3.4实际问题与一元一次方程(销售问题教案)

合集下载

3.4实际问题与一元一次方程销售问题(教案)

3.4实际问题与一元一次方程销售问题(教案)
3.重点难点解析:在讲授过程中,我会特别强调建立方程模型和求解方程这两个重点。对于难点部分,如含有绝对值和百分比的问题,我会通过具体例题和逐步引导来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与销售问题相关的实际问题,如折扣、促销等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过计算实际商品的价格,来演示如何应用一元一次方程。
2.学会运用一元一次方程解决销售问题,提高解决实际问题的能力。
-利用一元一次方程解决售价、进价、利润等问题。
-举例:某商品进价60元,售价80元,问销售商每卖出一件商品能获得多少利润?
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,提高数学应用意识。
-能够从销售问题中抽象出一元一次方程模型,理解数学与生活的紧密联系。
我也发现,在小组讨论环节,学生们能够相互启发,共同解决问题。他们通过合作,不仅加深了对一元一次方程的理解,还提高了团队协作能力。不过,我也观察到个别学生在讨论中不够积极,我需要在以后的课堂中更加关注这部分学生,鼓励他们大胆发表自己的观点。
在实践活动环节,学生对实验操作表现出很高的热情,但我也发现他们在计算过程中还存在一些细节上的错误。这提醒我,在今后的教学中,除了教授理论知识,还应加强对学生数学运算能力的培养,特别是对于百分比、小数点后的处理等基础运算。
1.理论介绍:首先,我们要了解一元一次方程在销售问题中的基本概念。一元一次方程是表示两个数量之间线性关系的数学表达式,它在解决销售问题中起着关键作用。它是我们分析销售情况、计算利润和定价的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设某商品原价为x元,打8折后的售价为0.8x元,我们将通过建立一元一次方程来求解折后价格。

3.4 实际问题与一元一次方程优秀教案

3.4 实际问题与一元一次方程优秀教案

x8答;要8天可以铺好这条管线.三、课堂小结:1. 用一元一次方程解决实际问题的基本过程有几个步骤?1.审(找)、2.设、3.列、4.解、5.答2.本节课主要学习了配套问题和工程问题。

四、作业教科书第106页习题3.4第2、3、4、5题板书设计3.4实际问题与一元一次方程第一课时配套、工程问题例1 例23.4实际问题与一元一次方程第二课时销售中的盈亏教学目标:1.理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念.2.能利用一元一次方程解决商品销售中的一些实际问题.3.进一步培养建模能力,以及分析问题、解决问题的能力.教学重点:运用方程解决实际问题教学难点:如何把实际问题转化为数学问题,列方程解决实际问题教学过程:复习:销售中的盈亏问题1.填空:探究1:某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%, 另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?学生行动:利用上面有关商品盈亏的数量关系,先估算,再小组讨论用方程思想求解验证估算.师生合作探究:卖这两件衣服总的是盈利还是亏损,取决于这两件衣服售价多少, 进价多少,若售价大于进价,就盈利,反之就亏损.现已知这两件衣服总售价为 60×2=120(元),现在要求出这两件衣服的进价.假设一件商品地进价是40元,如果卖出后盈利25%,那么商品的利润是.如果卖出后亏损25%,商品的利润是.本题中,设盈利25%的那件衣服的进价是元,它的商品利润就是.x 根据进价与利润的和等于售价,列出方程:.60=25.0+x x 由此得.48=x 类似地,可以设另一件衣服的进价为元,它的利润是元,列出方程y y 25.0-.6025.0=-y y 由此得.80=y 两件衣服的进价是元,而两件衣服的售价是60+60=120元,进价大于售价,128=+y x 由此可知卖这两件衣服总共亏损8元.教师总结:解:设盈利25%的那件衣服的进价是元, 另一件的进价为元,依题意,得x y 60=25.0+x x 解得48=x3.4实际问题与一元二次方程第三课时球赛积分表问题教学目标:1.了解以表格形式传递信息的问题,能利用一元一次方程解决球赛积分等实际问题.2.通过探索球赛积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.3.鼓励学生自主探究,合作交流,养成自觉反思的良好习惯.教学重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断教学难点:从图表信息中找出有用的数量关系,把实际问题转化为数学问题.教法:互动探究法学法:小组合作讨论法、练习法教学过程一、情境引入问题1:某篮球队在联赛中已经进行10场比赛,总比分是14分,该队共胜8场,负一场,已知胜一场得2分,那么你知道该联赛负一场得几分吗?学生活动:小组讨论回答.教师总结:可设负一场得分,根据胜、负的积分和等于总积分,得x .14228=+⨯x 解方程得.1-=x 问题2:教师师总结:每两个队赛一场,共赛11场,题目中的相等关系是:胜场数=负场数+2,胜场得分+负场得分=18分,胜场数+平场数+负场数=11场解:设该队胜了场,则负了场,平了场,根据题意,得x ()2-x ()[]211---x x .()[]182113=---+x x x 解得.5=x 答:该队胜了5场.三、巩固拓展1.姚明在NBA2008赛季常规赛的一场比赛中29投18中,拿下28分,其中9个罚球全中,(罚球投中一个得一分),请问姚明三分球投中几个?两分球投中几个?学生活动:独立完成教师总结:解:设姚明三分球投中个,两分球x 投中个,依题意,得()x --918()28991823=+--+x x 解得,1=x 8918=--x 答:姚明三分球投中1个,两分球投中8个.2.足球比赛计分规则是胜一场得3分,平一场得1分,负一场得0分,一个队打了14场负5场共得19分,则求这个队胜多少场?平多少场?学生活动:小组合作探究教师总结:解:设这个队胜场,则平场,依题意,得x ()x --514()195143=--+x x 解得5=x 4514=--x 答:这个队胜5场,则平4场.四、课堂总结1.本节课主要学习了球赛积分表问题,其中的基本相等关系是总分等于胜、负、平场数乘以它们的单场积分的和.2. 用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.五、作业教科书第106页习题练习第3题板书设计例1 例2。

