人教版九年级数学上册《第24章圆》单元测试含答案

合集下载

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.已知点P 在半径为8的O 外,则( )A .8OP >B .8OP =C .8OP <D .8OP ≥ 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个 3.O 的半径为10cm ,弦//AB CD .若12cm,16cm AB CD ==,则AB 和CD 的距离为( ) A .2cm B .14cm C .2cm 或14cm D .2cm 或10cm 4.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒5.如图,,OA OB 是O 的两条半径,点C 在O 上,若80AOB ∠=︒,则C ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 6.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =,1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π 7.如图,点,,,,A B C DE 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒8.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°9.如图,△ABC 内接于⊙O ,∠A =50°.E 是边BC 的中点,连接OE 并延长,交⊙O 于点D ,连接BD ,则∠D 的大小为( )A .55°B .65°C .60°D .75°10.已知圆锥的母线长8cm ,底面圆的直径6cm ,则这个圆锥的侧面积是( )A .96πcm 2B .48πcm 2C .33πcm 2D .24πcm 211.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°12.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .21+B .122+C .221+D .1222- 二、填空题13.如图,在Rt ABC △甲,90ABC ︒∠=,2AB =,23BC =,以点B 为圆心,AB 的长为半径作圆,交AC 于点E ,交BC 于点F ,阴影部分的面积为__________(结果保留π).14.如图,在Rt AOB 中,23,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的一条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为____.15.如图,将半径为10cm 的圆形纸片沿一条弦AB 折叠,折叠后弧AB 的中点C 与圆心O 重叠,则弦AB 的长度为________cm .16.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.17.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.18.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.三、解答题19.如图,AD ,BD 是O 的弦,AD BD ⊥,且28BD AD ==,点C 是BD 的延长线上的一CD=,求证:AC是O的切线.点,220.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt△ABC中,∠C=90°.求作:一个⊙O,使⊙O与AB、BC所在直线都相切,且圆心O在边AC上.21.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒22.如图,AB 是O 的直径,过点A 作O 的切线AC ,点P 是射线AC 上的动点,连接OP ,过点B 作BD //OP ,交O 于点D ,连接PD .(1)求证:PD 是O 的切线;(2)当APO ∠的度数为______时,四边形POBD 是平行四边形.23.如图,Rt ABC △中,90C ∠=︒,点O 在AC 上,以OA 为半径的半圆O 分别交AB ,AC 于点D ,E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF DF =;(2)若4AO CE ==,1CF =,求BF 的长.24.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,AB ⊥CD ,连接AC ,OD .(1)求证:∠BOD =2∠A ;(2)连接DB ,过点C 作CE ⊥DB ,交DB 的延长线于点E ,延长DO ,交AC 于点F .若F 为AC 的中点,求证:直线CE 为⊙O 的切线.25.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.26.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为AB .桥的跨度(弧所对的弦长)26m AB =,设AB 所在圆的圆心为O ,半径OC AB ⊥,垂足为D .拱高(弧的中点到弦的距离)5m CD =.连接OB .(1)直接判断AD 与BD 的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m )参考答案1.A2.A3.C4.C5.B6.D7.D8.C9.B10.D11.A12.B13.π33+ 14.2215.10316.6017.118.3619.证明:连接AB ,∵AD BD ⊥,且28BD AD ==∴AB 为直径,AB 2=82+42=80,∵CD =2,AD =4∴AC 2=22+42=20∵CD =2,BD =8,∴BC 2=102=100∴222AC AB CB +=,∴90BAC ∠=︒∴AC 是O 的切线.20.解:作∠ABC 的平分线交AC 于O 点,以O 点为圆心,OC 为半径作圆,则O 为所求作的圆.21.证明:∵四边形ABCD 内接于O , ∴180ADC ABC ∠+∠=︒,又∵120ADC ∠=︒,∴180********ABC ADC ∠=︒-∠=︒-︒=︒, ∵AB AC =,∴AB AC =,∴ABC 是等边三角形.22.解:证明:连接OD ,∵P A 切⊙O 于A ,∴P A ⊥AB ,即∠P AO =90°,∵OP ∥BD ,∴∠DBO =∠AOP ,∠BDO =∠DOP , ∵OD =OB ,∴∠BDO =∠DBO ,∴∠DOP =∠AOP ,在△AOP 和△DOP 中,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△DOP (SAS ),∴∠PDO =∠P AO ,∵∠P AO =90°,∴∠PDO =90°,即OD ⊥PD ,∵OD 过O ,∴PD 是⊙O 的切线;(2)由(1)知:△AOP ≌△DOP ,∴P A =PD ,∵四边形POBD 是平行四边形,∴PD =OB ,∵OB =OA ,∴P A =OA ,∴∠APO =∠AOP ,∵∠P AO =90°,∴∠APO =∠AOP =45°.23.(1)证明:连接OD ,如图,∵半圆O 的切线DF ,∴90ODF ∠=︒.∴90ADO BDF ∠+∠=︒.∵90C ∠=︒,∴90OAD B ∠+∠=︒.∵OA OD =,∴OAD ADO ∠=∠.∴B BDF ∠=∠.∴BF DF =.(2)解:连接OF .∵4AO CE ==,AO OE =,∴8OC =.∵9090C ODF ∠=︒=∠=︒,1CF =,∴2222265OF OC CF OD DF =+=+=.又∵4OD =,∴7DF BF ==.24.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,AB ⊥CD ,∴BC BD =,∴∠CAB =∠BAD ,∵∠BOD =2∠BAD ,∴∠BOD =2∠CAB ;(2)证明:如图,连接OC ,AD ,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵BC BD=,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵BC BC=,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90︒,∴∠CDE+∠DCE=90︒,∴∠OCD+∠DCE=90︒,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.25.(1)证明:设AB交CD于点H,连接OC,由题可知,∴=,90OC OD∠=∠=︒,OHC OHD()Rt Rt HL COH DOH ≅∴,COH DOH ∴∠=∠,BC BD ∴=,COB BOD ∴∠=∠,2COB A ∠=∠,2BOD A ∴∠=∠;(2)证明:连接AD ,OA OD =,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠, ∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠, 180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒, 30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒, 223060COB CAO ∴∠=∠=⨯︒=︒, AB 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,OC DE ∴∥,CE BE ⊥,∴直线CE 为O 的切线. 26.解:∵半径OC AB ⊥, ∴AD BD =.故答案为:AD BD =.(2)设主桥拱半径为R ,由题意可知26AB =,5CD =, ∴11261322BD AB ==⨯=,5OD OC CD R =-=-, 在Rt OBD △中,由勾股定理,得222OB BD OD =+, 即22213(5)R R =+-, 解得19.4R =,∴19R ≈,因此,这座石拱桥主桥拱半径约为19m。

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。

人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)一、选择题(每小题3分,共24分)1.已知⊙O 的半径为5 cm ,点P 在直线l 上,且点P 到圆心O 的距离为5 cm ,则直线l 与⊙O ( )A .相离B .相切C .相交D .相交或相切2.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是( ) A .6 B .3 C. 3 D .123.如图1,四边形ABCD 内接于⊙O ,若∠C =36°,则∠A 的度数为( ) A .36° B .56° C .72° D .144°图1 图24.如图2所示,⊙O 的半径为4 cm ,C 是AB ︵的中点,半径OC 交弦AB 于点D ,OD =2 3 cm ,则弦AB 的长为( )A .2 cmB .3 cmC .2 3 cmD .4 cm5.如图3所示,D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论不一定正确的是( )A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D.AC ︵=BC ︵图3 图46.如图4,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交于⊙O 点D , 点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45° 7.把球放在长方体纸盒内,球的一部分露出盒外,其轴截面如图5所示,已知EF =CD =4 cm ,则球的半径是( )A .2 cmB .2.5 cmC .3 cmD .4 cm图5 图68.如图6,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2 3,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A.15 34-32πB.15 32-32πC.734-π6D.732-π6π二、填空题(每小题4分,共32分)9.如图7,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是________.图7 图810.如图8,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ACD =54°,则∠BAD =________°. 11.在Rt △ABC 中,∠C =90°,若AC =4,BC =3,则△ABC 的内切圆半径r =________. 12.一个扇形的圆心角是120°,它的半径是3 cm ,则扇形的弧长为________ cm.13.如图9,⊙M 与x 轴相切于原点,平行于y 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的下方.若点P 的坐标是(2,1),则圆心M 的坐标是________.图914.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面,则这个圆锥的底面圆的直径是________.15.如图10所示,AB 是半圆O 的直径,E 是BC ︵的中点,OE 交弦BC 于点D .若BC =8 cm ,DE =2 cm ,则OD =________ cm.图10 图1116.如图11,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B ,E 是半圆弧的三等分点,弧BE 的长为2π3,则图中阴影部分的面积为________.三、解答题(共44分)17.(10分)如图12,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,G 是AC ︵上的一点,AG 与DC 的延长线交于点F .(1)若CD =8,BE =2,求⊙O 的半径; (2)求证:∠FGC =∠AGD .图1218.(10分)如图13,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点M ,N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ;(2)连接MD,求证:MD=NB.图1319.(12分)如图14,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA长为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.图1420.(12分)如图15①所示,OA是⊙O的半径,D为OA上的一个动点,过点D作线段CD⊥OA交⊙O于点F,过点C作⊙O的切线BC,B为切点,连接AB,交CD于点E. (1)求证:CB=CE;(2)如图②,当点D 运动到OA 的中点时,CD 刚好平分AB ︵,求证:△BCE 是等边三角形;(3)如图③,当点D 运动到与点O 重合时,若⊙O 的半径为2,且∠DCB =45°,求线段EF 的长.图11.D2.[解析] B 设圆锥的母线长为R ,π×R 2÷2=18π,解得R =6,∴圆锥侧面展开图的弧长为6π,∴圆锥的底面圆半径是6π÷2π=3.故选B. 3.D4.[解析] D 由圆的对称性,将圆沿OC 折叠,A ,B 两点重合,所以OC ⊥AB .连接OA ,由勾股定理求得AD =2 cm ,所以AB =4 cm.5.[解析] B ∵D 是弦AB 的中点,CD 经过圆心O , ∴CD ⊥AB ,AC ︵=BC ︵,故A ,D 正确; 连接OB , ∴∠AOD =∠BOD . ∵∠BOD =2∠C ,∴∠AOD =2∠BCD ,故C 正确;B 不一定正确.故选B. 6.D7.[解析] B 过点O 作OM ⊥EF 于点M ,延长MO 交BC 于点N ,连接OF ,如图. ∵四边形ABCD 是矩形, ∴∠C =∠D =90°,∴四边形CDMN 是矩形, ∴MN =CD =4. 设OF =x , 则ON =OF =x ,∴OM =MN -ON =4-x ,MF =2, 在Rt △OMF 中,OM 2+MF 2=OF 2, 即(4-x )2+22=x 2,解得x =2.5. 故选B.8.A9.[答案] 2 7[解析] 连接OC,如图,由题意,得OE=OA-AE=4-1=3,∴CE=ED=OC2-OE2=7,∴CD=2CE=2 7.10.[答案] 36[解析] 连接BD,如图所示.∵∠ACD=54°,∴∠ABD=54°.∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD=90°-∠ABD=36°.11.[答案] 1[解析] 如图,设△ABC的内切圆与各边分别相切于点D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC.设⊙O的半径为r,∴CD=CE=r.∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3-r,AF=AD=4-r,∴4-r+3-r=5,∴r=1,∴△ABC的内切圆的半径为1.12.[答案] 2π[解析] 根据题意,扇形的弧长为120π×3180=2π.13.[答案] (0,2.5)[解析] 如图,连接MP ,过点P 作P A ⊥y 轴于点A , 设点M 的坐标是(0,b ),且b >0. ∵P A ⊥y 轴,∴∠P AM =90°, ∴AP 2+AM 2=MP 2, ∴22+(b -1)2=b 2,解得b =2.5.故答案是(0,2.5). 14.[答案] 6[解析] 扇形的弧长l =120π×9180=6π,所以圆锥底面圆的周长为6π,则圆锥底面圆的直径为6ππ=6.15.[答案] 3[解析] 因为E 为BC ︵的中点,所以OE ⊥BC ,所以△OBD 为直角三角形. 设OD =x cm ,则OB =OE =OD +DE =(x +2)cm. 在Rt △OBD 中,根据勾股定理,得 (x +2)2=42+x 2, 解得x =3.故OD =3 cm. 16.[答案]3 32-23π[解析] 如图,连接BD ,BE ,BO ,EO . ∵B ,E 是半圆弧的三等分点, ∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =∠BAD =30°,∴BE ∥AD . ∵BE ︵的长为23π,∴60π×R 180=23π,解得R =2,易得AB =2 3,∴BC =12AB =3,∴AC =AB 2-BC 2=(2 3)2-(3)2=3, ∴S △ABC =12BC ·AC =12×3×3=3 32.∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为S △ABC -S 扇形BOE =3 32-60π×22360=3 32-23π.故答案为3 32-23π.17.解:(1)如图,连接OC .设⊙O 的半径为R . ∵CD ⊥AB , ∴DE =EC =4.在Rt △OEC 中, ∵OC 2=OE 2+EC 2, ∴R 2=(R -2)2+42, 解得R =5.(2)证明:连接AD , ∵CD ⊥AB , ∴AD ︵=AC ︵, ∴∠ADC =∠AGD .∵四边形ADCG 是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.18.证明:(1)连接ON,如图.∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B.∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB.∵NE为⊙O的切线,∴ON⊥NE,∴NE⊥AB.(2)连接DN,如图.∵CD为⊙O的直径,∴∠CMD=∠CND=90°.而∠MCB=90°,∴四边形CMDN为矩形,∴MD=CN.∵DN⊥BC,∠1=∠B,∴CN=NB,∴MD=NB.19.解:(1)MN是⊙O的切线.理由:如图,连接OC.∵OA=OC,∴∠A=∠OCA,∴∠BOC=∠A+∠OCA=2∠A.又∵∠BCM =2∠A ,∴∠BCM =∠BOC .∵∠B =90°,∴∠BOC +∠BCO =90°,∴∠BCM +∠BCO =90°,即∠OCM =90°,∴OC ⊥MN ,∴MN 是⊙O 的切线.(2)由(1)可知∠BOC =∠BCM =60°,∴∠AOC =120°.在Rt △BCO 中,OC =OA =4,∠BCO =90°-60°=30°,∴BO =12OC =2,BC =2 3,∴S 阴影=S 扇形OAC -S △OAC =120π×42360-12×4×2 3=16π3-4 3. ∴图中阴影部分的面积为163π-4 3. 20.解:(1)证明:在图①中,连接OB .∵CB 为⊙O 的切线,切点为B ,∴OB ⊥BC ,∴∠OBC =90°.∵OA =OB ,∴∠DAE =∠OBA .∵∠DAE +∠DEA =90°,∠OBA +∠CBE =90°,∴∠DEA =∠CBE .∵∠CEB =∠DEA ,∴∠CEB =∠CBE ,∴CB =CE .(2)证明:在图②中,连接OF ,OB .在Rt △ODF 中,OF =OA =2OD ,∴∠OFD =30°,∴∠DOF =60°.∵CD 平分AB ︵,∴∠AOB =2∠AOF =120°,∴∠C =360°-∠ODC -∠OBC -∠AOB =60°.∵CB =CE ,∴△BCE 是等边三角形.(3)在图③中,连接OB ,∴∠OBC =90°.又∵∠DCB =45°,∴△OBC 为等腰直角三角形,∴BC =OB =2,OC =2 2.又∵CB =CE ,∴OE =OC -CE =OC -BC =2 2-2,∴EF =DF -OE =2-(2 2-2)=4-2 2.人教新版九年级数学上第23章旋转单元练习试题含详细答案一.选择题(共10小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°3.如图,△ODC是由△OAB绕点O顺时针旋转50°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为130°,则∠C的度数是()A.25°B.30°C.35°D.40°4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.5.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30°B.35°C.40°D.45°6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移7.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n 的最小值为()A.45 B.60 C.72 D.1448.在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A.(﹣3,1)B.(3,﹣1)C.(﹣1,3)D.(1,﹣3)9.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q10.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′二.填空题(共9小题)11.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=度.12.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.15.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.17.在△ABC中,∠C=90°,AC=BC,将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,连结C′B、BB′,则∠BB′C′=.18.在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为.19.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.三.解答题(共6小题)20.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.24.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.参考答案一.选择题(共10小题)1.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.2.解:根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.3.解:∵∠AOC的度数为130°,∠AOD=∠BOC=50°,∴∠AOB=130°﹣50°=80°,∵△AOD中,AO=DO,∴∠A=(180°﹣50°)=65°,∴△ABO中,∠B=180°﹣80°﹣65°=35°,由旋转可得,∠C=∠B=35°,故选:C.4.解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.5.解:∵△ABC绕点A逆时针旋转110°,得到△ADE∴AB=AD,∠BAD=110°由三角形内角和∠B=故选:B.6.解:屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,可以先逆时针旋转90°,再向左平移.故选:A.7.解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.8.解:如图所示,由旋转可得:∠AOA'=∠BOC=90°,AO=A'O,∴∠AOB=∠A'OC,而∠ABO=∠A'CO=90°,∴△AOB≌△A'OC,∴A'C=AB=1,CO=BO=3,∴点A'的坐标为(3,﹣1),故选:B.9.解:由图形可得:OA=,OM=,ON=,OP=,OQ=5,所以点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过P点,故选:C.10.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.二.填空题(共9小题)11.解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.12.解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,分两种情况:①如图,当正△AEF在正方形ABCD内部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(90°﹣60°)=15°②如图,当正△AEF在正方形ABCD外部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(360°﹣90°+60°)=165°故答案为:15°或165°.13.解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).14.解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.15.解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).16.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.17.解:∵∠C=90°,AC=BC,∴∠ABC=∠BAC=45°,∵将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,∴∠AB′C′=∠ABC=45°,∠BAB′=60°,AB′=AB,∴AB′=B′B=BA,∴∠AB′B=60°,∴∠BB′C′=∠AB′B﹣∠AB′C′=60°﹣45°=15°,故答案为:15°.18.解:∵△BOA绕点A按顺时针方向旋转得△CDA,∴△BOA≌△CDA,∴AB=AC,OA=AD,∵B、D、C共线,AD⊥BC,∴BD=CD=OB,∵OA=AD,BO=CD=BD,∴OD⊥AB,设直线AB解析式为y=kx+b,把A与B坐标代入得:,解得:,∴直线AB解析式为y=﹣x+4,∴直线OD解析式为y=x,联立得:,解得:,即M(,),∵M为线段OD的中点,∴D(,),设直线CD解析式为y=mx+n,把B与D坐标代入得:,解得:m=﹣,n=4,则直线CD解析式为y=﹣x+4.故答案为:y=﹣.19.解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.三.解答题(共6小题)20.解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作21.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,22.解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.24.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.25.解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.人教版九年级上册第二十四章《圆》培优练习卷(含答案)一.选择题1.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π2.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2πB.3πC.4πD.π4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°6.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C.7D.127.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A.4π﹣16 B.8π﹣16 C.16π﹣32 D.32π﹣168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H.若AE =3,则EG的长为()A.B.C.D.9.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm,弧长是8πcm,那么这个圆锥的高是()A.8cm B.6cm C.3cm D.4cm10.如图,点C为△ABD外接圆上的一点(点C不在上,且不与点B,D重合),且∠ACB=∠ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5 B.5C.4D.11.在△ABC中,∠C=90°,∠A=30°,AB=12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A.24πB.20πC.18πD.6π12.如图,矩形ABCD中,BC=2,CD=1,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.16.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.17.半径为6的扇形的面积为12π,则该扇形的圆心角为°.18.在平面直角坐标系中,点A(a,a),以点B(0,4)为圆心,半径为1的圆上有一点C,直线AC与⊙B相切,切点为C,则线段AC的最小值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.22.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,AB是半圆O的直径,C是半圆上一点,=,DH⊥AB于点H,AC分别交BD、DH于E、F.(1)已知AB=10,AD=6,求AH.(2)求证:DF=EF25.如图,已知AB是⊙O的直径,点C是弧AB的中点,点D在弧BC上,BD、AC的延长线交于点K,连接AD,交BC于点E,连接CD(1)求证:∠AKB﹣∠BCD=45°;(2)若DC=DB,求证:BC=2CK.参考答案一.选择题1.解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.2.解:连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∴OF=DF,∴BF∥DE,∴OB=BE=6∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.故选:B.3.解:∵ABCDEF为正六边形,∴∠COB=360°×=60°,∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为=2π.故选:A.4.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.6.解:连接DO,EO,∵⊙O 是△ABC 的内切圆,切点分别为D ,E ,F ,∴OE ⊥AC ,OD ⊥BC ,CD =CE ,BD =BF =3,AF =AE =4 又∵∠C =90°,∴四边形OECD 是矩形,又∵EO =DO ,∴矩形OECD 是正方形,设EO =x ,则EC =CD =x ,在Rt △ABC 中BC 2+AC 2=AB 2故(x +2)2+(x +3)2=52,解得:x =1,∴BC =3,AC =4,∴S △ABC =×3×4=6,故选:A .7.解:连接OA 、OB ,∵四边形ABCD 是正方形,∴∠AOB =90°,∠O AB =45°,∴OA =AB cos45°=4×=2,所以阴影部分的面积=S ⊙O ﹣S 正方形ABCD =π×(2)2﹣4×4=8π﹣16. 故选:B .8.解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.9.解:设圆锥底面圆的半径为r,根据题意得2πr=8π,解得r=4,所以这个的圆锥的高==3(cm).故选:C.10.解:延长CD到E,使得DE=BC,连接AE,如右图所示,∵∠ACB=∠ABD=45°,∠ACB=∠ADB,∴∠ADB=45°,∴∠BAD=90°,AB=AD,∵四边形ABCD是圆内接四边形,∠ADE+∠ADC=180°,∴∠ADC+∠ABC=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∵∠BAC+∠CAD=∠BAD=90°,∴∠DAE+∠CAD=90°,∴∠CAE=90°,∵ACD=45°,BC=DE=8,CD=4,∴∠ACE=45°,CE=12,∴AC=AE=6,故选:D.11.解:∵在△ABC中,∠C=90°,∠A=30°,AB=12,∴BC=AB=6,∠ABC=60°,∴S=﹣=﹣=18π.阴影故选:C.12.解:连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,OA=OD=1,而CD=1,∴四边形ODCE和四边形ABEO都是正方形,∴BE=1,∠DOE=∠BEO=90°∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF =S△EBF,∴阴影部分的面积=S扇形EOD==.故选:C.二.填空题13.解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.14.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S 阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣. 15.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.16.解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB 、BC 、CD 、AD ,则四边形ABCD 是正方形,连接OB ,如图所示:则正方形ABCD 的对角线=2OA =4,OA ⊥OB ,OA =OB =2,∴AB =2,过点O 作ON ⊥AB 于N ,则NA =AB =, ∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.17.解:设该扇形的圆心角为n2,则=12π,解得:n=120,故答案为:120.18.解:连结AB、BC,如图,∵A点坐标为(a,a),∴点A在直线y=x上,作BH⊥直线y=x于H,∵∠AOB=45°,∴△BOH为等腰直角三角形,∴BH=OB=2,∵直线AC与⊙B相切,切点为C,∴BC⊥AC,∴∠ACB=90°,∴AC==,当AB最小时,AC的值最小,而点A在H点时,AB最小,此时AB=BH=2,∴AC的最小值为==.故答案为.三.解答题(共7小题)19.(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴AD=AC,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.20.解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=OA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=DF=1.21.证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB ∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴∴PC=2PA,PC2=PA•PB∴4PA2=PA×(PA+2)∴PA=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=22.解:过O点作OE⊥CD于E,。

