(最新版)基于单片机的脉搏测量仪的设计开题报告毕业论文

合集下载

基于单片机技术的脉搏测量仪设计

基于单片机技术的脉搏测量仪设计

基于单片机技术的脉搏测量仪设计脉搏测试仪是用来测量一个人脉搏跳动次数的电子仪器,也是心电1.3 信号采集及处理系统由于光电脉搏波属于缓慢变化的微弱生理信号,信噪比低,极易受到环境噪声和肢体运动的干扰。

传统的光电脉搏波信号检测电路都采用高增益放大器,以获得较高的检测灵敏度,这种设计思路导致了检测信号动态范围缩小,在受到运动干扰时,将导致由于干扰信号而带来的光电脉搏波信号检测的饱和失真。

本系统采用过采样技术,通过对信号的高速采样来提高采样精度,相当于用高分辨率的ADC 对信号进行模数转换,达到了提高信噪比并改善动态范围的效果。

因此本系统对经过光电转换后的信号进行模数转换而不需要任何信号调理(放大和滤波)电路。

1.4 过采样技术的应用所谓过采样技术是指以远远高于奈奎斯特(Nyquist)采样频率的频率对模拟信号进行采样的方法。

由信号采样量化理论可知,若输入信号的最小幅度大于量化器的量化电平,并且输入信号的幅度随机分布,则量化噪声的总功率是一个常数,在0~fs 的频带范围内均匀分布。

因此量化噪声电平与采样频率成反比,如果提高采样频率,则可以降低量化噪声电平,而由于基带是固定不变的,因而减少了基带范围内的噪声功率,提高了信噪比,从而提高分辨率,并且采样频率每提高4 倍,则信噪比提高4 倍,相当于A/D 的分辨率提高1 位。

2 软件设计2.1 程序设计本文选用ADI 公司的单片机ADC841,其内部集成了速度可达400k 的12 位逐次逼近型ADC,分辨率为0.6mv/LSB。

从软件需求和单片机速度出发,将ADC 采样率fs 定为102.4kHz,为便于计算,将过采样倍数k 定为64,则下抽取后采样率为伪:fs/k=1600Hz,是频率为400Hz 载波的四倍,满足奈奎斯特采样定理。

由于过采样倍数k 为64,按每提高4 倍采样率就能提高一位分辨率来计算,获得的ADC 有效分辨率能提高3。

基于单片机的脉搏测量仪的设计

基于单片机的脉搏测量仪的设计

于单片机的脉搏测量仪的设计摘要脉搏波所呈现出来的形态、强度、速率和节律等方面的综合信息,能反映出人体心血系统中许多生理疾病的血流特征。

根据人体脉搏信号特征,本论文设计了一种基于单片机的脉搏测量系统。

系统采用红外发射与接收二极管充当脉搏传感器来采集脉搏信号。

首先将采集到的信号通过低通滤波与放大电路对脉搏信号进行处理,然后,将放大的脉搏信号通过整形电路进行电压基准变化,在经过一次放大电路对整形后的脉搏信号进行放大,将信号转换为AT89S52单片机易于处理的脉冲信号。

通过单片机编程对脉冲信号进行处理,测量出一分钟内的脉搏次数,最终在数码管中直观的显示出来。

为了节省时间,一般不会作一分钟的测量,通常是测量10秒钟时间内的脉搏数,再把结果乘以6即得到每分钟的脉搏数。

发光二极管可以通过发光的形式显示脉搏的跳动。

关键词:脉搏测量仪;AT89S52;LED;信号处理目录引言 (1)第1章绪论 (2)1.1 脉搏测量仪介绍 (2)1.2脉搏测量仪的应用 (2)第2章主要器件介绍 (3)2.1 单片机的选择 (3)2.1.1 AT89S52简介 (3)2.1.2 AT89S52特点.................................................................................................... . (3)2.1.3 AT89S52引脚功能说明 (4)2.2 传感器的选择 (6)2.2.1 红外发光二极管简介 (6)2.2.2光敏三极管简介 (7)2.3 驱动芯片的选择 (7)2.3.1 74LS245简介 (7)2.3.2 74LS04简介 (8)2.4 显示器的选择 (9)2.4.1 三位共阳八段数码管简介 (9)2.4.2 八段数码管字形表 (9)第3章系统硬件设计 (10)3.1 设计原理 (10)3.2 外围电路 (10)3.2.1 电源电路...................................... 错误!未定义书签。

(完整版)基于C51单片机的脉搏测量仪毕业设计论文

(完整版)基于C51单片机的脉搏测量仪毕业设计论文

摘要脉搏传感器采样脉搏信号,采用STC89C51单片机作为控制器,脉搏传感器输出方波传入单片机,单片机每接收一个脉冲波形,数码管就计数一次。

脉搏次数超限时用蜂鸣器报警。

三极管加大功率,驱动器件工作。

单片机软件设计,设置中断向量,编程执行。

关键词:STC89C51单片机、脉搏测量仪、软件设计Abstract:Pulse sensor sampling pulse signal, using STC89C51 MCU as controller, pulse sensor output square wave into single chip microcomputer chip, each receiving a pulse waveform, digital tube counting time. Pulse frequency overrun with buzzer alarm. The three transistor to increase power, driving device. MCU software design, set the interrupt vector, programming executive.Key words: STC89C51 monolithic integrated circuit. pulse measuring instrument. Software design.目录引言 (1)1 系统方案选择与论证 (1)1.1 任务 (1)1.2 要求 (1)1.3 系统基本方案 (1)1.3.1各个部分电路的方案选择及论证 (1)1.3.2系统各模块的最终方案 (2)2.系统硬件设计 (3)2.1单片机处理电路 (3)2.1.1STC89C51系列单片机的主要性能特点 (3)2.1.2C51系列单片机的基本组成 (4)2.2 复位电路 (6)2.2.1单片机复位电路 (6)2.2.2测试复位电路 (7)2.3 振荡电路 (7)2.4 脉搏传感器部分 (8)2.4.1HK-2000A 集成化脉搏传感器 (8)2.4.2脉搏传感器接收电路 (9)2.4.3电源电路 (10)2.5显示报警部分 (10)2.5.1数码管显示电路 (10)2.5.2报警电路 (11)3 软件设计 (11)3.1 程序设计 (11)3.2 程序调试 (13)4结论 (18)谢辞 (19)参考文献 (20)附录 (21)引言脉搏波所呈现出来的形态、强度、速率和节律等方面的综合信息,能反映出人体心血管系统中许多生理疾病的血流特征。

