC 的中点, ∴1322AE AC x == , ∴5322DE AD AE x x x =-=-= , ∵ED =7,∴7x = ,∴535AB x == .【点睛】本题主要考查了线段中点的定义,线段的和与差,利用数形结合思想和方程思想解答是解题的关键.。
难点详解沪教版(上海)六年级数学第二学期第七章线段与角的画法定向测评试卷(无超纲)
沪教版(上海)六年级数学第二学期第七章线段与角的画法定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( )A .128°B .142°C .38°D .152°2、如图,AB =24,C 为AB 的中点,点D 在线段AC 上,且AD :CB =1:3,则DB 的长度是( )A .12B .15C .18D .203、如图,三角尺COD 的顶点O 在直线AB 上,90COD ∠=︒.现将三角尺COD 绕点O 旋转,若旋转过程中顶点C 始终在直线AB 的上方,设AOC α∠=,BOD β∠=,则下列说法中,正确的是( )A .若10α=︒,则70β=︒B .α与β一定互余C .α与β有可能互补D .若α增大,则β一定减小4、下列条件中能判断点C 为线段AB 中点的是( )A .AC =BCB .12AC AB = C .AB =2BCD .12AC BC AB == 5、如图,直线AB ,CD 相交于点O ,∠AOC =30︒,OE ⊥AB ,OF 是∠AOD 的角平分线.若射线OE ,OF 分C 别以18︒/s ,3︒/s 的速度同时绕点O 顺时针转动,当射线OE ,OF 重合时,至少需要的时间是( )A .8sB .11sC .413sD .13s6、如图,货轮O 航行过程中,同时发现灯塔A 和轮船B ,灯塔A 在货轮O 北偏东40°的方向,∠AOE =∠BOW ,则轮船B 在货轮( )A .西北方向B .北偏西60°C .北偏西50°D .北偏西40°7、如图,从点O 出发的5条射线,可以组成的锐角的个数是( )A.8 B.9 C.10 D.118、如图,∠AOC和∠BOD都是直角,如果∠DOC=28°,那么∠AOB的度数是()A.118°B.142°C.152°D.158°9、如图,货轮在O处观测到岛屿B在北偏东45°的方向,岛屿C在南偏东60°的方向,则∠BOC的大小是()A.75°B.80°C.100°D.105°10、如图,甲从A点出发沿北偏东65︒方向行进至点B,乙从A点出发沿南偏西20︒方向行进至点C ,则BAC ∠等于( )A .125︒B .135︒C .160︒D .165︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、8点20分,钟表上时针与分针所成的角是____度.2、已知线段6AB =,在直线AB 上画线段4BC =,若M 、N 分别是AB 、BC 中点,则M N =______.3、如图,已知M 是线段AB 的中点,N 是线段MB 的中点,若NB =2cm ,则AB =______.4、若α=25°57′,则2α的余角等于_____.5、15.7°=______度______分.三、解答题(5小题,每小题10分,共计50分)1、作图题:已知:如图,是由三条线段a ,b ,c 首尾顺次相连而成的封闭图形(三角形),求作:线段DE ,使DE =b +c -a2、已知A ,B ,C ,O ,M 五点在同一条直线上,且AO =BO ,BC =2AB .(1)若AB =a ,求线段AO 和AC 的长;(2)若点M在线段AB上,且AM=m,BM=n,试说明等式MO=12|m﹣n|成立;(3)若点M不在线段AB上,且AM=m,BM=n,求MO的长.3、如图,已知线段AB=24cm,延长AB至C,使得BC=12AB,(1)求AC的长;(2)若D是AB的中点,E是AC的中点,求DE的长.4、如图1,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC=23∠AOB,OD平分∠AOC.(1)分别求∠AOB的补角和∠AOC的度数;(2)现有射线OE,使得∠BOE=30°.①小明在图2中补全了射线OE,根据小明所补的图,求∠DOE的度数;②小静说:“我觉得小明所想的情况并不完整,∠DOE还有其他的结果.”请你判断小静说的是否正确?若正确,请求出∠DOE的其他结果;若不正确,请说明理由.5、如图,120AOB∠=︒,射线OC从OA开始,绕点O顺时针旋转,旋转的速度为每分钟25°;射线OD 从OB开始,绕点O顺时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t分钟(t不超过10).(1)当t 为何值时,射线OC 与OD 重合?(2)当t 为何值时,90COD ∠=︒?-参考答案-一、单选题1、B【分析】首先根据题意求出52AOD ∠=︒,然后根据AOB AOD BOD ∠=∠+∠求解即可.