3.4实际问题与一元一次方程(第1课时)-教学设计

3.4实际问题与一元一次方程(第1课时)-教学设计

归纳提升, 加强学习 让学生尝试归纳,总结,发言, 反思, 帮助学生养成 体会,反思,教师点评汇总。 系统整理知识的习 惯。
五、作业设计 作业:复习巩固作业和综合运用 1、2 题为全体学生必做;拓 广探索选做。 补充:某商品的进价是 1000 元,售价是 1500 元,由于销售 情况不好,商店决定降价出售,但又要保证利润率不低于 5%, 那么商店最多可打几折出售此商品? 巩固深化提高。
亏,再通过准确的计算检验你的判断。 (1)商品销售中的盈亏如何计算? (2)两件衣服的进价、售价分别是多少?你能求出问题中的 两件物品的进价吗? 解:设盈利 25%的那件衣服的进价是 x 元,它的商品利润就 是 0.25x.根据进价与利润的和等于售价,可以得到方程 x+0.25x=60. 由此得: x=48. 类似地,设另一件衣服的进价为 y 元,它的商品利润是-25% y,可以得到方程 Y-0.25y=60. 解得: y=80 元. (3)你能分析总的亏损情况吗? 分析:两件衣服的进价是 x+y=128 元,而两件衣服的售价是 120 元,进价大于售价,由此可以知道卖这两件衣服总的盈亏 是亏损 8 元。 教师提出问题,通过共同的探 究,想象、讨论、计算、推理, 逐步解开商品销售问题,理解 商品销售问题的解决方法。 通过让学生猜想, 激 发学生的积极性, 将 实际问题转化为数 学问题。逐步放手, 让学生自己解决, 验 证自己的猜想是否 正确, 培养学生用数 学的意识, 体会到数 学的使用价值。
理解问题本身是解 决问题的基础, 先出 示打折销售中的基 本概念, 结合实际给 学生讲解, 引导学生 找出数量关系, (一)自主探究 问题 1.某商品原来每件零售价是 a 元,现在每件降价 10% , 降价后每件零售价是 元 ; 问题 2:某种品牌的彩电降价 10%以后,每台售价为 a 元, 则该品牌彩电每台原价应为 元; 问题 3:某商品按定价的八折出售,售价是 14.8 元,则原定 价是 元 问题 4:某商场把进价为 1980 元的商品按标价的八折出售, 仍获利 10%,则该商品的标价为 元 问题 5:我国政府为解决老百姓看病问题,决定下调药品的价 格,某种药品在:2008 年涨价 30%后,2010 降价 70%至 a 元, 则这种药品在 2008 年涨价前价格为 元 (二)共同探究 例: (教科书探究 1)某商店在某一时间内以每件 60 元的价格 卖出两件衣服,其中一件盈利 25%,另一件亏损 25%,卖这 两件衣服总的是盈利还是亏损, 或是不亏不损?先大体估算盈 教师提出问题,学生通过研读 通过对商品销售过 教材,自主探究商品销售问 程所涉及的基本量、 题,经历讨论、计算、推理, 基本关系式的初步 加深对商品销售问题的理解。 了解, 为后续的学习 作好铺垫。

3.4实际问题与一元一次方程销售、球赛积分问题(教案)

3.4实际问题与一元一次方程销售、球赛积分问题(教案)
五、教学反思
在本次教学活动中,我尝试将实际问题与一元一次方程紧密结合,让学生在实践中感受数学的魅力。从教学过程来看,有几个方面值得我反思和总结。
首先,我发现学生们在从实际问题中抽象出一元一次方程的过程中存在一定难度。他们往往难以把握问题的关键信息,从而建立错误的方程。针对这个问题,我意识到在教学中需要更加注重引导学生如何从复杂情境中提炼出关键信息,这是提高他们解决问题能力的重要一环。
3.重点难点解析:在讲授过程中,我会特别强调如程。对于难点部分,我会通过实际案例和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与销售、球赛积分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如模拟购物场景,计算打折后的价格,或设定球赛积分规则,计算球队总积分。
1.培养学生的逻辑推理能力:通过实际问题与一元一次方程的结合,让学生掌握从具体情境中抽象出数学问题的方法,运用逻辑推理能力分析问题,建立方程模型。
2.提升学生的数学建模素养:使学生能够将现实生活中的问题转化为数学方程,培养他们在实际问题中发现数学关系,建立数学模型的能力。
3.增强学生的数学运算与数据分析能力:在解决销售、球赛积分等问题时,培养学生熟练运用一元一次方程进行数学运算,对结果进行分析和解释的能力。
-销售问题:假设一件商品原价为x元,打8折后的售价为0.8x元。教学重点是使学生理解打折实际上是乘以一个小于1的数,并能够建立0.8x =售价的方程。
-球赛积分问题:如果一支球队赢一场得3分,平一场得1分,输一场不得分。教学重点是让学生能够根据比赛结果m(赢的场数)和n(比赛总场数)建立方程,如3m + 1*(n-m) =总积分。