单片机的脉搏测量仪开题报告

单片机的脉搏测量仪开题报告
毕业设计(论文)开题报告
题目名称 学生姓名 李向荣
光电脉搏测量仪设计
专业 电子信息科学与技术 班级
一、选题的目的意义
随着经济和科学技术的快速发展,人们对脉搏测量技术、测量 精度的要求也越来越高,尽管在国内外研制了不同类型的脉搏测量 仪,但都存在各种这样那样的不足。近年来世界各地在研制中医脉 象仪方面取得很大的发展,国内一些地方也成立了跨学科研究协作 组,其中关键是对脉搏传感器的研究。脉搏主要由人体动脉舒张和 收缩产生的,在人体指尖,组织中的动脉成分含量高,因此光电式 脉搏传感器的测量部位通常在人体指尖。光电式脉搏传感器是根据 光电容积法制成的脉搏传感器,通过对手指末端透光度的监测,间 接检测出脉搏信号。具有结构简单、无损伤、精度高、可重复使用 等优点。 因此设计一种便携式脉搏测量仪也随之成为一个重要课题。
goldenstaphylococcusepidermalstaphylococcussaprophyticstaphylococcusmicrococcigrouphammerbacteriaswinehemolyticsexhammerbacteriapneumoniahammerbacteriameningitiscardhegonorrheaneisseriameningitidisbacteriaproducedsinglenuclearcelllisztbacteriacolorectalescherichiacolibacteriasalmonellabacteriarecordshebacteriacrabbbacteriahafuniyabacteriadeformationbacillussildenafilcitrateacidbacilluspuluofeidengbacteriapseudomonasaeruginosafakesinglecellbacteriaproducedalkalifakesinglecellbacteriamaltyellowsinglecellbacteriamovingbacillusproducedalkalibacilluscommonspecimenspaintedlesionspepticulcerbleedingbleedingfromesophagealvariceshepatitisalcoholiclivercirrhosis毕业设计论文开题报告题目名称光电脉搏测量仪设计学生姓名专业电子信息科学与技术班级一选题的目的意义随着经济和科学技术的快速发展人们对脉搏测量技术测量精度的要求也越来越高尽管在国内外研制了不同类型的脉搏测量仪但都存在各种这样那样的不足

(最新版)基于单片机的脉搏测量仪的设计开题报告毕业论文

(最新版)基于单片机的脉搏测量仪的设计开题报告毕业论文

本科毕业设计(论文)开题报告题目:基于单片机的脉搏测量仪的设计课题类型:设计□√实验研究□论文□学生姓名:学号:专业班级:学院:信息工程学院指导教师:开题时间年月日年月日开题报告内容与要求一、毕业设计(论文)内容及研究意义(价值)随着科技发展的不断提高,生命科学和信息科学的结合越来越紧密,出现了各种新颖的脉搏测量仪器,特别是电子脉搏仪的出现,使脉搏测量变得非常方便。

脉诊在我国已具有2600多年临床实践,是我国传统中医的精髓,但祖国传统医学采用“望、闻、问、切”的手段进行病情诊断,受人为的影响因素较大,测量精度不高。

科技的创新,脉搏测试不再局限于传统的人工测试法或听诊器测试法,脉搏测量可利用电子仪器测量出精度更就的数据。

人体脉搏信号中包含丰富的生理信息,也逐渐引起了临床医生的很大兴趣,达到了方便、快捷、准确的测量脉搏的目的。

随着电子测量技术的迅速发展,现代电子测量仪器以极快的速度向数字化、自动化的方向发展。

制成的脉搏测量仪器性能良好,结构简单,有较好的应用和推广价值。

脉搏测量仪的设计,必须是通过采集人体脉搏变化引起的一些生物信号,然后把生物信号转化为物理信号,使得这些变化的物理信号能够表达人体的脉搏变化,最后要得出每分钟的脉搏次数,就需要通过相应的硬件电路及芯片来处理物理变化并存储脉搏次数。

在硬件设计中一般的物理信号就是电压变化。

本系统的组成包括传感器、信号处理、单片机电路、显示电路、键盘输入等部分。

二、毕业设计(论文)研究现状和发展趋势(文献综述)随着科学技术的发展,脉搏测量技术也越来越先进,对脉搏的测量精度也越来越高,国内外先后研制了不同类型的脉搏测量仪,脉搏测试不再局限于传统的人工测试法或听诊器测试法,脉搏测量可利用电子仪器测量出精度更就的数据。

人体脉搏信号中包含丰富的生理信息,也逐渐引起了临床医生的很大兴趣,达到了方便、快捷、准确在测量脉搏的目的。

随着电子测量技术的迅速发展,现代电子测量仪器以极快的速度向数字化、自动化的方向发展。

基于单片机的脉搏测量仪的设计开题报告

基于单片机的脉搏测量仪的设计开题报告

本科毕业设计(论文)开题报告题目:基于单片机的脉搏测量仪的设计课题类型:设计□√实验研究□论文□学生姓名:学号:专业班级:学院:信息工程学院指导教师:开题时间年月日年月日开题报告内容与要求一、毕业设计(论文)内容及研究意义(价值)随着科技发展的不断提高,生命科学和信息科学的结合越来越紧密,出现了各种新颖的脉搏测量仪器,特别是电子脉搏仪的出现,使脉搏测量变得非常方便。

脉诊在我国已具有2600多年临床实践,是我国传统中医的精髓,但祖国传统医学采用“望、闻、问、切”的手段进行病情诊断,受人为的影响因素较大,测量精度不高。

科技的创新,脉搏测试不再局限于传统的人工测试法或听诊器测试法,脉搏测量可利用电子仪器测量出精度更就的数据。

人体脉搏信号中包含丰富的生理信息,也逐渐引起了临床医生的很大兴趣,达到了方便、快捷、准确的测量脉搏的目的。

随着电子测量技术的迅速发展,现代电子测量仪器以极快的速度向数字化、自动化的方向发展。

制成的脉搏测量仪器性能良好,结构简单,有较好的应用和推广价值。

脉搏测量仪的设计,必须是通过采集人体脉搏变化引起的一些生物信号,然后把生物信号转化为物理信号,使得这些变化的物理信号能够表达人体的脉搏变化,最后要得出每分钟的脉搏次数,就需要通过相应的硬件电路及芯片来处理物理变化并存储脉搏次数。