【详解】解:∵∠AOC 和∠BOD 都是直角,∠DOC =38°,∴903852AOD AOC DOC ∠=∠-∠=︒-︒=︒,∴5290142AOB AOD BOD ∠=∠+∠=︒+︒=︒.故选:B .【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出AOD ∠的度数.2、D【分析】根据线段中点的定义可得BC =12AB ,再求出AD ,然后根据DB =AB -AD 代入数据计算即可得解.【详解】解:∵AB =24,点C 为AB 的中点,∴BC =12AB =12×24=12,∵AD :CB =1:3,∴AD =13×12=4,∴DB =AB -AD =24-4=20.故选:D .【点睛】本题考查了两点间的距离,掌握线段中点的性质、灵活运用数形结合思想是解题的关键.3、C【分析】根据题意,作出相应图形,然后结合角度计算对各个选项依次判断即可.【详解】解:A 、当10α=︒时,18080COD βα=︒--∠=︒,选项错误;B 、当点D 在直线AB 上方时,α与β互余,如图所示,当点D 到如图所示位置时,α与β互补,选项错误;C、根据B选项证明可得:α与β可能互补,选项正确;D、如图所示,当点D到直线AB下方时,α增大,β也增大,选项错误;故选:C.【点睛】题目主要考查角度的计算及互余、互补的关系,根据题意,作出相应图形是解题关键.4、D【分析】根据线段中点的定义,结合选项一一分析,排除答案.【详解】解:A、如图1,AC=BC,但C不是线段AB的中点,故不符合题意;B、图2,12AC AB=,但C不是线段AB的中点,故不符合题意;C、图3,AB=2BC,但C不是线段AB的中点,故不正确;D、AC=BC=12AB符合中点定义,故正确;故选D.【点睛】本题考查了线段中点的定义,如果点C把线段AB分成相等的两条线段AC与BC,那么点C叫做线段AB的中点,这时,AC=BC=12AB或AB=2AC=2BC.5、D【分析】设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.【详解】∵∠BOD=∠AOC=30゜,OE⊥AB∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜∵OF平分∠AOD∴1752DOF AOD∠=∠=︒∴∠EOD+∠DOF=120゜+75゜设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75解得:t=13即射线OE,OF重合时,至少需要的时间是13秒故选:D【点睛】本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.6、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.7、C【分析】每一条射线都分别与其它的射线组成一个角,如图所示,若从点O出发的n条射线,可以组成角的个数是()12 n n-【详解】解:组成角的个数是()()155110 22n n-⨯-==故选C.【点睛】此题主要考查了角的概念以及应用,要熟练掌握.利用公式:从点O出发的n条射线,组成角的个数为()12n n-,是解决问题的关键.8、C【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【详解】解:∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣28°=152°.故选:C.【点睛】此题主要考查学生对角的计算的理解和掌握,找到公共角∠DOC是解题的关键.9、A【分析】在正北和正南方向上分别确定一点A、D,根据方位角定义,求出AOB∠、COD∠的度数,再利用角的关系,求出∠BOC的大小即可.【详解】解:在正北和正南方向上分别确定一点A、D,如下图所示:由题意可知:45AOB ∠=︒,60COD ∠=︒,18075BOC AOB COD ∴∠=︒-∠-∠=︒,故选:A .【点睛】本题主要是考查了方位角的定义,以及角之间的关系,熟练利用方位角的定义,求解对应角度,是解决该题的关键.10、B【分析】根据方向角的意义得到∠1=65°,∠2=20°,则利用互余计算出∠3=25°,然后计算∠3+∠2+90°得到∠BAC 的度数.【详解】如图,根据题意得∠1=65°,∠2=20°,∴∠3=90°-∠1=90°-65°=25°,∴∠BAC=25°+90°+20°=135°.故选:B.【点睛】本题考查了方向角:方向角是从正北或正南方向到目标方向所形成的小于90°的角;用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.二、填空题1、130【分析】在8时20分时,时针过8,分针指向4,因为每一个大格子的夹角度数为360°÷12=30°,时针每小时走一个大格,即30°,20分钟走一小时的2060,即13,是30°×13=10°,所以时针过8成10°夹角,再加上从4到8有4个大格子的夹角的度数即可.