理想流体动力学基本方程

合集下载

《高等流体力学》第2章 流体动力学积分形式的基本方程

《高等流体力学》第2章 流体动力学积分形式的基本方程
τ0
(φ 为广延量)
取τ= τ0(t)为控制体, A= A0(t)为控制面:
A2 ( A02 )
τ 03
′ A02
v∆t
A1 ( A01 )
′ A01
n
τ 02
v∆t
τ 01
dA0
τ = τ 0 (t )
A = A0 ( t )
n
′ ( t + ∆t ) = A′ A0
∆ = I I ( t + ∆t ) − I ( = t)
I在∆t内的增量为:
∫∫∫τ
01 +τ 02
φ ( r , t + ∆t ) dτ 0 − ∫∫∫
τ 01 +τ 03
φ ( r , t ) dτ 0
∫∫∫τ
φ ( r , t + ∆t ) − φ ( r , t ) dτ 0 + ∫∫∫ φ ( r , t + ∆t ) dτ 0 τ 02 01
D ∂φ Dφ φ dτ 0 = + ∇ φ= v + φ∇ ⋅ v ⇒ ∫∫∫ τ 0 Dt ∂t Dt Dt ∂t
( )
Dφ + φ∇ ⋅ v dτ ∫∫∫τ Dt
Dρ + ρ∇ ⋅ v = 0 (微分形式连续方程) 如果 φ = ρ ,则: Dt (2) D D ( ρφ ) ρφ dτ 0 ∫∫∫ = + ρφ∇ ⋅ v dτ ∫∫∫ τ τ 0 Dt Dt ρ Dφ ρ Dφ Dρ dτ = ∫∫∫ +φ + ρ∇ = ⋅ v dτ ∫∫∫ τ τ Dt Dt Dt
∂x′ ′ = ∇xα iβ α i′α = ∂xβ ∂φ ∂x′ ∂φ ∂φ ∴∇′φ = i′α = iβ α = iβ = ∇φ ′ ′ ∂xα ∂xβ ∂xα ∂xβ

第3章流体力学连续性方程微分形式

第3章流体力学连续性方程微分形式

第四节 欧拉运动微分方程的积分
du p p p du d y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt d
<I> <II> <III>
p 2、均匀不可压缩流体,即=Const; <II>= d ( )
中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。 受力分析(x方向为例): 1.表面力
z
A'
D' M p(x,y,z) B' N
C'
p dx p x 2
dz dx D dy A
O
o’
p dx p Cx 2
B
x
∵理想流体,∴=0
左表面
y
p dx P p A ( p ) dydz M M 2 x p dx 右表面 P p A ( p ) dydz N N 2 x
2 2 2 2 2 2 ,例: 拉普拉斯算符 x y z 2
2 2 2 u u u x x x u x 2 2 2 x y z 2

第三节 流体动力学基本方程式
第四节 欧拉运动微分方程的积分
由于欧拉运动微分方程是一个一阶非线性偏微分方程组(迁移加速度的三 项中包含了未知数与其偏导数的乘积),因而至今还无法在一般情况下积分, 只能在一定条件下积分。 欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距ds 的坐标分量),然而相加得:
du p p p du du y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt dt

第7章_理想流体动力学基本方程

第7章_理想流体动力学基本方程

④列动量方程求解。
Fx p1A1 p2 A2 cos Rx Qv2x v1x
Fy p2 A2 sin Ry Q v2y v1y
Fx p1A1 p2 A2 cos Rx Qv2 cos v1
Fy p2 A2 sin Ry Qv2 sin 0
Rx p1A1 p2 A2 cos Qv2 cos v1
动量方程:反映了流体的动量变 化与外力之间的关系
粘性流体:实际流体都具有粘性。既有粘性切应力,又有法向压应力。
0
理想流体:理想流体可忽略粘性。即无粘性切应力,只有法向压应力。
0
粘性流体:
理想流体:
一、动量方程——流体的运动方程
1、积分形式的动量方程——流体的运动方程
质点系的动量定理:
系统的动量对时间的变化率等于作
第7章 理想流体动力学动量方程
粘性流体:实际流体都具有粘性,致使所研究的问题比较复杂。 理想流体:指粘性为零的流体,实际上并不存在,但在有些问题
中,粘性的影响很小,可以忽略不计,致使所研究的 问题简单化。 理想流体动力学规律可以应用于粘性的影响很小的实 际流体中,所以本章的研究具有实际意义。
主要内容
过流断面是均匀流或渐(缓)变流断面不可压缩流体
Fx Q(2v2x 1v1x ) Fy Q(2v2 y 1v1y ) Fz Q(2v2z 1v1z )
④当沿程有分流和汇流时:
Fx (3Q3v3x 2Q2v2x 1Q1v1x ) Fy (3Q3v3y 2Q2v2 y 1Q1v1y ) Fz (3Q3v3z 2Q2v2z 1Q1v1z )
对1-1,2-2断面列伯努利方程
p1 v12 p2 v22
g 2g g 2g
v1 1.42m / s v2 3.18m / s