在硬件设计中一般的物理信号就是电压变化。

本系统的组成包括传感器、信号处理、单片机电路、显示电路、键盘输入等部分。

二、毕业设计(论文)研究现状和发展趋势(文献综述)随着科学技术的发展,脉搏测量技术也越来越先进,对脉搏的测量精度也越来越高,国内外先后研制了不同类型的脉搏测量仪,脉搏测试不再局限于传统的人工测试法或听诊器测试法,脉搏测量可利用电子仪器测量出精度更就的数据。

人体脉搏信号中包含丰富的生理信息,也逐渐引起了临床医生的很大兴趣,达到了方便、快捷、准确在测量脉搏的目的。

随着电子测量技术的迅速发展,现代电子测量仪器以极快的速度向数字化、自动化的方向发展。

基于单片机的脉搏测量仪设计毕业

基于单片机的脉搏测量仪设计毕业

基于单片机的脉搏测量仪设计毕业脉搏测量仪是一种用于测量人体脉搏的仪器,可以根据脉搏信号来分析人体的心率和心律。

基于单片机的脉搏测量仪具有体积小、功耗低、成本低等优点,适用于个人使用和医疗机构。

设计一个基于单片机的脉搏测量仪的系统主要分为硬件设计和软件设计两个部分。

硬件设计部分包括传感器、滤波电路、放大电路和显示电路等。

首先,选取合适的传感器感知人体脉搏信号。

一种常用的传感器是心率传感器,它能够非侵入式地探测人体脉搏信号。

心率传感器一般采用光电技术,通过血液中的脉搏信号的变化来测量心率。

将心率传感器与单片机进行接口连接。

其次,对传感器输出的脉搏信号进行滤波处理。

脉搏信号包含许多杂散噪声,需要通过滤波电路进行滤波处理,以减小噪声对信号的干扰。

常用的滤波器有低通滤波器,可以滤除高频噪声信号。

再次,通过放大电路对滤波后的脉搏信号进行放大,以增加信号的幅度,方便后续的分析处理。

放大电路采用运放电路,通过调整放大倍数和增益可以使信号更好地显示。

最后,通过显示电路将放大后的脉搏信号进行显示。

显示电路可以选择液晶显示屏、LED指示灯或者数码管等。

设计时要考虑显示界面的清晰度和易读性。

软件设计部分包括数据采集、信号处理和心率计算等。

数据采集模块负责从传感器获取脉搏信号,以一定的采样频率采集信号,并存储到单片机的存储器中。

信号处理模块对从传感器得到的脉搏信号进行处理,如滤波、放大等。

滤波可以采用数字滤波算法,如均值滤波、中值滤波等。

放大可以通过调整放大倍数和增益来实现。

处理后的信号可以传递给心率计算模块。

心率计算模块负责根据处理后的脉搏信号计算心率。

心率计算可以采用峰值检测算法,通过寻找脉搏信号的峰值来计算心率。

可以设置一个合适的阈值,当脉搏信号超过阈值时,认为达到峰值。

设计完成后,通过实验验证系统的准确性和可靠性。

可以与专业医学仪器进行对比,比较测量结果的一致性。

可以使用心电图或其他血压计进行参考。

综上所述,基于单片机的脉搏测量仪设计可以实现对人体心率的测量和分析,具有体积小、功耗低、成本低等优点。

基于单片机的脉搏监测系统开题报告

基于单片机的脉搏监测系统开题报告

基于单片机的脉搏监测系统开题报告基于单片机的脉搏监测系统开题报告背景介绍•脉搏监测是一项重要的生命体征监测手段•目前市场上的脉搏监测设备大多体积庞大、价格昂贵•基于单片机的脉搏监测系统能够实现便携、低成本的脉搏监测目的与意义•开发一种基于单片机的脉搏监测系统,实现便携、低成本监测脉搏的目标•提供给医疗机构、个人健康管理者等使用者可靠准确的脉搏监测数据系统设计•系统采用单片机作为核心控制芯片,具有高集成度和低功耗的特点•使用红外传感器来感知人体的脉搏信号•通过单片机的模数转换功能将脉搏信号转换为数字信号•采用LCD显示屏显示脉搏波形和心率数值•通过蓝牙模块将脉搏数据传输至手机或电脑等终端设备技术难点•感知脉搏信号的可靠性和准确性•数据传输的稳定性和实时性开发计划1.系统原型设计与制作–设计并搭建硬件电路–编写单片机的程序控制逻辑–制作系统原型并进行功能测试2.软件开发与优化–开发手机或电脑端的数据接收和显示软件–优化系统的稳定性和实时性3.系统整合与调试–将硬件和软件整合起来,进行系统调试–对系统进行功能测试和性能评估4.系统性能提升和优化–针对系统的不足进行改进和优化–提升系统的可靠性、稳定性和准确性预期成果1.完成一套基于单片机的脉搏监测系统原型2.实现脉搏信号的可靠感知和数据传输功能3.开发出手机或电脑端的数据接收和显示软件4.评估系统性能,优化系统稳定性和实时性参考资料•XXXXXX(参考文献1)•XXXXXX(参考文献2)以上为基于单片机的脉搏监测系统开题报告的大纲。

具体内容可根据实际情况进行修改和补充。

基于单片机的脉搏心率测量仪的开发与设计毕业论文

基于单片机的脉搏心率测量仪的开发与设计毕业论文

毕业设计(论文) 题目:基于单片机的脉搏测量仪的研究与设计摘要在传统的医疗检测中,脉象检测一直都起着非常重要的作用,人体的脉象包含着大量的人体的生理和病理方面的信息。