【详解】解:在8时20分时,时针过8,在8与9之间,分针指向4,时针走20分所走的度数为30°×13=10°,分针与8点之间的夹角为4×30=120°,所以此时时钟面上的时针与分针的夹角是120°+10°=130°.故答案为: 130.【点睛】本题考查钟面角的计算;用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.2、5或1根据M、N分别是AB、BC中点,得出BM=116322AB=⨯=,BN=114222BC=⨯=,分两种情况当点C在线段AB上,利用线段差MN=BM-BN=3-2=1,当点C在AB延长线上,利用线段和求MN=BM+BN=3+2=5即可.【详解】解:∵M、N分别是AB、BC中点,∴BM=116322AB=⨯=,BN=114222BC=⨯=当点C在线段AB上时∴MN=BM-BN=3-2=1,当点C在AB延长线上,∴MN=BM+BN=3+2=5,∴MN=5或1.故答案为5或1.【点睛】本题考查分类讨论思想,线段中点,线段和差,掌握分类讨论思想,线段中点,线段和差是解题关键.3、8cm【分析】根据线段中点的性质求解即可.解:∵N是线段MB的中点,∴24cm==MB NB∵M是线段AB的中点,∴28cm==AB MB故答案为:8cm.【点睛】本题主要考查了线段中点的有关计算,准确分析利用数形结合的思想计算是解题的关键.4、38°6′【分析】根据余角的和等于90°列式计算即可求解.【详解】解:∵α=25°57′,∴2α=51°54′,∴2α的余角=90°﹣51°54′=38°6′.故答案为:38°6′.【点睛】此题主要考查角度的计算,解题的关键是熟知余角的性质.5、15 42【分析】①度、分、秒是60进制.②在进行度、分、秒运算时,由低级单位向高级单位转化或由高级单位向低级单位转化要逐级进行.15.7°=15°+0.7°0.7°=42'故为15°42'故答案为①15②42【点睛】本题考查角度制的换算,掌握进制和换算方法是本题关键.三、解答题1、见解析【分析】利用尺规作图解答,作射线DM,在射线上分别截取DQ=b,QF=c,FE=a,则DE= b+c-a.【详解】解:线段 DE即为所求.【点睛】此题考查了尺规作图,正确掌握截取线段的方法及线段的和差关系是解题的关键.2、(1)12a;3a或a;(2)见解析;(3)()1+2MO m n=【分析】(1)分情况讨论当点C在点B右侧和左侧时,根据已知等量关系即可求解;(2)由题意知点M在线段AB上,分别将M点在O点左右两侧时MO的长度用m、n表示出来,再讨论m n<和m n>时,MO的值即可;(3)当点M不在线段AB上,则M在A左边或B右边,根据题干数量关系分别求出两种情况时MO的【详解】解:∵AO =BO ,AB =a , ∴11=22AO BO AB a == , 当点C 在点B 右侧时,如下图所示:∵BC =2AB ,AB =a ,∴233AC AB BC AB AB AB a =+=+== ,当点C 在点B 左侧时,如下图所示:∵BC =2AB ,AB =a ,∴2AC BC AB AB AB AB a =-=-==,∴线段AO 的长为12a ,线段AC 的长为3a 或a ; (2)当M 点在O 点左侧时,如下图所示:∵AO =BO , ∴12AO AB = , ∴MO AO AM =-()111111222222AB AM AM BM AM AM BM AM BM AM =-=+-=+-=- ,∵AM m BM n ==, , ∴()111222MO n m n m =-=- , 当M 点在O 点右侧时,如下图所示:∵AO =BO , ∴12BO AB = , ∴MO BO BM =- ,()111111222222AB BM AM BM BM AM BM BM AM BM =-=+-=+-=- , ∵,AM m BM n == , ∴()111222MO m n m n =-=- , 综上,当AM BM < 即m n < 时,()12MO n m =-, 当AM BM > 即m n > 时,()12MO m n =-, ∴12MO m n =-; (3)当点M 在A 点左侧时,如下图所示:∵AO =BO , ∴12AO AB = ,∴+MO AO AM =()111111+++222222AB AM BM AM AM BM AM AM BM AM ==-+=-=, ∵,AM m BM n ==, ∴()111++222MO n m m n ==, 当点M 在B 点右侧时,如下图所示:∵AO =BO , ∴12BO AB = , ∴+MO BO BM = ,()111111222222AB BM AM BM BM AM BM BM AM BM =+=-+=-+=+ , ∵,AM m BM n ==, ∴()111++222MO m n m n ==, 综上,()1+2MO m n =. 