人教版数学七年级上册3.4实际问题与一元一次方程—打折销售问题教学设计

人教版数学七年级上册3.4实际问题与一元一次方程—打折销售问题教学设计
4.通过对打折销售问题的研究,使学生认识到公平、诚信的重要性,培养正确的消费观念。
二、学情分析
七年级学生在学习了一元一次方程的基本概念和解法后,已具备了一定的方程求解能力。但在解决实际问题,特别是与生活密切相关的打折销售问题时,可能仍存在以下问题:一是难以从实际问题中抽象出数学模型,二是不知道如何运用方程来求解问题。针对这些情况,教学中应注重引导学生从生活实例中提炼数学问题,帮助他们建立实际问题与一元一次方程之间的联系。此外,学生在这个阶段好奇心强,喜欢探索新知识,因此,通过设置富有挑战性的问题和情境,可以激发学生的学习兴趣和积极性。同时,注重培养学生的团队合作意识和解决问题的能力,帮助他们形成正确的数学思维方式,为今后的学习打下坚实基础。
c.解一元一次方程的方法有哪些?
2.教师巡回指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导他们深入思考。
3.分享成果:请各小组代作意识。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成。练习题包括:
a.基础题:直接给出原价和折扣,求解现价。
3.提交作业时,请附上解题思路和心得体会。
人教版数学七年级上册3.4实际问题与一元一次方程—打折销售问题教学设计
一、教学目标
(一)知识与技能
1.理解并掌握一元一次方程在解决实际问题中的应用,特别是针对“打折销售问题”的建模与求解。
2.学会运用等量关系列出与“打折销售问题”相关的一元一次方程,并能够通过方程求解得到实际问题的答案。
3.能够运用所学的方程知识,解决生活中类似的打折销售问题,培养将数学知识应用于实际情境的能力。
6.情感态度与价值观的培养:在教学过程中,教师应关注学生的情感态度与价值观的培养,强调数学在生活中的应用,引导学生形成正确的消费观念。

人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)教学设计

人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)教学设计

人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)教学设计一. 教材分析人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)这一节主要讲述了一元一次方程在实际销售问题中的应用。

通过本节课的学习,学生能够理解盈亏问题的实质,掌握用一元一次方程解决实际问题的方法,培养学生的数学应用能力。

二. 学情分析七年级的学生已经掌握了二元一次方程的知识,对于一元一次方程也有了一定的了解。

但是,将一元一次方程应用于实际问题的解决中,对于他们来说还是一个新的领域。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题能力。

三. 教学目标1.理解盈亏问题的实质,能够找出关键的等量关系。

2.掌握一元一次方程在解决实际问题中的应用方法。

3.培养学生的数学应用能力和解决实际问题的能力。

四. 教学重难点1.重点:理解盈亏问题的实质,掌握解决盈亏问题的方法。

2.难点:如何引导学生将实际问题转化为数学模型,并用一元一次方程进行求解。

五. 教学方法1.情境教学法:通过创设生动的实际问题情境,激发学生的学习兴趣,引导学生主动参与学习。

2.案例分析法:通过分析具体的盈亏问题案例,让学生理解并掌握解决盈亏问题的方法。

3.小组合作学习法:引导学生分组讨论,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的盈亏问题案例,用于课堂分析和讨论。

2.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的销售盈亏问题,如商品打折、农产品销售等,引导学生关注盈亏问题,激发学生的学习兴趣。

2.呈现(10分钟)呈现一个具体的盈亏问题案例,如某商品原价为100元,打八折后售价为80元,问商家是否盈利?引导学生分析问题,找出关键的等量关系。

3.操练(10分钟)让学生分组讨论,尝试用一元一次方程来解决这个盈亏问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)选取几组不同的盈亏问题,让学生独立解决,巩固所学知识。

数学优质教案实际问题与一元一次方程优质教案

数学优质教案实际问题与一元一次方程优质教案
学习好资料
欢迎下载
3.4 实际问题与一元一次方程
——销售中的盈亏问题
课题 教材 分析
学情 分析
教学 目标
3.4 实际问题与一元一次方程 ——销售中的盈亏问题
课型
新授课
本节内容的重点是渗透数学建模思想,培养运用一元一次方程分析和解决实际问
题的能力。由于本节问题的背景和表达都比较贴近实际,数量关系比较隐蔽,所
有一部分学生喜欢数学,有展示自己的欲望.本设计针对学生的学习心态,抓住
难点作为突破口,通过教师的组织、引导和学生的自主探索、合作交流,揭示各
种数量关系和内在的客观规律,使他们能以愉快的心情,树立信心、循序渐进、
层层深入,逐步解决问题。使探究过程活跃起来,在这样的氛围中可以更好的激
发学生积极思维,得到更大收获。
=利润率×成本 后面解决探
么利润为 元,其利润 的 ? 利 润 与 利 润 率 3.利润率=利润/成本× 究一做准备
率为

呢?
100%
引例 3. 某商品的利润率
4.售价=成本+利润
为 30%,成本为 70 元,则
=成本×(1+利润率)
利润为
元,
售价为
元;
学习好资料
欢迎下载
二、问题的探究
探究一:一商店在某一时 间以每件 60 元的价格卖 出两件衣服,其中一件盈 利 25% , 另 一 件 亏 损 25% ,卖这两件衣服总的 是盈利还是亏损,或是不 盈不亏?
教法 学法 自主探究和合作交流 教学
多媒体课件 准备
欢迎下载
教学环节及内容
教师活动
学生活动
设计意图
一、问题的引入
学生发表自己的看 由实际情况

七年级销售问题教案

七年级销售问题教案

教学目标知识技能1.会根据实际问题中数量关系列方程解决问题,熟练掌握一元一次方程的解法.2.使学生理解用一元一次方程解工程问题的本质规律.过程方法通过对“工程问题”的分析,进一步培养学生建模能力、分析问题、解决问题的能力.情感态度通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣.重点销售问题中的进价、售价、利润的关系,以及找出相等关系.难点从实际问题中抽象出数学模型.3.4实际问题与一元一次方程—销售问题念的理解.自主探究合作探究【问题2】:1.对上面商品销售中的盈亏问题里有哪些?成价(进价),标价,销售价,利润,盈利,亏损,利润率2.对上面这些量有何关系?售价、进价、利润的关系式:商品利润= 商品售价-商品进价进价、利润、利润率的关系:利润率=利润/进价*00%标价、折扣数、商品售价关系:商品售价=标价*折扣数/10,商品售价进价利润率的关系:商品售价=进价*(1+利润率)【问题3】教师提问:例1:某商品的进价是15000元,售价是18000元。

求商品的利润、利润率。

2、某商品的进价是200元,售价是260元。

求商品的利润、利润率。

3、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服师出示题目学生独立思考,找学生回教师板书小组合作,写出它们的关系式。