脉诊一直是医生诊断疾病的重要手段之一,但受人为因素的影响很大。

经医学观察研究表明,人体手指末端含有丰富的毛细血管和小动脉,这些动脉和人体其他地方的动脉一样,含有丰富的生理信息。

由于光电脉搏检测技术具有很高的绝缘性,且抗电磁等干扰能力强,可以对人体进行无损伤检测。

本文设计通过光电法对人体指尖的脉搏进行测量,并将测量信息送入单片机进行处理,最后通过数码管将测量结果显示出来。

将对脉搏信号的检测模块,脉搏信息的处理模块,单片机,数码管显示模块等电路集成在一块电路板上,形成一个简易的脉搏测量仪。

这种测量仪具有精确度高,体积小,价格便宜,易于操作等特点,特别适合于个人使用和家庭使用,给我们的生活带来极大方便,让我们第一时间对自己的身体状况有进一步的了解。

矚慫润厲钐瘗睞枥庑赖。

关键词:脉搏;光电传感器;单片机;数码管AbstractIn the traditional medical testing,the pulse condition detection has been playing a very important role.The pulse condition of the human body contains a large number of physiology information and pathology information,the pulse examination has been being one of the important means for the doctor to diagnosis the illness.But the man-made factors influence it very much,the medical observation research shows.The end of the finger contains rich capillaries and small arteries.These arteries and the other arteries of the body hold rich physiologic information.The Photoelectric pulse detecting technology can test the body without damage owing to its high insulation and strong ability to resist the electromagnetic interference.This design in the text can survey the pulse of the finger tip through photoelectric method and transport the information to the microcontroller to do with it.At last,the result is showed by the digital tube.When the electric circuit such as the detection module of the pulse signal,the processing module of the pulse information,SCM,digital tube are integrated in the board of electric circuit,it formed an simple pulse measuring instrument,this instrument has high accuracy,small, cheap,and easy to operate.It is especially suitable for personal use and family use.It brings great convenience to our life,so we can have a further understanding of our body condition.聞創沟燴鐺險爱氇谴净。

基于单片机的电子脉搏计的设计开题报告

基于单片机的电子脉搏计的设计开题报告
三、设计(研究)方案
根据功能模块的划分,其系统硬件结构框包括以下几部分:①传感器:将脉搏跳动信号转换为与此对应的电脉冲信号。②放大与整形电路:将传感器的微弱信号放大,整形除去杂散信号。③倍频器:将整形后所得到的脉冲信号的频率提高。如将30 s内传感器所获得的信号频率2倍频,即可得到对应1分脉冲数,从而缩短测量时间。④基准时间产生电路:产生短时间的控制信号,以控制测量时间。⑤控制电路:用以保证在基准时间控制下,使2倍频后的脉冲送到计数译码显示电路中。⑥计数译码显示电路:用来读出脉搏数,并以十进制数的形式由数码管显示出来。
设计了一种基于压电传感器以STC89C52单片机为核心构成的简易便携式电子脉搏计。其设计思路是用压电传感器把待检测对象的脉搏跳动转变成电信号,但是由于信号比较微弱,需要经过放大整形后才可以得到规则的脉冲波形。放大电路采用三运放高共模抑制比放大电路,将传感器的微弱信号放大。放大后的信号采用一阶低通滤波电路进行整形除去杂散信号,然后经过单片机定时计数后通过译码电路就可以从数码管直接读出被测对象的脉搏数了。同时记录每一次脉搏跳动的间隔和力度,分别记入U盘和计算机终端分析软件,实时绘制曲线,分析数据。定时由基准时间产生电路完成。STC89C52单片机构成的控制电路在软件的作用下控制脉搏信号放大、整形和倍频后进入计数器的时间。该便携式电子脉搏计优点是制作简单,使用元器件少,工作稳定可靠,显示直观,误差不大于1%,成本低廉且能节电。
其系统软件设计主要分成两部分组成,前半段实现初始化,包括89c52芯片初始化,定时器/计数器初始化,显示缓冲区初始化,设置堆栈指针以及开中断等。主程序后半段构成循环,有两个功能:一是计数,另一功能是显示(每分钟的脉跳数),由调用显示子程序来完成。
四、工作进度安排
毕业设计(论文)进度计划安排

基于51单片机的脉搏心率测量仪-参考论文

基于51单片机的脉搏心率测量仪-参考论文

基于51单片机的脉搏测量仪摘要:脉搏心率测量仪在我们的日常生活中已经得到了非常广泛的应用。

为了提高脉搏心率测量仪的简便性和精确度,本课题设计了一种基于51单片机的脉搏心率测量仪。

系统以STC89C51单片机为核心,以红外反射式传感器ST188为检测原件,并利用单片机系统内部定时器来计算时间,由红外反射式传感器ST188感应产生脉冲,单片机通过对脉冲累加得到脉搏心率跳动次数,时间由定时器定时而得。

系统运行中能显示脉搏心率次数和时间,系统停止运行时,能够显示总的脉搏心率次数和时间。

经测试,系统工作正常,达到设计要求。

关键词:脉搏心率测量仪;STC89C51单片机;红外反射式传感器一脉搏心率测量仪系统结构脉搏心率测量仪的设计,必须是通过采集人体脉搏心率变化引起的一些生物信号,然后把生物信号转化为物理信号,使得这些变化的物理信号能够表达人体的脉搏心率变化,最后要得出每分钟的脉搏心率次数,就需要通过相应的硬件电路及芯片来处理物理变化并存储脉搏心率次数。

在硬件设计中一般的物理信号就是电压变化。

1.1 光电脉搏心率测量仪的结构光电脉搏心率测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏心率跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。

本系统的组成包括光电传感器、信号处理、单片机电路、数码管显示电路、电源等部分。

1.光电传感器即将非电量(红外光)转换成电量的转换元件,它由红外发射二极管和红外接收三极管组成,它可以将接收到的红外光按一定的函数关系(通常是线性关系)转换成便于测量的物理量(如电压、电流或频率等)输出。

2.信号处理即处理光电传感器采集到的低频信号的模拟电路(包括放大、滤波、整形等)。

3. 单片机电路即利用单片机自身的定时中断计数功能对输入的脉冲电平进行运算得出心率(包括STC89C51、外部晶振、外部中断等)。

4.数码管显示电路即把单片机计算得出的结果用四位一体数码管显示出来。

5. 电源即向光电传感器、信号处理、单片机提供的电源,采用直流5V 电源供电。

基于单片机设计的脉搏测量仪)

基于单片机设计的脉搏测量仪)

