鼓泡塔反应器综述

合集下载

鼓泡塔反应器综述

鼓泡塔反应器综述

目录1 鼓泡塔反应器简介 (1)1.1 鼓泡塔的概念 (1)1.2 鼓泡塔的结构 (1)1.3 鼓泡塔类型 (2)1.3.1空心式 (2)1.3.2 多段式 (3)1.3.3 循环式 (3)1.4 鼓泡塔反应器的操作状态 (4)2 鼓泡塔反应器的流体力学特性 (6)2.1气泡直径 (6)2.2含气率 (6)2.3气液比相界面积 (7)2.4鼓泡塔内的气体阻力ΔP (7)2.5返混 (8)3 鼓泡塔反应器的传质、传热特性 (9)3.1鼓泡塔的传质 (9)3.2鼓泡塔的传热 (9)4 鼓泡塔反应器的数学模型 (11)4.1 双流体模型 (11)4.2 湍流模型 (11)5 鼓泡塔反应器的工业应用实例 (13)1 鼓泡塔反应器简介1.1 鼓泡塔的概念鼓泡塔是在塔体下部装上分布器,将气体分散在液体中进行传质、传热的一种塔式反应器。

优点:气相高度分散于液相中,具有大的液体持有量和相界接触面,传质和传热效率高,适用于缓慢化学反应和高度放热的情况;结构简单,操作稳定,投资和维修费用低,被广泛应用于加氢、脱硫、烃类氧化、烃类卤化等工业过程。

缺点:液相有较大的返混,气相有较大的压降。

当高径比大时,气泡合并速度增加,使相际接触面积减小。

1.2 鼓泡塔的结构图1.2 简单鼓泡塔气体分布器:使气体分布均匀,强化传热、传质。

是气液相鼓泡塔的关键设备之一,型式:多孔板,喷嘴,多孔等,为鼓泡塔主要结构之一,另一主要结构为塔体。

换热装置: 1、夹套式:热效应不大时。

2、蛇管式:热效应较大时。

3、外循环换热式:热效应较大时塔体可安装夹套或其它型式换热器或设有扩大段、液滴捕集器等;塔内液体层中可放置填料;塔内可安置水平多孔隔板以提高气体分散程度和减少液体返混。

1.3 鼓泡塔类型1.3.1空心式图1.3.1 空心式鼓泡塔图1.3.2 多段式鼓泡塔空心式鼓泡塔如图1.3.1所示,塔内不含塔板和液体分布器,最适用于缓慢化学反应系统或伴有大量热效应的的反应系统。

鼓泡塔设计-反应器设计讲解

鼓泡塔设计-反应器设计讲解

目录一、项目简介 (1)二、反应器选择 (1)2.1 工艺流程 (1)2.2 鼓泡塔介绍 (2)2.2.1 鼓泡塔反应器的分类 (2)2.2.2 鼓泡塔反应器的特点与结构 (4)2.2.3 鼓泡塔中的传质 (6)2.2.4 鼓泡塔中的传热 (6)三、初步设计 (6)3.1 PX氧化宏观动力学 (6)3.1.1宏观反应动力学 (6)3.1.2 PX氧化反应宏观动力学 (7)3.1.3 氧化反应机理 (8)3.2反应段模型的建立[7] (11)3.2.1 模型作如下假设: (11)3.2.2模型方程 (11)3.2.4 质量衡算 (13)3.2.5 热量衡算 (14)3.2.6 参数估算 (14)3.2.7 模型的求解 (16)3.3 影响PX氧化反应的工艺条件 (17)四、总结 (19)五、参考文献 (20)对二甲苯氧化过程中的鼓泡塔设计一、项目简介精对苯二甲酸(PTA)是生产聚酯的主要原料,PTA生产历史可以一直追溯到上世纪二十年代,继英国帝国化学工业公司(ICI)和美国杜邦公司(Dupont)开始生产高性能聚酯纤维开始,聚酯工业的发展极大的刺激了主要原料PTA生产技术的变革。

PTA合成方法曾先后采用:硝酸氯化法,Dupont公司开发的以钴为催化剂的空气氧化法,Witten公司开发的酯化氧化法(DMT),以及具有划时代意义的1958年由Mid-Century公司发的MC氧化工艺。

如今,工业上主要采用Co-Mn-Br为催化剂由对二甲苯(PX)经空气氧化制得[1]。

主要工艺有Amoco、三井和Dupont三大公司的专利技术。

三种工艺的基本流程大致相同,均采用Amoco-MC高温氧化法[2]。

对二甲苯(PX)氧化制对苯二甲酸(TA)是聚酯工业的一个重要生产过程,同时也是一个液相催化氧化过程。

工业氧化反应在185 ~ 224 ℃、1 ~2 MPa 下进行,采用Co-Mn-Br 三元复合催化剂,醋酸为溶剂,空气为氧化剂,反应物PX 经过一系列自由基反应步骤顺序生成醇、醛、酸,并最终转化为固体产物TA。