【点睛】 本题考查两点间距离,利用线段中点的性质、线段的和差分情况讨论是解题关键.3、(1)36cm ;(2)6cm【分析】(1)根据BC 与AB 的关系可得BC ,由AC =AB +BC 可得答案;(2)根据线段中点的定义分别求出AE 和AD 的长度,再利用线段的和差得出答案.【详解】(1)∵BC=12AB,AB=24cm,∴BC=12×24=12(cm),∴AC=AB+BC=36(cm);(2)∵D是AB的中点,E是AC的中点,∴AD=12AB=12cm,AE=12AC=18cm,∴DE=18﹣12=6(cm).【点睛】本题考查线段相关的计算,掌握线段中点的定义是解题的关键.4、(1)80°;(2)①110°;②正确,50°【分析】(1)根据补角定义求解即可和已知条件直接求解即可;(2)①根据角平分线的定义求得∠AOD,进而求得∠BOD,根据∠DOE=∠BOD+∠BOE即可求得∠DOE;②根据题意作出图形,进而结合图形可知∠DOE=∠BOD-∠BOE即可求得∠DOE;【详解】解:(1)因为∠AOB=120°,所以∠AOB的补角为180°-∠AOB=60°.因为∠AOC=23∠AOB,所以∠AOC=23×120°=80°;(2)①因为OD平分∠AOC,∠AOC=80°,所以∠AOD =12∠AOC =40°,所以∠BOD =∠AOB -∠AOD =80°,所以∠DOE =∠BOD +∠BOE =110°;②正确;如图,射线OE 还可能在∠BOC 的内部,所以∠DOE =∠BOD -∠BOE =803050︒-︒=︒【点睛】本题考查了求一个角的补角,角平分线的定义,角度的计算,数形结合是解题的关键.5、(1)6;(2)1.5【分析】(1)根据题意可得,射线OC 与OD 重合时,25t =5t +120,可得t 的值;(2)根据题意可得,射线OC ⊥OD 时,25t +90=120+5t 或25t −90=120+5t ,可得t 的值.【详解】(1)由题意,得()25AOC t ∠=︒,()5BOD t ∠=︒.因为射线OC 与OD 重合,所以AOC AOB BOD ∠=∠+∠,即251205t t =+,解得6t =.所以当t 为6时,射线OC 与OD 重合.(2)由(1),得()25AOC t ∠=︒,()5BOD t ∠=︒.因为射线OC OD ⊥,所以90AOC AOB BOD ∠+︒=∠+∠或90AOC AOB BOD ∠=∠+∠+︒,即25901205t t +=+或25901205t t -=+,解得 1.5t =或10.5t =.又010t ≤≤,所以 1.5t =.所以当t 为1.5时,射线OC OD ⊥.【点睛】本题考查一元一次方程的应用与角的计算,解题的关键是明确题意,找出所求问题需要的条件.。
2022年精品解析沪教版(上海)六年级数学第二学期第七章线段与角的画法专项练习试卷(无超纲带解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知线段AB=8cm,BC=6cm,点M是AB中点,点N是BC中点,将线段BC绕点B旋转一周,则点M与N的距离不可能是()A.1 B.6 C.7 D.82、现在的时间是2点30分,时钟面上的时针与分针的夹角是()A.100°B.105°C.110°D.120°3、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为()A.75°14′B.59°86′C.59°46′D.14°46′4、如图,直线AB,CD相交于点O,∠AOC=30︒,OE⊥AB,OF是∠AOD的角平分线.若射线OE,OF分C 别以18︒/s,3︒/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是()A .8sB .11sC .413sD .13s5、如图,∠AOC =90°,OC 平分∠DOB ,且∠DOC =25°25′.∠BOA 度数是( )A .64°75′B .54°75′C .64°35′D .54°35′6、若1∠的余角为4835︒',则1∠的补角为( )A .4125︒'B .13125'︒C .13835'︒D .14125'︒7、如图,C 为线段AB 上一点,点D 为AC 的中点,且2AD =,10AB =.若点E 在直线AB 上,且1BE =,则DE 的长为( )A .7B .10C .7或9D .10或118、将一副直角三角板如图所示摆放,则图中ADC ∠的大小为( )A.75°B.120°C.135°D.150°9、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹D.植树时,只要定出两棵树的位置就能确定同一行树所在的直线10、钟面上,时针与分针在不停的旋转,从6时到18时,若某整点时刻的时针与分针构成的角为60 ,则这个时刻是()A.10时B.11时C.10时或14时D.11时或13时第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、15°12′=_______.2、如图,线段AC:CB = 2 : 3,AD:DB = 5 : 6,CD=3,则线段AB的长度为________ .3、把两个三角尺ABC与DEF按如图所示那样拼在一起,其中点D在BC上,DM为∠CDE的平分线,DN 为∠BDF的平分线,则∠MDN的度数是_________.4、如图,已知OD 平分∠AOC ,OE 平分∠COB ,∠AOD =20°,∠EOB =40°.