第三章 流体动力学基础

第三章 流体动力学基础

1、在水位恒定的情况下: (1)A®A¢不存在时变加速 度和位变加速度。 (2)B®B¢ 不存在时变加速 度,但存在位变加速度。 2、在水位变化的情况下: (1)A®A¢ 存在时变加速度, 但不存在位变加速度。 (2)B®B¢ 既存在时变加速 度,又存在位变加速度。
图3-19
第二节 流体质点运动特点和有旋流
图3-13
非均匀流——流线不是平行直线的流 动, 。 非均匀流中流场中相应点的流速大 小或方向或同时二者沿程改变,即沿流 程方向速度分布不均。例:流体在收缩 管、扩散管或弯管中的流动。(非均匀 流又可分为急变流和渐变流)
4.渐变流与急变流
非均匀流中如流动变化缓 慢,流线的曲率很小接近平行, 过流断面上的压力基本上是静 压分布者为渐变流(gradually varied flow),否则为急变流。
图3-17
(3)三元流
三元流(threedimensional flow):流动 流体的运动要素是三 个空间坐标函数。例 如水在断面形状与大 小沿程变化的天然河 道中流动,水对船的 绕流等等,这种流动 属于三元流动。(图 3-18)
图3-18
三.描述流体运动的方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以 流场中每一流体质点作为描述流体运动 的方法,它以流体个别质点随时间的运 动为基础,通过综合足够多的质点(即 质点系)运动求得整个流动。——质点 系法
一、流体质点的运动 特点 刚体的运动是由 平移和绕某瞬时轴 的 转动两部分组成,如 图3-20(a)。
图3-20(a)
流体质点的运动, 一般除了平移、转 动外,还要发生变 形(角变形和线变 形),如图3-20(b)。
图3-20(b)
二、角速度的数学表达式 流体质点的旋转用角速度表征,习 惯上是把原来互相垂直的两邻边的角速 度平均值定义为该转轴的角速度。

《流体力学》流体力学基本方程

《流体力学》流体力学基本方程

2.2 描述流体运动的一些基本概念
2.2.1定常流与非定常流
流场中所有的运动 要素不随时间变化
u u(x, y, z)
(x, y, z)
p p(x, y, z)
u 0 t p 0 t
0
t
流场中有运动 要素随时间变化
u u(x, y, z,t)
(x, y, z,t)
p p(x, y, z,t)
p p(x, y, z,t) (x, y, z,t)
x, y, z ,t--欧拉变量,其中x,y,z与时间t有关。
欧拉法是常用的方法。
5
16 October 2021
欧拉法中的加速度 -- 质点速度矢量对时间的变化率。
a
u t
ux
u x
uy
u y
uz
u z
三个分量:
ax
ux t
ux
ux x
拉格朗日法 从流体质点的运动着手,描述每一个流体质点自始至 终的运动过程。如果知道了所有流体质点的运动规律,那么整个流 体的运动规律也就清楚了。是质点--时间描述法。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
ln x t ln y t ln c
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
y x
12
16 October 2021
2. 求迹线
将已知速度分布代入式(2.2.1)可得
dx x t, dy ( y t), dz 0