鼓泡塔反应器设计

鼓泡塔反应器设计

计算液膜传质过程可用以下公式:
sh k LAA
Reb
dbuOGL L
1 0.0721.61
Sh2.0CReb0.484SC0.3L39 dDbL2g/A33
鼓泡塔中的传热
传热方式:三种 ➢ 利用溶剂、反应物或产物气化带走热量。 ➢ 利用液体外循环冷却器移走热量。 ➢ 利用夹套、蛇管或列管式冷却器移走热量。
5~6cm/s 气体通过分布器几乎呈分散的有次序的鼓泡,既能达到一定的流量,又很少出现返混。
式中 :形状系数,球盖: =1
0cm 螺旋式摆动上升的椭圆球
鼓泡层密度,kg/m3
u0:小孔气速,m/s
鼓泡塔反应器鼓泡塔反应器的特点与结构
鼓泡塔的传质 一般气膜传质阻力较小,可以忽略,液膜传质阻力的大小决定了
➢ 鼓泡塔的气体压降ΔP:
液鼓体泡连 塔续内流液动体时返Δ的混P气严=含重分率,。气布泡板易产小生聚孔并压,故降效率+较鼓低泡。 塔静压降
5~6cm/s 气体通过分布器几乎呈分散的有次序的鼓泡,既能达到一定的流量,又很少出现返混。
单位反应器有效体积气泡的表3面积2。
10 u 欲提高单位相界面的传质速率,即0提高G传质系数,则必须提高扩散系数。
欲提高单位相界面的传质速率,即提高传O质G系数,0则必须t 提高扩散系数。
安静区:uOG<4.
当5~液6c滴m移/s 动气速体度通小过于分安0布. 器静几乎区呈:分散u的O有G次<序4的.5鼓~泡6,c既m能达/到s 一气定体的流通量,过又分很少布出现器返几混。乎呈分散的有次 0cm 螺旋式摆动上升序的的椭圆鼓球泡,既能达到一定的流量,又很少出现返混。
G
VL
1G
➢ 4、VE:

鼓泡塔反应器的特点结构、传质、工艺计算

鼓泡塔反应器的特点结构、传质、工艺计算

计算液膜传质过程可用以下公式:sh 来自k LA d b D LA
SCL
L DLA
L
Re b
dbuOGL
L
.072 1 0 bg3 0 .484 0 .339d Sh 2 .0 C Re S b CL 2/3 D LA

鼓泡塔的气体压降ΔP: ΔP=分布板小孔压降+鼓泡塔静压降 =
3 2 u 10 0 G H g R R 2 C 2
kpa
式中 C2=0.8 (小孔阻力系数) u0:小孔气速,m/s 鼓泡层密度,kg/m3

鼓泡塔的传质 一般气膜传质阻力较小,可以忽略,液膜传质阻力的大小决定了
传质速率的快慢。
欲提高单位相界面的传质速率,即提高传质系数,则必须提高扩 散系数。 扩散系数不仅与液体物理性质有关,而且还与反应温度、气体反 应物的分压或液体浓度有关。当鼓泡塔在安静区操作时,影响液相传质 系数的因素主要是气泡大小、空塔气速、液体性质和扩散系数等;而在 湍动区操作时,液体的扩散系数、液体性质、气泡当量比表面积以及气 体表面张力等,成为影响传质系数的主要因素。
VOL
C AO x A rA
其中:(-rA)':实测的宏观速度。
VG:
VL G VG 1 G
VR:
V V G V V V L R G L G 1 G
4、VE:
当液滴移动速度小于0.0001m/s HE=αED 当D<1.2m HE≥1m D≥1.2m αE=0.75
VE D2HE 4