毕业设计任务书扬州工业职业技术学院电子信息工程系09 届毕业设计(论文)开题报告书第三部分毕业设计报告目录第一章引言 (7)第二章硬件电路设计 (8)2.1 AT89C2051主要性能 (8)2.2AT89C2051的结构框图 (10)2.3AT89C2051的引脚说明 (11)2.4 复位电路 (12)2.5 振荡电路 (13)第三章基本结构模块 (13)3.1 脉搏波检测电路 (14)3.2 脉搏信号拾取电路 (14)3.3 信号放大 (16)3.4 波形整形部分 (18)第四章整体电路分析 (19)4.1 光发射电路 (19)4.2 光电转换电路 (19)4.3 信号采集及处理系统 (20)4.4 过采样技术的应用 (20)4.5 整体硬件电路设计 (21)第五章软件设计 (23)5.1 程序设计 (23)5.2 程序源代码 (24)结束语 (29)致谢 (29)参考文献 (30)基于单片机设计的脉搏测量仪周静0601电气技术[摘要] 医院的护士每天都要给住院的病人把脉记录病人每分钟脉搏数,方法是用手按在病人腕部的动脉上,根据脉搏的跳动进行计数。

为了节省时间,一般不会作1分钟的测量,通常是测量10秒钟时间内心跳的数,再把结果乘以6即得到每分钟的心跳数,即使这样做还是比较费时,而且精度也不高。

本文介绍一种用单片机制作的脉搏测量仪,只要人把手指放在传感器内2秒钟就可以精确测量出每分钟脉搏数,测量结果用三位数字显示。

[关键词]:AT89C2051 单片机脉搏测量仪Single-chip design based on the pulse measuring instrumentZhou Jing0601 Electrical TechnologyAbstract: Nurse hospital wants to give in hospital every day the patient takes the pulse to record the patient each minute pulse number, the method is with the hand according to on the patient wrist's department artery, carries on the counting according to pulse's beat. For the saving of time, will not make 1 minute survey generally, usually will be surveys in 10 seconds time palpitation's number, will be multiplied by again the result 6 namely obtains each minute palpitation number, even if will do this is quite time-consuming, moreover the precision will not be high. This article introduced that one kind the pulse measuring instrument which manufactures with the monolithic integrated circuit, so long as the human places the finger in the sensor 2 seconds to be possible the precision measuring each minute pulse number, the measurement result showed with three digit. Key words: AT89C2051 monolithic integrated circuit pulse measuring instrument第一章引言脉搏测量属于检测有无脉博的测量,有脉搏时遮挡光线,无脉搏时透光强,所采用的传感器是红外接收二极管和红外发射二极管。

脉搏测量仪设计毕业设计论文

脉搏测量仪设计毕业设计论文

实验报告课程名称:暑期实验技能训练指导老师:成绩:实验名称:脉搏测量仪实验类型:硬件同组学生姓名:一、实验目的和要求(必填)三、代码缺陷及修正记录五、讨论、心得二、实验内容和代码(必填)四、实验结果与分析(必填)一、任务与要求设计制作一个脉搏测试仪,利用红外发射、接受传感器对手指末端血流变化的检测,间接检测出脉搏信号,并在数码管上显示每分钟所测人体脉搏数,要求测量稳定、准确。

1.测量范围:0~240 次/min;2.由于所测信号很微弱,易受干扰,必须加滤波电路。

按正常人脉搏数为60~80 次/min,老人为100~150 次/min,在运动后最高跳动次数为240 次/ min设计低通放大器。

5Hz 以上是病人与正常人脉搏波体现差异的地方,应注意保留。

因此特征频率取8Hz 左右;3.测量精度:+-5%;4.采用+5v 单电源供电;二、方案设计1.设计时要考虑的问题由于人体的脉搏信号具有频率低、幅度小干扰大,不稳定度低,随机性强等特点,使得对脉搏信号的采集放大电路的设计提出了很严格的要求,尤其是抗干扰变为十分重要,需要设计低通滤波器进行滤波。

选择放大器时需要从增益、频率响应,输入阻抗,共模抑制比,噪声,漂移等几个方面加以综合考虑。

抗干扰(1)工频50HZ干扰及其各次谐波使用频率为50HZ的市电的电子仪器设备会对检测系统会产生较大的干扰,其幅值大约是脉搏信号峰峰值的50%,是主要的干扰源(2)肌电干扰肌肉的收缩会产生微伏级的电势,其幅值大约是脉搏信号峰峰值的10%,维持时间大约是50ms,频带范围可以在0HZ~10000HZ。

(3)由于呼吸引起的基线漂移和ECG幅度变化呼吸引起的基线漂移可以看成是一个以呼吸的频率加入ECG信号的窦性成分(正弦曲线),这个正弦成分的幅度和频率是变化的。

呼吸所引起的ECG信号的幅度的变化可以达到15%。

基线漂移的频率是从0.15~0.3HZ。

低噪声、低漂移在脉搏信号放大器中,由于增益较高,噪声和漂移是两个较重要的参数。

基于51单片机的脉搏心率测量仪-参考论文

基于51单片机的脉搏心率测量仪-参考论文

基于51单片机的脉搏测量仪摘要:脉搏心率测量仪在我们的日常生活中已经得到了非常广泛的应用。

为了提高脉搏心率测量仪的简便性和精确度,本课题设计了一种基于51单片机的脉搏心率测量仪。

系统以STC89C51单片机为核心,以红外反射式传感器ST188为检测原件,并利用单片机系统内部定时器来计算时间,由红外反射式传感器ST188感应产生脉冲,单片机通过对脉冲累加得到脉搏心率跳动次数,时间由定时器定时而得。

系统运行中能显示脉搏心率次数和时间,系统停止运行时,能够显示总的脉搏心率次数和时间。

经测试,系统工作正常,达到设计要求。

关键词:脉搏心率测量仪;STC89C51单片机;红外反射式传感器一脉搏心率测量仪系统结构脉搏心率测量仪的设计,必须是通过采集人体脉搏心率变化引起的一些生物信号,然后把生物信号转化为物理信号,使得这些变化的物理信号能够表达人体的脉搏心率变化,最后要得出每分钟的脉搏心率次数,就需要通过相应的硬件电路及芯片来处理物理变化并存储脉搏心率次数。

在硬件设计中一般的物理信号就是电压变化。

1.1 光电脉搏心率测量仪的结构光电脉搏心率测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏心率跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。

本系统的组成包括光电传感器、信号处理、单片机电路、数码管显示电路、电源等部分。

1.光电传感器即将非电量(红外光)转换成电量的转换元件,它由红外发射二极管和红外接收三极管组成,它可以将接收到的红外光按一定的函数关系(通常是线性关系)转换成便于测量的物理量(如电压、电流或频率等)输出。