板书:所以应先分别求出两件衣服的进价,才能判断是盈还是亏.明亏损如何判定是盈还是亏盈利率、亏损率指的是什么? 这一问题情境中哪些是已知量?哪些未知量?如何设未知数?相等关系是什么?如何列方程?小组合作交流写出正确的、完整的解总的是盈利还是亏损,或是不盈不看这家商店买进这件衣服时花了多少钱。

解:设盈利的衣服进价为x 根据题意得,0.25x+x=60题意得,y- 0.25y=60,题售价=进价+利润售价= (1+利润率)进价尝试应用1.:某商品的进价为250元,按标价的九折销售时,利润率为15.2%,商品的标价是多少?2、平邑县某琴行同时卖出两台钢琴,每台售价为9600 元.其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏? 3.一商店把某商品按标价的八折出售仍可获得10%的利润.若该商品的进价是每件1600 该商品的标价是多少元变式一:商店对某商品打折出售,已知它的标价是2200 元,打折后的利润是10%,求此商品的进价? 变式二:商店对标价为2200 出售,已知它的进价为1600元,求此商品打折后的利润率? 变式三:商店对标价为2200 元的一生板演师生评定趁热打铁,使学生们积极的加入到这一环节中,以巩固学生对所学知识的理解. 应用所学的知识来探究身边的问题,让学生看到所学知识在生活中的价值,学习兴趣会更浓. 一题多变,避免了接触多个题目,使学生充分地应用了利润问题的公式,感受数学万变不离其宗! 学生分组讨论完成变式题目. 三生板演师生共同纠错适当补充股票交易的简单知识,再次让学生体会数学某商品打折出售,打折后仍可获得10%的利润,已知它的进价为1600 元,问此商品是按几折出售的? 3.在我们的身边有一些股民,在每一次的股票交易中是或盈利或亏损.某股民将甲、乙两种股票卖出,甲种股票卖出1500 元,盈利20%;乙种股票卖出1600 元,但亏损20%,该股民在这次交易中是盈利还是亏损? 盈利或亏损多少元?的应用价值.成果展示1. 销售问题常见相等关系: 2.注意利润率是成本进价的百分数,注意利润率与折扣的区别 3.同步学习练习题。

人教版数学七年级上册3.4《实际问题与一元一次方程销售中的盈亏》教学设计

人教版数学七年级上册3.4《实际问题与一元一次方程销售中的盈亏》教学设计

人教版数学七年级上册3.4《实际问题与一元一次方程销售中的盈亏》教学设计一. 教材分析人教版数学七年级上册3.4《实际问题与一元一次方程销售中的盈亏》这一节主要讲述了如何利用一元一次方程解决销售中的盈亏问题。

通过前面的学习,学生已经掌握了一元一次方程的定义、解法和应用。

本节内容将引导学生将理论知识应用于实际问题中,培养学生的实际问题解决能力。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于一元一次方程已经有了一定的了解。

但是,学生在解决实际问题时,可能会遇到不知道如何将实际问题转化为方程,或者在列方程时出现错误。

因此,在教学过程中,教师需要引导学生正确地将实际问题转化为方程,并加以解决。

三. 教学目标1.理解销售中的盈亏问题,并能够将其转化为一元一次方程。

2.掌握一元一次方程在解决销售盈亏问题中的应用。

3.培养学生的实际问题解决能力。

四. 教学重难点1.重点:如何将销售中的盈亏问题转化为一元一次方程。

2.难点:在列方程时,如何正确地找到等量关系,并解方程。

五. 教学方法1.讲授法:讲解销售盈亏问题的模型和列方程的方法。

2.案例分析法:分析具体的销售盈亏问题,引导学生自己列方程并解决问题。

3.小组讨论法:分组讨论,分享解题心得,互相学习。

六. 教学准备1.PPT课件:展示销售盈亏问题的案例和列方程的过程。

2.练习题:提供一些销售盈亏问题的练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)利用PPT展示一个销售盈亏的案例,引导学生思考如何解决这个问题。

例如,某商品的原价为100元,商家进行了8折优惠,求顾客实际支付的价格。

2.呈现(10分钟)讲解销售盈亏问题的模型,如何将其转化为一元一次方程。

以原价、折扣和实际支付价格为例,展示等量关系,并引导学生理解。

3.操练(10分钟)让学生分组讨论,分析具体的销售盈亏问题,并尝试自己列方程解决问题。

教师巡回指导,解答学生的疑问。

3.4实际问题与一元一次方程《销售中的盈亏》教学设计

3.4实际问题与一元一次方程《销售中的盈亏》教学设计

3.4实际问题与一元一次方程《销售中的盈亏》课堂教学实录双凤镇初级中学周庆昌一、复习导入1、上节课我们学习了一元一次方程的解,这节课我们继续来探究实际问题与一元一次方程2、随着社会进步和经济的发展,在现实生活中出现了广告,那么这些广告主要是吸引更多的顾客(课件显示清仓处理跳楼价5折大酬宾满200返160 )这些都是商家的一些手段,其中涉及到了我们数学销售中的问题。

那么今天一起学习《实际问题与一元一次方程的销售问题》——板书课题二、探究新知1、我们在探究销售问题之前,先来做一些小学里学过的简单的问题(课件显示)知识探究探究销售中的盈亏问题(想一想)(1)、商品原价200元,九折出售,则售价是元.(2)、商品进价是30元,售价是50元,则利润是元.(3)、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是元.(4)、某商品按定价的八折出售,售价是16元,则原定售价是元.①学生练习,教师巡视指导②汇报交流好,完成了没有,我们一起来看下。

商品原价200元,九折出售,则售价是()元.(个别回答:180元)我们再来看商品进价是30元,售价是50元,则利润是()元. (个别回答:利润=50-30=20元)对了吗?对了。

再看某商品原来每件零售价是a 元, 现在每件降价10%,降价后每件零售价是( )元. (个别回答:0.9a 或90% a 元),最后一题 看某商品按定价的八折出售,售价是16元,则原定售价是 元. (个别回答:20元)对了没有?(对了)刚才我们的同学对小学里这些问题掌握得较好。