VC:
式中 :形状系数,球盖: =1 标准椭圆形封头: =2

鼓泡塔反应器的特点结构讲解

鼓泡塔反应器的特点结构讲解
聚并,故效率较低。
储液量大,适于速度慢和热效应大的反应。液相轴向返混严重,连续操作型
反应速率明显下降。在单一反应器中,很难达到高的液相转化率,因此常用 多级彭泡塔串联或采用间歇操作方式
结构
塔体: 气体分布器:使气体分布均匀,强化传热、传质。是气液相鼓泡塔的 关键设备之一。 型式:多孔板 喷嘴 多孔管等 3、换热装置: 夹套式:热效应不大时。 蛇管式:热效应较大时。 外循环换热式:热效应较大时。 4、水平多孔隔板:提高气体分散度,减少液体纵向循环。
2)。 图1 空心式鼓泡塔
1-塔体;2-夹套; 3-气体分布器
图2 具有塔内热 交换单元的鼓泡塔
www,
为克服鼓泡塔中 的液相返混现象, 当高径比较大时, 常采用多段鼓泡 塔,以提高反应 效果(见图3)。
图3多段式气液 鼓泡塔
www,
当高粘性物系,例如生化工程的发酵、 环境工程中活性污泥的处理、有机化工 中催化加氢(含固体催化剂)等情况, 常用气体提升式鼓泡反应器(见图4)或 液体喷射式鼓泡反应器(见图5),此种 利用气体提升和液体喷射形成有规则的 循环流动,可以强化反应器传质效果, 并有利于固体催化剂的悬浮。此类又统 称为环流式鼓泡反应器。它具有径向气 液流动速度均匀、轴向弥散系数较低, 传热、传质系数较大,液体循环速度可 调节等优点。
鼓泡塔反应器的历史动态
• 自1971年来,千代田开发出了第一个脱硫 工艺,千代田公司继续改进和发展这项技 术,于1976年开发出了更为先进的工艺,这 项先进的技术将二氧化硫的吸收,氧化,中和, 结晶以及除尘等几个必不可少的工艺过程 合并到一个单独的气相-液相-固相反应器中 进行。这个反应器就叫做鼓泡式反应器 (JBR)。
鼓泡塔反应器的发展动态

鼓泡塔的工作原理

鼓泡塔的工作原理

鼓泡塔的工作原理
鼓泡塔,又称鼓泡反应器,是一种常用的气液接触反应设备。

其工作原理主要是利用气体通过液体时产生的气泡来实现气液两相的充分接触和反应。

具体来说,气体从塔底向上经分布器以气泡形式通过液层,气泡在上升过程中与液体进行接触和反应。

气泡的搅拌作用可使液体充分混合,增加气液接触面积,提高传质和传热效率。

鼓泡塔中的液体分批加入,气体连续通入,属于半连续操作。

在塔内,气体和液体可以进行逆流或并流操作,具体取决于实际需求。

此外,为加强液体循环和传递反应热,鼓泡塔内可设外循环管和塔外换热器。

同时,为减少液体返混,塔内常设有挡板。

鼓泡塔结构简单,没有运动部件,适用于高压反应或腐蚀性物系。

在各种有机化合物的氧化反应中,如乙烯氧化生成醛、乙醛氧化生成乙酸或乙酸酐等,鼓泡塔都发挥了重要作用。

请注意,鼓泡塔的工作原理和应用领域可能因具体设备和应用场景的不同而有所差异。

在实际应用中,需要根据具体需求进行设计和优化。

鼓泡反应器

鼓泡反应器

应用示例
应用示例
甲烷通过装有液态锡的鼓泡反应器,发生热解反应生成氢气和炭黑。
谢谢观看
①鼓泡塔
气体从塔底向上经分布器以气泡形式通过液层,气相中的反应物溶入液相并进行反应,气泡的搅拌作用可使 液相充分混合。鼓泡塔结构简单,没有运动部件,适用于高压反应或腐蚀性物系。
②鼓泡搅拌釜
又称通气搅拌釜,利用机械搅拌使气体分散进入液流以实现质量传递和化学反应。常用的搅拌器为涡轮搅拌 器,气体分布器安装在搅拌器下方正中处。鼓泡搅拌釜因搅拌器的形式、数量、尺寸、安装位置和转速都可进行 选择和调节,故具有较强的适应能力。当反应为强放热时,上述两种反应器均可设置夹套或冷却管以控制反应温 度;还可在反应器内设导流筒,以促进定向流动;或使气体经喷嘴注入,以提高液相的含气率,并加强传质。
Hale Waihona Puke 装置特点装置特点与填充塔、板式塔相比,鼓泡反应器的主要特点是液相体积分率高(可达90%以上),单位体积液相的相界 面积小(在200m2/m3以下)。
当反应极慢,过程由液相反应控制时,提高以单位反应器体积为基准的反应速率主要靠增加液相体积分率, 宜于采用鼓泡反应器。
当反应极快,过程由气液相际传质控制时,提高过程速率主要靠增加相界面积,则以采用填充塔或板式塔为 宜。
鼓泡反应器
气液反应器
01 工作原理
03 装置特点
目录
02 主要形式 04 应用示例
基本信息
鼓泡反应器是以液相为连续相,气相为分散相的气液反应器。 有槽型鼓泡反应器、鼓泡管式反应器、鼓泡塔等多种结构型式,其中鼓泡塔应用最广。
工作原理
工作原理
鼓泡反应器液体分批加入,气体连续通入的称为半连续操作鼓泡塔。连续操作的鼓泡塔气体和液体连续加入, 流动方向可以为向上并流或逆流。