2.信号处理即处理光电传感器采集到的低频信号的模拟电路(包括放大、滤波、整形等)。

3. 单片机电路即利用单片机自身的定时中断计数功能对输入的脉冲电平进行运算得出心率(包括STC89C51、外部晶振、外部中断等)。

4.数码管显示电路即把单片机计算得出的结果用四位一体数码管显示出来。

5. 电源即向光电传感器、信号处理、单片机提供的电源,采用直流5V 电源供电。

基于单片机的脉搏测量仪开题报告

基于单片机的脉搏测量仪开题报告

基于单片机的脉搏测量仪开题报告
本项目以大学生为研究对象,设计开发一个基于单片机的脉搏测量仪,用于对大学生的脉搏进行测量。

本项目将采用单片机进行系统硬件设计,
开发其固件程序和软件应用程序,实现脉搏测量仪的数据采集,显示,存
储和传输功能。

本项目主要分为硬件设计,固件开发和软件应用程序开发
三个模块。

硬件设计部分,将采用单片机和传感器对脉搏进行测量,具体
包括单片机选型、传感器选型、电路设计、封装技术等。

固件部分,将编
写读取脉搏信号的程序,以及将信号转换成脉搏数据的程序等。

软件应用
程序部分,将开发各类软件进行实时脉搏测量,绘制并显示脉搏曲线,以
及对脉搏指标进行实时显示等。

本项目预计将实现实时脉搏测量和细节分析,有助于大学生的健康管理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计 ( 论文) 开题报告 题目: 基于单片机的脉搏测量仪的设计课 题 类 型:设计丁实验研究□论文口学 生 姓 名: 学 号: 专 业 班 级: 学 院:信息工程学院 指 导教师:开 题 时 间 年月日 开题报告内容与要求一、毕业设计(论文)内容及研究意义(价值)随着科技发展的不断提高, 生命科学和信息科学的结合越来越紧密, 出现了各种新 颖的脉搏测量仪器,特别是电子脉搏仪的出现,使脉搏测量变得非常方便。

脉诊在我 国已具有2600 多年临床实践,是我国传统中医的精髓,但祖国传统医学采用“望、闻、问、切”的手段进行病情诊断,受人为的影响因素较大,测量精度不高。

科技的创新,脉搏测试不再局限于传统的人工测试法或听诊器测试法,脉搏测量可利用电子仪器测量出精度更就的数据。

人体脉搏信号中包含丰富的生理信息,也逐渐引起了临床医生的很大兴趣,达到了方便、快捷、准确的测量脉搏的目的。

随着电子测量技术的迅速发展,现代电子测量仪器以极快的速度向数字化、自动化的方向发展。

制成的脉搏测量仪器性能良好,结构简单,有较好的应用和推广价值。

脉搏测量仪的设计,必须是通过采集人体脉搏变化引起的一些生物信号,然后把生物信号转化为物理信号,使得这些变化的物理信号能够表达人体的脉搏变化,最后要得出每分钟的脉搏次数,就需要通过相应的硬件电路及芯片来处理物理变化并存储脉搏次数。

在硬件设计中一般的物理信号就是电压变化。

本系统的组成包括传感器、信号处理、单片机电路、显示电路、键盘输入等部分。

二、毕业设计(论文)研究现状和发展趋势(文献综述)随着科学技术的发展,脉搏测量技术也越来越先进,对脉搏的测量精度也越来越高,国内外先后研制了不同类型的脉搏测量仪,脉搏测试不再局限于传统的人工测试法或听诊器测试法,脉搏测量可利用电子仪器测量出精度更就的数据。

人体脉搏信号中包含丰富的生理信息,也逐渐引起了临床医生的很大兴趣,达到了方便、快捷、准确在测量脉搏的目的。

随着电子测量技术的迅速发展,现代电子测量仪器以极快的速度向数字化、自动化的方向发展。

制成的脉搏测量仪器性能良好,结构简单,有较好的应用和推广价值。

而其中关键是对脉搏传感器的研究。

起初用于体育测量的脉搏测试集中在对接触式传感器的研究,利用此类传感器所研制的指脉、耳脉等测量仪各有其优缺点。

指脉测量比较方便、简单,但因为手指上的汗腺较多,指夹常年使用,污染可能会使测量灵敏度下降:耳脉测量比较干净,传感器使用环境污染少,容易维护。

但因耳脉较弱,尤其是当季节变化时,所测信号受环境温度影响明显,造成测量结果不准确。

过去在医院临床监护和日常中老年保健中出现的日常监护仪器,如便携式电子血压计,可以完成脉搏的测量,但是这种便携式电子血压计利用微型气泵加压橡胶气囊,每次测量都需要一个加压和减压的过程,存在体积庞大、加减压过程会有不适、脉搏检测的精确度低等缺点。

脉搏测量仪的发展主要向以下几个趋势发展:(1)自动测量脉搏并且对所得到的脉搏进行自动分析。

目前很多脉搏测量仪都具有检测血氧等其他的功能,但是对这些信号的分析和诊断还需要一些有经验的医生观察,进行分析后才能确认结果,浪费大量的人力,且由人为引入的误差较大。

因此,未来脉搏自动检测的内容将更加详细,自动分析诊断功能也更强大。

(2)数字化技术等先进技术的应用。

随着数字科学技术的发展,脉搏测量仪集成度将更高,更便于携带。

数字信号处理的运用将使干扰更小,测量更为准确。

(3)多功能化越来越明显目前的脉搏测量仪,一般都具有测试血氧,心电图等等功能,单纯的脉搏测量仪已经很少见。

随着电子技术的发展,脉搏测量仪必然可以实现更多的功能。

人体脉搏测试仪是用来测量人体心脏跳动频率的电子仪器,也是心电图的主要组成部分。

心脏跳动频率通常用每分钟心脏跳动的次数来表示。

采用数显式脉搏计测量心脏跳动的频率不但精确,而且使用方便,显示结果醒目。

近年来国内外致力于开发无创非接触式的传感器,这类传感器的重要特征是测量的探测部分不侵入机体,不造成机体创伤,能够自动消除仪表自身系统的误差,测量精度高,通常在体外,尤其是在体表间接测量人体的生理和生化参数。