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8―4πB.16―4πC.32―4πD.32―8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A.B.C.D.6.如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )A.2π3―32B.2π3―3C.π3―32D.π37.如图,⊙O是正△ABC的外接圆,△DOE是顶角为120°的等腰三角形,点O与圆心重合,点D,E 分别在圆弧上,若⊙O的半径是6,则图中阴影部分的面积是( )A.4πB.12π―9 3C.12π―923D.24π―9 38.如图,在正方形ABCD中,点E,F分别是边BC和CD上的动点(不与端点重合),∠EAF=45°,AF、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43―1B.3+5C.1+25D.35―110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC= x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2―AC2=0.52―0.42=0.3m,∴CD=OD―OC=0.5―0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°―∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG―S梯形OEDF―S扇形BOF=6×23―12×(2+4)×23―60π⋅42360=63―83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(―2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,{∠HAM=∠CMOMC=MA∠OCM=∠AMH∴△AMH≌△MCO(ASA),故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,{∠CMO=∠MPECM=PM∠MCO=∠PME∴△MCO≌△PME(ASA)∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(―1,―3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24―t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2―C F2=x2―(24―t)2,在Rt△BFO中,B F2=B O2―O F2=242―t2,于是有:x2―(24―t)2=242―t2,整理得,t=―148x2+24,∴y=―124x 2+2x+96=―124(x―24)2+120,当x=24时,y max=120。

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)一、单选题1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A .①③ B .①③④ C .①②③ D .②④2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .33.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为( )A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,C 、D 为半圆上三等分点,则下列说法:①AD =CD =BC ;②∠AOD =∠DOC =∠BOC ;③AD =CD =OC ;④△AOD 沿OD 翻折与△COD 重合.正确的有( )A.4个B.3个C.2个D.1个6.下列各角中,是圆心角的是()A. B. C. D.7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,则∠ACD的度数为( )A.60°B.30°C.120°D.45°9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A .πB .2πC .3πD .6π12.如图,已知在⊙O 中,AB=4, AF=6,AC 是直径,AC ⊥BD 于F ,图中阴影部分的面积是( )A. B.C. D.13.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )2π- 2π C.π D.2π二、填空题14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =________.16.如图,在O 中,直径4AB =,弦CD AB ⊥于E ,若30A ∠=,则CD =____17.如图,在O 中,120AOB ∠=︒,P 为劣弧AB 上的一点,则APB ∠的度数是_______.三、解答题18.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,求弦BD 的长19.如图,在 Rt △ABC 中,∠C =90°,以 BC 为直径的⊙O 交 AB 于点 D ,过点 D 作∠ADE =∠A ,交 AC 于点 E .(1)求证:DE 是⊙O 的切线;(2)若34BCAC=,求DE 的长.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与⊙O有怎样的位置关系?请说明理由.21.如图所示,一个圆锥的高为h=(1)圆锥的母线长与底面圆的半径之比;(2)母线AB与AC的夹角;(3)圆锥的全面积.答案1.A2.A3.D4.B5.A6.D7.D8.B9.A10.B11.C12.D13.A14.6.15.60°16.17.12018.解:如图,作CE ⊥AB 于E .∵∠B=180°-∠A-∠ACB=180°-20°-130°=30°,在Rt △BCE 中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=12BC=1,∵CE⊥BD,∴DE=EB,∴19.(1)证明:连接OD,如图,∵∠C=90°,∴∠A+∠B=90°,∵OB=OD,∴∠B=∠ODB,而∠ADE=∠A,∴∠ADE+∠ODB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE 是⊙O 的切线;(2)解:在Rt△ABC 中34 BC AC∴AC=43×15=20,∵ED 和EC 为⊙O 的切线,∴ED=DC,而∠ADE=∠A,∴DE=AE,∴AE=CE=DE12AC=10,即DE 的长为10.20.(1)连接OC ,D Q 为BC 的中点,∴CD BD =,12BOD BOC ∴∠=∠, 12BAC BOC ∠=∠, A DOB ∴∠=∠;(2)DE 与⊙O 相切,理由如下:A DOB ∠=∠,//AE OD ∴,∴∠ODE+∠E=180°,DE AE ⊥,∴∠E=90°,∴∠ODE=90°,OD DE ∴⊥,又∵OD 是半径,DE ∴与⊙O 相切.21.(1)设圆锥的母线长为l ,底面圆的半径为r .∵圆锥的侧面展开图是半圆,∴2r l ππ=,∴2l r =,∴21l r =::.即圆锥的母线长与底面圆的半径之比为2:1.(2)∵2l r =,即2AB BO =,∴30BAO ∠︒=,∴60BAC ∠︒=,即母线AB 与AC 的夹角为60︒.(3)在Rt AOB 中,222l h r =+,又2l r =,h =∴36r l =,=,∴227S S S rl r πππ全底=+=+=侧人教版九上数学第二十四章圆单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°3.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100°B.80°C.50°D.40°4.在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A.100°B.110°C.120°D.130°5.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是()A.9+3B.12+6C.18+3D.18+67.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度(米)为()A.2B.4 C.4D.4π8.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为()A.4﹣πB.2﹣πC.4﹣πD.2﹣π9.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2 C.D.10.如图,3个正方形在⊙O直径的同侧,顶点B,C,G,H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上,顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则正方形PCGQ的面积为()A.5 B.6 C.7 D.1011.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3D.2二.填空题13.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=度.14.边长为4的正六边形内接于⊙M,则⊙M的半径是.15.△ABC为半径为5的⊙O的内接三角形,若弦BC=8,AB=AC,则点A到BC的距离为.16.如图,BD为⊙O的直径,=,∠ABD=35°,则∠DBC=°.17.如图,在扇形AOB中,OA=OB=4,∠AOB=120°,点C是上的一个动点(不与点A,B重合),射线AD与扇形AOB所在⊙O相切,点P在射线AD上,连接AB,OC,CP,若AP=2,则CP的取值范围是.三.解答题18.如图,在△ABC中,∠C=90°,点O为BE上一点,以OB为半径的⊙O交AB于点E,交AC于点D.BD平分∠ABC.(1)求证:AC为⊙O切线;(2)点F为的中点,连接BF,若BC=,BD=8,求⊙O半径及DF的长.19.如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由;(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.20.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O于点F.(1)求证:∠ABE=45°;(2)连接CF,若CE=2DE,求tan∠DFC的值.21.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.22.如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.23.如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.24.如图,⊙O的直径AB为10cm,点E是圆内接△ABC的内心,CE的延长线交⊙O于点D (1)求AD的长;(2)求DE的长.参考答案一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.3.解:∵OA=OB,∠ABO=40°,∴∠AOB=100°,∴∠C=∠AOB=50°,故选:C.4.解:在优弧AB上取点C,连接AC、BC,由圆周角定理得,∠ACB=AOB=60°,由圆内接四边形的性质得到,∠APB=180°﹣∠ACB=120°,故选:C.5.解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠OAB=∠OBA==65°.故选:D.6.解:连接OE,∵多边形ABCDEF是正多边形,∴∠DOE==60°,∴∠DAE=∠DOE=×60°=30°,∠AED=90°,∵⊙O的半径为6,∴AD=2OD=12,∴DE=AD=×12=6,AE=DE=6,∴△ADE的周长为6+12+6=18+6,故选:D.7.解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x米,则x2+x2=42,解得:x=2,所以正方形桌布的边长是2米.故选:A.8.解:连接OA,OD∵OF⊥AD,∴AC=CD=,在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,则∠DOA=120°,OA=2,∴Rt△OAE中,∠AOE=60°,OA=2∴AE=2,S阴影=S△OAE﹣S扇形OAF=×2×2﹣×π×22=2﹣π,故选:B.9.解:取DE的中点O,过O作OG⊥AB于G,连接OC,又∵CO=1.5,∴只有C、O、G三点一线时G到圆心O的距离最小,∴此时OG达到最小.∴MN达到最大.作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选:C.10.解:连接AO、PO、EO,设⊙O的半径为r,O C=x,OG=y,由勾股定理可知:,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=,∴正方形PCGQ的面积为6,故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =OB =1,在Rt △COD 中利用勾股定理可知:CD ==,AC =2CD =2,∵sin ∠COD ==, ∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =OB ×AC =×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 扇形AOC ﹣S 菱形ABCO =π﹣2, 故选:C .12.解:连接OD ,∵DF 为圆O 的切线,∴OD ⊥DF ,∵△ABC 为等边三角形,∴AB =BC =AC ,∠A =∠B =∠C =60°, ∵OD =OC ,∴△OCD 为等边三角形,∴∠CDO =∠A =60°,∠ABC =∠DOC =60°, ∴OD ∥AB ,∴DF ⊥AB ,在Rt △AFD 中,∠ADF =30°,AF =2, ∴AD =4,即AC =8,∴FB =AB ﹣AF =8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选:C.二.填空题(共5小题)13.解:∵四边形OABC是平行四边形,OC=OA,∴OA=AB,∵OD⊥AB,OD过O,∴AE=BE,=,即OA=2AE,∴∠AOD=30°,∴和的度数是30°∴∠BAD=15°,故答案为:15.14.解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.15.解:作AH⊥BC于H,连结OB,如图,∵AB=AC,AH⊥BC,∴BH=CH=BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH==3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为:8或2.16.解:连接DA、DC,∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠ABD=35°,∴∠ADB=55°,由圆周角定理得,∠ACB=∠ADB=55°,∵=,∴AB=AC,∴∠ABC=∠ACB=55°,∴∠BAC=70°,由圆周角定理得,∠BDC=∠BAC=70°,∴∠DBC=20°,故答案为:20.17.解:如图,当O、C、P三点在一条直线上时,∵射线AD与扇形AOB所在⊙O相切,∴∠OAP=90°,∵AO=4,AP=2,∴=2,∴PC=2﹣4,过点O作OE⊥AB于点E,连接PE、PB,∵OA=OB=4,∠AOB=120°,∴∠OAB=∠OBA=30°,∴AE=BE=2,∠BAP=60°,∴AE=AP,∴△AEP是等边三角形,∴∠AEP=60°,∴∠EPB=30°,∴∠APB=90°,∴==6,∵点C不与A、B重合,∴PC的取值范围是2.故答案为:2.三.解答题(共7小题)18.(1)证明:连接OD,∵BD平分∠ABC,∴∠CBD=∠OBD,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ADO=∠C=90°,∴OD ⊥AC ,∴AC 为⊙O 切线;(2)解:∵BE 为⊙O 的直径,∴∠BDE =90°,∴∠C =∠BDE ,∵∠CBD =∠EBD ,∴△CBD ∽△DBE ,∴,即=,∴BE =10,∴⊙O 半径OB =5;∴DE =6,∵点F 为的中点,∴=,∴∠EDF =∠BDF =45°,过B 作BM ⊥DF 于M ,过E 作EN ⊥DF 于N ,连接EF ,∴BM =BD =4,EN =DE =3,EF =BE =5, ∴S 四边形BDEF =S △BEF +S △BDE =S △DEF +S △DBF ,∴×5×5+×6×8=×3DF +×4DF ,∴DF =7.19.解:(1)ME =MG 成立,理由如下:如图,连接EO ,并延长交⊙O 于N ,连接BC ;∵AB是⊙O的直径,且AB⊥DE,∴,∵点D是的中点,∴,∴,∴,即A C=DE,∠N=∠B;∵ME是⊙O的切线,∴∠MEG=∠N=∠B,又∵∠B=90°﹣∠GAF=∠AGF=∠MGE,∴∠MEG=∠MGE,故ME=MG.(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;故DE=AC=2DF=4;∵∠FAG=∠CAB,∠AFG=∠ACB=90°,∴△AFG∽△ACB,∴,即,解得AG=,GC=AC﹣AG=;设ME=MG=x,则MC=x﹣,MA=x+,由切割线定理得:ME2=MC•MA,即x2=(x﹣)(x+),解得MG=x=;∴AG:MG=:=10:3,即AG与GM的比为.20.(1)证明:如图1,连接OE,∵四边形ABCD是平行四边形,∴AB∥CD,∵DC是⊙O的切线,∴OE⊥CD,∴OE⊥AB,∴∠EOB=90°,∵OE=OB,∴∠ABE=45°;(2)解:如图2,连接OE,则OE⊥CD,设DE=x,则CE=2x,∴AB=CD=3x,∴OA=OE=OB=1.5x,过D作DG⊥AB于G,∴DG=OE=1.5x,OG=DE=x,∴AG=x,∵AB是⊙O的直径,∴∠AFB=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠AFB=90°,∠BCF=∠DFC,Rt△ADG中,BC=AD===,∵∠A=∠A,∠AFB=∠AGD=90°,∴△AGD∽△AFB,∴,∴=,∴BF=,Rt△BFC中,tan∠DFC=tan∠BCF===.21.解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=5,BE=ED,∴∠ABE=∠CBE,∠CBE=∠D,又∵∠EAC=∠CBE,∴∠EAC=∠D.又∵∠CED=∠AEB,∴△AEF∽△DEC,∴=,即=,解得DE=9.故答案为:①60°;②9.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE⊥BC,∴AD⊥OA,∵AO是⊙O的半径,∴AD是⊙O的切线,又∵DF是⊙O的切线,∴AD=DF,同理可得CE=CF,∵CD=DF+CF,∴CD=AD+CE.(2)解:连接OD,AF相交于点M,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE==4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=.23.解:(1)∵∠ABC=∠AMC=60°,而AB=AC,∴△ABC为等边三角形,∴△ABC的面积=BC2=×36=9;(2)MA=MB+MC,理由如下:∵BD=DM,∠AMB=∠ACB=60°,∴△BDM为正三角形,∴BD=BM,∵∠ABC=∠DBM=60°,∴∠ABC﹣∠DBC=∠DBM﹣∠DBC,∴∠ABD=∠CBM,在△ABD与△CBM中,,∴△ABD≌△CBM(SAS),∴AD=CM,∴MA=MD+AD=MB+MC.24.解:(1)连接BD,如图,∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵点E是圆内接△ABC的内心,∴CE平分∠ACB,∴∠1=45°,∴∠DBA=∠1=45°,∴△ADB为等腰直角三角形,∴AD=AB=×10=5;(2)连接AE,如图,∵点E是圆内接△ABC的内心,∴∠2=∠4,∵∠1=∠5,∴∠3=∠1+∠2=∠5+∠4,即∠3=∠DAE,∴DE=DA=5.人教版九年级数学(上)第24章《圆》单元检测题一.选择题1.如图,AO是圆锥的高,圆锥的底面半径OB=0.7,AB的长为2.5,则AO的长为()A.2.4 B.2.2 C.1.8 D.1.62.如图,OA为⊙O的半径,点P为OA的中点,Q为⊙O上的点,且∠APQ=135°,若OA=2,则PQ的长度为()A.B.C.3D.3.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含4.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°5.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25°B.20°C.80°D.100°6.下列命题错误的是()A.经过平面内三个点有且只有一个圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.圆内接菱形是正方形7.如图,A、B、C是半径为4的⊙O上的三点.如果∠ACB=45°,那么的长为()A.πB.2πC.3πD.4π8.如图,已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内9.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是()A.6﹣πB.6﹣πC.12﹣πD.12﹣π10.如图,BC是⊙O的直径,AB是⊙O的弦,PA,PC均是⊙O的切线,若∠B=40°,则∠P 的度数是()A.80°B.90°C.100°D.120°11.如图,⊙O直径是10,弦AB长为8,M是AB上的一个动点,则OM的长度不可能是()A.5 B.4 C.3 D.212.如图,⊙C过原点,且与坐标轴分别交于点A和点B,点A的坐标为(0,3),点B的坐标为(﹣3,0),且M是第三象限内⊙C上一点,则∠BMO的度数为()A.100°B.110°C.120°D.130°二.填空题13.在边长为的正方形OABC中,D为边BC上一点,且CD=1,以O为圆心,OD为半径作圆,分别与OA、OC的延长线交于点E、F,则阴影部分的面积为.14.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.16.如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为.17.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).18.在⊙O中,直径AB=4,PD与⊙O相切于点C,交AB的延长线与点D,且∠PDO=30°,则劣弧的弧长为.三.解答题19.如图,CD是⊙O的直径,若AB⊥CD,垂足B.(1)若∠OAB=40°,求∠C度数;(2)若∠C=30°,AC=4,求⊙O的直径.20.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)PC=2,OA=4,求⊙O的半径.21.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.23.如图,AB是⊙O的直径,AE交⊙O于点F,且与⊙O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8,求⊙O的半径.24.如图,已知四边形ADBC是⊙O的内接四边形,AB是直径,AB=10cm,BC=8cm,CD平分∠ACB.(1)求AC与BD的长;(2)求四边形ADBC的面积.25.如图,在⊙O中,直径CD⊥弦AB于点E,点P是CD延长线上一点,连接PB、BD.(1)若BD平分∠ABP,求证:PB是⊙O的切线;(2)连接AP,延长BD交AP于点F,若BD⊥AP,AB=,OP=,求OE的长度.参考答案一.选择题1.解:由勾股定理得,AO==2.4,故选:A.2.解:作OE⊥PQ于E,连接OQ.∵AP=OP=1,∠APQ=135°,∴∠OPE=45°,∴OE=PE=,在Rt△OQE中,QE===,∴PQ=PE+QE=+=,故选:D.3.解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选:A.4.解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.5.解:∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.6.A、当三点在一直线上时,三点不共圆;故本项错误,符合题意;B、三角形的外心是三角形外接圆的圆心,即三角形三边垂直平分线的交点;它到三角形三个顶点的距离都相等;故本选项正确,不符合题意;C、因为在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立;故本选项正确,不符合题意;D、因为在菱形中只有正方形外接圆;故本项正确,不符合题意;故选:A.7.解:如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°,∵OA=4,∴的长是:=2π.故选:B.8.解:∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选:A.9.解:∵正六边形ABCDEF的边长为2,∴正六边形ABCDEF的面积是:=6×=6,∠FAB=∠EDC =120°,∴图中阴影部分的面积是:6﹣=,故选:B.10.解:连接OA,∵∠B=40°,∴∠AOC=2∠B=80°,∵PA,PC均是⊙O的切线,∴∠OAP=∠OCP=90°,∴∠AOC+∠P=180°,∴∠P=100°,故选:C.11.解:过点O作OD⊥AB于点D,连接OA,由垂线段最短可知当M于点D重合时OM最短,当OM是半径时最长,∵,⊙O的直径为10,∴OA=5,∵弦AB的长为8,OD⊥AB,∴AD=AB=4,在Rt△OAD中,OD===3,∴当OM=3时最短,∴OM长的取值范围是:3≤OM≤5.∴OM的长度不可能是2.故选:D.12.解:∵点A的坐标为(0,3),点B的坐标为(﹣3,0),∴OA=3,OB=3,∴tan∠BAO==,∴∠BAO=60°,∵四边形ABMO是圆内接四边形,∴∠BMO=120°,故选:C.二.填空题(共6小题)13.解:在Rt△OCD中,OD===2,∴∠COD=30°,在Rt△COD和Rt△AOG中,,∴Rt△COD≌Rt△AOG(HL)∴AG=CD=1,∠AOG=∠COD=30°,∴∠DOG=30°,∴阴影部分的面积=×﹣×1××2﹣=3﹣﹣,故答案为:3﹣﹣.14.解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N是弧MB的中点,∴∠BON =∠MOB =×40°=20°,由对称性,∠N ′OB =∠BON =20°,∴∠MON ′=∠MOB +∠N ′OB =40°+20°=60°, ∴△MON ′是等边三角形,∴MN ′=OM =OB =AB ==4,∴△PMN 周长的最小值=1+4=5,故答案为:5.15.解:连接OD ,∵CD ⊥AB 于点E ,直径AB 过O ,∴DE =CE =CD =×8=4,∠OED =90°,由勾股定理得:OD ===5,即⊙O 的半径为5.故答案为:5.16.解:如图,连接AF 、DF ,由圆的定义,AD =AF =DF , 所以,△ADF 是等边三角形,∵∠BAD =90°,∠FAD =60°,∴∠BAF =90°﹣60°=30°,同理,弧DE 的圆心角是30°,∴弧EF 的圆心角是90°﹣30°×2=30°,∴=,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故答案为:π.17.解:∵在矩形ABCD 中,AB =3,AD =2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π, 故答案为:6﹣π18.解:∵PD 切⊙O 于C ,∴∠OCD =90°,∵∠PDO =30°,∴∠COD =60°,∴∠AOC =120°,∵直径AB =4,∴半径是2,∴劣弧的弧长是=,故答案为:. 三.解答题(共7小题)19.解:(1)∵AB ⊥CD ,∠OAB =40°,∴∠AOB =50°,∵OA =OC ,∴∠C =∠CAO ,∴∠AOB =2∠C =50°,∴∠C =25°;(2)连接AD ,∵CD 是⊙O 的直径,∴∠CAD =90°,∵∠C =30°,AC =4,∴CD =AC =2.∴⊙O 的直径是2.20.(1)证明:连结OB,如图,∵AB=AC,∴∠1=∠2,∵OA⊥AC,∴∠2+∠3=90°,∵OB=OP,∴∠4=∠5,而∠3=∠4,∴∠5+∠2=90°,∴∠5+∠1=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作OH⊥PB于H,如图,则BH=PH,设⊙O的半径为r,则PA=OA﹣OP=4﹣r,在Rt△PAC中,AC2=PC2﹣PA2=(2)2﹣(4﹣r)2,在Rt△OAB中,AB2=OA2﹣OB2=42﹣r2,而AB=AC,∴(2)2﹣(4﹣r)2=42﹣r2,解得r=1,即⊙O的半径为1.21.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.22.证明:(1)连接OC,∵CD=AC,∴∠CAD=∠D,又∵∠ACD=120°,∴∠CAD=(180°﹣∠ACD)=30°,∵OC=OA,∴∠A=∠1=30°,∴∠COD=60°,又∵∠D=30°,∴∠OCD=180°﹣∠COD﹣∠D=90°,∴CD是⊙O的切线;(2)∵∠A=30°,∴∴∠1=2∠A=60°∠1=2∠A=60°.∴∴,在Rt△OCD中,.∴.∴图中阴影部分的面积为2﹣π.23.(1)证明:连接OC.∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB,(2)解:①连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°∵∠1=∠2,∴△ACD∽△ABC,∴=,∵AC2=AD2+CD2=42+82=80,∴AB===10,∴⊙O的半径为10÷2=5.24.解:(1)∵AB是直径,∴∠ACB=90°,∴AC==6(cm),∵CD平分∠ACB,∴BD=AD=AB=5(cm);(2)四边形ADBC的面积=△ABC的面积+△ADB的面积=×6×8+×5×5=49(cm2).25.(1)证明:连接BC,BO,∵CD是⊙O的直径,∴∠CBD=90°,∵CD⊥AB,∴∠DBE=∠C=90°﹣∠CDB,∵OB=OC,∴∠OBC=∠C,∵∠PBD=∠EBD,∴∠PBD=∠OBC,∴∠PBO=90°,∴PB是⊙O的切线;(2)解:连接BC,BO,∵CD是⊙O的直径,∴BC⊥BD,∵BD⊥AP,∴AP∥BC,∴∠C=∠APC,∵CD是⊙O的直径,CD⊥AB,∴AE=BE,∴AP=BP,∴∠APC=∠BPC,∴∠C=∠BPC,∴CE=PE,设OE=x,CO=BO=r,∴r+x=﹣x,∴r=﹣2x,∵AB=,∴BE=AB=,在Rt△BEO中,BO2=OE2+BE2,即(﹣2x)2=x2+()2,解得:x=,x=(不合题意,舍去),∴OE=.。