2、那么,在上面商品销售中的盈亏问题里出现了下面的量 成本价(进价)、标价、 售价、利润、 盈利、 利润率,这些量之间有什么关系呢?(课件显示 )(1)售价、进价、利润的关系式:利润=(教师边问边板书)(2)进价、利润、利润率的关系:利润率=100% (教师边问边板书)(3)标价、折扣、商品售价关系 : 商品售价=标价×折扣 (教师边问边板书)(4)商品售价、进价、利润率的关系:商品售价=进价 +进价× 利润率 (教师边问边板书)教师边总结边让学生把这些等量关系写一写。

34实际问题与一元一次方程——销售中盈亏教学设计

34实际问题与一元一次方程——销售中盈亏教学设计

实责问题与一元一次方程〔1〕——销售中的盈亏钟祥二中孔德新【授课内容】七年级上册第104 页【授课目的】1.知识与技术理解商品销售中所涉及的进价、原价、售价、利润及利润率等看法;能利用一元一次方程解决商品销售中的一些实责问题.2.过程与方法经历运用方程解决销售中的盈亏问题,进一步领悟方程是刻画现实世界的有效数学模型.3.感情、态度与价值观培养学生走向社会,适应社会的能力.【重、难点与重点】1.重点:运用方程解决实责问题.2.难点:怎样把实责问题转变成数学问题,列方程解决实责问题.3.重点:理解销售中相关词语的含义,建立等量关系.【教具准备】FLASH 课件【授课过程】一、引入新课凡是在大街上行走,充满耳鼓的是商家们的大喊声:“大亏本〞“大放血〞“清仓办理〞“5折酬宾〞。

表面上看去,或许给人感觉商家是在“亏本〞甩卖了,“酬宾〞了,顾客“捡廉价〞了,但事实上,商家们真的“亏〞了,真的“放血〞了吗?要搞清楚这些问题,我们有必要认识打折销售。

本节我们来揭开商家的这些“打折〞和“酬宾〞的奥秘。

你能依照自己的理解说出它们的意思吗?进价:购进商品时的价格(有时也叫本钱价).售价:在销售商品时的售出价(有时称成交价).标价:在销售时标出的价(有时称定价 ).打折:销售价占标价的百分率.比方某种衣饰打8 折即按标价的百分之八十销售.利润:在销售商品的过程中的纯收入.即:利润=售价 -进价利润率:利润占进价的百分率.即:利润率=利润÷进价×100%二、解说新课〔 1〕想一想若是一件商品的进价是40 元,售价是60 元,那么商品的利润是多少?利润 =售价 -进价利润=60-40=20〔元〕若是一件商品的进价是40 元,售价是20 元,那么商品的利润是多少?利润 =20-40=-20 〔元〕假设一件商品的进价是40 元,①若是卖出后盈利25% ,那么商品的利润应怎样求?②若是卖出后损失25%,商品的利润又怎样求?利润 =进价×利润率①商品的利润是40×25%=10 〔元〕②商品的利润是40×(-25%)=-10 〔元〕〔 2〕研究:销售中的盈亏某商店在某一以每件60 元的价格出两件衣服,其中一件盈利25%,另一件25%,两件衣服的是盈利是,或是不盈不?1在个中有哪些量?哪些未知量?怎样未知数?数:两件衣服每件的售价是60 元,一件盈利 25%,另一件 25%.未知数:每件衣服的价 .2盈利 25%的那件衣服的价是x 元,它的利是多少?利 :0.25x ( 元 )3个的相等关系是什么?相等关系:价 +利 =售价4个怎列方程呢?x+0.25x=60 解个方程得x=48似地,可以另一件衣服的价y 元,它的利是元 _,列出的方程是y-0.25y=60 ,解得 _y=80_.5怎样判断是盈利是?两件衣服的价是 x+y=_48+80=128元_,而两件衣服的售价是60+60=120 元,价大于售价,由此可知两件衣服的盈情况是8 元 .三、解模范例:一件克按本钱价提高50%后价,后因季关系按价的8 折销售,每件以60元出,批克每件的本钱价是多少元?解:件克的本钱价x 元,那么:件克的价件克的售价用x 表示 _(1+50%) ·x·80%_元;由此,列出方程得:_(1+50%) ·x·80%=60_.解方程,得x = __50_.答:件克的本钱价是__50_元.__(1+50%)x__ 元;四、坚固1.:某商出两个价不同样的,都了1200 元,其中一个盈利50%,另一个本 20%,在次中,家商()A. 不不B. 100 元C. 100 元D.360 元剖析:盈利的那个的价是x 元, x×(1+50%)=1200, 解得 x=800. 本的那个手机的价是y 元, y×(1-20%)=1200, 解得×2-(800+1500)=100. 故 C.2.填空:一双运鞋在价基上抬价20%后,又以9 折售,利20 元,价是_____元.剖析:双鞋子的价是x 元, x×(1+20%)×90%-x=20, 解得 x=250.3.解答:某种扇因季原因准打折销售,假设按定价的 6 折销售,将20 元,假设按定价的8 折销售,将15 元,:种扇原定价多少元?点:无是 6 折销售是8 折销售,价不.假设原定价x 元,价0.6x+20和 0.8x-25 ,不列出方程.解:扇的原定价是x 元,依照意得答:种扇的原定价是225 元.五、堂小你学了后所想到的⋯⋯六、部署作某种商品每件的价250 元,按价的九折售,利率,个方程得x=225.15.2%,种商品每件价是多少? (教科 108 3.4 第 4 )。

《3.4实际问题与一元一次方程》优秀教案设计

《3.4实际问题与一元一次方程》优秀教案设计

九年义务教育课程标准实验教科书七年级数学(上)课题:3.4实际问题与一元一次方程——打折销售问题课题:3.4实际问题与一元一次方程——打折销售问题教学目标:1.知识目标:(1)理解并掌握打折销售问题中常见的一些数量关系。