鼓泡塔反应器设计

鼓泡塔反应器设计
鼓泡塔反应器鼓泡塔反应器的特点与结构
结构
塔体: 气体分布器:使气体分布均匀,强化传热、传质。是气液相鼓泡塔的关键设备之一。 型式:多孔板 喷嘴 多孔管等 换热装置: 夹套式:热效应不大时。 蛇管式:热效应较大时。 外循环换热式:热效应较大时。 水平多孔隔板:提高气体分散度,减少液体纵向循环。
气泡尺寸
a. 气泡的形成: uOG较低时:气体分布器 uOG中等时:气体分布器加液体湍动 uOG较高时:液体湍动使气流破碎成气泡。
<200
b.单个气泡的形状和直径 形状:db<0.2cm 垂直上升的坚实圆球. 2≤db≤1.0cm 螺旋式摆动上升的椭圆球 db>1.0cm 垂直上升的菌帽状 条件:
添加标题
b.体积平均直径dV:
01
添加标题
c.几何平均直径dg:
02
添加标题
a.当量比表面直径dVS: 气泡群的直径的计m2/m3
含气率:
单位体积充气层内气体所点的体积分率。 εOG:静态气含率。液体不流动时的气含率。 εG:动态气含率。液体连续流动时的气含率。
鼓泡塔的传递特性
鼓泡塔的流体力学特性
塔内液体流动状态:由空塔气速uOG决定 空塔气速uOG=v0/At 安静区:uOG<4.5~6cm/s 气体通过分布器几乎呈分散的有次序的鼓泡,既能达到一定的流量,又很少出现返混。 过渡区:4.5~6<uOG<8cm/s 湍动区:uOG>8cm/s 气泡不断地分裂、合并,并产生激烈无定向运动。塔内液体扰动剧烈,返混严重,流型接近CSTR。
鼓泡塔的气体压降ΔP: ΔP=分布板小孔压降+鼓泡塔静压降 = kpa 式中 C2=0.8 (小孔阻力系数) u0:小孔气速,m/s 鼓泡层密度,kg/m3

鼓泡塔反应器设计[荟萃知识]

鼓泡塔反应器设计[荟萃知识]
鼓泡塔反应器 鼓泡塔反应器的特点与结构 鼓泡塔反应器的传质 鼓泡塔反应器的计算
行业知识
1
鼓泡塔反应器鼓泡塔反应器的特点与结构
特点: ➢ 塔内充满液体,气体从反应器底部通入,分散成气泡沿着液体上升,
既与液相接触进行反应同时搅动液体以增加传质速率。 ➢ 这类反应器适用于液体相也参与反应的中速、慢速反应和放热量大的
行业知识
12
鼓泡塔反应器的计算 反应器体积 充气层的体积:VR=VG+VL 分离空间体积:VE 顶盖死区体积:VC
行业知识
13
➢ VL: 半连续操作时:VL=VOL(τ+τ')
连续操作时:VL=VOL
VOL
C AO xA
rA
其中:(-rA)':实测的宏观速度。
行业知识
14
➢ VG:
VG
行业知识
5
➢ 气泡尺寸
a. 气泡的形成:
uOG较低时:气体分布器 uOG中等时:气体分布器加液体湍动 uOG较高时:液体湍动使气流破碎成气泡。
b.单个气泡的形状和直径 形状:db<0.2cm 垂直上升的坚实圆球. 0.2≤db≤1.0cm 螺旋式摆动上升的椭圆球 db>1.0cm 垂直上升的菌帽状
传质速率的快慢。 欲提高单位相界面的传质速率,即提高传质系数,则必须提高扩
散系数。 扩散系数不仅与液体物理性质有关,而且还与反应温度、气体反
应物的分压或液体浓度有关。当鼓泡塔在安静区操作时,影响液相传质 系数的因素主要是气泡大小、空塔气速、液体性质和扩散系数等;而在 湍动区操作时,液体的扩散系数、液体性质、气泡当量比表面积以及气 体表面张力等,成为影响传质系数的主要因素。
条件:

鼓泡塔反应器设计

鼓泡塔反应器设计

喷嘴
扩散系数不仅式与液中体物理:性质形有关状,系而且数还与,反球应温盖度、:气体反应=物1的分压或液体浓度有关。
利用液体外循环冷却器移走热量。
单位体积充气层内气体所点标的体准积椭分率圆。形封头: =2
εG:动态气含率。
D≥1. 欲提高单位相界面的传质速率,即提高传质系数,则必须提高扩散系数。
湍动区:uOG>8cm/s 气泡不断地分裂、合并,并产生激烈无定向运动。 反应器直径和高度的计算
液体不流动时的气含率。
液体连续流动时的气含率。
D ΔP=分布板小孔压降+鼓泡塔静压降
3
塔内充满液体,气体从反应器底部通入,分散成气泡沿着液体上升,既与液相接触进行反应同时搅动液体以增加传质速率。
4、水平多孔隔板:提高气体分散度,减少液体纵向循环。
V 2cm 垂直上升的坚实圆球.
C
12 型式:多孔板
m
H H=HR+HE+HC
3 H 12 D
谢谢观看!
➢ 气泡尺寸
a. 气泡的形成:
uOG较低时:气体分布器 uOG中等时:气体分布器加液体湍动 uOG较高时:液体湍动使气流破碎成气泡。
b.单个气泡的形状和直径 形状:db<0.2cm 垂直上升的坚实圆球. 0.2≤db≤1.0cm 螺旋式摆动上升的椭圆球 db>1.0cm 垂直上升的菌帽状
条件:
Re0
鼓泡塔反应器设计
鼓泡塔反应器鼓泡塔反应器的特点与结构
特点: ➢ 塔内充满液体,气体从反应器底部通入,分散成气泡沿着液体上升,
既与液相接触进行反应同时搅动液体以增加传质速率。 ➢ 这类反应器适用于液体相也参与反应的中速、慢速反应和放热量大的
反应。 ➢ 鼓泡塔反应器结构简单、造价低、易控制、易维修、防腐问题易解决,