第24章 圆 人教版数学九年级上册单元测试卷(含答案)

第24章 圆 人教版数学九年级上册单元测试卷(含答案)

第二十四章 圆一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·北京通州区期末)如图,若OA⊥OB,则∠C=( )A.22.5°B.67.5°C.90°D.45°(第1题) (第2题)2.(2022·江苏镇江润州区段考改编)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是( )A.3B.4C.5D.63.(2021·江苏常熟期中)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-3,0),B(-1,2),C(3,2),则△ABC的外心的坐标是( )A.(1,-2)B.(0,0)C.(1,-1)D.(0,-1)(第3题) (第4题)4.(2021·山东寿光期中)如图,若正方形ABCD的边长为6,则其外接圆半径OA与内切圆半径OE的比值为( )A.3B.2C.2D.35.(2022·湖北十堰期末)如图,点A,B,C,D都在☉O上,OA⊥BC,∠OBC=40°,则∠ADC 的度数为( ) A.40° B.30° C.25° D.50°6.(2022·浙江金华期中改编)如图,☉O 与正六边形OABCDE 的边OA ,OE 分别交于点F ,G ,点M 为劣弧FG 的中点.连接FM ,GM ,若FM=22,则☉O 的半径为( )A.2B.6C.22D.26(第6题) (第7题)7.(2022·浙江宁波江北区期末)如图,AB 是半圆O 的直径,C ,D 是半圆上两点,连接CA ,CD ,AD.若∠ADC=120°,BC=1,则BC 的长为( )A.π3B.π4C.π6D.2π38.(2022·江苏镇江期中)简易直尺、含60°角的直角三角板和量角器如图摆放(无重叠部分),A 为三角板与直尺的交点,B 为量角器与直尺的接触点,C 为量角器与三角板的接触点.若点A 处刻度为4,点B 处刻度为6,则该量角器的直径长为( )A.2B.23C.4D.439.如图,四边形ABCD 内接于☉O ,AD ∥BC ,直线EF 是☉O 的切线,B 是切点.若∠C=80°,∠ADB=54°,则∠CBF=( )A.45°B.46°C.54°D.60°10.如图(1),AB是半圆O的直径,点C是半圆O上异于A,B的一点,连接AC,BC.点P从点A出发,沿A→C→B以1 cm/s的速度运动到点B.图(2)是点P运动时,△PAB 的面积y(cm2)随时间x(s)变化的图象,则点D的横坐标为( )A.a+2B.2C.a+3D.3二、填空题(共5小题,每小题3分,共15分)11.(2022·山东济南天桥区期末)如图,☉A,☉B,☉C两两相离,且半径都为2,则图中阴影部分的面积之和为 .(结果保留π)(第11题) (第12题)12.(2022·江苏苏州姑苏区期中)如图,A,B,C,D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为 .13.(2022·河北唐山期末改编)如图,△ABC内接于☉O,过点A作直线EF,已知∠B=∠EAC,根据弦AB的位置变化,试探究直线EF与☉O的位置关系.甲:如图(1),当弦AB过点O时,EF与☉O相切;乙:如图(2),当弦AB不过点O时,EF也与☉O相切.你认为 的判断正确.14.新风向关注数学文化在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为☉O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,则直径AB的长为 寸.(第14题) (第15题)15.如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与点A,B重合),当PA= 时,△PAD为等腰三角形.三、解答题(共6小题,共55分)16.(7分)(2022·北京四中期中改编)某游乐园的摩天轮采用了国内首创的横梁结构,如图,摩天轮半径为44 m,中心O距离地面56 m,匀速运行一圈的时间为18 min.由于受到周边建筑物的影响,乘客与地面之间超过一定距离时,可视为最佳观赏位置.已知在运行的一圈里最佳观赏时长为12 min,求最佳观赏位置与地面的最小距离(即BD的长).17.(8分)(2021·浙江温州模拟)如图,已知AB是☉O的直径,弦CD⊥AB于点E,点M 是☉O上一动点,∠M=∠D,连接BC.(1)判断BC与MD的位置关系,并说明理由;(2)若MD恰好经过圆心O,求∠D的度数.18.(8分)(2022·山东临沂期末)如图,AB为☉O的直径,AC,DC为弦,∠ACD=60°,P 为AB延长线上的点,连接PD,∠APD=30°.(1)求证:DP是☉O的切线.(2)若☉O的半径为2,求图中阴影部分的面积.19.(10分)[与特殊平行四边形综合](2021·河南驻马店二模)如图,已知☉O的直径AB=2,C是AB上一个动点(不与点A,B重合),切线DC交AB的延长线于点D,连接AC,BC,OC.(1)请添加一个条件使△BAC≌△ODC,并说明理由.(2)若点C关于直线AB的对称点为E.①当AD= 时,四边形OCDE为正方形.②当∠CDB= °时,四边形ACDE为菱形.20.(10分)新风向探究性试题如图,已知AB是☉O的直径,BC与☉O相切于点B,CD 与☉O相切于点D,连接AD,OC.(1)求证:AD∥OC.(2)小聪与小明在做这个题目的时候,对∠CDA+∠AOC的值进行了探究:小聪说,∠CDA+∠AOC的值是一个固定值;小明说,∠CDA+∠AOC的值随∠A的度数的变化而变化.若∠CDA+∠AOC的值为y,∠A的度数为x,你认为他们之中谁的说法正确?若小聪的说法正确,请求出y;若小明的说法正确,请求出y与x之间的关系.21.(12分)新风向探究性试题【问题呈现】阿基米德折弦定理:如图(1),AB和BC是☉O的两条弦(即折线ABC是☉O的一条折弦),BC>AB,M是ABC的中点,则从点M 向BC作垂线,垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的过程. 图(1) 图(2) 图(3) 图(4)证明:如图(2),在CD上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC.①∵∠A=∠C,②∴△MAB≌△MCG,∴MB=MG.又MD⊥BC,∴BD=DG,∴CD=CG+DG=AB+BD,即CD=AB+BD.根据证明过程,分别写出步骤①,②的理由:① .② .【理解运用】在图(1)中,若AB=4,BC=6,则BD= .【变式探究】如图(3),AB,BC是☉O的两条弦,点M是AC的中点,MD⊥BC于点D,请写出CD,DB,BA之间存在的数量关系: .【实践应用】如图(4),△ABC内接于☉O,BC是☉O的直径,点D为圆周上一动点,满足∠DAC=45°.若AB=6,☉O的半径为5,求AD的长.第二十四章 圆·B卷1.D ∵OA⊥OB,∴∠AOB=90°,∴∠C=12∠AOB=【技巧】同圆中,同弧所对的圆周角等于圆心角的一半45°.2.B 连接BD,由勾股定理可得BD=AB2+AD2=42+32=5,由题意可知,3<r<5,因此只有B选项符合.3.A 如图,∵三角形的外心到三角形三个顶点的距离相等,∴线段BC,AB的垂直平分线的交点即为外心P,由图可知,点P的坐标为(1,-2).4.B 由题意结合题图可知,内切圆直径等于正方形边长,则OE=3.由正方形的性质可得OA=32,则OAOE =323=2.5.C ∵OA ⊥BC ,∴AC =AB .∵∠OBC=40°,∴∠AOB=50°,∴∠ADC=12∠AOB=12×50°=25°.6.C 连接OM ,由题意知∠FOG=120°.∵点M 为劣弧FG 的中点,∴∠FOM=60°.∵OM=OF ,∴△OFM 是等边三角形,∴OM=OF=FM=22,则☉O 的半径为22,故选C .7.A 如图,连接OC.∵∠ADC=120°,∴∠ABC=60°.∵OB=OC ,∴△OBC 为等边三角形,∴∠COB=60°,OB=OC=BC=1,∴BC 的长=60π·1180=π3.8.D 如图,添加点D ,连接OA ,OB ,由题意得AB=6-4=2,∵∠CAD=60°,∴∠BAC=120°.∵AB 与半圆O 相切于点B ,AC 与半圆O 相切于C ,∴∠BAO=60°,∠AOB=30°,∴OA=2AB=4,∴OB=OA 2-AB 2=42-22=23,∴量角器的直径长为43.9.B 如图,连接OD ,OB ,则∠BOD=2∠C=160°.∵OB=OD ,∴∠OBD=180°―160°2=10°.∵四边形ABCD 内接于☉O ,∴∠A=180°-∠C=100°.∵AD ∥BC ,∴∠A+∠ABC=180°,∴∠ABC=80°.在△ABD 中,∠ADB=54°,∴∠ABD=180°-54°-100°=26°,∴∠OBC=80°-26°-10°=44°.∵EF 是☉O 的切线,∴∠OBF=90°,∴∠CBF=90°-∠OBC=90°-44°=46°.故选B .∵AD ∥BC ,∴∠ADB+∠BDC+∠C=180°.∵∠C=80°,∠ADB=54°,∴∠BDC=46°.∵∠CBF 是弦切角,∴∠CBF=∠BDC=46°.(弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数)10.A 从题图(2)看,当x=a 时,y 取得最大值a ,此时点P 运动到点C 处,即AC=a.∵∠ACB=90°,∴y=12×AC×BC=12BC×a=a ,解得BC=2.当点P 运动到点B 处时,y=0,即AC+BC=OD ,∵AC+BC=a+2,∴点D 的横坐标为a+2.11.2π 因为∠A+∠B+∠C=180°,所以阴影部分的面积之和等于半径为2的半圆的面积,为2π.12.10 如图,连接OA ,OB ,由题意知点A ,B ,C ,D 在以点O 为圆心,OA 的长为半径的同一个圆上.∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数=360°÷36°=10.13.甲、乙 题图(1)中,∵AB 是☉O 的直径,∴∠C=90°,∴∠B+∠CAB=90°.∵∠EAC=∠B ,∴∠EAC+∠CAB=90°,∴EF ⊥AB.∵OA 是半径,∴EF 是☉O 的切线,故甲的判断正确.如图,作直径AM ,连接CM ,则∠ACM=90°,∠B=∠M.∵∠EAC=∠B ,∴∠EAC=∠M.∵∠CAM+∠M=90°,∴∠CAM+∠EAC=90°,∴EF 是☉O 的切线,故乙的判断正确.14.26 连接OC.∵CD ⊥AB ,AB 为☉O 的直径,CD=10,∴CE=12CD=5. 设OC=OA=x ,则OE=x-1.由勾股定理得OE 2+CE 2=OC 2,即(x-1)2+52=x 2,解得x=13,∴AB=26寸.15.22或85516.【参考答案】由题意得AB⊥OM,BO=44,×360°=120°,∠AOB=18―1218∴∠BOC=60°,∠OBC=30°,∴OC=1OB=22.2∵中心O距离地面56 m,∴OM=56,∴CM=OM-OC=34,∴BD=34 m,故最佳观赏位置与地面的最小距离为34 m.(7分) 17.【参考答案】(1)BC∥MD.(1分)理由:∵∠MBC=∠D,∠M=∠D,∴∠M=∠MBC,∴BC∥MD.(4分) (2)∵AB是☉O的直径,CD⊥AB于点E,∴∠D+∠EOD=90°.(6分)∵MD过圆心O,∴∠BOD=2∠M=2∠D,∴∠D+2∠D=90°,∴∠D=30°.(8分) 18.【参考答案】(1)证明:如图,连接OD.∵∠ACD=60°,∴∠AOD=120°,∴∠BOD=60°.∵∠APD=30°,∴∠ODP=90°,即PD⊥OD.∵OD是半径,∴PD是☉O的切线.(4分)(2)∵在Rt △POD 中,OD=2,∠OPD=30°,∴OP=4.由勾股定理得PD=23.∴S 阴影部分=S △POD -S扇形ODB =12×2×23-60π·22360=23-2π3.(8分)19.【参考答案】(1)添加条件∠A=30°.(1分)理由:∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OA=OC ,∴∠A=∠OCA=30°,∴∠BOC=60°.∵OC=OB ,∴△BOC 是等边三角形,∴BC=OC ,∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)或添加条件BC=1.(1分)∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OC=OB=12AB=1=BC ,∴△BOC 是等边三角形,∴∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)(答案不唯一,正确即可给分)(2)①2+1(8分)解法提示:∵AB=2,∴OA=OC=1.连接OE ,DE ,若四边形OCDE 是正方形,则△OCD 是等腰直角三角形,易得OD=2,∴AD=OD+OA=2+1.②30(10分)解法提示:∵DC 是☉O 的切线,∴∠DCO=90°,∴∠COD=90°-∠CDB.∵OC=OA ,∴∠CAB=12∠COD=90°―∠CDB2.连接AE ,若四边形ACDE 是菱形,则CA=CD ,∴∠CAB=∠CDB ,即90°―∠CDB2=∠CDB ,解得∠CDB=30°,∴当∠CDB=30°时,四边形ACDE 是菱形.20.【思路导图】(1)连接ODRt △ODC ≌Rt △OBC →∠DOC=∠BOC →∠DAO=∠BOC →AD ∥CO【参考答案】(1)如图,连接OD.(1分)∵BC 与☉O 相切于点B ,CD 与☉O 相切于点D ,∴∠ODC=∠OBC=90°.(2分)在Rt △ODC 和Rt △OBC 中,OD =OB ,OC =OC ,∴Rt △ODC ≌Rt △OBC ,∴∠DOC=∠BOC.(4分)∵∠DAO=12∠DOB ,∴∠DAO=∠BOC ,∴AD ∥CO.(5分)(2)小聪的说法正确.(6分)∵∠CDA+∠AOC=y ,∠A=x ,∴∠ODC+∠ODA+∠AOC=y ,∠ODA=∠OAD=x.∵∠ODC=90°,∴90°+x+∠AOC=y.由(1)得AD ∥CO ,∴∠OAD+∠AOC=180°,即x+∠AOC=180°,∴y=90°+x+∠AOC=90°+180°=270°.(10分)21.【参考答案】【问题呈现】①在同圆中,如果两条弧相等,那么它们所对的弦相等②同弧所对的圆周角相等(4分)【理解运用】1(6分)解法提示:∵CD=AB+BD ,∴CD=12(AB+BC )=12×(4+6)=5,∴BD=BC-CD=6-5=1.【变式探究】DB=AB+CD(8分)解法提示:如图,在DB 上截取BG=BA ,连接MA ,MB ,MC ,MG.∵M 是AC 的中点,∴AM=MC ,∠MBA=∠MBG.又MB=MB ,∴△MAB ≌△MGB ,∴MA=MG ,∴MC=MG.又DM ⊥BC ,∴DC=DG ,∴AB+DC=BG+DG ,即DB=AB+CD.【实践应用】∵BC是☉O的直径,∴∠BAC=90°.∵AB=6,☉O的半径为5,∴易得AC=8.(分类讨论思想)如图,连接AD,当∠DAC=45°时,有两种情况.①∠D1AC=45°,则D1是BC的中点.过点D1作D1G1⊥AC于点G1,则CG1+AB=AG1.∴AG1=1(6+8)=7,∴AD1=72.2②∠D2AC=45°,过点D2作D2G2⊥AC于点G2,同理易得CG2=AB+AG2,∴CG2=7,AG2=1,∴AD2=2.综上,AD的长为72或2.(12分)。