(2)掌握列一元一次方程解决打折销售问题的一般步骤和方法。

2.能力目标:能正确列一元一次方程解决实际问题——打折销售问题。

3.德育目标:通过学习,进一步加强学生解决实际问题的能力,进一步渗透建模思想和方程思想。

教学重点:掌握打折销售问题中常见的一些数量关系:能正确列一元一次方程解决打折销售问题。

教学难点:正确找出打折销售问题中的等量关系,列出一元一次方程。

教法学法设计:以实际问题为背景,选取学生感兴趣的问题,通过小组讨论、探究、归纳、感慨出打折销售问题中常见的数量关系,并结合相关的数量关系列出一元一次方程解决实际问题。

教具准备:多媒体教学过程:一、创设情境,引入新课:师:“十一”国庆节期间,各大商场、超市等纷纷举行优惠大酬宾活动,小明和妈妈也想趁此机会去购买一些东西。

用多媒体出示几幅学生生活中常见的图片,让学生观察。

(设计意图:展示学生在生活中常见的图片,加强本课知识与实际生活的联系,首先激发学生学习的积极性和兴趣。

)二、探究新知,应用新知:1.活动一:小明和妈妈来到晨光文具店,这里正在搞打折酬宾活动,小明想买一支钢笔。

他看到一支钢笔原价20元,现在打七折出售;另一支钢笔标价15元,现在打八折出售,请你帮小明算一算,他购买哪支钢笔比较优惠?通过计算,归纳概括出:售价=标价×折扣数思考一:如果这两支钢笔的进价都是10元,那么售货员卖出这两支钢笔后,分别获利多少元?通过计算,归纳概括出:利润=售价-进价思考二:文具店卖出的这两支钢笔,利润率分别是多少?利润通过计算,归纳概括出:利润率=×100﹪进价变形后得:利润=进价×利润率变式一:如果小明以12元的价格买了一支钢笔,若售货员卖出这支钢笔盈利20﹪,那么,你知道这支钢笔的进价是多少元吗?通过用一元一次方程解决此问题归纳概括出:售价-进价=进价×利润率变式二:如果小明以12元的价格买了一支钢笔,售货员告诉小明,这支钢笔她亏损了20﹪,那么,你知道这支钢笔的进价是多少元吗?(设计意图:通过活动一的探究,让学生归纳概括出打折销售问题中常见的一些数量关系,为后面的学习打好基础。

3.4实际问题与一元一次方程教案人教数学七年级上册

3.4实际问题与一元一次方程教案人教数学七年级上册

第三章 一元一次方程3.4 实际问题与一元一次方程第1课时 产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配 套,商家应制作椅子的数量是桌子数量的 ___ 倍. 方桌与椅子的数量之比是 .2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x 名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮、黑皮各多少块?(提示:一块白皮(六边形)中,有三边与黑皮(五边形)相连,因此白皮边数是黑皮边数的2倍)针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若2.一套仪器由一个A 部件和三个B 部件构成. 用1立方米钢材可做40个A 部件或240个B 部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,才能恰好配成这种仪器?共配成多少套?探究点2:工程问题填一填一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是 ,乙的工作效率是 .(2)甲做x 天完成的工作量是 ,乙做x 天完成的工作量是 ,甲乙合做x 天完成的工作量是 .议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:_____________________________________________________________________________. 例2 加工某种工件,甲单独作要20天完成,乙只要10天就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1. 三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量 = 工作效率×工作时间;合作的工作效率 =工作效率之和.2. 相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作“1”.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题 实际问题的答案 1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成 一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 .设未知数,列方程 检验2.一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做x天完成,那么所列方程为.3.某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4.一项工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?参考答案课堂探究一、要点探究有6(32x)条.依题意,得2×5x=6(32x),解得x=12,则32x=20.答:白皮20块,黑皮12块.【针对训练】1. 12x×3=18×(30−x)2.解:设应用 x 立方米钢材做 A 部件,则应用(6-x)立方米做 B 部件.根据题意,列方程:3×40x = (6-x)×240.解得x = 4.则6-x = 2.共配成仪器:4×40=160 (套). 答:应用 4 立方米钢材做 A 部件, 2 立方米钢材做 B 部件,共配成仪器 160 套.填一填(1议一议(1)工作效率、工作时间(2)工作量=工作效率×工作时间解:解:设乙需工作x天后甲再继续加工才可正好按期完成任务,则甲做了(12x)天.依题意,得11(12) 1.2010x x-+=解得x=8. 答:乙需工作8天后甲再继续加工才可正好按期完成任务.想一想:解:设甲加工y 天,两人如期完成任务,则在甲加入之前,乙先工作了(8y )天. 依题意,得18 1.2010y +=解得y =4. 答:乙需加工4天后,甲加入合作加工才可正好按期完任务.【针对训练】解:设要 x 天可以铺好这条管线,由题意得:11 1.1224x x +=解方程,得x = 8. 答:要8天可以铺好这条管线.当堂检测根据题意,得 4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌为50×6=300(张). 答:用6立方米的木材做桌面,4立方米的木材做桌腿,才能使桌面、桌腿刚好配套,可做)+ 1.12x x = 13+(3+) 1.24x =解得x = 13. 答:乙队还需13天才能完成. 第三章 一元一次方程3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路.一、要点探究探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格.标价 商店销售商品时所赚的钱.售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价.填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元.想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价;●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ; ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率).议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小.(1)盈利:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”“<”或“=”);(2)亏损:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”“<”或“=”);(3)不盈不亏:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”、 “<”或“=”).例1 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价 > 总成本时,盈利;总售价 < 总成本时,亏损;总售价 = 总成本时,不盈不亏.针对训练1. 某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%. 这次琴行是盈利还是亏损,或是不盈不亏?2. 某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%. 请通过计算说明这次交易中的盈亏情况.例2 某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题的关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数 ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)1.某种商品的进价为每件a 元,零售价为每件90元,若商品按八五折出售,仍可获利10%,则下列方程正确的是( ) A .85%a=10%×90 B .90×85%×10%=aC .85%(90a)=10%D .(1+10%)a=90×85%2.两件商品都卖120元,其中一件赢利25%,另一件亏本20%,则两件商品卖出后( )A .赢利16元B .亏本16元C .赢利6元D .亏本6元3.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价? 参考答案课堂探究一、要点探究连一连:进价也称成交价,是商店销售商品时的销售价格.标价商店销售商品时所赚的钱.售价商店购进商品时的价格.利润商店销售商品时标出的价格,也称定价.填一填:1.1802. 30 20%3.0.9a4.1.25a5.16议一议:(1)>>(2)<<(3)= =解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得x=48,类似地,设另一件亏损衣服的进价为y元,它的商品利润是25%y元,列方程y+(25%y)=60,解得y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元,120128=8元,所以这两件衣服亏损8元.【针对训练】1.解:设盈利20%的钢琴的成本为x元,x(1+20%)=960,解得x=800.设亏本20%的钢琴的成本为y元,y(120%)=960,解得y=1200.所以960×2(800+1200)=80,所以亏损80元.这次琴行亏本80元.2.解:根据题意得:6464÷(1+60%)+6464÷(120%)=6440+6480=8(元).所以这次交易盈利8元.设盈利60%的计算器的成本为x元,x(1+60%)=64,解得x=40.设亏本20%的计算器的成本为y元,y(120%)=64,解得y=80.所以64×2(40+80)=8(元),所以这次交易盈利8元.解:设该商品的进价为每件x 元,依题意,得900×0.9-40=10% x +x,解得x=700.答:该商品的进价为700元.【针对训练】1.2722.5 2.10039a 当堂检测 1. D 2.D 3.C4.解:设商店最多可以打x 折出售此商品,根据题意,得15001000(15).10x ⨯=+% 解得x = 7. 答:商店最多可以打7折出售此商品.5. 解:答:应在360元~480元内还价.。