鼓泡塔反应器的特点结构讲解

鼓泡塔反应器的特点结构讲解

• 2010年,浆态床鼓泡反应器是一种气液固多相反应器,发 展至今,已被广泛应用于许多领域, 它具有结构简单、 持液量大、温度梯度小、固相能在线加载以及操作成本低 等优点。最初是由R hei nprussen 和 K oppers 于 1955 年建起 了浆态床试验装置 ,用于尝试将三相浆态床反应 器来代 替固定床 ;K ol bel和 R al ek等在 1950 到 1980 年期间完成了对浆态床 F — T 合成的深度研究;由 A i r Product and C hem ical s 公司和 East m an C hem i cal 公司发展的液相合成甲醇以及 Sasol公司(南非)发展的浆 态床费托合成过程都是成功使用浆态床的经典范例 • 尽管国内外已经对浆态鼓泡床反应器的流体力学进行 了 大量研究 ,但由于多相流动过程的复杂性,对反应器 内 流体力学 的研究尚处于发展阶段 ,因此有必要对浆态床 反应器内流体力学行为进行更加详细深入的研究。
2)。 图1 空心式鼓泡塔
1-塔体;2-夹套; 3-气体分布器
图2 具有塔内热 交换单元的鼓泡塔
www,
为克服鼓泡塔中 的液相返混现象, 当高径比较大时, 常采用多段鼓泡 塔,以提高反应 效果(见图3)。
图3多段式气液 鼓泡塔
www,
当高粘性物系,例如生化工程的发酵、 环境工程中活性污泥的处理、有机化工 中催化加氢(含固体催化剂)等情况, 常用气体提升式鼓泡反应器(见图4)或 液体喷射式鼓泡反应器(见图5),此种 利用气体提升和液体喷射形成有规则的 循环流动,可以强化反应器传质效果, 并有利于固体催化剂的悬浮。此类又统 称为环流式鼓泡反应器。它具有径向气 液流动速度均匀、轴向弥散系数较低, 传热、传质系数较大,液体循环速度可 调节等优点。

鼓泡塔反应器综述

鼓泡塔反应器综述

目录1 鼓泡塔反应器简介 (1)1.1 鼓泡塔的概念 (1)1.2 鼓泡塔的结构 (1)1.3 鼓泡塔类型 (2)1.3.1空心式 (2)1.3.2 多段式 (3)1.3.3 循环式 (3)1.4 鼓泡塔反应器的操作状态 (4)2 鼓泡塔反应器的流体力学特性 (6)2.1气泡直径 (6)2.2含气率 (6)2.3气液比相界面积 (7)2.4鼓泡塔的气体阻力ΔP (7)2.5返混 (8)3 鼓泡塔反应器的传质、传热特性 (9)3.1鼓泡塔的传质 (9)3.2鼓泡塔的传热 (9)4 鼓泡塔反应器的数学模型 (11)4.1 双流体模型 (11)4.2 湍流模型 (11)5 鼓泡塔反应器的工业应用实例 (13)1 鼓泡塔反应器简介1.1 鼓泡塔的概念鼓泡塔是在塔体下部装上分布器,将气体分散在液体中进行传质、传热的一种塔式反应器。

优点:气相高度分散于液相中,具有大的液体持有量和相界接触面,传质和传热效率高,适用于缓慢化学反应和高度放热的情况;结构简单,操作稳定,投资和维修费用低,被广泛应用于加氢、脱硫、烃类氧化、烃类卤化等工业过程。

缺点:液相有较大的返混,气相有较大的压降。

当高径比大时,气泡合并速度增加,使相际接触面积减小。

1.2 鼓泡塔的结构图1.2 简单鼓泡塔气体分布器:使气体分布均匀,强化传热、传质。

是气液相鼓泡塔的关键设备之一,型式:多孔板,喷嘴,多孔等,为鼓泡塔主要结构之一,另一主要结构为塔体。

换热装置: 1、夹套式:热效应不大时。

2、蛇管式:热效应较大时。

3、外循环换热式:热效应较大时塔体可安装夹套或其它型式换热器或设有扩大段、液滴捕集器等;塔液体层中可放置填料;塔可安置水平多孔隔板以提高气体分散程度和减少液体返混。