流体力学第六章流体动力学积分形式基本方程

流体力学第六章流体动力学积分形式基本方程

右端为零。
第1页
退出 返回
第六章 流体动力学积分形式基本方程
第三节 动量矩方程
例题6.3 如图6.4所示,离心压缩机叶轮转
速为 ,带动流体一起旋转,圆周速度
为 u ,流体沿叶片流动速度为w ,流量
为Q,流体密度为 ,求叶轮传递给流体
的功率。
解:流体绝对速度为 c u w
当叶片足够多时,可认为流动是稳定的。取
则控制体内流体内能的增量将由辐射热提供,于是有
qR d
de dt
d
d dt
ed
qR
de dt
,即 (6.11)
第3页
退出 返回
第六章 流体动力学积分形式基本方程
第四节 能量方程
据系统导数公式(输运公式),有
d dt
ed
t
ed
A w
nedA
稳定流动时由式(6.11)、(6.12)可得
(6.12)
d
u
t
d
(b)
第4页
退出
返回
第六章 流体动力学积分形式基本方程
第二节 动量方程
将式(a),(b)代入式(6.4)得到
A wr nwrdA u
A wr ndA
Fd
A pndA
t
wrd
u t
d
u t
d
(c)
由连续性方程可知
u
t
d
uA
wr
ndA
0
,则(c)式变为
Awr nwrdA
第1页
退出
返回
第六章 流体动力学积分形式基本方程
第一节 连续性方程
如图6.1所示,令 为控制体体积,A为控制面面积,n为 dA 控制面外

流体动力学基本方程

流体动力学基本方程

Chapter 3 流体动力学基本方程例如求解定常均匀来流绕流桥墩时的桥墩受力问题:流场和桥墩表面受力由(边界条件+控制方程组)决定。

本章任务建立控制方程组,确定边界条件的近似描述和数学表达。

I 质量连续性方程(质量守恒方程) I-1方程的导出物质体(或系统)的质量恒定不变——质量守恒假设。

质量守恒假设对于很多流动问题是良好近似,分子热运动引起的系统与外界的物质交换可忽略不计。

在此假设下,对物质体τ有0dd dtτρτ=⎰。

根据输运定理,设t 时刻该系统所占控制体为CV ,对应控制面CS ,则有0CVCSd v ds tρτρ∂+⋅=∂⎰⎰⎰——质量守恒方程积分形式。

上式亦表明,CV 内单位时间内的质量减少=CS 上的质量通量。

由奥高公式得()CSCVv ds v d ρρτ⋅=∇⋅⎰⎰⎰,于是有()0CV v d t ρρτ∂⎡⎤+∇⋅=⎢⎥∂⎣⎦⎰。

考虑到τ的任意性,故有()0v t ρρ∂+∇⋅=∂,即 0d v dtρρ+∇⋅= ——质量守恒方程微分形式 I-2各项意义分析: 1)dt d ρ——流体微团密度随时间的变化率;定常流动0=∂∂t ρ;不可压缩流动0=dt d ρ;均质流体的不可压缩流动.const ρ=。

2)由0=dtmd δ(m δ为微团的质量)知11d d dt dt ρδτρδτ=-(δτ为该微团t 时刻体积),从而知v ∇⋅=流体微团体积随时间的相对变化率,即体膨胀率。

