(完整版)二项分布及其应用题型总结,推荐文档
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布专题训练
一.选择题
1.甲、乙两人独立地解同一问题,甲能解决这个问题的概率是1p ,乙能解决这个问题的概率是2p ,那么其中至少有1人能解决这个问题的概率是 ( D )
A .21p p +;
B .21p p ⋅;
C .211p p ⋅-;
D .121(1)(1)p p ---.
2.在一个盒子中有大小相同的10个球,其中6个红球,4个白球,两人无放回地各取一个球,则在第一个人摸出红球的条件下,第二个人也摸出红球的概率是 ( A )
A .13;
B .23;
C .49;
D .59
. 【解析】设“第一个人摸出红球”为事件A ,“第二个人摸出红球”为事件B ,则()11692105490
C C P A A ⋅==,()11652103090
C C P AB A ⋅==,则()()()5|9P AB P B A P A ==。 3.两个独立事件1A 和2A 发生的概率分别为1p 和2p ,则有且只有一个发生的概率为 .()()122111p p p p -+-
4. (04年重庆) 甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5,计算: ⑴三人各向目标射击一次,求恰有两人命中目标及至少有一人命中目标的概率;
⑵若甲连续射击三次,求他恰好一次命中的概率.
解:⑴设i A (3,2,1=i )表示事件“第i 人命中目标”,显然1A 、2A 、3A 相互独立,且7.0)(1=A P ,6.0)(2=A P ,5.0)(3=A P .
三人中恰有两人命中目标的概率为
44.0)(321321321=⋅⋅+⋅⋅+⋅⋅A A A A A A A A A P .
三人中恰有至少有一人命中目标的概率为
94.0)(1321=⋅⋅-A A A P .
⑵设k A 表示“甲在第k 次命中目标”,3,2,1=k .显然1A 、2A 、3A 相互独立,且7.0)()()(321===A P A P A P .
甲连续射击三次,恰好一次命中的概率为
203.0)(321321321=⋅⋅+⋅⋅+⋅⋅A A A A A A A A A P .
5.已知在10只晶体管中有2只次品,从中连续抽取两件,且取出的产品不再放回,求下列事件的概率.
⑴两只都是正品; ⑵两只都是次品.
解:设事件i A (1,2i =)表示第i 次取到正品,则i A 表示第i 次取到次品.
依题意,()1810P A =,()217|9P A A =,()1210P A =,()
211|9P A A =. ⑴12A A 表示第1次,第2次都取到正品,即表示两只都是正品,根据乘法公式
()()()1212128|45P A A P A P A A ==
. ⑵()()()121211|45
P A A P A P A A ==. 另解:本题也可利用古典概型来解决.
点评:本题中由于是两个都是正(次)品,由于是连续抽取且抽后不放回,故与条件概率有关.
6.(04年福建·理)甲、乙两人参加一次英语口试,已知在备选的10道题中,甲能答对其中的6道,乙能答对其中的8道,规定每次考试都从备选题中随机地抽出3道,至少答对2道才算合格.
⑴求甲答对试题数X 的概率分布分布;
⑵求甲、乙两人至少有一人考试合格的概率.
解:⑴依题意,甲答对题数X 的概率分布如下:
⑵方法1:甲、乙两人至少有一人考试合格的概率为
()P P A B A B A B =⋅+⋅+⋅()()()P A B P A B P A B =⋅+⋅+⋅
211142144431531531545
=⨯+⨯+⨯=. 方法2:∵甲、乙两人考试均不合格的概率为1()()()45P A B P A P B ⋅=⋅=
, ∴甲、乙两人至少有一人考试合格的概率为441()45
P P A B =-⋅=. 7.(07年天津·文科)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为红球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
解:(Ⅰ)设“从甲盒内取出的2个球均为红球”为事件A ,“从乙盒内取出的2个球均为红球”为事件B .由于事件A B ,相互独立,且
2327C 1()C 7P A ==,2329C 5()C 18
P B ==, 故取出的4个球均为红球的概率是
155()()()718126
P A B P A P B ==⨯=g g . (Ⅱ)设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件C ,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件D .由于事件C D ,互斥,且
1123442279C C C 2()C C 21P C ==g ,1125242275C C C 10()C C 63
P D ==g . 故取出的4个红球中恰有4个红球的概率为
21016()()()216363
P C D P C P D +=+=+=. 8.(01年天津)如图,用A 、B 、C 三个不同的元件联结成两个电子系统(Ⅰ)、(Ⅱ)。当元件A 、B 、C 都正常工作时,系统(Ⅰ)正常工作;当元件A 正常工作且B 、C 至少有一个正常工作时,系统(Ⅱ)正常工作。已知元件A 、B 、C 正常工件的概率依次为0.80、0.90、0.90,分别求系统(Ⅰ)、(Ⅱ)正常工作概率1P 、2P ,并说明哪个系统的稳定性好.
解:分别记元件A 、B 、C 正常工作为事件A 、B 、C ,
由已知()0.80P A =,()()0.90P B P C ==,则:
⑴因为事件A 、B 、C 是相互独立的,所以系统(Ⅰ)正常工作的概率为
1()()()()0.648P P A B C P A P B P C =⋅⋅=⋅⋅=。
⑵因为元件A 正常工作与元件B 、C 至少有一个正常工作是相互独立的,而B 、C 没有一个正常工作的概率为()P B C ⋅,于是B 、C 至少有一个人正常工作的概率为1()()0.99P B P C -⋅=, ∴系统(Ⅱ)正常工作概率2()[1()]0.792P P A P B C =⋅-⋅=。
(Ⅰ)