人教版九年级数学上册《第二十四章圆》单元检测卷带答案

人教版九年级数学上册《第二十四章圆》单元检测卷带答案

人教版九年级数学上册《第二十四章圆》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知点A为⊙O内的一点,且⊙O的半径为5cm,则线段OA的长度可能是()A.3cm B.5cm C.6cm D.7cm⌢的中点,半径OC交弦AB于点D,已知OC=5,AB=8,则CD的长为()2.如图,在⊙O中,点C为ABA.2B.√5C.√7D.33.如图,点A、B、C在⊙O上∠ACB=55°,则∠ABO的度数是()A.30°B.35°C.40°D.55°4.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=15°,则∠C的度数是()A.45°B.65°C.60°D.70°5.如图,点O是△ABC内切圆的圆心,已知∠ABC=50°,∠ACB=80°,则∠BOC的度数是()A.100°B.115°C.125°D.130°6.如图,四边形ABCD是⊙O的内接四边形,AB是⊙O的直径,若∠BEC=20°,则∠ADC的度数为()A.100°B.110°C.120°D.130°7.如图,过正六边形内切圆圆心的两条直线夹角为60°,圆的半径为√3,则图中阴影部分面积之和为()A.π−√3B.π−23√3C.√3−23πD.√3−12π8.如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则BC⌢的长为()A.6πB.2πC.32πD.π二、填空题9.如图,AB是⊙O的直径,弦CD⊥AB交于点E,若OE=4,CE=3,则⊙O的半径为.10.如图,四边形ABCD内接于⊙O,点M在AD的延长线上∠CDM=71°,则∠AOC=.11.如图,AB是⊙O的直径,DE切⊙O于点E,BD⊥DE于点D,交⊙O于点C.若AB=5,BC=3,则CD=.12.如图,在正八边形ABCDEFGH中,连接AC、AE,则∠CAE的度数是.13.如图:一把折扇的骨架长是 30 厘米,扇面宽为 20 厘米,完全展开时圆心角为135°,扇面的面积为平方厘米.三、解答题14.如图,在△ABC中AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E.(1)求证:BE=CE;(2)若AB=6,∠BAC=54°,求AD⏜的长.15.如图,AB是⊙O的直径,C是BD⏜的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.16.如图,在△ABC中BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD;(2)求证:DE为⊙O的切线.17.如图,水平放置的圆柱形排水管的截面半径为12cm,截面中有水部分弓形的高为6cm.(1)求截面中弦AB的长;(2)求截面中有水部分弓形的面积.18.如图,直角三角形ABC中,∠C=90°,点E为AB上一点,以AE为直径的⊙O上一点D在BC上,且AD平分∠BAC.(1)证明:BC是⊙O的切线;(2)若BD=4,BE=2,求AB的长.参考答案1.A2.A3.B4.C5.B6.B7.D8.D9.510.142°11.112.45°13.187.5π14.(1)证明:如图,连接AE.∵AB是圆O的直径∴∠AEB=90°即AE⊥BC.又∵AB=AC∴AE是边BC上的中线∴BE=CE;(2)解:∵AB=6∴OA=3.又∵OA=OD,∠BAC=54°∴∠AOD=180°−2×54°=72°∴AD⏜的长为:72×π×3180=6π5.15.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∴∠A=90°-∠ABC.∵CE⊥AB∴∠ECB=90°-∠ABC∴∠ECB=∠A.又∵C是BD⌢的中点∴CD⌢=BC⌢∴∠DBC=∠A∴∠ECB=∠DBC∴CF= BF ;(2)解:∵BC⌢=CD ⌢ ∴BC=CD=6.在Rt △ABC 中,AB= √BC 2+AC 2=√62+82=10 ∴⊙O 的半径为5;∵S △ABC = 12AB ×CE= 12BC ×AC∴CE= BC×AC AB =6×810=245.16.(1)证明:∵AB 为直径∴∠ADB =90° ∵BA =BC ∴AD =CD ;(2)证明:连接OD ,如图∵AD =CD ,AO =OB∴OD 为△BAC 的中位线∴OD ∥BC ∴DE ⊥BC ∴OD ⊥DE ∴DE 为⊙O 的切线.17.(1)解:如图:作OC ⊥AB 交⊙O 于D ,连结OB∴OB=12cm.∵O是圆心OC⊥AB∴AB=2BC∵CD=6cm∴OC=OD−CD=12−6=6(cm)∴BC=√OB2−OC2=√122−62=6√3(cm)∴AB=2BC=12√3cm.即弦AB长12√3cm.(2)解:连结OA∵OC⊥AB,OB=2OC∴∠BOC=60°∴∠AOB=120°∴S弓形=120360π×122−12×12√3×6=48π−36√3(cm2).即截面中有水部分弓形的面积为(48π−36√3)cm2.18.(1)证明:连接ODAD平分∠BAC ∴∠1=∠2∵OA=OD ∴∠2=∠3 ∴∠1=∠3∴AC//OD∵∠C=90°∴∠ODE=90°,即OD⊥BC ∵OD是半径∴BC是⊙O的切线(2)解:设OD=OE=r在Rt△ODB中,BD=4,BE=2,故OB=r+2由勾股定理,得:r2+42=(r+2)2解之,得:r=3故OD=OA=OE=3,AB=6+2=8.。

人教版九年级数学上册 第24章 圆 单元测试题(含答案)

人教版九年级数学上册 第24章 圆 单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题一.选择题(共10小题)1.到定点的距离等于定长的点的集合是()A.圆的外部B.圆的内部C.圆D.圆的内部和圆2.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠ADC=65°,则∠ABD的度数为()A.55°B.45°C.25°D.30°3.⊙O的半径为5,点A在直线l上.若OA=5,则直线l与⊙O的位置关系是()A.相切B.相交C.相切或相交D.相离4.圆锥的母线长为5,底面半径为3,则它的侧面积为()A.6πB.12πC.15πD.30π5.如图,点O是正五边形ABCDE的中心,则∠AOB的度数是()A.65°B.70°C.72°D.78°6.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π7.如图,⊙O中,弦AB⊥CD于E,若已知AD=9,BC=12,则⊙O的半径为()A.5.5B.6C.7.5D.88.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示位置,第2秒点P位于点C的位置,……,则第2019秒点P所在位置的坐标为()A.(,)B.(﹣,﹣)C.(0,﹣1)D.(,﹣)9.在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B在⊙A 内时,实数a的取值范围是()A.a>2B.a>8C.2<a<8D.a<2或a>810.如图,在Rt△ABC中,∠ABC=90°,AB=4cm,BC=3cm,分别以A,C为圆心,以的长为半径作圆.将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为()cm2A.6﹣πB.6﹣πC.πD.6﹣π二.填空题(共8小题)11.已知一个圆的周长为12.56厘米,则这个圆的半径是厘米.(π取3.14)12.在平面直角坐标系中,O为坐标原点,A(3,4)是⊙O上一点,B是⊙O内一点,请你写出一个符合要求的点B的坐标:.13.已知75°的圆心角所对的弧长为5π,则这条弧所在圆的半径是.14.如图,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且AD=2,BC=5,则△ABC的周长为.15.排水管的截面为如图所示的⊙O,半径为5m,已知现在水面位于圆心O下方,且水面宽AB=6m,如果水面上涨后,水面宽为8m,那么水面上涨了m.16.如图,在⊙O中,,∠1=30°,的度数为.17.如图,四边形ABCD内接于⊙O,∠AOC=140°,则四边形ABCD的外角∠CDM=°.18.如图,正六边形ABCDEF内接于⊙O且半径为3,则AB的长为.三.解答题(共8小题)19.如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)20.如图,△ABC分别交⊙O于点A,B,D,E,且CA=CB.求证:AD=BE.21.如图,AB是圆O的直径,∠ACD=30°,(1)求∠BAD的度数.(2)若AD=4,求圆O的半径.22.如图,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DM⊥AC于M.求证:DM是⊙O的切线.23.如图,正方形ABCD内接于⊙O,M为的中点,连接AM,BM.(1)求证:;(2)求的度数.24.已知,△ABC内接于⊙O,AC为⊙O的直径,点D为优弧BC的中点(1)如图1,连接OD,求证:AB∥OD;(2)如图2,过点D作DE⊥AC,垂足为E.若AE=3,BC=8,求⊙O的半径.25.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a (a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,判断直线DE与图形G的位置关系,并说明理由.26.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°.(1)连接DB,求证:∠DBF=∠ABE;(2)求图中阴影部分的面积.参考答案与试题解析一.选择题(共10小题)1.解:圆可以看做是所有到定点O的距离等于定长r的点的集合.故选:C.2.解:∵CD是⊙O的直径,∴∠CAD=90°,∴∠C=∠ABD=90°﹣∠ADC=90°﹣65°=25°.故选:C.3.解:∵⊙O的半径为5,OA=5,∴点O到直线l的距离≤5,∴直线l与⊙O的位置关系是相切或相交.故选:C.4.解:它的侧面积=×2π×3×5=15π.故选:C.5.解:∵点O是正五边形ABCDE的中心,∴∠AOB=360°÷5=72°.故选:C.6.解:该莱洛三角形的周长=3×=3π.故选:C.7.解:连接DO并延长DO交圆O于点F,连接BD,AF,BF,∵∠DAE=∠DFB,∠AED=∠FBD=90°,∴∠ADC=∠FDB,∴∠ADF=∠CDB,∴,∴AF=BC=12,∵∠DAF=90°,∴DF=,∴⊙O的半径为7.5.故选:C.8.解:2019÷8=252…3,即第2019秒点P所在位置如图:过P作PM⊥x轴于M,则∠PMO=90°,∵OP=1,∠POM=45°,∴PM=OM=1×sin45°=,即此时P点的坐标是(﹣,﹣),故选:B.9.解:∵⊙A的半径为3,若点B在⊙A内,∴OB<3,∵点A所表示的实数为5,∴2<a<8,故选:C.10.解:∵∠C=90°,∴∠A+∠B=90°,设∠A=α,∠B=β,则α+β=90°,∵∠C=90°,AB=4cm,BC=3cm,∴AC===5cm,∴阴影的面积为×3×4﹣﹣=(6﹣π)cm2.故选:B.二.填空题(共8小题)11.解:∵圆的周长为12.56厘米,∴圆的半径为12.56÷2÷3.14=2厘米,故答案为:2.12.解:连结OA,OA==5,∵B为⊙O内一点,∴符合要求的点B的坐标(0,0)答案不唯一.故答案为:(0,0)答案不唯一.13.解:设这条弧所在圆的半径为r,则=5π,解得,r=12,答:这条弧所在圆的半径为12,故答案为:12.14.解:△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,∴AF=AD=2,BD=BE,CF=CE,∴BD+CF=BE+CE=BC=5,∴△ABC的周长=AD+DB+BC+CF+AF=AD+AF+BC+(BD+CF)=14,故答案为:14.15.解:过O点作OC⊥AB,连接OB,如图所示:∴AB=2BC,在Rt△OBC中,BC2+OC2=OB2,∵OB=5m,BC=3m,∴OC===4m,∵MN∥AB,∴OC⊥MN于D,连接ON,同理OD===3,∴CD=1,当MN与AB在圆心的两侧时,CD=3+4=7,故水面上涨了1m或7m,故答案为:1或7.16.解:∵在⊙O中,,∴∠AOC=∠BOD,∴∠1+∠BOC=∠2+∠BOC,∴∠1=∠2=30°,∴的度数为30°,故答案为:30°17.解:∵∠B+∠ADC=180°,∠ADC+∠CDM=180°,∴∠B=∠CDM,∵∠B=∠AOC=70°,∴∠CDM=70°,故答案为70.18.解:连接OA、OB,如图所示:∵正六边形ABCDEF内接于⊙O,∴∠AOB==60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=OB=3,故答案为:3.三.解答题(共8小题)19.解:如图,连接OC,AB交CD于E,由题意知:AB=1.6+6.4+4=12,所以OC=OB=6,OE=OB﹣BE=6﹣4=2,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE===4,∴CD=2CE=8≈11.3m,所以路面CD的宽度为11.3m.20.证明:∵AC=BC,∴∠A=∠B,∴=,∴﹣=﹣,即=,∴AD=BE.21.解:(1)∵AB是圆O的直径,∴∠ADB=90°,∵∠B=∠C=30°,∴∠BAD=60°;(2)∵∠B=30°,∠ADB=90°,∴AB=2AD,∵AD=4,∴AB=8,∴圆O的半径为4.22.证明:连接OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠ODB=∠B,∴∠ODB=∠C,∴OD∥AC,∵DM⊥AC,∴∠CMD=90°,∴∠ODM=∠CMD=90°,∴OD⊥DM,∵点D在⊙O上,∴DM是⊙O的切线.23.(1)证明:∵四边形ABCD是正方形,∴AD=BC,∴=,∵M为的中点,∴=,∴+=+,∴;(2)解:连接OM,OA,OB,∵正方形ABCD内接于⊙O,∴∠AOB=90°,∴∠AOM=∠BOM=(360°﹣90°)=135°,∴的度数时135°.24.解:(1)如图1,延长DO交BC于F,∵点D为优弧BC的中点,∴=,∴DF⊥BC,∵AC为⊙O的直径,∴AB⊥BC,∴AB∥OD;(2)连接DO并延长交BC于F,∵点D为优弧BC的中点,∴=,∴DF⊥CB,∴CF=BC=4,∵DE⊥AC,∴∠DEO=∠OFC=90°,∵∠DOE=∠COF,OC=OD,∴△DOE≌△COF(AAS),∴OF=OE=OA﹣3,∵OC2=OF2+CF2,∴OC2=(OC﹣3)2+42,∴OC=,∴⊙O的半径为.25.(1)证明:如图1中,由题意图形G是△ABC使得外接圆(⊙O),∵∠ABD=∠CBD,∴=,∴AD=CD.(2)解:结论:DE是⊙O的切线.理由:如图2中,连接OD.∵AD=CM,∴=,∵=,∴=,∵BC⊥DM,∴BC是⊙O的直径,∴OB=OD,∴∠OBD=∠ODB,∵∠ABD=∠DBO,∴∠ABD=∠ODB,∴AB∥OD,∵DE⊥AB,∴DE⊥OD,∴DE是⊙O的切线.26.(1)证明:∵四边形ABCD是菱形,∴AD=AB,AD∥BC,∵∠A=60°,∴∠ADB=∠DBC=180°﹣60°﹣60°=60°,即∠EBF=ABD=60°,∴∠ABE=∠DBF=60°﹣∠DBE,即∠DBF=∠ABE;(2)解:过B作BQ⊥DC于Q,则∠BQC=90°,∵四边形ABCD是菱形,∠A=60°,AB=6,∴DC∥AB,∠C=∠A=60°,BC=AB=6,∴∠ADC=120°,∴∠QBC=30°,∴CQ=BC=3,BQ=CQ=3,∵∠A=60°,∠CDB=120°﹣60°=60°,∴∠A=∠CDB,∵AB=BD,∴在△ABM和△DBN中∴△ABM≌△DBN(ASA),∴S△ABM =S△DBN,∴阴影部分的面积S=S扇形DBC﹣S△DBC=﹣=60π﹣9.。