通过查阅资料发现主要的脉率采集有三种方法:采用一对红色发光二极管实现、采用反射式的红外管实现和采用压电陶瓷芯片实现。

方法一:检测的基本原理:随着心脏的搏动,人体组织半透明度随之改变。

当血液送到人体组织时,组织的半透明度减小;当血液流回心脏,组织的半透明度增大。

这种现象在人体组织较薄的手指尖、耳垂等部位最为明显。

因此,本脉率计将红外发光二极管产生的红外线照射到人体的上述部位,并用装在该部位另一侧或旁边的红外光电管来检测机体组织的透明程度并把它转换成电信号。

由于此信号的频率与人体每分钟的脉搏次数成正比,故只要把它转换成脉冲并进行整形、计数和显示,就能实现实时检测脉搏次数的目的。

方法二:采用反射式的红外管。

现在市场上的脉率计普遍采用这种传感器来采集信号,因为此红外管接收和发的,对红外的知识了解相对匮乏,得到需要的信号也不太容易。

方法三:采用压电陶瓷片通过脉搏的跳动采集信号。

随着心脏的搏动,人体手腕的脉搏和颈部的搏动较为明显,采用压电传感器放于上述部位,把压电传感器测得的信号转换成脉冲并进行整形、计数和显示,就能实现实时检测脉搏次数的目的。

当脉搏跳动时,压电陶瓷片便会产生相应的信号,虽然这是一种很陈旧的方法,但是却很实用,测试的时候能够明显的观测到信号的变化。

射都在手指的同一侧,所以就不用考虑每个人手指情况不同所造成的麻烦了。

但是同样人体心室周期性的收缩和舒张导致主动脉的收缩和舒张,是血流压力以波的形式从主动脉根部开始沿着整个动脉系统传播,这种波成为脉搏波。

从脉搏波中提取人体的心理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。

脉搏波所呈现出的形态(波形)、强度(波幅)、速率(波速)和节律(周期)等方面的综合信息,在很大程度上反映出人体心血管系统中许多生理病理的血流特征,因此对脉搏波采集和处理具有很高的医学价值和应用前景。

但人体的生物信号多属于强噪声背景下的低频的弱信号,脉搏波信号更是低频微弱的非电生理信号,因此必需经过放大和后级滤波以满足采集的要求。

三、毕业设计(论文)研究方案及工作计划(含工作重点与难点及拟采用的途径)本设计采用单片机AT89C51为控制核心,实现脉搏测量仪的基本测量功能。

系统硬件框图如下图1所示:图1脉搏测量仪硬件框图本设计的难点在软件编码与调试这一部分,软件这部分用C语言编写,C语言编写比较简单,而且看起来脉络清晰,明白,易懂。