则∠AOB =______.5、如图,EF 、EG 分别是∠AEB 和∠BEC 的平分线.若∠BEF =30°,则∠BEG =_____°.三、解答题(5小题,每小题10分,共计50分)1、补全解题过程.如图,已知50AOC ∠=︒,70BOC ∠=︒,OD 平分AOB ∠,求COD ∠的度数.解:50AOC ∠=︒,70BOC ∠=︒(已知)AOB AOC BOC ∴∠=∠+∠=______°.OD 平分AOB ∠(已知)12AOD AOB ∴∠=∠=______°. COD AOD AOC ∴∠=∠-∠=______°.2、如图,已知线段AB ,延长线段BA 至C ,使CB =43AB .(1)请根据题意将图形补充完整.直接写出AC AB= _______; (2)设AB = 9cm ,点D 从点B 出发,点E 从点A 出发,分别以3cm/s ,1cm/s 的速度沿直线AB 向左运动.①当点D 在线段AB 上运动,求AD CE的值; ②在点D ,E 沿直线AB 向左运动的过程中,M ,N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD 的三等分点时,求MN 的长.3、点A ,B ,C 在直线l 上,若AB =4cm ,BC =3cm ,点O 是线段AC 的中点,那么线段OB 的长是多少?小明同学根据下述图形对这个题目进行了求解:∵A ,B ,C 三点顺次在直线l 上,∴AC =AB +BC ,∵AB =4cm ,BC =3cm ,∴AC =7cm ,又∵点O 为线段AC 的中点,∴AO=12AC=12×7=3.5cm,∴OB=AB﹣AO=4﹣3.5=0.5cm.小明考虑得全面吗?如果不全面,请补全解题过程,如果全面,请说明理由.4、(1)如图1,将一副直角三角尺的直角顶点C叠放在一起,经探究发现∠ACB与∠DCE的和不变.证明过程如下:由题可知∠BCE=∠ACD=90°∴∠ACB=+∠BCD.∴∠ACB=90°+∠BCD.∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE∵∠BCE=90°,∴∠ACB+∠DCE=.(2)如图2,若将两个含有60°的三角尺叠放在一起,使60°锐角的顶点A重合,则∠DAB与∠CAE 有怎样的数量关系,并说明理由;(3)如图3,已知∠AOB=α,∠COD=β(α,β都是锐角),若把它们的顶点O重合在一起,请直接写出∠AOD与∠BOC的数量关系.5、如图,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)若∠AOD = 34°,求∠BOC;(2)猜想∠AOC与∠BOD的关系,并给与证明.-参考答案-一、单选题1、D【分析】正确画出的图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,求出线段MN的长度的最大和最小值即可.【详解】解:∵AB=8cm,BC=6cm,点M是AB中点,点N是BC中点,第一种情况:B在AC上,线段MN的长度最大,最大值为:MN=12AB+12BC=7;第二种情况:B在AC延长线上,线段MN的长度最小,最小值为:则MN=12AB﹣12BC=1.故选:D 【点睛】本题考查了两点间的距离,解题关键是求出线段MN的长度的最大和最小值.2、B【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:2点30分相距17322+=份,2点30分,此时钟面上的时针与分针的夹角是7301052︒⨯=︒,故选B.【点睛】本题主要考查钟面角问题,熟练掌握时针与分针在钟面上行走的度数关系是解题的关键.3、C【分析】观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.【详解】解:∠β=180°﹣90°﹣∠α=90°﹣30°14′=59°46′.故选:C.【点睛】本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.4、D【分析】设首次重合需要的时间为t 秒,则OE 比OF 要多旋转120゜+75゜,由此可得方程,解方程即可.【详解】∵∠BOD =∠AOC =30゜,OE ⊥AB∴∠EOD =∠EOB +∠BOD =90゜+30゜=120゜,∠AOD =180゜ - ∠AOC =150゜∵OF 平分∠AOD ∴1752DOF AOD ∠=∠=︒∴∠EOD +∠DOF =120゜+75゜设OE 、OF 首次重合需要的时间为t 秒,则由题意得:18t −3t =120+75解得:t =13即射线OE ,OF 重合时,至少需要的时间是13秒故选:D【点睛】本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.5、C【分析】由射线OC 平分DOB ∠,2525'BOC DOC ∠=∠=︒,从而求得AOB ∠.