九年级数学上册《第二十四章 圆》单元测试卷带答案(人教版)精选全文

九年级数学上册《第二十四章 圆》单元测试卷带答案(人教版)精选全文

可编辑修改精选全文完整版九年级数学上册《第二十四章圆》单元测试卷带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.如L是⊙O的切线,要判定AB⊥L,还需要添加的条件是()A.AB经过圆心O B.AB是直径C.AB是直径,B是切点D.AB是直线,B是切点2.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25∘,则∠BOD的度数是()A.25∘B.30∘C.40∘D.50∘3.如图,⊙O的半径OD垂直于弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为()A.2√15B.8C.2√10D.2√134.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO.则图中阴影部分的面积之和()A.10−32πB.14−52πC.12 D.145.如图,点A,B,C在⊙O上,若∠BOC=72∘,则∠BAC的度数是( )A.72∘B.36∘C.18∘D.54∘6.如图,在半径为5的⊙O中AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A.3B.4C.3√2D.4√27.如图,已知OB为⊙C的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为( )A.3cm B.6cm C.12cm D.24cm8.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(−1,2),则点Q的坐标是( )A.(−4,2)B.(−4.5,2)C.(−5,2)D.(−5.5,2)二、填空题9.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120∘,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为.(结果保留π)10.在半径为3cm的圆中,120∘的圆心角所对的弧长等于.11.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50∘,则∠AOD=.12.如图所示,点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP= 4,PB=2则PC的长为.13.如图,CD是⊙O的直径,弦AB⊥CD于点E,若AB=6,CE:ED=1:9则⊙O的半径是.三、解答题14.已知:点I是△ABC的内心,AI的延长线交外接圆于D.则DB与DI相等吗?为什么?15.如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.16.如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.17.如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.(1)求证:∠A=∠AEB;(2)如果DC⊥OE,求证:△ABE是等边三角形.18.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC.(2)若PC=2 √5,求⊙O的半径.参考答案1.C2.A3.C4.B5. B6. C7. C8. A9. 350πcm210. 2πcm11. 80°12. 2√213. 514.解:ID=BD.理由:如图所示:连接BI.由三角形的外角的性质可知:∠1+∠2=∠BIA.∵点I是△ABC的内心∴∠1=∠4,∠2=∠3.又∵∠4=∠5∴∠1+∠2=∠3+∠4=∠3+∠5,即∠BIA=∠IBD.∴ID=BD.15.证明:∵∠DAE是⊙O的内接四边形ABCD的一个外角,∴∠DAE=∠DCB,又∠DAE=∠DAC,∴∠DCB=∠DAC,又∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC16.解:如图,连接OD∵OD=OA∴∠ODA=∠DAB=30°∴∠DOB=∠ODA+∠DAB=60°∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°即OD⊥BD∴直线BD与⊙O相切.17.(1)证明:∵四边形ABCD是⊙O的内接四边形∴∠A=∠DCE∵DC=DE∴∠DCE=∠DEC∴∠A=∠AEB(2)证明:∵DC⊥OE∴DF=CF∴OE是CD的垂直平分线∴ED=EC,又DE=DC∴△DEC为等边三角形∴∠AEB=60°,又∠A=∠AEB∴△ABE是等边三角形.18.(1)证明:连接OB∵OB=OP∴∠OPB=∠OBP∵∠OPB=∠APC∴∠OBP=∠APC∵AB与⊙O相切于点B∴OB⊥AB∴∠ABO=90°∴∠ABP+∠OBP=90°∵OA⊥AC∴∠OAC=90°∴∠ACB+∠APC=90°∴∠ABP=∠ACB∴AB=AC(2)证明:设⊙O的半径为r在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2 在Rt△ACP中,AC2=PC2﹣PA2AC2=(2 √5)2﹣(5﹣r)2∵AB=AC∴52﹣r2=(2 √5)2﹣(5﹣r)2 解得:r=3则⊙O的半径为3。

人教版九年级上册数学 第24章 《圆》单元测试(含参考答案与试题解析)

人教版九年级上册数学 第24章 《圆》单元测试(含参考答案与试题解析)

九年级数学《圆》单元测试学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4 D.2+4.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上5.已知⊙O和⊙O′的半径分别为5cm和7cm,且⊙O和⊙O′相切,则圆心距OO′为()A.2 cm B.7 cm C.12 cmD.2 cm或12 cm6.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.27.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=度时,△OBC和△ABD的面积相等;②当∠BAD=度时,四边形OBCD是正方形.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为时,四边形ABCD是菱形.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.参考答案与试题解析一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l=计算即可求出n.【解答】解:设圆锥的展开图扇形的圆心角的度数为n.∵圆锥的底面圆的周长=2π•10=20π,∴圆锥的展开图扇形的弧长=20π,∴20π=,∴n=120.故选C.2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4 D.2+【分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选B.4.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上【分析】根据点与圆的位置关系进行判断.【解答】解:∵d≥R,∴点P在⊙O上或点P在⊙O外.故选D.5.已知⊙O和⊙O′的半径分别为5cm和7cm,且⊙O和⊙O′相切,则圆心距OO′为()A.2 cm B.7 cm C.12 cmD.2 cm或12 cm【分析】此题考虑两种情况:两圆外切或两圆内切.再进一步根据位置关系得到数量关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.【解答】解:当两圆外切时,则圆心距等于两圆半径之和,即7+5=12;当两圆内切时,则圆心距等于两圆半径之差,即7﹣5=2.故选D.6.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.2【分析】根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.7.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°【分析】由AB是⊙O的直径,可得知∠ACB=90°,根据三角形内角和为180°可求出∠BAC 的度数,再由同弦的圆周角相等得出结论.【解答】解:∵线段AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=180°﹣∠ACB﹣∠ABC=58°.∵∠CDB与∠BAC均为弦BC的圆周角,∴∠CDB=∠BAC=58°.故选A.8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°【分析】由A,B,C是⊙O上的三点,已知∠AOC=110°,根据圆周角定理,即可求得答案.【解答】解:∵A,B,C是⊙O上的三点,∠AOC=110°,∴∠ABC=∠AOC=55°.故B.9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故选C.10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π【分析】首先证明OE=OC=OB,则可以证得△OEC≌△BED,则S阴影=半圆﹣S扇形OCB,利用扇形的面积公式即可求解.【解答】解:连结BC.∵∠COB=2∠CDB=60°,又∵OB=OC,∴△OBC是等边三角形.∵E为OB的中点,∴CD⊥AB,∴∠OCE=30°,CE=DE,∴OE=OC=OB=2,OC=4.S阴影==.故选D.二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=27°.【分析】根据菱形的性质得到∠ACB=∠DCB=(180°﹣∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是﹣π.【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.【解答】解:如图,连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×3﹣(﹣×32)=﹣π.故答案为:﹣π.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长2.【分析】由已知条件可知Rt△POA中,OP=2OA,所以可求出∠P=30°,∠O=60°,再在Rt△AOC中,利用勾股定理求解直角三角形即可得到AB的长.【解答】解:∵PA与⊙O相切于点A,∴OA⊥AP,∴三角形△POA是直角三角形,∵OA=2,OP=4,即OP=2OA,∴∠P=30°,∠O=60°,则在Rt△AOC中,OC=OA=1,则AC=,∴AB=2,故答案为2.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.【分析】(1)根据切线的性质得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,即∠BOC=90°;(2)由勾股定理可求得BC的长,进而由切线长定理即可得到BE+CG的长;(3)最后由三角形面积公式即可求得OF的长.【解答】解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBE+∠OCF=90°,∴∠BOC=90°;(2)由(1)知,∠BOC=90°.∵OB=6cm,OC=8cm,∴由勾股定理得到:BC==10cm,∴BE+CG=BC=10cm.(3)∵OF⊥BC,∴OF==4.8cm.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.【分析】(1)根据切线长定理得到AE=AF,∠EAO=∠FAO,根据等腰三角形的性质得到AD ⊥EF,根据三角形的内角和得到∠B=∠C=(180°﹣∠BAC),∠AEF=(180°﹣∠BAC),等量代换得到∠AEF=∠B,根据平行线的性质即可得到结论.(2)由AG等于⊙O的半径,得到AO=2OE,由AB是⊙O的切线,得到∠AEO=90°,根据直角三角形的性质得到∠EAO=30°,根据三角形的内角和得到∠AOE=60°,由垂径定理得到DM=MN=,根据三角函数的定义得到∠MOD=60°,根据扇形的面积公式即可得到结论.【解答】(1)证明:∵AB、AC相切于E、F两点,∴AE=AF,∠EAO=∠FAO,∴AD⊥EF,∵AB=AC,∴∠B=∠C=(180°﹣∠BAC),∵AE=AF,∴∠AEF=(180°﹣∠BAC),∴∠AEF=∠B,∴EF∥BC,∴AD⊥BC;(2)解:∵AG等于⊙O的半径,∴AO=2OE,∵AB是⊙O的切线,∴∠AEO=90°,∴∠EAO=30°,∴∠AOE=60°,∵AE=2,∴OE=2,∵OD⊥MN,∴DM=MN=,∵OM=2,∴sin∠MOD==,∴∠MOD=60°,∴∠EOM=60°,∴S扇形EOM==π.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD是正方形.【分析】(1)连接OD.只要证明△COD≌△COB,即可推出∠ODC=∠OBC=90°,推出CD是⊙O的切线.(2))①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD 是正方形.【解答】(1)证明:连接OD.∵AD∥CO,∴∠A=∠BOC,∠ADO=∠DOC,∵OA=OD,∴∠A=∠ADO,∴∠BOC=∠DOC,在△COD和△COB中,,∴△COD≌△COB,∴∠ODC=∠OBC=90°,∴CD是⊙O的切线.(2)①当∠BAD=60度时,△OBC和△ABD的面积相等;理由此时AD=OB,AB=OC,△OBC≌△DAB,所以面积相等.②当∠BAD=45度时,四边形OBCD是正方形.此时∠DOB=90°,∵∠ODC=∠OBC=90°,∴四边形OBCD是矩形,∵OB=OD,∴四边形OBCD是正方形.故答案分别为60,45.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E 点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.【分析】(1)连接AD,由CD是⊙O的直径,得到AD⊥AC,推出AD∥OB,根据平行线等分线段定理得到PA=AB;(2)根据相似三角形的性质得到OB=8,求得AD=4,根据勾股定理得到AC==4,根据垂径定理得到AE=CE=2,由勾股定理即可得到结论【解答】解:(1)A是PB的中点,理由:连接AD,∵CD是⊙O的直径,∴AD⊥AC,∵OB⊥AC,∴AD∥OB,∵PD=OD,∴PA=AB,∴A是PB的中点;(2)∵AD∥OB,∴△APD∽△BPO,∴,∵⊙O半径为8,∴OB=8,∴AD=4,∴AC==4,∵OB⊥AC,∴AE=CE=2,∵OE=AD=2,∴BE=6,∴BC==4.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足当AC=AP时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为60时,四边形ABCD是菱形.【分析】(1)作CE⊥AB于E,由于CA=CB,根据等腰三角形的性质得CE为AB的垂直平分线,则点O在CE上,再根据平行四边形的性质得AB∥CD,(2)当AC=AP时,△CPA≌△ABC.由于AC=BC,AC=AP,则∠ABC=∠BAC,∠APC=∠ACP,根据圆周角定理得∠ABC=∠APC,则∠BAC=∠ACP,加上AC=CA,即可得到△CPA≌△ABC;(3)如图2,连接OC,AC,OB,根据平行线的性质得到∠BCD=120°,根据切线的性质得到∠OCD=90°,推出BO垂直平分AC,即可得到结论.【解答】(1)证明:连接CO并延长交AB于E,如图,∵CD与⊙O相切于点C,∴CE⊥CD,∵四边形ABCD为平行四边形,∴AB∥CD,∴CE⊥AB,∴AE=BE,∴BC=AC;(2)解:当AC=AP时,△CPA≌△ABC.证明如下:∵AC=BC,AC=AP,∴∠ABC=∠BAC,∠APC=∠ACP,∵∠ABC=∠APC,∴∠BAC=∠ACP,在△CPA与△ABC中,,∴△CPA≌△ABC;故答案为:AC=AP;(3)解:当∠ABC的度数为60°时,四边形ABCD是菱形,如图2,连接OC,AC,OB,∵∠ABC=60°,∴∠BCD=120°,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠BCO=30°,∵OB=OC,∴∠OBC=30°,∴∠ABO=30°,∴BO垂直平分AC,∴AB=BC,∴四边形ABCD是菱形.故答案为:60°.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.【分析】(1)由垂直定义得∠E=∠CFD=90°,根据中线知BD=CD,利用“AAS”证△BED≌△CFD 可得答案;(2)根据AB是圆的直径,则△ABC是直角三角形,根据∠BAC=2∠B即可求得∠BAC的度数,证得△OAC是等边三角形.再根据PA是圆的切线,可以证得∠P=30°,则可求得OP的长,在直角△OAP中,利用勾股定理即可求得PA的长.【解答】解:(1)∵分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F,∴∠E=∠CFD=90°,∵AD是中线,∵BD=CD,在△BED和△CFD中,∵,∴△BED≌△CFD(AAS),∴BE=CF;(2)∵AB为⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°又∵∠BAC=2∠B∴∠B=30°,∠BAC=60°∵OA=OC∴△OAC是等边三角形.∴OA=AC=6,∠AOC=60°∵AP是⊙O的切线.∴∠OAP=90°∴在直角△OAP中,∠P=90°﹣∠AOC=90°﹣60°=30°∴OP=2OA=2×6=12,∴PA===6.。

人教版九年级数学上《第二十四章圆》单元测试题含答案

人教版九年级数学上《第二十四章圆》单元测试题含答案

第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列说法错误的是A.直径是弦B.最长的弦是直径C.垂直于弦的直径平分弦D.经过三点可以确定一个圆2.如图,已知☉O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.√5B.2√5C.2√7D.√133.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是A.相交B.相切C.相离D.无法确定4.如图,☉O的半径OC=5 cm,直线l⊥OC,垂足为点H,且l交☉O于A,B两点,AB=8 cm,当l与☉O相切时,l需沿OC所在直线向下平移A.1 cmB.2 cmC.3 cmD.4 cm5.如图,在△ABC中,已知AB=AC=5 cm,BC=8 cm,点D是BC的中点,以点D为圆心作一个半径为3 cm的圆,则下列说法正确的是A.点A在☉D外B.点A在☉D上C.点A在☉D内D.无法确定6.如图,☉O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值为A.√13B.√5C.3D.27.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为A.(60°,4)B.(45°,4)C.(60°,2√2)D.(50°,2√2)8.如图,Rt△ABC的内切圆☉O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作☉O的切线MN与AB,BC分别交于点M,N,若☉O的半径为r,则Rt△MBN 的周长为A.rB.3r2rC.2rD.529.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为A.13π cmB.14π cmC.15π cmD.16π cm10.如图,在△ABC中,AB=8 cm,BC=4 cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C'处,那么AC边扫过的图形(图中阴影部分)面积是A.20π cm2B.(20π+8) cm2C.16π cm2D.(16π+8) cm2二、填空题(本大题共4小题,每小题5分,满分20分)11.一个直角三角形的两边长分别为3,4,则这个三角形外接圆的半径长为2或2.5.12.如图是考古学家发现的古代钱币的一部分,合肥一中的小明正好学习了圆的知识,他想求其外圆半径,连接外圆上的两点A,B,并使AB与内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10 cm,AB=60 cm,则这个钱币的外圆半径为50cm.13.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2√3.14.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为√3;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4√3.其中正确的序号是①③.三、(本大题共2小题,每小题8分,满分16分)15.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.AB=24 cm,CD=8 cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12,OD=x-8,根据勾股定理,得x2=122+(x-8)2,解得x=13.∴圆的半径为13 cm.⏜上一点,且∠BPC=60°.试16.如图,已知CD是☉O的直径,弦AB⊥CD,垂足为点M,点P是AB判断△ABC的形状,并说明你的理由.解:△ABC为等边三角形.⏜=BC⏜,∴AC=BC,理由如下:∵AB⊥CD,CD为☉O的直径,∴AC又∵∠BPC=∠BAC=60°,∴△ABC为等边三角形.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.⏜的度数;(1)若∠A=25°,求BD(2)若BC=9,AC=12,求BD的长.解:(1)延长BC交☉O于点N,∵在△ABC中,∠C=90°,∠A=25°,∴∠B=65°,∴∠B所对的弧BDN的度数是130°,⏜的度数是180°-130°=50°.∴BD(2)延长AC交☉O于点M,在Rt△BCA中,由勾股定理得AB=√AC2+BC2=√122+92=15,∵BC=9,AC=12,∴CM=CE=BC=9,AM=AC+CM=21,AE=AC-CE=3,由割线定理得AD×AB=AE×AM,∴(15-BD)×15=21×3,解得BD=54.518.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别相切于点D,E,F.(1)求证:BF=CE;(2)若∠C=30°,CE=2√3,求AC.解:(1)∵AF,AE是☉O的切线,∴AF=AE.又∵AB=AC,∴AB-AF=AC-AE,即BF=CE.(2)连接AO,OD.∵O是△ABC的内心,∴OA平分∠BAC.∵☉O是△ABC的内切圆,D是切点,∴OD⊥BC.又∵AC=AB,∴A,O,D三点共线,即AD⊥BC.∵CD,CE是☉O的切线,∴CD=CE=2√3.在Rt△ACD中,由∠C=30°,设AD=x,则AC=2x,由勾股定理得CD2+AD2=AC2,即(2√3)2+x2=(2x)2,解得x=2.∴AC=2x=2×2=4.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知ED为☉O的直径且ED=4,点A(不与点E,D重合)为☉O上一个动点,线段AB经过点E,且EA=EB,F为☉O上一点,∠FEB=90°,BF的延长线交AD的延长线于点C.(1)求证:△EFB≌△ADE;(2)当点A在☉O上移动时,直接回答四边形FCDE的最大面积为多少.解:(1)连接FA ,∵∠FEB=90°,∴EF ⊥AB , ∵BE=AE ,∴BF=AF ,∵∠FEA=∠FEB=90°,∴AF 是☉O 的直径,∴AF=DE , ∴BF=ED ,在Rt △EFB 与Rt △ADE 中,{BE =AE ,BF =DE ,∴Rt △EFB ≌Rt △ADE.(2)∵Rt △EFB ≌Rt △ADE ,∴∠B=∠AED ,∴DE ∥BC ,∵ED 为☉O 的直径,∴AC ⊥AB ,∵EF ⊥AB ,∴EF ∥CD ,∴四边形FCDE 是平行四边形,∴E 到BC 的距离最大时,四边形FCDE 的面积最大,即点A 到DE 的距离最大,∴当A 为ED ⏜的中点时,点A 到DE 的距离最大是2,∴四边形FCDE 的最大面积=4×2=8.20.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC.将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b (b<a ),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.解:(1)∵将△PAB绕点B顺时针旋转90°到△P'CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP'=π(a2-b2).4(2)连接PP',根据旋转的性质可知△APB≌△CP'B,∴BP=BP'=4,P'C=PA=2,∠PBP'=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32.又∵∠BP'C=∠BPA=135°,∴∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,即△PP'C是直角三角形,PC=√P'P2+P'C2=6.六、(本题满分12分)21.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD , ∵CD 是☉O 的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA ,∴CD=OC=OE=OA ,∴∠1=∠2,∠3=∠4. ∵AE ∥OC ,∴∠2=∠3.设∠ODC=∠1=x ,则∠2=∠3=∠4=x ,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE 与△OCD 中,{OA =OC ,∠AOE =∠OCD ,OE =CD ,∴△AOE ≌△OCD (SAS),∴AE=OD.②∠6=∠1+∠2=2x. ∵OE=OC ,∴∠5=∠6=2x.∵AE ∥OC ,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.七、(本题满分12分)22.如图,已知∠xOy=90°,线段AB=10,若点A 在Oy 上滑动,点B 随着线段AB 在射线Ox 上滑动(A ,B 与O 不重合),Rt △AOB 的内切圆☉K 分别与OA ,OB ,AB 切于点E ,F ,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=a+b-10,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.2∵S=1ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,2∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5√2.√2八、(本题满分14分)23.如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.(1)求证:AM=QN.(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由.(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.解:(1)如图1,连接PQ,由点P绕点A按顺时针方向旋转60°到点Q,可得AP=AQ,∠PAQ=60°,∴△APQ为等边三角形,∴PA=PQ,∠APQ=60°,由点M绕点P按逆时针方向旋转60°到点N,可得PM=PN,∠MPN=60°,∴∠APM=∠QPN,则△APM≌△QPN(SAS),∴AM=QN.(2)存在.理由如下:如图2,由(1)中的证明可知△APM≌△QPN,∴∠AMP=∠QNP,∵直线QN与以点P为圆心,以PN的长为半径的圆相切,∴∠AMP=∠QNP=90°,即PN⊥QN.在Rt△APM中,∠PAB=45°,PA=2,∴AM=√2.(3)由(1)知△APQ是等边三角形,∴PA=PQ,∠APQ=60°.∵以点P为圆心,以PN的长为半径的圆经过点Q,∴PN=PQ=PA.∵PM=PN,∴PA=PM,∵∠PAB=45°,∴∠APM=90°,∴∠MPQ=∠APM-∠APQ=30°.∵∠MPN=60°,∴∠QPN=90°,∴劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角∠QPN=90°,半径为PN=PM=PA=2.∴劣弧NQ与两条半径所围成的扇形的面积=90π·22360=π.。