1.3 鼓泡塔类型1.3.1空心式图1.3.1 空心式鼓泡塔图1.3.2 多段式鼓泡塔空心式鼓泡塔如图1.3.1所示,塔不含塔板和液体分布器,最适用于缓慢化学反应系统或伴有大量热效应的的反应系统。

鼓泡塔反应器综述

鼓泡塔反应器综述

目录1 鼓泡塔反应器简介 (1)1.1 鼓泡塔的概念 (1)1.2 鼓泡塔的结构 (2)1.3 鼓泡塔类型 (2)1.3.1空心式 (3)1.3.2 多段式 (3)1.3.3 循环式 (3)1.4 鼓泡塔反应器的操作状态 (5)2 鼓泡塔反应器的流体力学特性 (7)2.1气泡直径 (8)2.2含气率 (8)2.3气液比相界面积 (10)2.4鼓泡塔内的气体阻力ΔP (10)2.5返混 (10)3 鼓泡塔反应器的传质、传热特性 (11)3.1鼓泡塔的传质 (11)3.2鼓泡塔的传热 (12)4 鼓泡塔反应器的数学模型 (14)4.1 双流体模型 (14)4.2 湍流模型 (14)5 鼓泡塔反应器的工业应用实例 (16)1 鼓泡塔反应器简介1.1 鼓泡塔的概念鼓泡塔是在塔体下部装上分布器,将气体分散在液体中进行传质、传热的一种塔式反应器。

优点:气相高度分散于液相中,具有大的液体持有量和相界接触面,传质和传热效率高,适用于缓慢化学反应和高度放热的情况;结构简单,操作稳定,投资和维修费用低,被广泛应用于加氢、脱硫、烃类氧化、烃类卤化等工业过程。

缺点:液相有较大的返混,气相有较大的压降。

当高径比大时,气泡合并速度增加,使相际接触面积减小。

1.2 鼓泡塔的结构图1.2 简单鼓泡塔气体分布器:使气体分布均匀,强化传热、传质。

是气液相鼓泡塔的关键设备之一,型式:多孔板,喷嘴,多孔等,为鼓泡塔主要结构之一,另一主要结构为塔体。

换热装置:1、夹套式:热效应不大时。

2、蛇管式:热效应较大时。

3、外循环换热式:热效应较大时塔体可安装夹套或其它型式换热器或设有扩大段、液滴捕集器等;塔内液体层中可放置填料;塔内可安置水平多孔隔板以提高气体分散程度和减少液体返混。

1.3 鼓泡塔类型1.3.1空心式图1.3.1 空心式鼓泡塔图1.3.2 多段式鼓泡塔空心式鼓泡塔如图1.3.1所示,塔内不含塔板和液体分布器,最适用于缓慢化学反应系统或伴有大量热效应的的反应系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鼓泡塔反应器综述摘要:本文在调研的基础上,对化工生产中常用的鼓泡塔反应器进行综合叙述。

从鼓泡塔的基本概念、起源发展、结构、流体力学特性、传质和传热、简化模型、设计及应用等方面进行综述,以便于更好的利用和开发。

Abstract: in this paper, on the basis of investigation, the chemical production in the bubble column reactor for a comprehensive description. Summarize on basic concept, the origin and development of bubbling tower, structure, hydrodynamics, mass transfer and heat transfer, a simplified model, design and application, to use and develop better.前言用于进行化学反应的设备称为化学反应器,简称反应器。

化工生产中所用的反应器内部进行的是伴有传质、传热和物质流动的化学反应过程,结构复杂,有时也称为工业反应器。

按其结构特征来分,可分为管式反应器、釜式反应器和塔式反应器;按操作方法来分,可分为间歇、连续和半间歇反应器;按物料相态来分,可分为均相反应器和非均相反应器,均相反应器又有气相和液相两类,非均相反应器又分为气—液、气—固、液—液、液—固、气—液—固等反应器。

按固体颗粒(固体颗粒可以是反应物,也可以是催化剂)状态来分,可分为固定床反应器、移动床反应器、流化床反应器等。

另外,还有一些分类方法,如按反应器内温度分布分类,可分为等温和非等温反应器;按反应器和外部之间换热来分,可分为绝热反应器和非绝热反应器等。

化学反应器是化工装置的重要设备之一,其设计是否科学、合理,其运行是否安全、可靠,直接关系到整套装置的安全性和经济效益。

反应设备虽然种类繁多,但对其要求是共同的主要有以下几点:①技术指标先进,即转化效率高处理量大,能耗低;②使用方便,操作稳定,容易调节,易于清理和检修;③结构简单,节省材料,造价低廉,制造安装方便。