【详解】解:∵OC 平分DOB ∠,∴2525'BOC DOC ∠=∠=︒,∵90AOC ∠︒=,∴902525'6435'∠=∠-∠=︒-︒=︒AOB AOC BOC .故选:C .【点睛】题目主要考查角平分线的定义以及角的计算,关键是由已知先求出BOC ∠.6、C【分析】根据余角和补角的定义,先求出1∠,再求出它的补角即可.【详解】解:∵1∠的余角为4835︒',∴19048354125''∠=-=︒︒︒,1∠的补角为180412513835-︒=︒''︒,故选:C .【点睛】本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.7、C【分析】由题意根据线段中点的性质,可得AD 、DC 的长,进而根据线段的和差,可得DE 的长.【详解】解:∵点D 为AC 的中点,且2AD =,∴2AD DC ==,∵10AB =,∴6BC AB AD DC =--=,∵1BE =,当E 在B 左侧,2617DE DC BC BE =+-=+-=,当E 在B 右侧,2619DE DC BC BE =++=++=.∴DE 的长为7或9.故选:C.【点睛】本题考查两点间的距离,解题的关键是利用线段的和差以及线段中点的性质.8、C【分析】根据题意得:∠ADB =45°,∠BDC =90°,从而得到∠ADC =∠ADB +∠BDC =135°,即可求解.【详解】解:根据题意得:∠ADB =45°,∠BDC =90°,∴∠ADC =∠ADB +∠BDC =45°+90°=135°.故选:C【点睛】本题主要考查了直角三角板中角的计算,熟练掌握一副直角三角板中每个角的度数是解题的关键.9、B【分析】由题意可得A ,B ,D 选项都与直线相关联,而C 选项与距离相关,可以用“两点之间,线段最短”来解析,从而可得答案.【详解】解:用两个钉子就可以把木条固定在墙上,可用基本事实“两点决定一条直线”来解释,故A 不符合题意;把弯曲的公路改直,就能缩短路程,可用基本事实“两点之间,线段最短”来解释,故B符合题意;锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹,可用基本事实“两点决定一条直线”来解释,故C不符合题意;植树时,只要定出两棵树的位置就能确定同一行树所在的直线,可用基本事实“两点决定一条直线”来解释,故D不符合题意;故选B【点睛】本题考查的是两点之间,线段最短,两点决定一条直线,理解生活中的现象所反应的几何原理是解本题的关键.10、C【分析】根据钟面的12个数字把钟面分成12份,每一份的角度为30°,整点时分针指向12,再结合角度即可得出时刻.【详解】解:若某整点时刻的时针与分针构成的角为60 ,那么它的时针指向10或2,从6时到18时,对应的时刻为10时或14时,故选:C.【点睛】本题考查钟面角.理解钟面上相邻两个时刻的夹角是30°是解决此题的关键.二、填空题1、912′【分析】根据度、分、秒的换算方法进行计算即可.【详解】解:(1)∵15°=15×60′=900′,∴15°12′=912′,故答案为:912′;【点睛】本题考查度、分、秒的换算,掌握度、分、秒的换算方法和单位之间的进率是正确解答的关键.2、55【分析】设AB=x,根据比值分别表示出AC、AD的长,然后根据AD-AC=CD列出关于x的方程,解出方程即可.【详解】解:设AB=x,∵AC:CB = 2 : 3,AD:DB = 5 : 6,CD=3,∴2255AC AB x==,551111AD AB x==,∵AD-AC=CD,即523 115x x-=,3355x=,解得:55x=故答案为:55【点睛】本题考查了线段之间的和倍差计算,一元一次方程的应用,分别表示出AC、AD的长并列出关于x的方程是解题的关键.3、135︒【分析】先求出∠CDE+∠BDF的度数,根据角平分线的性质证得11,22MDE CDE NDF BDF∠=∠∠=∠,由此求出∠MDN的度数.【详解】解:∵∠EDF=90°,∴∠CDE+∠BDF=180°-∠EDF=90°,∵DM为∠CDE的平分线,DN为∠BDF的平分线,∴11,22MDE CDE NDF BDF∠=∠∠=∠,∴∠MDN=1()1352MDE EDF NDF CDE BDF EDF∠+∠+∠=∠+∠+∠=︒,故答案为:135︒.【点睛】此题考查了角度的和差计算,角平分线的性质,正确理解图形中各角的位置关系进行和差计算是解题的关键.4、120°度【分析】根据角平分线的定义求出∠AOC与∠BOC,先根据角的和求出∠AOB即可.【详解】解:∵OD平分∠AOC,OE平分∠COB,∴∠AOC=2∠AOD,∠COB=2∠EOB,∵∠AOD=20°,∠EOB=40°.