3)不可压缩流体0d dtρ=,故有 0v ∇⋅=。

由奥高公式有CVCSv ds vd τ⋅=∇⋅⎰⎰⎰,可见对于不可压缩流动,任意闭合曲面上有0CSv ds ⋅=⎰⎰。

不可压缩流动满足的0v ∇⋅=或0CSv ds ⋅=⎰⎰是对速度场的一个约束。

例1、1)定常流场中取一段流管,则由0CSv ds ⋅=⎰⎰易知:222111S V S V ρρ=;如为均质不可压缩流动,则1122V S V S =。

流体力学重要公式

流体力学重要公式

流体流动流体特性→流体静力学→流体动力学→流体的管内流动gΔZ+Δu2/2+Δp/ρ=W e-∑h f静压能:p/ρ,J/kg静压头:p/(ρg),m流体密度:ρ,kg/m3 ,不可压缩流体与可压缩流体压强差:Δp,Pa, mmHg,表压强,绝对压强,大气压强,真空度流体静力学基本方程:gΔz+Δp/ρ=0或p1/ρ+gZ1=p1/ρ+gZ1或p=p A+hρg应用:U型压差计gΔZ+Δu2/2+Δp/ρ=W e-∑h f位能:gZ,J/kg位头:Z,m截面的选择基准面的选定gΔz+Δu2/2+Δp/ρ=W e-∑h f动能:u2/2,J/kg动压头(速度头):u2/(2g),m流速:u, m/s当两截面积相差很大时,大截面上(贮液槽)u≈0流体在圆管内连续定态流动:u2=u1(d1/d2)2体积流速:q v, m3/s q v=uA质量流速:q m, kg/s q m=q vρ=uAρ流速测定:变压差(定截面)流量计:测速管/孔板/文丘里u=C(2Δp/ρ)1/2=C[2R(ρA-ρ)g/ρ]1/2孔板C=0.6-0.7;测速管/文丘里C=0.98-1.0变截面(定压差)流量计:转子流量计gΔZ+Δu2/2+Δp/ρ=W e-∑h f管路总阻力:∑h f=h f+h f’,J/kg;总压头损失:H f=∑h f/g,m对静止流体或理想流体:∑h f=0直管阻力:h f=λ.L/d.u2/2局部阻力:h f’=ζu2/2 (阻力系数法)或h f’=λ.L e /d.u2/2 (当量长度法)(进口:ζ=0.5;出口:ζ=1)雷诺准数:Re=duρ/μ, 流型判断管内层流:Re≤2000ur=Δp f/(4μL).(R2-r2), u=u max/2;λ=64/Re管内湍流:Re>2000λ=0.3164/Re0.25 (光滑管)λ=f(Re,ε/d)(粗糙管)牛顿黏性定律:τ=μ(du/dy)当量直径:d e=4流通面积/润湿周边长度gΔZ+Δu2/2+Δp/ρ=W e-∑h f有效功(净功):W e,J/kg;有效压头:H e=W e/g,m有效功率:P e=W e q m,W功率:P=P e/η非均相混合物分离及固体流态化非均相混合物(颗粒相+连续相)→相对运动(沉降/过滤)→分离颗粒相+连续相→固体流态化→混合沉降沉降(球形颗粒):连续相:气体/液体颗粒受力:(重力/离心)场力-浮力-阻力=ma沉降速率重力沉降离心沉降ζ=f(Re t,υs),Re t=du tρ/μ<10-4-1(层流区),ζ=24/ Ret离心分离因数沉降设备设计沉降条件:θ≥θt重力沉降:降尘室离心沉降:旋风分离器生产能力qv=blu t q v=hBu i(q v与高度无关)n层沉降室q v=(n+1)blu t过滤(滤饼过滤)恒压滤饼过滤(忽略过滤介质阻力)K过滤常数:K=2k(Δp)1-s, m2/s;*K取决于物料特性与过滤压差;单位过滤面积所得的滤液体积q=V/A,m3/m2;单位过滤面积所得的当量滤液体积q e=V e/A,m3/m2;s-滤饼的压缩性指数每得1m3滤液时的滤饼体积υ(1m3滤饼/1m3滤液)体积为V W的洗水所需时间θW = V W/(dV/dθ)W过滤机的生产能力(单位时间获得的滤液体积)间歇式连续式Q=V/T=V/(θ+θW+θD)若V e可忽略转筒表面浸没度ψ=浸没角度/3600转筒转速为n-- r/min,过滤时间θ=60 ψ/n传热传热方式及定律热传导:傅立叶定律对流:牛顿冷却定律辐射;斯蒂芬-波耳兹曼定律:E b=σ0T4=C0(T/100)4传热基本方程Q=KS△t m换热器的热负荷用热焓用等压比热容用潜热两平行灰体板间的辐射传热速度Q1-2Q1-2=C1-2S[(T1/100)4-(T2/100)4对流和辐射联合传热总散热速率:Q=Q c+Q R=αTS w(t w-t b)αT=αc+αR恒温传热△t m=T-t变温传热:平均温差*逆流和并流错流和折流温差校正系数=f(P,R)传热单元数法计算确定C min→NTU,C R→ε→由冷热流体进口温度和ε→冷热出口温度传热表面积S=Q/(K△t m)热传导和对流联合传热总传热系数R so,R si垢阻;壁阻对流传热系数αi,αo流体有相变时的对流传热系数层流膜状冷凝时:努塞尔特方程湍流液膜冷凝时:水平管外液膜冷凝时:液体沸腾传热系数:罗森奥公式:α=(Q/S)/Δt蒸发蒸发器的热负荷Q,kJ/hQ=D(H-h c)=WH’+(F-W)h1-Fh c+Q L冷凝水在饱和温度下排出Q=Dr=WH’+(F-W)h1-Fh0+Q L溶液稀释热可忽略D=[Wr’ +Fc0(t1–t0)+Q L]/rr’=(H’-c W t1)近似可作为水在沸点t1的汽化热。