了解化学反应器发展的现状,进一步研究和开发新型实用的化学反应器具有重要的现实意义。

本文就鼓泡塔反应器的概念、起源与发展、结构、流体力学、应用范围等进行综述,以便于更好的利用和开发。

鼓泡塔(Bubble Column Reactor)是在塔体下部装上分布器,将气体分散在液体中进行传质、传热的一种塔式反应器。

以其结构简单、无机械传动部件、易密封、传热效率高、操作稳定、操作费用低等优点,被广泛应用于加氢、脱硫、烃类氧化、烃类卤化、费-托合成、废气和废水处理、煤的液化及菌种培养等工业过程。

特点:气相高度分散于液相中,具有大的液体持有量和相际接触面,传质和传热效率高,适用于缓慢化学反应和高度放热的情况;结构简单,操作稳定,投资和维修费用低缺点:液相有较大的返混,气相有较大的压降。

2 鼓泡塔的发展20世纪70年代以后,有关鼓泡塔的研究日益活跃,除标准型鼓泡塔外,又开发了各种各样的改型鼓泡塔(射流喷射型、气液下流型、双管式、多段式、填充式等)和悬浊鼓泡塔等。

图1是各种鼓泡塔的示意图,从图中可见,在鼓泡塔中,气液两相基本呈并流和逆流两种。

3.1简单鼓泡塔的基本结构图2简单鼓泡塔1-塔体;2-夹套;3-气体分布器;4-塔体;5-挡板;6-塔外换热器;7-液体捕集器;8-扩大段主要由塔体和气体分布器组成。

塔体可安装夹套或其它型式换热器或设有扩大段、液滴捕集器等;塔内液体层中可放置填料;塔内可安置水平多孔隔板以提高气体分散程度和减少液体返混。

简单鼓泡塔内液相可近似视为理想混合流型,气相可近似视为理想置换流型。

最佳空塔气速应满足两个条件:(1)保证反应过程的最佳选择性;(2)保证反应器体积最小。

影响传质的因素:当气体空塔气速低于0.05m/s时,气体分布器的结构就决定了气体的分散状况、气泡的大小,进而决定了气含率和液相传质系数的大小。

当气体空塔气速大于0.1m/s时,气体分布器的结构无关紧要。

此时的气泡是靠气流与液体间的冲击和摩擦而形成,气泡大小及其分布状况主要取决于气体空塔气速。

3.2气体升液式鼓泡塔图3 气体升液式鼓泡塔1-筒体;2-气升管;3-气体分布器塔内装有气升管,引起液体形成有规则的循环流动,可以强化反应器传质效果,并有利于固体催化剂的悬浮。

适用于高粘性物系。

例如:生化工程的发酵、环境工程中活性污泥的处理、有机化工中催化加氢等特点:在这种鼓泡塔中气流的搅动比简单鼓泡塔激烈得多。

简单鼓泡塔中气体空塔速度不超过1m/s,气体升液式鼓泡塔中气升鼓泡管内气体空管速度可高达2m/s,换算至全塔截面的空塔气速可达1m/s,其液体循环速度可达1~2m/s。