∴∠AOC=2×20°=40°,∠BOC=2×40°=80°,∴∠AOB=∠AOC+∠BOC=40°+80°=120°,故答案为:120°.【点睛】本题考查了角平分线的定义和角的和差计算,属于常考题型,熟练掌握上述知识是解题的关键. 5、60【分析】根据角平分线先求出∠FEG 的度数,再减去∠BEF 即可.【详解】∵EF 、EG 分别是∠AEB 和∠BEC 的平分线,∴∠BEG =12∠BEC ,∠BEF =12∠BEA ,∴∠FEG =∠BEG +∠BEF ==12∠BEC +12∠BEA =12(∠BEC +∠BEA )=12∠CEA =12×180°=90°, ∵∠BEF =30°,∴∠BEG =∠FEG ﹣∠BEF =90°﹣30°=60°,故答案为:60.【点睛】本题考查角平分线,掌握角平分线的性质是解题的关键.三、解答题1、120;60;10【分析】直接利用角平分线的定义得出∠AOD=60°,进而得出答案.【详解】解:50AOC ∠=︒,70BOC ∠=︒(已知)AOB AOC BOC ∴∠=∠+∠=_120_____°. OD 平分AOB ∠(已知)12AOD AOB ∴∠=∠=_60__°. COD AOD AOC ∴∠=∠-∠=__10__°.故答案为:120;60;10【点睛】此题主要考查了角平分线,正确掌握相关定义是解题关键.2、(1)13,(2)3,(3)12cm 或24cm .【分析】(1)根据线段的和差倍分关系即可得到结论;(2)①设运动的时间为t 秒,表示出线段长即可得到结论;②分3BD CD =和3BD CB =两种情况,根据三等分点求出BD 的长,进而求出运动时间,求出MD 、NB 的长即可.【详解】解:(1)图形补充完整如图,∵CB =43AB , ∴CA =13BC AB AB -=, 13AC AB =, 故答案为:13;(2)①AB = 9cm ,由(1)得,133CA AB ==(cm ),设运动的时间为t 秒, (93)DA t =-cm ,(3)CE t =-cm ,93=33AD t CE t-=-,②当3BD CD =时,∵AB = 9cm , 3CA =cm ,∴212CB CD ==cm ,∴6CD =cm ,318BD CD ==cm ,运动时间为:18÷3=6(秒),则6AE =cm ,15BE BA AE =+=cm ,3ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴ 1.5DM =cm , 4.5BN =cm ,12MN BD DM BN =--=cm ,当3BD CB =时,∵AB = 9cm , 3CA =cm ,∴12CB =cm ,∴336BD CB ==cm ,运动时间为:36÷3=12(秒),则12AE =cm ,21BE BA AE =+=cm ,15ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴7.5DM =cm , 4.5BN =cm ,24MN BD DM BN =--=cm ,综上,MN 的长是12cm 或24cm .【点睛】本题考查了线段的计算,解题关键是准确识图,熟练表示出线段长.3、不全面,理由见解析【分析】根据题意可知还应考虑点C 在线段AB 之间时,画出图形.根据图形,结合题意的步骤求出OB 的长即可.【详解】解:小明同学只考虑了点C 在线段AB 之外,当点C 在线段AB 之间时,如图,由图可知AC=AB-BC,∵AB=4cm,BC=3cm,∴AC=1cm,又∵点O为线段AC的中点,∴AO=12AC=12×1=0.5cm,∴OB=AB﹣AO=4﹣0.5=3.5cm.【点睛】本题考查有关线段的中点的计算,线段的和与差.作出图形,利用数形结合的思想是解答本题的关键.4、(1)∠ACD,180°;(2)∠DAB+∠CAE=120°,见解析;(3)∠AOD+∠BOC=β+α【分析】(1)结合图形把∠ACB与∠DCE的和转化为∠ACD与∠BCE的和;(2)结合图形把∠DAB与∠CAE的和转化为∠DAC与∠EAB的和;(3)结合图形把∠AOD与∠BOC的和转化为∠AOB与∠COD的和.【详解】解:(1)由题可知∠BCE=∠ACD=90°,∴∠ACB=∠ACD+∠BCD,∴∠ACB=90°+∠BCD,∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE,∵∠BCE=90°,∴∠ACB+∠DCE=180°,故答案为:∠ACD,180°;(2)∠DAB+∠CAE=120°,理由:由题可知∠DAC=∠EAB=60°,∴∠DAB=∠DAC+∠CAB,∴∠DAB=60°+∠CAB,∴∠DAB+∠CAE=60°+∠CAB+∠CAE=60°+∠EAB,∵∠EAB=60°,∴∠DAB+∠CAE=120°;(3)∵∠AOB=α,∠COD=β,∴∠AOD=∠COD+∠AOC=β+∠AOC,∴∠AOD+∠BOC=β+∠AOC+∠BOC=β+∠AOB=β+α.