人教版九年级数学上册《第24章 圆》单元测试题(含答案)

人教版九年级数学上册《第24章 圆》单元测试题(含答案)

人教版九年级数学上册《第24章圆》单元测试题一.选择题(共10小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.122.如图,已知⊙C的半径为2,圆外一点O满足OC=3.5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为()A.2B.2.5C.3D.3.53.⊙O的半径为3,圆心O到直线l的距离为3,直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切4.如果圆锥的底面半径为3,母线长为6,那么它的侧面积等于()A.9πB.18πC.24πD.36π5.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20D.9°6.如图,△ABC是正三角形,曲线ABCDEF…叫做“正三角形的渐开线”,其中弧CD,弧DE,弧EF,…圆心依次按A,B,C循环,它们依次相连接,如果AB=1,那么曲线CDEF的长是()A.8πB.6πC.4πD.2π7.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8B.10C.D.8.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示的位置,第2秒中P点位于点C的位置,……,则第2018秒点P所在位置的坐标为()A.(,)B.(0,1)C.(0,﹣1)D.(,﹣)9.如图,已知直线y=x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26B.24C.22D.2010.已知扇形的半径为3,圆心角为60°,则扇形的面积等于()A.B.πC.D.二.填空题(共8小题)11.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)12.如图,在平面直角坐标系中,已知点A(2,0),B(2﹣a,0),C(2+a,0)(a>0),若点P在以D(5,6)为圆心,2为半径的圆上运动,且始终满足∠BPC=90°,则a的取值范围是.13.若半径为6cm的圆中,一段弧长为3πcm,则这段弧所对的圆心角度数为.14.如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,则△ABC的面积为.15.如图,有一座石拱桥,上部拱顶部分是圆弧形,跨度BC=10m,拱高为(10﹣5)m,那么弧BC所在圆的半径等于.16.如图,AB是⊙O的直径,M、N分别是AO,BO的中点,CM⊥AB,DN⊥AB,则的度数.17.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.18.一个边长为4的正四边形的半径是.三.解答题(共8小题)19.某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD 能通过这个隧道吗?请说明理由.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,若EC=BC,且∠1=∠2.求证:DC =BC.21.如图,⊙O的两条弦AB,CD交于点E,OE平分∠BED.(1)求证:AB=CD.(2)若∠BED=60°,EO=2,求BE﹣AE的值.22.如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.23.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为上一动点,求证:PA=PC+PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.24.已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.25.如图,已知OA、OB是⊙O的两条半径,C、D为OA、OB上的两点,且AC=BD.求证:AD =BC.26.Rt△ABC中,∠C=90°,点E在AB上,BE=AE=2,以AE为直径作⊙O交AC于点F,交BC于点D,且点D为切点,连接AD、EF.(1)求证:AD平分∠BAC;(2)求阴影部分面积.(结果保留π)参考答案与试题解析一.选择题(共10小题)1.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.2.解:连接OP,PC,OC,∵OP≥OC﹣PC=3.5﹣2=1.5,∴当点O,P,C三点共线时,OP最小,最小值为1.5,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,AB有最小值为2OP=3,故选:C.3.解:∵圆心到直线的距离=圆的半径,∴直线与圆的位置关系为相切.故选:B.4.解:圆锥的侧面积=×2π×3×6=18π.故选:B.5.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B.6.解:∵∠CAD,∠DBE,∠ECF是等边三角形的外角,∴∠CAD=∠DBE=∠ECF=120°AC=1∴BD=2,CE=3∴弧CD 的长=×2π×1弧DE 的长=×2π×2弧EF 的长=×2π×3∴曲线CDEF =×2π×1+×2π×2+×2π×3=4π. 故选:C .7.解:连接OB ,∵AO ⊥BC ,AO 过O ,BC =8,∴BD =CD =4,∠BDO =90°,由勾股定理得:OD ===3, ∴AD =OA +OD =5+3=8,在Rt △ADB 中,由勾股定理得:AB ==4, 故选:D .8.解:作PE ⊥OA 于E ,∵OP =1,∠POE =45°,∴OE =PE =,即点P 的坐标为(,), 则第2秒P 点为(0,1),根据题意可知,第3秒P 点为(﹣,),第4秒P 点为(﹣1,0),第5秒P 点为(﹣,﹣),第6秒P 点为(0,﹣1),第7秒P 点为(,﹣),第8秒P 点为(1,0), 2018÷8=252……2,∴第2018秒点P 所在位置的坐标为(0,1),故选:B .9.解:过D作DM⊥AB于M,连接BD,如图,由题意:B(8,0),C(0,﹣6),∴OB=8,OC=6,BC=10,则由三角形面积公式得,×BC×DM=×OB×DC,∴10×DM=64,∴DM=6.4,∴圆D上点到直线y=x﹣6的最小距离是6.4﹣2=4.4,∴△ABC面积的最小值是×10×4.4=22,故选:C.10.解:扇形的面积==,故选:A.二.填空题(共8小题)11.解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,但弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确,正确的结论有②③,故答案为:②③.12.解:∵A(2,0),B(2﹣a,0),C(2+a,0),∴AB=AC=a,∵∠BPC=90°,∴PA=AB=BC=a,∵DA==3,∴点P为直线AD与圆的交点重合时,a取最大和最小值,即3﹣2≤a≤3+2.故答案为3﹣2≤a≤3+2.13.解:圆心角的度数为3π×180°÷6π=90°.故答案为:90°.14.解:设CE=x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.=AC•BC∴S△ABC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12;故答案为:12.15.解:设圆弧所在圆的圆心为O,半径为r,连接OB,过O作OA⊥BC于D交于A,则BD=BC=5,AD=10﹣5,∴OD=r﹣10+5,∵OB2=BD2+OD2,∴r2=52+(r﹣10+5)2,解得:r=10,故答案为:10.16.解:∵AB是⊙O的直径,M、N分别是AO,BO的中点,∴2OM=OC,2ON=OD,∵CM⊥AB,DN⊥AB,∴∠CMO=∠DNO=90°,∴∠MCO=∠NDO=30°,∴∠MOC=∠NOD=60°,∴∠COD=180°﹣60°﹣60°=60°,∴的度数是60°,故答案为:60°17.解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.18.解:连接OA、OB,如图所示,∵四边形ABCD是正四边形,∴∠AOB==90°,∴△AOB是等腰直角三角形,∴OA=OB=AB=2;故答案为:2.三.解答题(共8小题)19.解:如图所示:连接OC,∵OA=AE=0.5m,∴OB=1.9+0.5=2.4m,∴BC===3.2>3m∴一辆高3米,宽1.9米的卡车能通过隧道.20.证明:∵EC=BC,∴∠CBE=∠CEB,∴∠1+∠CBD=∠2+∠BAC,∵∠1=∠2,∴∠CBD=∠BAC,∵∠BAC=∠BDC,∴∠CBD=∠BDC,∴BC=CD.21.(1)证明:过点O作AB、CD的垂线,垂足为M、N,如图,∵OE平分∠BED,且OM⊥AB,ON⊥CD,∴OM=ON,∴AB=CD;(2)解:∵∠BED=60°,OE平分∠BED,∴∠BEO=∠BED=30°,∵OM⊥AB,∴∠OME=90°,∵OE=2,∴∴=1,∴==,∵OM⊥AB,∴BM=AM,∴BE﹣AE=BM+EM﹣(AM﹣EM)=2EM=2.22.(Ⅰ)证明:连接OD,OB.∵D为的中点,∴∠BOD=∠COD.∵OB=OC,∴OD⊥BC,∴∠OGC=90°.∵EF∥BC,∴∠ODF=∠OGC=90°,即OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(Ⅱ)解:∵四边形ABDC是⊙O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDC=2∠A,∴∠A+2∠A=180°,∴∠A=60°,∵OA=OB,∴△OAB等边三角形,∵OB=AB=2,又∵∠BOC=2∠A=120°,∴=.23.证明:(1)延长BP至E,使PE=PC,连接CE.∵∠1=∠2=60°,∠3=∠4=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴CE=PC,∠E=∠3=60°;又∵∠EBC=∠PAC,∴△BEC≌△APC,∴PA=BE=PB+PC.(2分)(2)过点B作BE⊥PB交PA于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(4分)(3)答:;证明:在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.又∵∠APB=30°,∴∴(7分)24.解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∵AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴=,∴∠ABD=∠CBD=×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.25.解:∵OA、OB是⊙O的两条半径,∴AO=BO,∵AC=BD,∴OC=OD,在△OCB和△ODA中,∴△OCB≌△ODA(SAS),∴AD=BC.26.(1)证明:连接OD交EF于M.∵BC切⊙O于D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠DAC=∠ODA,∵OD=OA,∴∠OAD=∠ODA,∴∠OAD=∠DAC,∴AD平分∠ABC.(2)连接OF.∵AE是直径,∴∠AFE =90°,∵EF ∥BC ,∴==,∵∠C =∠AFE =∠ODC =90°, ∴四边形DMFC 是矩形,∴DM =CF =AF ,∵OM =DM =OD =OE , ∴∠OEM =30°,∴∠EOF =120°,∵BE =AE =2,∴OE =2,∴OM =1,EM =,EF ﹣2,∴S 阴=S 扇形OEF ﹣S △OEF =﹣×2×1=﹣.。

人教新版九年级上学期第24章《圆》单元测试卷(含详解)

人教新版九年级上学期第24章《圆》单元测试卷(含详解)

人教新版九年级上学期第24章《圆》单元测试卷(含详解)一.选择题1.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦;并且平分弦所对的弧,④圆内接四边形对角互补其中错误的结论有()A.1个B.2个C.3个D.4个2.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°3.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cmC.5.5cm D.2.5cm或5.5cm4.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=65°,则∠DAO+∠DCO =()A.90°B.110°C. 120°D.165°5.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.πB. +C.D. +6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值为()A.1 B.C.D.7.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A. cm B.3cm C. cm D.2cm8.如图,在菱形ABCD中,以AB为直径画弧分别交BC于点F,交对角线AC于点E,若AB =4,F为BC的中点,则图中阴影部分的面积为()A.B.C.D.9.如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°10.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°11.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为()A.B.πC.D.312.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定二.填空题13.把一个半径为12,圆心角为150°的扇形围成一个圆锥(按缝处不重叠),那么这个圆锥的高是.14.(1)已知一个直角三角形的面积为12cm2,周长为12cm,那么这个直角三角形外接圆的半径是cm,内切圆半径是cm.(2)等边△ABC的边长为10cm,则它的外接圆的半径是cm,内切圆半径是cm.15.在圆内接四边形ABCD中,弦AB=AD,AC=2016,∠ACD=60°,则四边形ABCD的面积为.16.已知⊙O的半径为1cm,弦AB=cm,AC=cm,则∠BAC=.17.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD 上的一个动点,当CD=6时,AP+BP的最小值为.三.解答题18.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,若∠P=30°.(1)求∠B的度数;(2)若PC=2,求BC的长.19.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D 作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为2,CF=1,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD能通过这个隧道吗?请说明理由.22.如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.(1)求证:CE为⊙O的切线;(2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)23.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2.(1)求直径AB的长;(2)求阴影部分图形的周长和面积.24.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点,CE交AB于点H,且AH=AC,AF平分线∠CAH.(1)求证:BE∥AF;(2)若AC=6,BC=8,求EH的长.25.如图所示,△ABC内接于⊙O,AC是直径,D在⊙O上,且AC平分∠BCD,AE∥BC,交CD于E,F在CD的延长线上,且AE=EF.连接AF.(1)求证:AF是⊙O的切线;(2)连接BF交AE于G,若AB=12,AE=13,求AG的长.参考答案一.选择题1.解:①任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆;②相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;③平分弦的直径垂直于弦;并且平分弦所对的弧,错误,此弦不是直径;④圆内接四边形对角互补;正确;故选:C.2.解:∵∠AOC=140°,∴∠BOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选:A.3.解:当点P在圆内时,最近点的距离为3cm,最远点的距离为8cm,则直径是11cm,因而半径是5.5cm;当点P在圆外时,最近点的距离为3cm,最远点的距离为8m,则直径是5cm,因而半径是2.5cm.故选:D.4.解:∵OA=OB=OC,∴∠ABO=∠BAO,∠OBC=∠OCB,∵∠ABC=65°=∠ABO+∠OBC,∴∠BAO+∠BCO=65°,∵∠ADC=65°,∴∠DAO+∠DCO=360°﹣(∠ADC+∠BAO+∠BCO+∠ABC)=360°﹣(65°+65°+65°)=165°,故选:D.5.解:∵AB为直径,∴∠ACB =90°,∵AC =BC =,∴△ACB 为等腰直角三角形,∴OC ⊥AB ,∴△AOC 和△BOC 都是等腰直角三角形,∴S △AOC =S △BOC ,OA =,∴S 阴影部分=S 扇形OAC ==π.故选:A . 6.解:∵正六边形的任一内角为120°, ∴∠1=30°(如图),∴a =2cos ∠1=,∴a =2. 故选:D .7.解:∵PA 为⊙O 的切线,A 为切点, ∴∠PAO =90°,在直角△APO 中,OA ==2,∵AB ⊥OP ,∴AD =BD ,∠ADO =90°,∴∠ADO =∠PAO =90°,∵∠AOP =∠DOA ,∴△APO ∽△DAO ,∴=,即=, 解得:AD =3(cm ),∴BD =3cm .故选:B .8.解:如图,取AB 的中点O ,连接AF ,OF . ∵AB 是直径,∴∠AFB =90°,∴AF ⊥BF ,∵CF =BF ,∴AC =AB ,∵四边形ABCD 是菱形,∴AB =BC =AC ,∴△ABC 是等边三角形,∴AE =EC ,易证△CEF ≌△BOF ,∴S 阴=S 扇形OBF ==,故选:D .9.解:连接AC ,如图,∵BC 是⊙O 的直径,∴∠BAC =90°,∵∠ACB =∠ADB =70°,∴∠ABC =90°﹣70°=20°.故答案为20°.故选:A .10.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.11.解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=3,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴的弧长为=π,故选:B.12.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.二.填空题(共5小题)13.解:设这个圆锥的底面圆的半径为r,根据题意得2πr=,解得r=5,所以圆锥的高==.故答案为.14.解:(1)如果设这个直角三角形的直角边是a,b,斜边是c,那么由题意得:S=ab=12,a+b+c=12,△∴ab=24,a+b=12﹣c,根据勾股定理得a2+b2=c2,(a+b)2﹣2ab=c2,(12﹣c)2﹣48=c2,解得c=,所以直角三角形外接圆的半径是cm;设内切圆的半径是r,则×12r=12,解得:r=cm.故答案是:,;(2)连接OC和OD,如图:由等边三角形的内心即为中线,底边高,角平分线的交点所以OD⊥BC,∠OCD=30°,OD即为圆的半径.又由BC=10cm,则CD=5cm在直角三角形OCD中:=tan30°代入解得:OD=CD=,则CO=×10=;故答案为:,.15.解:过A作AE⊥BC于E,AF⊥CD于F.∵∠ADF+∠ABC=180(圆的内接四边形对角之和为180),∠ABE+∠ABC=180,∴∠ADF=∠ABE.∵∠ABE=∠ADF,AB=AD,∠AEB=∠AFD,∴△AEB≌△AFD,∴四边形ABCD的面积=四边形AECF的面积,AE=AF.又∵∠E=∠AFC=90°,AC=AC,∴Rt△AEC≌Rt△AFC(HL).∵∠ACD=60°,∠AFC=90°,∴∠CAF =30°,∴CF =1008,AF =,∴四边形ABCD 的面积=2S △ACF =2×CF ×AF =88144.故答案为:88144.16.解:当圆心O 在弦AC 与AB 之间时,如图(1)所示,过O 作OD ⊥AC ,OE ⊥AB ,连接OA ,由垂径定理得到:D 为AB 中点,E 为AC 中点,∴AE =AC =cm ,AD =AB =cm ,∴cos ∠CAO =,cos ∠BAO ==, ∴∠CAO =45°,∠BAO =30°,此时∠BAC =∠CAO +∠BAO =45°+30°=75°;当圆心在弦AC 与AB 一侧时,如图(2)所示,同理得:∠BAC =∠CAO ﹣∠BAO =45°﹣30°=15°,综上,∠BAC =15°或75°.故答案为:15°或75°.17.解:作点A 关于CD 的对称点A ′,连接A ′B ,交CD 于点P ,则PA +PB 最小, 连接OA ′,AA ′.∵点A与A′关于CD对称,点A是半圆上的一个三等分点,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是弧AD的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,又∵OA=OA′=3,∴A′B=.∴PA+PB=PA′+PB=A′B=3.故答案为:3.三.解答题(共8小题)18.解:(1)∵PA是⊙O的切线,∴OA⊥PA,∴∠P=30°,∴∠POA=60°,∴∠B=∠POA=×60°=30°,(2)如图,连接AC,∵AB是⊙O的直径,∴∠ACB=90°且∠B=30°,∴BC=AC,设OA=OB=OC=x,在Rt△AOP中,∠P=30°,∴PO=2OA,∴2+x=2x,x=2.即OA=OB=2.又在Rt△ABC中,∠B=30°,∴AC=AB=×4=2,∴BC=tan60°•AC=AC=2.19.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:连接BE,∵AB是直径,∴BE⊥AC,∵DF⊥AC,∴==,∵FC=1,∴EC=2,∵OD=AC=2,∴AC=4,∴AE=EC=2,∴AB=BC,∵AB=AC=4,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵OD∥AC,∴∠BOD=∠BAC=60°,∴的长:=.20.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.21.解:如图所示:连接OC,∵OA=AE=0.5m,∴OB=1.9+0.5=2.4m,∴BC===3.2>3m ∴一辆高3米,宽1.9米的卡车能通过隧道.22.(1)证明:连接OE,∵AC=EC,OA=OE,∴∠CAE=∠CEA,∠FAO=∠FEO,∵AC⊥AB,∴∠CAD=90°,∴∠CAE+∠EAO=90°,∴∠CEA+∠AEO=90°,即∠CEO=90°,∴OE⊥CD,∴CE为⊙O的切线;(2)解:∵∠OAF=30°,OF=1∴AO=2;∴AF=即AE=;∴;∵∠AOE=120°,AO=2;∴;=.∴S阴影23.解:(1)设CD交AB于E.∵∠BOC=2∠CDB,∠CDB=30°,∴∠COB=60°,∵OC=OB,∴△BOC是等边三角形,∴∠CBO=60°,∵CD⊥AB,CD=2,∴CE=ED=,∴OC=EC÷os30°=2,∴AB=2OC=4.(2)连接BC,OD,∵∠CBO=∠BOD=60°,∴BC∥OD,∴S△BCD =S△BCO,∴S阴=S扇形OBC==π,阴影部分的周长=2+2+=2+2+π.24.(1)证明:∵AH=AC,AF平分线∠CAH∴∠HAF=∠CAF,AF⊥EC,∴∠HAF+∠ACH=90°∵∠ACB=90°,即∠BCE+∠ACH=90°,∴∠HAF=∠BCE,∵E为的中点,∴,∴∠EBD=∠BCE,∴∠HAF=∠E BD,∴BE∥AF;(2)解:连接OH、CD.∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,AC=6,BC=8,∴AB=,∵AH=AC=6∴BH=AB﹣AH=10﹣6=4,∵∠EBH=∠ECB,∠BEH=∠CEB∴△EBH∽△ECB,∴,EB=2EH,由勾股定理得BE2+EH2=BH2,即(2EH)2+EH2=42,∴EH=.25.证明:(1)∵AC平分∠BCD∴∠ACB=∠ACD,∵AE∥BC∴∠ACB=∠CAE=∠ACD∴AE=CE,且AE=EF∴AE=CE=EF∴△CAF是直角三角形∴∠CAF=90°∴AF是⊙O的切线(2)连接AD,∵AC是直径∴∠ABC=90°=∠ADC∵∠ACB=∠ACD,AC=AC,∠ABC=∠ADC=90°∴△ABC≌△ADC(AAS)∴AB=AD=12,BC=CD在Rt△AED中,DE==5∵AE=CE=EF=13∴CF=2EF,CD=BC=CE+DE=18,∵AE∥BC∴=∴EG=9∴AG=AE﹣EG=13﹣9=4人教版九年级上册第24章数学圆单元测试卷(含答案)(1)一、知识梳理(一)点、直线与圆的位置关系:(可用什么方法判断?) 1.2.已知圆O 的半径为8cm ,若圆心O 到直线l 的距离为8cm ,那么直线l 和圆O 的位置关系是( )A .相离B .相切C .相交D .相交或相离(二)圆心角、弧、弦之间的关系 1.下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等 2.(三)圆周角定理及其推理1.如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= cm 。