流体动力学基本方程

流体动力学基本方程

u
( 2 p2 p1 )


2 g ( 1 ) h

皮托管测速计
§4.3 实际流体流束的伯努利方程
实际流体具有粘性,在流动过程中有一部分机械能将不可逆地转 化为热能耗散。根据能量守恒原理,实际流体流束的伯努利方程为
整理: 1 p du x fx x dt
1 p du y fy y dt
同理:
1 p du z fZ z dt
1 p fx x 1 p fy y f 1 p Z z
§4.4 理想流体的运动学微分方程的伯努利积分
du x 1 p f x x dt du y 1 p fy y dt 1 p du z fZ z dt
沿流线积分,将流线上的dx、dy、dz分别乘理想流体运动微分方程的三个分式,然后相加得:
1 p 1 p f x dxdydz ( p dx)dydz ( p dx)dydz dxdydz du x 2 x 2 x dt
1 p 1 p f x dxdydz ( p dx)dydz ( p dx)dydz dxdydz du x 2 x 2 x dt
1 1 2 2 2 2 d u x u y uz d ( u ) 2 2


du y 1 p p p du x du z f x dx f y dy f z dz dx dy dz dx dy dz x y z dt dt dt
u x u y u z 0 x y z
② 对不可压缩均质流体,ρ为常数,上式可简化为
u x u y u z 0 x y z

流体力学第五章流体动力学微分形式基本方程

流体力学第五章流体动力学微分形式基本方程

或 D w 0
Dt
第4页 退 出 返 回
(5.3a)
第五章 流体动力学微分形式基本方程
第一节 连续性方程
对于稳定流动, 0,于是式(5.1)变为
t wx wy wz 0
x
y
z

w 0
对于不可压缩流体, 为常数,则连续性方程为
wx wy wz 0 x y z

w 0
和为零,六面体中流体的质量是不变的,即
wx
wy
wz
0
t x
y
z
(5.1)
式(5.1)就是流体的连续性方程。将上式展开,并且注意到
d dt
t
wx
x
wy
y
wz
z
则连续性方程也可写成 1 d wx wy wz 0 dt x y z
(5.2)
写成向量形式 (w) 0
t
(5.3)
Fr
1
p r
w t
wr
w r
w r
w
wz
w z
wr w r
F
1
p r
(5.9)
wz t
wr
wz r
w r
wz
wz
wz z
Fz
1
p z
式中 Fr 、F 、Fz 分别为单位质量的体积力在r、、z方向的分量。
第4页 退出
返回
第五章 流体动力学微分形式基本方程
第二节 理想流体运动方程
其中,f1至f6是给定的函数。 对于稳定流动,流场中各点的物理量不随时间改变,所以不存在初始条
件。
边界条件是指所求物理量在边界上的取值。如对静止的固体壁面,由于

流体力学第四章

流体力学第四章

1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。

流体力学中的流体动力学方程

流体力学中的流体动力学方程

流体力学中的流体动力学方程流体力学是研究流体运动规律和性质的学科,它在能源、环境、航空航天等领域有着广泛的应用。

流体动力学方程是流体力学的基础,它描述了流体在运动过程中的物理现象和力学特性。

本文将介绍流体动力学方程的基本原理和常见的流体动力学方程。

一、连续性方程连续性方程是描述流体质点质量守恒的基本方程。

它表明流体在运动过程中,质量的流入等于流出。

连续性方程可以用数学形式表示为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·表示散度运算符。

二、动量守恒方程动量守恒方程描述了流体质点在运动过程中动量的变化。

根据牛顿第二定律,动量守恒方程可以表示为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·τ + ρg其中,p是流体的压力,τ是动态粘性应力张量,g是重力加速度。