实际问题与一元一次方程探究1:销售问题(课堂设计)

实际问题与一元一次方程探究1:销售问题(课堂设计)

实际问题与一元一次方程探究1:销售问题(课堂设计)一、教学目标1、知识与技能。

1>理解商品销集中的进价、售价、利润、利润率的含义以及这些基本量之间的关系。

2>能根据商品销售中的数量关系找出等量关系列出方程,掌握商品盈亏的求法。

3>能利用一元一次方程解决商品销售中的盈亏问题。

2、过程与方法通过本节课的探究和讨论活动,培养学生建立方程模型将实际问题转化为数学问题的化归能力,培养学生分析问题、解决问题的能力。

3、情感态度与价值观使学生在实际生活中感受到数学的重要价值,感受到数学就在我们身边,激发学生的学习数学的兴趣。

二、重点、难点对于七年级学生来说,有关商品销售的知识在现实生活中有所接触和感悟,但阅读理解能力有限,考虑问题的全面性、深刻性不够,而盈亏问题中的相等关系是解决销售问题列方程的重要依据;因此,确定本节的重、难点如下:重点:能利用一元一次方程解决商品销售中的实际问题。

难点:弄清商品销售中的“进价”、“售价”、“利润”、“利润率”的含义以及这些基本量之间的关系;探究题型的数学说理方法。

突破本节重、难点的方法:弄清问题背景,分析清楚相关数量关系,找出可以作为列方程依据的主要相等关系三、教学流程设计意图一、创设情境,导入新课出示多媒体图片,创设问题情境。

问题1:在以往的生活经验中,同学们自己或 帮大人参与过买卖活动吗?问题2:根据你对市场的了解,对于商家而言, 在营销中什么是盈利?什么叫亏损?二、启发引导,探究新知1、 某商品的每件销售利润是72元,进价是120 元,那么他的售价是多少?思路导析:利润=售价-进价(售价=进价+利润)请你解答:它的售价是120+72=192元。

2、 某商品的利润率为20%,进价是50元,则 售价是多少元?思路寻析:利润率=进润,可据此求出利润。

请你解答:该商品的利润为50&0%=10元, 它的售价为:50+10=60 (元)3、某商店在某一时间以每件60元的价格卖 出两件衣服,其中一件盈利25%,另一件亏损25%, 卖这两件衣服总的是盈利还是亏损,或是不盈不 亏? 1>猜想盈亏情况? 2>结合前面的学习,说明在这个问题中什么是 盈利?什么是亏损?3>现在从问题中我们知道了哪些量?还要知道 哪些量?它们之间存在着怎样的相等关系。