人教版九年级数学上册《第24章圆》单元达标测试(含答案)

人教版九年级数学上册《第24章圆》单元达标测试(含答案)

圆单元达标测试(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,点A ,B ,C 在⊙O 上,∠ACB =35°,则∠AOB 的度数是BA .75°B .70°C .65°D .35°,第1题图) ,第3题图),第6题图) ,第7题图)2.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是AA .正三角形B .正方形C .正五边形D .正六边形3.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为CA .35°B .45°C .55°D .65°4.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是AA .10B .20C .10πD .20π5.已知半径为5的⊙O 是△ABC 的外接圆,若∠ABC =25°,则劣弧AC ︵的长为CA.25π36B.125π36C.25π18D.5π366.如图,BM 与⊙O 相切于点B ,若∠MBA =140°,则∠ACB 的度数为AA .40°B .50°C .60°D .70°7.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD =8 cm ,AE =2 cm ,则OF 的长是DA .3 cm B. 6 cm C .2.5 cm D. 5 cm8.如图,在△ABC 中,∠A =30°,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作圆,⊙O 恰好与AC 相切于点D ,连接BD.若BD 平分∠ABC ,AD =23,则线段CD 的长是BA .2 B. 3 C.32 D.323 ,第8题图) ,第9题图),第10题图)9.如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是CA.18+36πB.24+18πC.18+18πD.12+18π10.如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I′的坐标为AA.(-2,3) B.(-3,2) C.(3,-2) D.(2,-3)二、填空题(每小题3分,共24分)11.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=60°.,第11题图),第13题图),第14题图)12.已知圆锥的底面圆半径为3 cm、高为4 cm,则圆锥的侧面积是15πcm2.13.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=60度.14.在直径为200 cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160 cm,则油的最大深度为40 cm.15.如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=2 2.,第15题图),第16题图),第17题图),第18题图)16.如图,点M,N分别是正五边形ABCDE的两边AB,BC上的点,且AM=BN,点O是正五边形的中心,则∠MON的度数是72度.17.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1∶r2=3∶2.18.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P.当⊙P 与正方形ABCD 的边相切时,BP 的长为3或4 3.点拨:如图①中,当⊙P 与直线CD 相切时,设PC =PM =x.在Rt △PBM 中,∵PM 2=BM 2+PB 2,∴x 2=42+(8-x)2,∴x =5,∴PC =5,BP =BC -PC =8-5=3.如图②中,当⊙P 与直线AD 相切时.设切点为K ,连接PK ,则PK ⊥AD ,四边形PKDC 是矩形.∴PM =PK =CD =2BM ,∴BM =4,PM =8,在Rt △PBM 中,PB =82-42=4 3.三、解答题(共66分)19.(8分)如图,已知AB 是⊙O 的弦,C 是AB ︵的中点,AB =8,AC =25,求⊙O 半径的长.解:连接OA ,连接OC 交AB 于D.设⊙O 的半径为r.∵AC ︵=BC ︵,∴OC ⊥AB ,∴AD=DB =12AB =4,在Rt △ACD 中,CD =AC 2-AD 2=2,在Rt △ADO 中,∵OA 2=AD 2+OD 2,∴r 2=(r -2)2+16,解得r =5.∴⊙O 的半径为5.20.(8分)如图,圆锥的侧面展开图是一个半圆,求母线AB 与高AO 的夹角.参考公式:圆锥的侧面积S =πrl ,其中r 为底面半径,l 为母线长.解:设圆锥的母线长为l ,底面半径为r ,则πl =2πr ,∴l =2r ,∴母线与高的夹角的正弦值=r l =12,∴母线AB 与高AO 的夹角30°.21.(8分)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC.(1)求证:AE =ED ;(2)若AB =10,∠CBD =36°,求AC ︵的长.解:(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°.∵OC ∥BD ,∴∠AEO =∠ADB =90°,即OC ⊥AD ,∴AE =ED.(2)∵OC ⊥AD ,∴AC ︵=CD ︵,∴∠ABC =∠CBD =36°,∴∠AOC =2∠ABC =2×36°=72°,∴AC ︵=72π×5180=2π.22.10分 已知BC 是⊙O 的直径,点D 是BC 延长线上一点,AB =AD ,AE 是⊙O 的弦,∠AEC =30°.(1)求证:直线AD 是⊙O 的切线;(2)若AE ⊥BC ,垂足为M ,⊙O 的半径为4,求AE 的长.解:(1)证明:∵∠AEC =30°,∴∠ABC =30°.∵AB =AD ,∴∠D =∠ABC =30°,∴∠BAD =120°,连接OA ,∴OA =OB ,∴∠OAB =∠ABC =30°,∴∠OAD =∠BAD -∠OAB =90°,∴OA ⊥AD.∵点A 在⊙O 上,∴直线AD 是⊙O 的切线.(2)∵∠AEC =30°,∴∠AOC =60°.∵BC ⊥AE 于M ,∴AE =2AM ,∠OMA =90°.在Rt △AOM 中,AM =OAsin ∠AOM =4sin60°=23,∴AE =2AM =4 3.23.(10分)如图,C ,D 是以AB 为直径的⊙O 上的点,AC ︵=BC ︵,弦CD 交AB 于点E.(1)当PB 是⊙O 的切线时,求证:∠PBD =∠DAB ;(2)求证:BC 2-CE 2=CE·DE.证明:(1)∵AB 是⊙O 的直径,∴∠ADB =90°,即∠BAD +∠ABD =90°.∵PB 是⊙O 的切线,∴∠ABP =90°,即∠PBD +∠ABD =90°,∴∠BAD =∠PBD.(2)∵AC ︵=BC ︵,∴∠ABC =∠BDC ,而∠ECB =∠BCD ,BC =CB ,∴△BCE ∽△DCB ,∴BC 2=CE·CD ,∴BC 2-CE 2=CE·CD -CE 2=CE(CD -CE)=CE·DE.24.(10分)如图,以AB 为直径的⊙O 外接于△ABC ,过A 点的切线AP 与BC 的延长线交于点P ,∠APB 的平分线分别交AB ,AC 于点D ,E ,其中AE ,BD(AE <BD)的长是一元二次方程x 2-5x +6=0的两个实数根.(1)求证:PA·BD =PB·AE ;(2)在线段BC 上是否存在一点M ,使得四边形ADME 是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.解:(1)证明:∵DP 平分∠APB ,∴∠APE =∠BPD.∵AP 与⊙O 相切,∴∠BAP =∠BAC +∠EAP =90°.∵AB 是⊙O 的直径,∴∠ACB =∠BAC +∠B =90°,∴∠EAP =∠B ,∴△PAE ∽△PBD ,∴PA AE =PB BD,∴PA ·BD =PB·AE. (2)过点D 作DF ⊥PB 于点F ,作DG ⊥AC 于点G ,∵DP 平分∠APB ,AD ⊥AP ,DF ⊥PB ,∴AD =DF.∵∠EAP =∠B ,∴∠APC =∠BAC ,易证DF ∥AC ,∴∠BDF =∠BAC ,由于AE ,BD(AE <BD)的长是x 2-5x +6=0,解得AE =2,BD =3,∴由(1)可知:PA 2=PB 3,∴cos ∠APC =PA PB =23,∴cos ∠BDF =cos ∠APC =23,∴DF BD =23,∴DF =2,∴DF =AE ,∴四边形ADFE 是平行四边形.∵AD =DF ,∴四边形ADFE 是菱形,此时点F 即为点M.∵cos∠BAC =cos ∠APC =23,∴sin ∠BAC =53,∴DG AD =53,∴DG =253,∴在线段BC 上存在一点M ,使得四边形ADME 是菱形,其面积为DG·AE =2×253=453. 25.(12分)如图,以Rt △ABC 的直角边AB 为直径作⊙O 交斜边AC 于点D ,过圆心O 作OE ∥AC ,交BC 于点E ,连接DE.(1)判断DE 与⊙O 的位置关系并说明理由;(2)求证:2DE 2=CD·OE ;(3)若tanC =43,DE =52,求AD 的长.解:(1)DE 是⊙O 的切线,理由如下:连接OD ,BD ,∵AB 是⊙O 的直径,∴∠ADB =∠BDC =90°.∵OE ∥AC ,OA =OB ,∴BE =CE ,∴DE =BE =CE ,∴∠DBE =∠BDE.∵OB =OD ,∴∠OBD =∠ODB ,∴∠ODE =∠OBE =90°.∵点D 在⊙O 上,∴DE 是⊙O 的切线.(2)∵∠BDC =∠ABC =90°,∠C =∠C ,∴△BCD ∽△ACB ,∴BC AC =CD BC ,∴BC 2=CD·AC ,由(1)知DE =BE =CE =12BC ,∴4DE 2=CD·AC ,由(1)知,OE 是△ABC 是中位线,∴AC =2OE ,∴4DE 2=CD·2OE ,∴2DE 2=CD·OE.(3)∵DE =52,∴BC =5,在Rt △BCD 中,tanC =43=BD CD,设CD =3x ,BD =4x ,根据勾股定理得,(3x)2+(4x)2=25,∴x =-1(舍)或x =1,∴BD =4,CD =3,由(2)知,BC 2=CD·AC ,∴AC =BC 2CD =253,∴AD =AC -CD =253-3=163.。

人教版数学九年级上《第24章圆》单元综合测试试题(含答案)

人教版数学九年级上《第24章圆》单元综合测试试题(含答案)

圆单元综合测试试题一.选择题1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2 B.4 C.8 D.162.如图,AB是⊙O的直径, BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC=30°,AC=4,则⊙O的半径为()A.4 B.8 C.D.4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm长为半径作圆.则图中阴影部分的面积为()A.(2﹣π)cm2B.(π﹣)cm2C.(4﹣2π)cm2D.(2π﹣2)cm2 6.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°7.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外8.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为()A.相离B.相切C.相交D.相切、相交均有可能9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.1010.如图,在矩形AB CD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A.4 B.C.5 D.二.填空题11.若四边形ABCD是⊙O的内接四边形,∠A=120°,则∠C的度数是.12.如图,四边形ABCD内接于⊙O,∠C=130°,则∠BOD的度数是.13.如图,四边形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半径为1,圆心角为60°,则图中阴影部分的面积是.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为.15.如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF⊥AB 于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为.16.如图,AB是⊙O的直径,弦BC=6cm,AC=8cm.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P 到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为.三.解答题17.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE于点D,AC平分∠DAB.(1)求证:直线CE是⊙O的切线;(2)若AB=10,CD=4,求BC的长.18.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D,连接AD,BD,求四边形ACBD的面积.19.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=6,求BE的长.21.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O 分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.22.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=2,求DM的长.23.如图,AB是⊙O的直径,C为AB延长线上一点,过点C作⊙O的切线CD,D为切点,点F是的中点,连接OF并延长交CD于点E,连接BD,BF.(1)求证:BD∥OE;(2)若OE=3,tan C=,求⊙O的半径.参考答案一.选择题1.解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选:B.2.解:∵=,∴∠ABC=∠AOC=×80°=40°,故选:C.3.解:∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选:A.4.解:连接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°.故选:B.5.解:连接AD,∵△ABC是正三角形,BD=DC,∴∠B=60°,AD⊥BC,∴AD=AB=2,∴图中阴影部分的面积=×4×2﹣×3=(4﹣2π)cm2故选:C.6.解:由题意得,∠AOB=60°,则∠APB=∠AOB=30°.故选:C.7.解:∵点P的坐标是(3,4),∴OP==5,而⊙O的半径为5,∴OP等于圆的半径,∴点P在⊙O上.故选:C.8.解:∵若直线L与⊙O只有一个交点,即为点P,则直线L与⊙O的位置关系为:相切;若直线L与⊙O有两个交点,其中一个为点P,则直线L与⊙O的位置关系为:相交;∴直线L与⊙O的位置关系为:相交或相切.故选:D.9.解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.10.解:如图,连结EO并延长交AD于F,连接AO,∵⊙O与BC边相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,∴BC∥AD,∴OF⊥AD,∴AF=DF=AD=6,∵∠B=∠DAB=90°,OE⊥BC,∴四边形ABEF为矩形,∴EF=AB=8,设⊙O的半径为r,则OA=r,OF=8﹣r,在Rt△AOF中,∵OF2+AF2=OA2,∴(8﹣r)2+62=r2,解得r=,故选:D.二.填空题(共6小题)11.解:四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为:60°.12.解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.解:连接AC .∵四边形ABCD 是菱形,∴∠B =∠D =60°,AB =AD =DC =BC =1, ∴∠BCD =∠DAB =120°,∴∠1=∠2=60°,∴△ABC 、△ADC 都是等边三角形, ∴AC =AD =1,∵AB =1,∴△ADC 的高为,AC =1,∵扇形BEF 的半径为1,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AF 、DC 相交于HG ,设BC 、AE 相交于点G , 在△ADH 和△ACG 中,,∴△ADH ≌△ACG (ASA ),∴四边形AGCH 的面积等于△ADC 的面积,∴图中阴影部分的面积是:S 扇形AEF ﹣S △ACD =﹣×1×=﹣.故答案为﹣. 14.解:∵AB 是直径,∴∠ACB =90°,∵∠A =∠CDB =30°,∴BC =AB =1,故答案为1.15.解:如图,连接AE,OE.设BF=x.∵AC是直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∵OA=OE,∴∠OAE=∠OEA,∴∠EAB=∠AEO,∴OE∥AB,∴=,∴AF=6,CD=4,BF=x,∴AC=AB=x+6,∴OE=OA=OD=,∴=,整理得:x2+10x﹣24=0,解得x=2或﹣12(舍弃),经检验x=2是分式方程的解,∴BF=2.故答案为2.16.解:如图,∵AB是直径,∴∠C=90°.又∵BC=6cm,AC=8cm,∴根据勾股定理得到AB==10cm.则AP=(10﹣2t)cm,AQ=t.∵当点P到达点A时,点Q也随之停止运动,∴0<t≤2.5.①如图1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ABC.故=,即=,解得t=.②如图2,当PQ⊥AB时,△APQ∽△ACB,则=,即=,解得t=.综上所述,当t=s或t=时,△APQ为直角三角形.故答案是: s或s.三.解答题(共7小题)17.(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)解:∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∴BC•AC=40,∵BC2+AC2=100,∴BC+AC=6,AC﹣BC=2或BC﹣AC=2,∴BC=2或4.18.解:∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴=,∴AD=BD,∵直角△ABD中,AD=BD,则AD=BD=AB=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC===6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).19.(1)证明:连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=∠BAC=×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长==π;(3)解:当∠F的度数是36°时,BF与⊙O相切.理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.20.(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD.∴∠A=∠BCD;(2)连接OC∵直径AB⊥弦CD,CD=6,∴CE=ED=3.∵直径AB=10,∴CO=OB=5.在Rt△COE中,∵OC=5,CE=3,∴OE==4,∴BE=OB﹣OE=5﹣4=1.21.解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.解:(1)如图,作OE⊥AC于E,连接OM,ON.∵⊙O与AB相切于点M,与CD相切于点N,∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,∴OM=OE,∴AC是⊙O的切线,∵ON=OE,ON⊥CD,OE⊥AC,∴OC平分∠ACD,∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠AOC=180°﹣(∠DAC+∠ACD)=180°﹣45°=135°.(2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,∵AB=AC,∴BD=3﹣x,在Rt△BDC中,∵BC2=BD2+CD2,∴20=(3﹣x)2+(3+x)2,∴x=1或﹣1(舍弃)∴DM=1.23.(1)证明:∵OB=OF,∴∠1=∠3,∵点F是的中点,∴∠1=∠2.∴∠2=∠3,∴BD∥OE;(2)解:连接OD,如图,∵直线CD是⊙O的切线,∴OD⊥CD,在Rt△OCD中,∵tan C==,∴设OD=3k,CD=4k.∴OC=5k,BO=3k,∴BC=2k.∵BD∥OE,∴.即.∴DE=6k,在Rt△ODE中,∵OE2=OD2+DE2,∴(3)2=(3k)2+(6k)2,解得k=∴OB=3,即⊙O的半径的长.。

人教版九年级上册数学 第二十四章 圆 单元测试卷(含答案解析)

人教版九年级上册数学 第二十四章 圆 单元测试卷(含答案解析)