【点睛】本题考查了余角和补角,根据题目的已知条件并结合图形找角与角之间的关系是解题的关键.5、(1)∠BOC=34°;(2)∠AOC+∠BOD=180°,证明见解析.【分析】(1)首先根据三角尺的特点得到90AOB COD∠=∠=︒,然后根据同角的余角相等即可求出∠BOC的度数;(2)首先根据题意表示出90AOC AOD ∠=∠+︒,90BOD AOD ∠=︒-∠,相加即可求出∠AOC 与∠BOD 的关系.【详解】解:(1)∵90AOB COD ∠=∠=︒,∴90AOD BOD ∠+∠=︒,90COB BOD ∠+∠=︒∴34BOC AOD ∠=∠=︒;(2)∠AOC +∠BOD =180°,证明如下:∵90AOC AOD COD AOD ∠=∠+∠=∠+︒,90BOD AOB AOD AOD ∠=∠-∠=︒-∠∴9090180AOC BOD AOD AOD ∠+∠=∠+︒+︒-∠=︒.【点睛】此题考查了三角尺中角和和差计算,同角的余角相等,解题的关键是熟练掌握三角尺中角的度数,同角的余角相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学期-第七章线段和角的画法-学案(无答案)沪教版(上海)六年级数学第二学期-第七章线段和角的画
法-学案(无答案)
第七章线段与角的画法
【学习目标】
1.经历对本章所学知识回顾与思考的过程,将本章内容条理化、系统化,梳理本章的知识结构。
2.通过对知识的疏理,进一步巩固所学概念,进一步巩固运用几何作图的基本语句说理表达。
【学习重难点】
重点:
1.线段、线段的中点和角、角的平分线的概念;
2.线段、角的大小的比较及线段、角的和、差、倍的画法。
难点:
图形的表示方法、几何语言的认识与运用。
【学习过程】
一、知识梳理
联结两点的_________________叫做两点之间的距离。
在所有联结两点的线中,线段最短。
可以概括为:____________________________。
将一条线段_____________________叫做这条线段的中点。
角是具有公共端点的______________组成的图形,公共端点叫做_______,_______叫做角的边。
从一个角的顶点引出一条射线,把这个角分成______________,这条射线叫做这个角的平分线。
1度=_______分;
1分=_______秒;
1周角=_______度;
1平角=_______度。
如果两个角的度数的和是_______度,那么这两个角叫做互为余角。
如果两个角的度数的和等于_______度,那么这两个角叫做互为补角。
学期-第七章 线段和角的画法-学案(无答案)沪教版(上海)六年级数学第二学期-第七章 线段和角的画法-学案(无答案)
同角(或等角)的余角_______。
同角(或等角)的补角_______。
二、课前热身
1.看图填空
(1)如图:AC=_____+______=_____-______=_____-_____。
(2)如果D 是AC 中点,E 是CB 中点,那么AB=2_______。
2.(1)如图:∠CAE=______-_____=_______-_______。
(2)如果∠CAE=∠BAE ,那么AE 是________________。
(3)如果∠CAB =∠DAE=70°,∠DAB=110°,那么∠CAE=_________°。
3.(1)如图∠ACB =∠CDB =90°,与∠A 互余的有______。
图中相等的角有__________。
(2)如图,直线AB .CD 交于点0,则与∠BOD 互补的角有______________。
图中相等的角有_______。
三、课内提升
1.已知线段a 、b 、c ,画出一条线段,使它等于2a -b +C 。
a b c
解:
(1)画射线OP 。
E D A B
C 第1题图 C D
E 第2题图 第3(2)题图
D 第3(1)题图
学期-第七章 线段和角的画法-学案(无答案)沪教版(上海)六年级数学第二学期-第七章 线段和角的画法-学案(无答案)
(2)在射线OP 上顺次截取_______=a ,_______=b ,_______=c 。
(3)在线段_______上截取CD =B 。
线段_______就是所要画的线段。
2.已知∠α、∠β,用量角器画一个角,使它等于2∠β-∠α。
β
3.如图,∠BOD=m °∠BOA=n °,OC 是∠DOA 的角平分线,求∠COB (用m 、n 表示)。
4.如图:
(1)点A 在点O 的_______,
(2)点B 在点O 的_______,
(3)点M 在点O 的东南方向,且在点C 的正南边。
(4)请画出点M ,
5.画图并回答:
已知线段AB ,在AB 的延长线上取一点C ,使BC=AB ,再在AB 的反向延长线上取一点D ,使DA=2AB ,线段DB 等于线段BA 的几倍?
线段CA 是线段DB 的几分之几?
比较线段AD 和线段AC 的大小。
A B C D
A
B。