三、能量守恒方程能量守恒方程是描述流体内能和外界能量转化的方程。

根据热力学第一定律,能量守恒方程可以表示为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(k∇T) + q其中,E是单位质量的总能量,v是流体的速度矢量,k是热传导率,T是温度,q是单位质量的内部热源。

四、状态方程流体力学中的状态方程描述了流体在热力学过程中的状态特性。

流体的状态方程通常表示为:p = ρRT其中,p是流体的压力,ρ是流体的密度,R是特定流体的气体常数,T是温度。

综上所述,流体动力学方程包括连续性方程、动量守恒方程、能量守恒方程和状态方程。

这些方程是建立在质点假设和牛顿力学基础上的,可以描述流体在运动过程中的物理现象和运动规律。

通过求解这些方程,可以得到流体的运动速度、压力分布等信息,为解决实际问题提供了重要的理论基础。

在实际应用中,为了解决流体动力学方程的复杂性,常常采用数值模拟等方法进行求解。

数值模拟可以通过离散化方程、引入数值格式和数值算法,得到流体在离散网格上的解。

理想流体动力学基本方程

理想流体动力学基本方程
一、动量方程——流体的运动方程 二、能量方程——伯努利方程
三、恒定总流能量方程应用 四、恒定总流动量方程与能量方程
的综合应用
3
,致使所研究的问题比较复杂。 理想流体:指粘性为零的流体,实际上并不存在,但在有些问题
中,粘性的影响很小,可以忽略不计,致使所研究的 问题简单化。 理想流体动力学规律可以应用于粘性的影响很小的实 际流体中,所以本章的研究具有实际意义。
C点(六面体的中心点):
坐标:x、y、z
平均密度:ρ 动压强:p 速度: ux、uy、uz
方向沿坐标轴的正向
11
x 轴方向受到的表面压力:
p p dx dydz p p dx dydz p dxdydz
x 2
x 2
x
单位质量力为:
f fx i fy j fz k
流体微团受到 x 轴 方向的质量力:
动量的增量对总流过流断面进行积分,得:
dK
A2
dA2u2
dtu2
A1 dA1u1dtu1
dt[
A2 dA2u2u2
A1 dA1u1u1]
用过流断面的平均流速 v 来代替上式中未知的点速 u 分布,
主要内容
动量方程:反映了流体的动量变 化与外力之间的关系
能量方程:机械能守恒定理
4
粘性流体:实际流体都具有粘性。既有粘性切应力,又有法向压应力。
0
理想流体:理想流体可忽略粘性。即无粘性切应力,只有法向压应力。
0
粘性流体:
理想流体:
5
一、动量方程——流体的运动方程
1、积分形式的动量方程——流体的运动方程
质量力:用 f 表示,具有加速度的量纲
f d
( v)d

第三章 理想流体动力学基本方程(4)

第三章 理想流体动力学基本方程(4)
θ β g u S
∂z fr = − g cos β = − g ∂r u2 ∂ p − = − (gz + ) r ∂r ρ
r
当曲率半径很大时, 上式左边可忽略不计, 故沿流线的 法向有
z +
p
ρ g
=
C
1
缓变流与急变流概念
§3-7 总流的伯努利方程
通过过流断面将元流积分 (A)
V12 p1 V22 p2 ' ( + + z1 ) g ρVdA = ( + + z2 ) g ρVdA + hw g ρ dQ 2g g ρ 2g g ρ p (z + 考虑恒定渐变流 (缓变流) ∫ g ρ ) g ρVdA A
第三章 理想流体动力学基本方程(4) 理想流体动力学基本方程(4
§3-6 压强沿流线法向的变化 §3-7 总流的伯努利方程 §3-8 伯努利方程应用举例 §3-9 叶轮机械内相对运动的伯努利方程 §3-10 非定常流动的伯努利方程
§3-6 压强沿流线法向的变化
ar = fr − ar u2 = − r 1 ∂p ρ ∂r
∆H + H01 = H02 + hw
其中∆H表示流体机械输入给单位重量流体的机械能
伯努利方程应用
一.小孔定常出流 二.毕托管测速原理 三.文丘里流量计
Applications of Bernoulli's Equation
Somew elementary flow velocity measurement system using a U-tube manometer.
pdA-(p+dP)dA+gρdAdlcosθ=0 dp+g ρdz=0 z+p/(g ρ)=C 0