人教版九年级上册数学 第二十四章 圆 单元测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列说法中错误的是( )A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆 2.若点(,0)B a 在以点(1,0)A 为圆心,2为半径的圆内,则a 的取值范围为( )A.1a <-B.3a >C.13a -<<D.1a ≥-且0a ≠3.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1ED =寸),锯道长尺(1AB =尺10=寸),问:这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC 的长为( )A.13寸B.20寸C.26寸D.28寸4.如图,O 的直径AB 与弦CD 的延长线交于点E ,若DE OB =,84AOC ∠=︒,则E ∠等于( )A.42°B.28°C.21°D.20°5.如图,AB 是半圆O 的直径,点C 在半圆上(不与A ,B 重合),DE AB ⊥于点D ,交BC 于点F ,下列条件中能判定CE 是半圆O 的切线的是( )A.E CFE∠=∠∠=∠ B.E ECFC.ECF EFC∠=︒∠=∠ D.60ECF6.如图,在O中,OC AB⊥,32∠=︒,则OBA∠的度数是( )ADCA.64°B.58°C.32°D.26°7.如图,PA,PB分别与O相切于点A,B,70∠的度数P∠=︒,C为O上一点,则ACB为( )A.110°B.120°C.125°D.130°8.如图,在O中,AB是直径,CD是弦,AB CD⊥,下列结论错误的是( )A.AC OD== B.BC BDC.AOD CBD∠=∠∠=∠ D.ABC ODB9.如图,ABC内接于O,将BC沿BC翻折,BC交AC于点D,连接BD.若∠的度数是( )∠=︒,则ABDBAC66A.66°B.44°C.46°D.48° 10.如图,抛物线2144y x =-与x 轴交于A ,B 两点,P 是以点(0,3)C 为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连接OQ ,则线段OQ 的最大值是( )A.3B.412C.72D.4二、填空题(每小题4分,共20分)11.如图所示,点,,A B C 在同一直线上,点M 在直线AC 外,经过图中的三个点作圆,可以作__________个.12.如图,已知AB ,CD 是O 的两条直径,且50AOC ∠=︒.过点A 作//AE CD 交O 于点E ,则AOE ∠的度数为___________.13.如图,在O 的内接四边形ABCD 中,142BCD ∠=︒,则BOD ∠=___________.。

人教版九年级数学上册 《第24章圆》单元测试含答案解析

人教版九年级数学上册 《第24章圆》单元测试含答案解析

《第24章圆》一、填空题1.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40° B.80° C.160°D.120°2.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm3.已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定4.如图:点A、B、C、D为⊙O上的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.5.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切6.如图,⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,若⊙O的半径为2,则CD的长为()A.2 B.4 C.2 D.47.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.758.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π二、选择题9.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.10.如图,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,则⊙A的半径长为cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=x,BE=y,用含x,y 的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式.12.如图,∠AOB=30°,OM=6,那么以M为圆心,4为半径的圆与直OA的位置关系是.13.如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC= cm.14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是.三、解答题(7+7+8+8)15.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).16.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 寸,CD= 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.17.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.18.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE ⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.《第24章圆》(北京市西城区重点中学)参考答案与试题解析一、填空题1.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40° B.80° C.160°D.120°【考点】三角形的外接圆与外心.【分析】根据圆周角定理得∠BOC=2∠A=160°.【解答】解:∵点O为△ABC的外心,∠A=80°,∴∠BOC=2∠A=160°.故选C.【点评】熟练运用圆周角定理计算,即在同圆或等圆中同弧所对的圆周角等于它所对的圆心角的一半.2.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm【考点】垂径定理;勾股定理.【专题】计算题.【分析】过P作AB⊥OP交圆与A、B两点,连接OA,故AB为最短弦长,再解Rt△OPA,即可求得AB的长度,即过点P的最短弦的长度.【解答】解:过P作AB⊥OP交圆与A、B两点,连接OA,如下图所示:故AB为最短弦长,由垂径定理可得:AP=PB已知OA=3,OP=2在Rt△OPA中,由勾股定理可得:AP2=OA2﹣OP2∴AP==cm∴AB=2AP=2cm故此题选D.【点评】本题考查了最短弦长的判定以及垂径定理的运用.3.已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定【考点】点与圆的位置关系.【分析】根据题意可知点P可能在圆外也可能在圆上,也可能在圆内,所以无法确定.【解答】解:∵PA=,⊙O的直径为2∴点P的位置有三种情况:①在圆外,②在圆上,③在圆内.故选D.【点评】本题考查了圆的认识,做题时注意多种情况的考虑.4.如图:点A、B、C、D为⊙O上的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意,分P在OC、CD、DO之间3个阶段,分别分析变化的趋势,又由点P作匀速运动,故①③都是线段,分析选项可得答案.【解答】解:根据题意,分3个阶段;①P在OC之间,∠APB逐渐减小,到C点时,为45°,②P在CD之间,∠APB保持45°,大小不变,③P在DO之间,∠APB逐渐增大,到O点时,为90°;又由点P作匀速运动,故①③都是线段;分析可得:B符合3个阶段的描述;故选:B.【点评】本题主要考查了函数图象与几何变换,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.5.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【考点】直线与圆的位置关系;坐标与图形性质.【分析】本题应将该点的横纵坐标分别与半径对比,大于半径的相离,等于半径的相切.【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选A.【点评】直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.6.如图,⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,若⊙O的半径为2,则CD的长为()A.2 B.4 C.2 D.4【考点】切线的性质.【专题】压轴题.【分析】连接OC,BC,AB是直径,CD是切线,先求得∠OCD=90°再求∠COB=2∠A=60°,利用三角函数即可求得CD的值.【解答】解:连接OC,BC,AB是直径,则∠ACB=90°,∵CD是切线,∴∠OCD=90°,∵∠A=30°,∴∠COB=2∠A=60°,CD=OC•tan∠COD=2.故选A.【点评】本题利用了切线的性质,直径对的圆周角是直角求解.7.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.75【考点】三角形的外接圆与外心;等边三角形的性质;正方形的性质.【分析】根据等边三角形和正方形的性质,求得中心角∠POR和∠POD,二者的差就是所求.【解答】解:连结OD,如图,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POR=×360°=120°,∵四边形ABCD是⊙O的内接正方形,∴∠AOD=90°,∴∠DOP=×90°=45°,∴∠AOQ=∠POR﹣∠DOP=75°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.8.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π【考点】扇形面积的计算;多边形内角与外角.【专题】压轴题.【分析】圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积2公式计算即可.【解答】解:图中五个扇形(阴影部分)的面积是=1.5π故选B.【点评】解决本题的关键是把阴影部分当成一个扇形的面积来求,圆心角为五边形的内角和.二、选择题9.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为(2,0).【考点】确定圆的条件;坐标与图形性质.【专题】网格型.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0)【点评】能够根据垂径定理的推论得到圆心的位置.10.如图,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,则⊙A的半径长为cm.【考点】切线的性质.【专题】压轴题.【分析】连接AD,则有AD是△ABC的斜边上的高,可判定△ABC是等腰直角三角形,所以BC=AB=2,利用点D是斜边的中点,可求AD=BC=cm.【解答】解:连接AD;∵∠A=90°,AB=AC=2cm,∴△ABC是等腰直角三角形,∴BC=AB=2;∵点D是斜边的中点,∴AD=BC=cm.【点评】本题利用了切线的性质,等腰直角三角形的判定和性质求解.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=x,BE=y,用含x,y 的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式.【考点】垂径定理的应用.【专题】数形结合.【分析】此题中隐含的不等关系:直径是圆中最长的弦,所以AB≥CD.首先可以表示出AB=x+y,再根据相交弦定理的推论和垂径定理,得CD=2CE=2.【解答】解:∵直径AB⊥弦CD于点E,∴CE=DE,根据相交弦定理的推论,得CE2=AE•BE,则CE=,∴CD=2CE=2.又∵AB=x+y,且AB≥CD,∴x+y≥2.【点评】本题考查:直径是圆中最长的弦;相交弦定理的推论以及垂径定理的综合应用.12.如图,∠AOB=30°,OM=6,那么以M为圆心,4为半径的圆与直OA的位置关系是相交.【考点】直线与圆的位置关系.【分析】利用直线l和⊙O相切⇔d=r,进而判断得出即可.【解答】解:过点M作MD⊥AO于点D,∵∠AOB=30°,OM=6,∴MD=3,∴MD<r∴以点m为圆心,半径为34的圆与OA的位置关系是:相交.故答案为:相交.【点评】此题主要考查了直线与圆的位置,正确掌握直线与圆相切时d与r的关系是解题关键.13.如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC= 8cm.【考点】圆周角定理.【专题】压轴题.【分析】结合等腰三角形的性质、圆周角定理、三角形的内角和定理求得三角形AOC是等腰直角三角形,再根据勾股定理即可求解.【解答】解:连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵∠B=∠OAC=∠AOC,∴∠AOC=90°.∴AC=OA=8cm.【点评】此题综合运用了等腰三角形的性质、圆周角定理、三角形的内角和定理以及勾股定理.14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是垂径定理.【考点】垂径定理的应用;作图—复杂作图.【分析】利用垂径定理得出任意两弦的垂直平分线交点即可.【解答】解:根据小亮作图的过程得到:小亮的作图依据是垂径定理.故答案是:垂径定理.【点评】此题主要考查了复杂作图以及垂径定理,熟练利用垂径定理的性质是解题关键.三、解答题(7+7+8+8)15.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).【考点】等边三角形的判定;圆周角定理.【专题】证明题.【分析】(1)连接OD,根据切线的性质得到OD⊥DE,从而得到平行线,得到∠ODB=∠A,∠ODB=∠B,则∠A=∠B,得到AC=BC,从而证明该三角形是等边三角形;(2)再根据在圆内直径所对的角是直角这一性质,推出30°的直角三角形,根据30°所对的直角边是斜边的一半即可证明.【解答】证明:(1)连接OD,得OD∥AC;∴∠BDO=∠A;又OB=OD,∴∠OBD=∠ODB;∴∠OBD=∠A;∴BC=AC;又∵AB=AC,∴△ABC是等边三角形;(2)如上图,连接CD,则CD⊥AB;∴D是AB中点;∵AE=AD=AB,∴EC=3AE;∴AE=CE.【点评】本题中作好辅助线是解题的关键,连接过切点的半径是圆中常见的辅助线作法之一.另外还要掌握等边三角形的判定和性质以及30°的直角三角形的性质.16.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 1 寸,CD= 10 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.【考点】垂径定理的应用;勾股定理.【分析】根据题意容易得出AB和CD的长;连接OB,设半径CO=OB=x寸,先根据垂径定理求出CA 的长,再根据勾股定理求出x的值,即可得出直径.【解答】解:根据题意得:AB=1寸,CD=10寸;故答案为:1,10;(2)连接CO,如图所示:∵BO⊥CD,∴.设CO=OB=x寸,则AO=(x﹣1)寸,在Rt△CAO中,∠CAO=90°,∴AO2+CA2=CO2.∴(x﹣1)2+52=x2.解得:x=13,∴⊙O的直径为26寸.【点评】本题考查了勾股定理在实际生活中的应用;根据题意作出辅助线,构造出直角三角形,运用勾股定理得出方程是解答此题的关键.17.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.【考点】圆心角、弧、弦的关系.【专题】几何综合题.【分析】(1)根据垂径定理知,弧CD=2弧BC,由圆周角定理知,弧BC的度数等于∠BOC的度数,弧AD的度数等于∠CPD的2倍,可得:∠CPD=∠COB;(2)根据圆内接四边形的对角互补知,∠CP′D=180°﹣∠CPD,而:∠CPD=∠COB,∴∠CP′D+∠COB=180°.【解答】(1)证明:连接OD,∵AB是直径,AB⊥CD,∴.∴∠COB=∠DOB=∠COD.又∵∠CPD=∠COD,∴∠CPD=∠COB.(2)解:∠CP′D+∠COB=180°.理由如下:连接OD,∵∠CPD+∠CP′D=180°,∠COB=∠DOB=∠COD,又∵∠CPD=∠COD,∴∠COB=∠CPD,∴∠CP′D+∠COB=180°.【点评】本题利用了垂径定理和圆周角定理及圆内接四边形的性质求解.18.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE ⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.【考点】切线的判定;等边三角形的性质.【分析】(1)连接OD,根据等边三角形的性质求出∠ODE=90°,根据切线的判定定理证明即可;(2)连接AD,BF,根据等边三角形的性质求出DC、CF,根据直角三角形的性质求出EC,结合图形计算即可.【解答】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴,.∵∠EDC=30°,∴.∴FE=FC﹣EC=1.人教版九年级数学【点评】本题考查的是切线的判定、等边三角形的性质以及直角三角形的性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章圆单元测试一、单选题(共10题;共30分)1、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A、40°B、30°C、45°D、50°2、下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。

其中不正确的有()个。

A、1B、2C、3D、43、如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A、80°B、100°C、60°D、40°4、已知Rt△ACB,∠ACB=90°,I为内心,CI交AB于D,BD=,AD=,则S△ACB=()A、12B、6C、3D、7.55、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A 、B 、C、D 、6、如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F,∠E=α,∠F=β,则∠A=()A、α+βB 、C、180﹣α﹣βD 、7、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A、2B、2+C、2D、2+8、如图,已知AB是⊙O的直径,∠CAB=50°,则∠D的度数为()A、20°B、40°C、50°D、70°9、已知A、B、C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为()A、15°或105°B、75°或15°C、75°D、105°10、如图,在⊙O中,∠ABC=52°,则∠AOC等于()A、52°B、80°C、90°D、104°二、填空题(共8题;共25分)11、如图,⊙O 是ABC 的外接圆,OCB=40°,则A的度数等于________°.12、如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长________ .13、如图,若∠1=∠2,那么与 ________相等.(填一定、一定不、不一定)14、如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为________.15、已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是________ cm,面积是________ cm2.16、如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________.17、若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是________.18、已知一圆锥的底面半径为1cm,母线长为4cm,则它的侧面积为________cm2(结果保留π).三、解答题(共5题;共35分)19、已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.20、【阅读材料】已知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r,连接OA,OB,OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB =BC•r+AC•r+AB•r=ar+br+cr=(a+b+c)r.∴r= .(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC各边分别相切于D、E和F,已知AD=3,BD=2,求r的值.21、如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?22、如图,已知矩形ABCD的边AB=3cm、BC=4cm,以点A为圆心,4cm为半径作⊙A,则点B、C、D与⊙A怎样的位置关系.23、已知圆的半径为R,试求圆内接正三角形、正四边形、正六边形的边长之比.四、综合题(共1题;共10分)24、(2017•襄阳)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD 的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.答案解析一、单选题1、【答案】 A【考点】圆周角定理【解析】【分析】根据等边对等角及圆周角定理求角即可.【解答】∵OA=OB∴∠OAB=∠OBA=50°∴∠AOB=80°∴∠ACB=40°.故选A.【点评】此题综合运用了等边对等角、三角形的内角和定理以及圆周角定理2、【答案】 D【考点】垂径定理,确定圆的条件,三角形的内切圆与内心【解析】【解答】①中被平分的弦是直径时,不一定垂直,故错误;②不在同一条直线上的三个点才能确定一个圆,故错误;③应强调在同圆或等圆中,否则错误;④中垂直于半径,还必须经过半径的外端的直线才是圆的切线,故错误;⑤三角形的内心是三角形三个角平分线的交点,所以到三条边的距离相等,故正确;综上所述,①、②、③、④错误。

【分析】举出反例图形,即可判断①②③④;根据角平分线性质即可推出⑤.3、【答案】 A【考点】圆周角定理,圆内接四边形的性质【解析】【解答】∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣140°=40°.∴∠AOC=2∠ABC=80°.故选A.【分析】根据圆内接四边形的性质求得∠ABC=40°,利用圆周角定理,得∠AOC=2∠B=80°.4、【答案】B【考点】三角形的内切圆与内心【解析】【解答】解:∵I为内心,∴CD平分∠ACB,∴,设AC=4x,BC=3x,∴AB==5x,∴5x=+,解得x=1,∴AC=4,BC=3,∴S△ACB =×4×3=6.故选B.【分析】根据内心的性质得CD平分∠ACB ,则根据角平分线定理得到,于是可设AC=4x,BC=3x,再利用勾股定理得到AB=5x,则有5x=+,解得x=1,所以AC=4,BC=3,然后根据三角形面积公式求解.5、【答案】A【考点】垂径定理【解析】【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=,过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵S△ABC =AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.故选A.【分析】先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD的中点,由三角形的面积可求出CM的长,在Rt△ACM中,根据勾股定理可求出AM的长,进而可得出结论.6、【答案】D【考点】圆内接四边形的性质【解析】【解答】连结EF,如图,∵四边形ABCD为圆的内接四边形,∴∠ECD=∠A,∵∠ECD=∠1+∠2,∴∠A=∠1+∠2,∵∠A+∠1+∠2+∠E+∠F=180°,∴2∠A+α+β=180°,∴∠A=.故选D.【分析】连结EF,如图,根据圆内接四边形的性质得∠ECD=∠A,再根据三角形外角性质得∠ECD=∠1+∠2,则∠A=∠1+∠2,然后根据三角形内角和定理有∠A+∠1+∠2+∠E+∠F=180°,即2∠A+α+β=180°,再解方程即可.7、【答案】 B【考点】圆的认识,直线与圆的位置关系【解析】【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵PE⊥AB,AB=2 ,半径为2,∴AE= AB= ,PA=2,根据勾股定理得:PE= =1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD= .∵⊙P的圆心是(2,a),∴a=PD+DC=2+ .故选:B .【分析】过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.分别求出PD、DC,相加即可.8、【答案】B【考点】圆周角定理【解析】【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=50°,∴∠CBA=40°,∴∠D=40°,故选B.【分析】首先利用直径所对的圆周角是直角得到直角三角形,然后求得另一锐角的度数,从而求得所求的角的度数.9、【答案】B【考点】圆周角定理【解析】【解答】解:①如图1所示:∵AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,∴∠AOB=120°,∠AOC=90°,∴∠BCO=360°﹣120°﹣90°=150°,∴∠BAC= ∠BOC=75°;②如图2所示,同①得出∠BAC=15°,故选:B.【分析】先求出∠BOC的度数,然后根据圆周角定理求解,注意分类讨论.10、【答案】D【考点】圆周角定理【解析】【解答】解:∵∠ABC=52°,∴∠AOC=2×52°=104°,故选:D.【分析】根据圆周角定理可得∠AOC=2∠ABC,进而可得答案.二、填空题11、【答案】 50°【考点】圆周角定理【解析】【解答】在△OCB中,OB=OC(⊙O的半径),∴∠OBC=∠0CB(等边对等角);∵∠OCB=40°,∠C0B=180°-∠OBC-∠0CB,∴∠COB=100°;又∵∠A=∠C0B(同弧所对的圆周角是所对的圆心角的一半),∴∠A=50°【分析】在等腰三角形OCB中,求得两个底角∠OBC、∠0CB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.12、【答案】【考点】垂径定理,切线的性质【解析】【解答】如图,过O作弦BC的垂线OP,垂足为D,分别与弧的交点为A、G,过切点F作PF⊥半径OC交OP于P 点,∵OP⊥BC,∴BD=DC,即OP为BC的中垂线. ∴OP必过弧BGC所在圆的圆心.又∵OE为弧BGC所在圆的切线,PF⊥OE,∴PF必过弧BGC所在圆的圆心.∴点P为弧BGC所在圆的圆心.∵弧BAC沿BC折叠得到弧BGC,∴⊙P为半径等于⊙O的半径,即PF=PG=OE=2,并且AD=GD.∴OG=AP.而F点分⊙O的直径为3:1两部分,∴OF=1.在Rt△OPF中,设OG=x,则OP=x+2,∴OP2=OF2+PF2,即(x+2)2=12+22,解得x=.∴AG=2-()=.∴DG=.∴OD=OG+DG=.在Rt△OBD中,BD2=OB2+OD2,即BD2=22-()2,∴BD=.∴BC=2BD=.【分析】运用垂径定理和切线的性质作答。

相关文档
最新文档