人教版七年级数学上册3.4实际问题与一元一次方程销售问题优秀教学案例

人教版七年级数学上册3.4实际问题与一元一次方程销售问题优秀教学案例
2.教师巡回指导,给予学生必要的帮助和支持。针对不同小组的特点,提供个性化的指导,促进学生的个性化发展。
3.组织小组展示和分享,让学生展示自己的解题过程和答案,其他小组进行评价和补充,促进学生的相互学习。
(四)反思与评价
1.引导学生对自己的解题过程进行反思,总结解题的思路和方法,提高学生的问题解决能力。
3.引导学生回顾一元一次方程的知识,为新课的学习做好铺垫。
(二)讲授新知
1.讲解一元一次方程的概念和基本性质,让学生理解一元一次方程的构成和求解方法。
2.通过示例,讲解如何将实际问题转化为数学模型,并运用一元一次方程进行求解。
3.教授利润计算方法,让学生理解利润与售价、成本之间的关系。
(三)学生小组讨论
2.提出问题,引导学生思考如何通过建立一元一次方程来解决问题。让学生在解决问题的过程中,掌握一元一次方程的应用。
3.鼓励学生提出自己的疑问,组织学生进行讨论,促进学生之间的思维碰撞,提高学生的问题解决能力。
(三)小组合作
1.将学生分成若干小组,每组学生共同讨论问题,共同寻找解决问题的方法。鼓励学生之间的交流与合作,培养学生的团队协作能力。
1.让学生分成小组,每组解决一个类似的销售问题,如:“如果商店共卖出30件商品,利润是多少?”
2.引导学生找出问题的关键信息,建立数学模型,列出和解出一元一次方程。
3.鼓励学生之间进行交流和合作,共同解决问题,培养学生的团队协作能力。
(四)总结归纳
1.让学生总结自己在解决问题过程中的思路和方法,分享自己的解题经验。
案例背景如下:某商店进行促销活动,购买一件商品需支付80元,同时赠送一件店实际获得的利润是多少?
这个问题涉及到实际销售情况,需要我们通过建立一元一次方程来求解。在教学过程中,我会引导学生分析问题,找出关键信息,然后建立方程,求解问题。通过这个问题,学生不仅能巩固一元一次方程的知识,还能体会到数学在解决实际问题中的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4实际问题与一元一次方程
教学目标
知识与技能
1.理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间的关系.
2.能利用一元一次方程解决商品销售中的实际问题.
过程与方法
通过列方程解决实际问题,让学生逐步建立方程思想,能够将实际问题抽象为数学问题.
情感、态度与价值观
让学生在问题情境中感受到数学的应用价值,产生对数学的兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣.
重点难点
重点
把握盈亏问题中的等量关系,培养学生运用方程解决实际问题的能力.
难点
根据问题背景分析数量关系,找出可以作为列方程依据的相等关系,正确列方程.
教学设计
知识探究
探究销售中的盈亏问题:
1、商品原价200元,九折出售,卖价是180 元.
2、商品进价是30元,售价是50元,则利润是20 元.
3、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是0.9a 元.
4、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为1.25a元.
5、某商品按定价的八折出售,售价是14.8元,则原定售价是18.5 元.
思考?
对上面商品销售中的盈亏问题里有哪些量?
进价标价售价
利润折扣数利润率
对上面这些量有何关系?
销售中的盈亏
售价、进价、利润的关系式:
商品售价= 商品进价+商品利润
进价、利润、利润率的关系:
商品利润率=商品利润/商品进价×100%
标价、折扣数、商品售价关系:
商品售价=标价×折扣数/10
商品售价、进价、利润率的关系:
商品售价=商品进价×(1+利润率)
问题&情境
探究1
某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25﹪,另一件亏损25﹪,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
想一想:
1.盈利率、亏损率指的是什么?
2.这一问题情境中有哪些已知量?哪些未知量?如何设未知数?相等关系是什么?
3.如何判断是盈是亏?
分析:①设盈利25%衣服的进价是x 元,则商品利润是0.25x 元;依题意列方程
x + 0.25x = 60
由此得x = 48
②设亏损25%衣服的进价是y 元,则商品利润是-0.25y 元;
依题意列方程
y +(-0.25y)=60
由此得y = 80
两件衣服的进价是x+y= 48+80=128 (元)
两件衣服的售价是60×2=120 (元)
因为进价> 售价
所以可知卖这两件衣服总的盈亏情况是亏损.
解:设盈利25%的那件衣服的进价是x元,它的利润是0.25x 元,则x+0.25x=60
得x=48
设亏损25%的那件衣服的进价是y元,它的利润是-0.25y 元,则
y-0.25y=60
得y=80
所以两件衣服进价为128元,而售价为120元,进价大于售价,因此两件衣服总的盈利情况为亏本8元。

课内练习
(1)随州某琴行同时卖出两台钢琴,每台售价为960元。

其中一台盈利20%,另一台亏损20%。

这次琴行是盈利还是亏损,或是不盈不亏?
解:设盈利20%的那台钢琴进价为x元,它的利润是0.2x元,则x+0.2x=960
得x=800
设亏损20%的那台钢琴进价为y元,它的利润是–0.2y元,则y-0.2y=960
得y=1200
所以两台钢琴进价为2000元,而售价1920元,进价大于售价,因此两台钢琴总的盈利情况为亏本80元。

请再做一做:
(2)某文具店有两个进价不同的计算器都卖64元,其中一个盈利
60%,另一个亏本20%.这次交易中的盈亏情况?
解:设盈利60%的那个计算器进价为x元,它的利润是0.6x元,则x+0.6x=64
得x=40
设亏本20%的那个计算器进价为y元,它的利润是–0.2y元,则y–0.2y=64
得y=80
所以两个计算器进价为120元,而售价128元,进价小于售价,因此两个计算器总的盈利情况为盈利8元.
探索新知
问题2 某商场把进价为1980元的商品按标价的八折出售,仍获利10%, 则该商品的标价为元.
解:设该商品的标价为x元.
0.8x=1980(1+0.1)
得x=2722.5
答:设该商品的标价为2722.5元.
做一做
我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2012年涨价30%后,2014降价70%至a元,则这种药品在2012年涨价前价格为元.
解:设在2012年涨价前的价格为x元.
(1+0.3)(1-0.7)x=a
解得x=100a/39
答:在2012年涨价前的价格为100a/39元.
小结:
通过本节课的学习你有哪些收获?你还有哪些疑惑?
熟记下列关系式
售价、进价、利润的关系式:
商品利润= 商品售价—商品进价
进价、利润、利润率的关系:
商品利润率=商品利润/商品进价×100%
标价、折扣数、商品售价关系:
商品售价=标价×折扣数/10
商品售价、进价、利润率的关系:
商品售价=商品进价×(1+利润率)
大展身手
思考题
1、某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店最多可降多少元出售此商品?
2、一年定期的存款,年利率为1.98%, 到期取款时须扣除利息的20%,作为利息税上缴国库,假如某人存入一年的定期储蓄1000元,到期扣税后可得利息多少元?
3、某商场将某种DVD产品按进价提高35%, 然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每台DVD 的进价是多少元?
4、国家规定个人发表文章或出书获得稿费的纳税计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4000元的应交超过800元那一部分稿费14%的税;(3)稿费高于4000元的应交全部稿费的11%的税。

王老师曾获得一笔稿费,并交纳个人所得税280元,那么王老师的这笔稿费共多少元?
布置作业:
P106练习题的第一题。

相关文档
最新文档