流体动力学微分形式的基本方程

流体动力学微分形式的基本方程
r r q ( r , t0 ) = f ( r )
二、边界条件: 1、固体壁面:渗透、介质交换 无分离条件:理想流体,不可以渗透时法向速度为零。 r r (v 若物面静止不动: b ) ⋅ n = 0 设物面方程为 F ( x, y, z, t ) = 0 ,则物面上组成光滑流体面, DF =0 则 Dt 无滑移条件:粘性流体,沿壁面切向、法向速度均为零。
Dp ∂p r = + v ⋅∇p Dt ∂t
1 Dρ r ∇⋅v = − ρ Dt
Dp ∂p r v ⋅∇p = − Dt ∂t
§4-7 理想流体动力学的基本方程
D p ∂p r 所以: ∇ ⋅ ( Pv ) = − ρ + Dt ρ ∂t 代入能量方程中得:
r r D p v2 ∂p ρ e + + = ρ f ⋅ v + ρ qR + ρ 2 Dt ∂t r ρv : 将动量方程两边乘以 r r r r D v2 r Dv ρv = ρ f ⋅ v − v ⋅∇p = ρ Dt Dt 2 因此有: Di 1 Dp = qR + Dt ρ Dt
§4-9 理想流体动力学的定解条件
3、自由面:流体质点的光滑面
r v∞ 2、无穷远或管道进口处的边界条件:一般给定管道进口及
p = const
τ τ τ τ
§4-7 理想流体动力学的基本方程
若积分号内均为连续函数,又因为积分区域的随意性: r r D v2 r ρ e + = ρ f ⋅ v + ∇ ( Pv ) + ρ qR + ∇ ⋅ ( λ∇T ) Dt 2 由于是理想流体: µ = 0 , λ = 0 . 因此 ∇ ⋅ ( λ∇T ) = 0 又在理想流体中: P = − pδ r r r r r ∇ ⋅ ( Pv ) = ∇ ⋅ ( − pδ v ) = ∇ ⋅ ( − pv ) = − p∇ ⋅ v − v ⋅∇p 因为: 1 Dρ r + ∇⋅v = 0 ρ Dt

3章1理想流体动力学基本方程

3章1理想流体动力学基本方程

一、Lagrange法(拉格朗日法)
“跟踪”的方法
基本思想:跟踪每个流体质点的运动全过程,记录它 们在运动过程中的各物理量及其变化规律。
x x(a,b,c,t ) y y(a,b,c,t ) 流体质点的位置坐标: z z (a,b,c,t )
基本参数: 位移
独立变量:(a,b,c,t)——区分流体质点的标志 几点说明:
欧拉(Euler):
瑞士数学家及自然科学家。1707年4月15日出生於瑞士的 巴塞尔,1783年9月18日於俄国彼得堡去逝。欧拉出生於牧师 家庭,自幼受父亲的教育。13岁时入读巴塞尔大学,15岁大学 毕业,16岁获硕士学位。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界 作出贡献,更把数学推至几乎整个物理的领域。他是数学史上 最多产的数学家,平均每年写出八百多页的论文,还写了大量 的力学、分析学、几何学、变分法等的课本,《无穷小分析引 论》、《微分学原理》、《积分学原理》等都成为数学中的经 典著作。欧拉对数学的研究如此广泛,因此在许多数学的分支 中也可经常见到以他的名字命名的重要常数、公式和定理。
2. 速度:
x ( a,b,c,t ) t y( a,b,c,t ) v v ( a,b,c,t ) t z ( a,b,c,t ) w w ( a,b,c,t ) t u u( a,b,c,t )=
u(a,b,c,t ) 2 x (a,b,c,t ) a x a x ( a,b,c,t )= t t 2 2 3. 流体质点的加速度:a a (a,b,c,t ) v (a,b,c,t ) y(a,b,c,t ) y y t t 2 2 w (a,b,c,t ) z (a,b,c,t ) a y a y ( a,b,c,t ) t t 2