3.3空心式图4 空心式鼓泡塔最适用于缓慢化学反应系统或伴有大量热效应的的反应系统。

热效应较大时,可在塔内或塔外装备热交换单元。

3.4多段式鼓泡塔反应器图5 多段式鼓泡塔反应器克服鼓泡反应器中的液相返混现象,适用于高径比较大的情况。

4 鼓泡塔反应器的操作状态鼓泡塔内流体的流动情况比较复杂,气体的鼓入方式多种多样,气速的大小有高有低,有的单独鼓入,有的与液体一起鼓入或喷入。

液体有流动的(连续式),有不流动的(半间歇式)。

在连续操作的塔中,液体与气体有逆流的,有并流的,气液的流动会相互影响。

塔内的内部构件导流管、障板、挡板、筛板、换热器等,也会影响气体和液体的流动状态及气液两相的接触状态,从而影响反应器的传递特性和反应结果。

下面,仅就一般及典型的情况作出说明和描述,在实践中指导分析和改进鼓泡塔的操作,改善鼓泡塔的结构和塔内流型,提高反应器的收率和生产能力。

气体的空塔线速度不同会在鼓泡塔内造成不同的流动状态。

安静鼓泡区:表观气速低于0.05m/s时,处于此区。

所谓安静区操作,即鼓泡塔中的气体流量较小,气泡大小比较均匀,规则地浮升,液体搅拌并不显著。

在安静区操作,既能达到一定的气体流量,又可避免气体的轴向返混,很适用于动力学控制的慢反应。

此时,气泡呈分散状态,气泡大小均匀,行有秩序的鼓泡,目测液体搅动微弱。

湍流鼓泡区:图6 鼓泡塔流动状态分布区区域图表观气速大于0.08m/s时,处于此区。

所谓湍动区操作,在气体流量较大时,气泡运动呈不规则现象,液体作高度地湍动,塔内物料强烈混合,气泡作用的机理比较复杂,这种情况称为湍动区。

在湍动区气泡大小不均匀,大气泡上升速度快,小气泡上升速度慢,停留时间不等,加之无定向搅动,不仅呈极大的液相返混,也造成气相返混。

栓塞气泡流动区:小径气泡塔,高表观气速下出现此状态。

由于器壁限制了大气泡直径。

实验观察到,栓塞气泡流发生在小直径直至0.15m直径的鼓泡反应器中。

在生产装置中,简单的鼓泡塔往往选择在安静区状态下操作,而气体升液式鼓泡塔往往在湍动区操作。

连续操作的鼓泡塔反应器,当其长径比(塔高/塔径)比较小,气速又比较高时,液相的流动状态接近理想混合;长径比比较大但液体停留时间长、循环速度快时亦可视为理想混合;当长径比比较大,气速又较高时,气体接近理想置换流型。

气液的激烈搅拌有利于气液表面的更新,有利于传质和传热的进行,使反应器内温度分布均匀,但返混的存在会影响转化率并对一些反应的选择性有不利影响。

例如环己烷氧化制环己酮、环己醇,丁烷氧化制甲乙酮,目的产物均为氧化的中间产物,极易进一步氧化为酸,为提高反应的选择性,应使液体的流动接近活塞流,而且要在低转化率下操作。

为降低流动的返混程度,可在鼓泡塔内装设水平多孔隔板或挡板,或者填装填料,或者将鼓泡塔做出多级。

5 鼓泡塔反应器的流体力学特性鼓泡塔内气液尺寸的大小、气泡的上升速度、床层的含气率、相界面积等参数,反应流体在塔内的流动状态,对于分析、操作和计算鼓泡塔反应器具有重要意义。

5.1气泡直径鼓泡塔内的气泡有两种形成机制,当气速比较低时,靠分布器的小孔分散成气泡;当气速较高时,靠液体的湍动使喷出的气流破裂形成气泡。

气泡的大小直接关系到气液传质面积。

在同样的空塔气速下,气泡越小,说明分散越好,气液相接触面积就越大。

在安静区,因为气泡上升速度慢,所以小孔气速对其大小影响不大,主要与分布器孔径及气液特性有关。

在湍动区,气泡是靠气流与液体之间的喷射、冲击和摩擦而形成。

因此在这种鼓泡塔内,气泡的形状、大小和运动是各式各样的,是瞬息万变的,是随机的,形成大小不一的气泡群。

鼓泡反应器的气泡直径可按Akita准数关联式计算:⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=D g u D g D g D d R OG L L R L L R R VS12.012.05.0232226μσρρ可用下式描述气泡直径沿径向的变化:dB —塔内直径d 处的气泡平均直径1032.59-⨯⎪⎪⎭⎫ ⎝⎛-=D d R B d 5.2含气率单位体积鼓泡床(充气层)内气体所占的体积分数称为含气率。

液体不流动时的含气率称为静态含气率;液体连续流动时的含气率称为动态含气率。

气含率的含义是气液混合液中气体所占的体积分率,可用下式表示:式中εG——气含率;VG ——气体体积,m 3;VL ——液体体积,m 3;VGL ——气液混合物体积,m 3。

对圆柱形塔来说,由于横截面一定,因此气含率的大小意味着通气前后塔内充气床层膨胀高度的大小。

对于传质与化学反应来讲,气含率非常重要,因为气含率与停留时间及气液相界面积的大小有关。

影响气含率的因素主要有设备结构、物性参数和操作条件等。

一般气体的性质对气含率影响不大,可以忽略。

而液体的表面张力σL 、粘度μL 与密度ρL 对气含率都有影响。

溶液里存在电解质时会使气液界面发生变化,生成上升速度较小的气泡,使气含率比纯水中的高15%~20%。

空塔气速增大时,εG 也随之增加,但μOG 达到一定值时,气泡汇合,εG 反而下降。

εG 随塔径D 的增加而下降,但当D >0.15m 时,D 对εG 无影响。

当μOG <0.05m/s 时,εG 与塔径D 无关。

(因此实验室试验设备的直径一般应大于0.15m ,只有当μOG <0.05m/s 时,才可取小塔径。

含气率是个重要参数,它反映的大小还影响到单位体积床层所具有的相界面积,以及气液两相在床层中的停留时间,从而影响传质过程和化学反应结果。

• 对于塔径大于15cm 的鼓泡反应器,气含率关联式为: ()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=μσρσμεε4324741L L L C G g u L L OG G 上述的气含率是反应器内的平均值,气含率沿塔径的分布,可采用下式: εεG G D d R ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎫ ⎝⎛212• 对于塔径小于15cm 的鼓泡反应器,参考关联图7:5.3气液比相界面积气液比相界面积是指单位气液混合鼓泡床层体积内所具有的气泡表面积,α的大小直接关系到传质速率,是重要的参数,α值测定比较困难,人们常利用传质关系式NA=kLαΔcA 直接测定kLα之值进行使用。

相关文档
最新文档