并且调试、修改起来也比较方便。

编写时各个模块可以独立编写,各个模块用一个函数表示,需要时只需调用即可,最后再将各个模块联系起来。

当然,各个模块程序的编写还是相当不容易的,需要多查阅资料与学习。

重点在硬件设计,硬件设计主要就是各个模块的设计,其关键在于仪器选型和电路设计,如:显示电路用LED显示,键盘主要用于设定脉搏波速上下限,不在此范围,则就报警。

这部分也需多查阅资料,多多请教别人,多思考。

工作计划四、主要参考文献(不少于10篇,期刊类文献不少于7篇,应有一定数量的外文文献,至少附一篇引用的外文文献(3个页面以上)及其译文)[1]程光,赵崇侃•指动脉搏波光电传感器的研制[J] •南京医学院学报,1991年第11 卷第 4 期,329—330.[2]朱国富,廖明涛,王博亮.袖珍式脉搏波测量仪[J].电子技术应用,1998,第1期,1 —3.[3]韩文波,曹维国,张精慧.光电式脉搏波监测系统[J] .长春光学精密机械学院学报,1999,第22卷第4期,2.[4]欧阳俊,谢定等.基于BL-410 的指端脉搏波采集系统应用研究[J] .实用预防医学,2004,第11卷第2期,2—4.[5]刘云丽,徐可欣等.微功耗光电式脉搏测量仪[J] .电子测量技术,2005,第 2 期,2—5.[6]刘文,杨欣,张铠麟•基于AT89C205仲片机的指脉检测系统的研究[J].医疗装备,2005,第9 期,2—14.[7]程咏梅,夏雅琴,尚岚.人体脉搏波信号检测系统[J] .北京生物医学工程,2006,第25 卷第5 期,1—3.[8 ]李海滨. 单片机技术课程设计与项目实例[M]. 北京:中国电力出版社,2009[9]J McLaughlin, M McNeill, B Braun and P D McCormack. Piezoelectric sensor determination of arterial pulse wave velocity [M]. UK :INSTITUTE OF PHYSICS PUBLISHING ,2003, 6-4.[10]J.C.Candy and G.C.Temes .Oversampling Methods for Data Conversion[M].IEEE Pacific Rim conferenceon Communications,Computers and Signal Processin,g May 1991,9-10[11]John D.Ryder Electronic Fundamentals and Applications[M.] 1983,1-24.外文文献:Piezoelectric sensor determination of arterial pulse wave velocityArterial pulse wave velocity (APWV) is a measure of the elasticity (or stiffness) of peripheral arterial blood vessels. The pulse referred to here will be the pressure pulse as opposed to the flow pulse measured by ultrasound Doppler.The pressure pulse velocity varies over the range from about 12 m s-1 to15 m s-1 in stiff peripheral arteries, whereas in normal arteries it has a velocity in the range of 7 to 9 m s-1.The aim of this project was the development of a fast and easy to use system for the determination of peripheral arterial pulse wave velocity. The principle of the PWV measurementis based on simultaneous measurement of two pulse waves at two different positions, such as the radial artery at the wrist and the brachial artery just above the elbow. By determining the pulse transit time between these points and the distance measured between the twolocations,pulse wave velocity may then be calculated. The pressure pulse detection is done byusing two piezoelectric sensorswhich generate a measurable voltage at the output contacts if they are mechanically deformed. The deformation produced voltage is first amplified and filtered and then digitalized with a data acquisition card. The analysis of the data obtained from the sensorsincludes a filtering process, the calculation of the PWV with three different method—s foot-to-foot, cross-correlation and peak-to-pea—k and the determination of the arterial pulse rate.The sensor technique used in this work involves the piezoelectric effect in polyvinylidene fluoride (PVDF), which produces an output voltage in response to mechanical pressure on the material.Three methods of APWV determination are used: foot-to-foot APWV; peak-to-peak APWV and cross-correlation APWV. The FFAPWV and CCAPWV methods are less sensitive to pressure wave reflections at bifurcations, etc in the arterial tree, than the PPAPWV method. Mean values and standard deviations were computed for all three methods and compared.‘ Foo-tto-foot ' APWV (FFAPWV). This is based on the velocity of the ‘ foot ' , oleading edge, of the pressure pulse wave. The arrival times of the foot of the pulse wave at two positions along the artery are recorded. IfA t is the difference in arrival times and A s the distance between the two recording positions (proximal and distal), the FFAPWV is simplyFFAPWV = A s/A t.‘Pea-kto-peak' APWV (PPAPWV). This is completely analogous to the FFAPWV except that the points of observation are the two (proximal and distal) peaks of the pulse wave andPPAPWV = A s/A t.Apparent pulse wave velocity (AAPWV). The pressure wave may be represented as aFourier series,P(t) = P0 +Pn sin(n® t + 0 n)Where P0 is the mean fluid pressure, n is the harmonic number, Pn is the amplitude of the nth harmonic and 0 n is the phase angle of the nth harmonic.The spatial rate of change of the phase for one harmonic based on two simultaneous pressure measurements separated by a distance _s along an artery, is related to the apparentarterial pulse wave velocity (AAPWV) by the following equation,AAPWVn = ( △ s)n(f )(360°)/( 0 x1- 0 x2)Where AAPWVn is the apparent pulse wave velocity for the nth harmonic, f is the heart rate,0 x1 is the phase angle for the proximal harmonic n and0 x2 is the phase angle for the distal harmonic n.Cross-correlation PWV. If the arterial pulse at the proximal measurement position is represented by the pressure time series P(x1, t) and that at the distal position by P(x2, t) and the cross-correlation coefficient is^x1,x2( T ), then ① will have a maximum value at some time lag.The correlation function can be expressed as① X1,X2(T ) = (1/T ) P(x1, t)P(x2, t) dt.The value of t at which maximum correlation occurs represents the transit time (_t) of the pressure wave from position x1 to position x2 along the arterial segment. From the separation distance and transit time data the correlation arterial pulse wave velocity isCCAPWV = (x2 - x1)/ △ t.In this work normal, young test subjects were used, and it has the primary objectives of optimizing the measurement procedures and establishing the statistical spread and mean values of the observed PWVs for a specific peripheral arterial segment. Based on this, it is planned to use the system in clinical trials involving patients withperipheral arterial disease(due to diabetes, hypertension, etc), pre-, during and post treatment (pharmaceutical or surgical).Analogue and digital circuitryAnalogue charge amplifier. Piezoelectricmaterials convert mechanical stress or strain into proportionate electrical energy, by producing a charge when subjected to mechanical stress. The charge is converted to a voltage by an operational amplifier connected as a current integrator, called a charge amplifier. The signal output of the amplifier is approximately -30 mV. It is augmented by signal amplification.Analogue signal amplification . This is done by use of an inverting amplifier. Because a dc signal appears at the output of the charge amplifier, dc offset removal is essential and isimplemented in the inverting summingThe next phase of the analogue circuitry is a low pass filter to remove the 50 Hz noise interference.Digital controlled data acquisition and analysis. A data acquisition board (DAQ) isrequired when the transducer signals need interfacing with a PC. The board contains 12 bit plus sign and a successive approximation and self-calibrating analogue-to-digital (ADC) converter. The ADC incurs a systematic error known as the quantization error. It is due to limited resolution and withthe analogue input limit set at -5 to +5 V, the quantization error of the A/D converter used here was calculated to be 0.122 m. VThe data acquisition and analysis was done using Lab Vie—wa powerful instrumentation and analysis programming language for PCs.Digital data acquisition program. The data acquisition circuit performs all the necessary operations for the data acquisition with Lab View. The functions of the circuit initialize the data acquisition and read the data from the acquisition card. These data are stored for later use in the data analysis part of the program.Lab View programs are called virtual instruments (VIs) because of their appearance and operations are analogous to measuring instruments. A VI that is called within another VI is called a sub-VI and is analogous to a subroutine in text-based languages.The data acquisition, analysis and presentation are comprised of three main procedures:(1)Data acquisition card to interface the hardware to the PC.(2)Data acquisition program to acquire and store data in a spreadsheet file.(3)Data analysis to carry out digital signal processing, calculate PWV and present results. PWV Calculation1.PWV calculation using peak detection. To calculate PWV using peaks, the location of the peaks must first be determined, so that the transit time of the wave between the peaks can be determined. It was found that the best method of peak detection is the derivative of the curve method. If the first derivative of a curve is zero, then an extreme value can exis—t either a peak or a turning point. It is necessary to take the second derivative at this po—initf thisis also zero, then an extreme value exists. The second VI used to determine the PWV is PWVcalc,using the time separation between the located peaks.2.PWV with pressure wave foot detection. The VI named PWV Foot determines the leading edge (foot) of the pressure wave at the upstream and downstream locations. The VI named PWVcalc is again used to compute the PWV from the time separation between the two leading edges ( ‘-tof-ofoot t ' APWV or FFAPWV).3.PWV with cross-correlation. The PWV determination with cross-correlation is done with the VI named CalcPWV. The VI is in two parts: a part for the initialization function and a part for the calculation of the CCAPWV.In all cases PWV values are assembled in an array and the mean value, standard deviation and variance are calculated.Sensor positioningSensor placement is critical to obtaining consistent measurements. A screw mechanism was first used to apply the sensors to the skin. But readings were very variable and so this technique was replaced by that in which the sensors are fixed to the skin by elastic strips.This led to better results.Arm position is another critical feature of measurement. Two positions, normal and dependent, were analyzed in detail, using one test subject. In the normal position, the subject sits with the arm resting on a table. All test subject measurements were made in this position. In the dependent position, the subject sits with the arm hanging straight down.The PWV values were smaller in this position and the variability was much greater, so this technique was discarded.A correction module, ‘ Delete Incorrect ' , was used to delete PWV values resulting from aberrant signals, caused commonly by arm movement during the measurement. These unrealistic values were deleted before the PWV values were passed to the analysis VI.中文翻译压电传感器测定动脉脉搏波速度动脉脉搏波速度(APWV是一个测量的弹性(或刚度)的外周动脉血管。

相关文档
最新文档