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程

第三章流体运动学与动力学基础主要内容z基本概念z欧拉运动微分方程z连续性方程——质量守恒*z伯努利方程——能量守恒** 重点z动量方程——动量守恒** 难点z方程的应用第一节研究流体运动的两种方法z流体质点:物理点。

是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。

z空间点:几何点,表示空间位置。

流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。

拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。

一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。

2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。

3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t)z = z(a,b,c,t)4、适用情况:流体的振动和波动问题。

5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。

缺点:不便于研究整个流场的特性。

二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。

2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。

3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。

位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。

伯努利方程通解

伯努利方程通解

伯努利方程通解伯努利方程是描述理想流体动力学的一个基本方程。

在流体力学中,伯努利方程被认为是非常重要的一个方程,因为它可以描述流体的性质,例如流速和静压力之间的关系。

本文将介绍伯努利方程及其通解。

伯努利方程是一个描述由静止不动的流体中沿不同的曲线路径移动的质点的流速和压力之间的关系的方程。

描述了流体在任何给定点处的运动状态,可以写成以下的形式:P + ½ρv² + ρgh = 常数其中,P是流体的静压力,ρ是流体的密度,v是流体的速度,g是重力加速度,h是从引用点到该点的高度。

伯努利方程通常用于分析液体和气体的运动,因为这些物质是不可压缩的。

在真实的流体力学问题中,考虑了各种复杂的影响因素。

当然,除了质量守恒和能量守恒,利用伯努利方程还可以帮助我们分析如何调节流体中的速度和压力。

对于压缩性流体,比如液态空气和液态氢,范围可以扩大到压缩性流体的流动。

在这种情况下,伯努利方程需要进行一些调整,以考虑这些流体的局限性。

要解决伯努利方程,我们可以首先将其简化为最常见的形式,即:P + ½ρv² = 常数然后,我们可以将其转化为一个微分方程,使其变得更易于处理。

为此,我们需要利用尝试解法。

假设我们使用以下形式的解:v =(c/ρ)(-P)^m其中,c是一个任意正常数,m是一个实数或分数。

将此解带入伯努利方程中,得到:(-P)^m + ½v²ρ = 常数将v的表达式代入上式得到:(c/ρ)²(-P)^(2m)/ρ² + ½(c/ρ)²(-P)^2 = 常数简化后得到:(-P)^(2m) = A (常数)这个方程给出了P的与v的关系。

接下来,我们可以利用这条关系,求出相应的解v。

因此,伯努利方程的通解为:v = (c/ρ) (-A/P)^(1/m)如果在图表上画出P和v之间的关系,它看起来是一个双曲线的形状。

因此,我们可以看到,当流体速度增加时,流体的压力必须下降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g 2 g
u S
压强沿流线法向的变化
ar

fr

1

p r
ar
u2 r
fr
g cos
g
z r
u 2 (gz p )
r
r

r
g
u S
当曲率半径很大时, 上式左边可忽略不计, 故沿流线的
法向有
z
p
g
C1
缓变流与急变流概念
总流的伯努利方程
分叉情况:
H 01 H 02 hw12 H 01 H 03 hw13 Q1 Q2 Q3
例 已知: d=200mm H=4.5m Q=100 (l/s)
求: 水流的总水头损失
解:
1
1
选1-1与2-2两个断 面间的流动
hw

z1

p1
g
1V12
2g
(z2

p2
解: 1-1与2-2两截 面间流动, 由伯努 利方程有
1
8m
1.5m 1
0
A
0
c 3.5m
2 2B
V2
H 01

z2

p2
g
V22 2g
8m
列1-1与c断面间能量方程有
V22 2m Vc2
2g
2g
H 01

zc

pc
g
cVc2
2g
pc
g

H 01 zc
Vc2 2g
通过过流断面将元流积分
(A)
(V12 2g

p1
g

z1)gVdA
(V22 2g

p2
g

z2 )gVdA
hw' gdQ
(z
A

p
g
) gV dA
考虑恒定渐变流 (缓变流)
z pdA-(p+dP)dA+gdAdlcos=0
dp+g dz=0
z+p/(g )=C
0
x

A
称为动能修正系数, 一般为1
(C )
hw' gVdA hw gQ
A
由 则有
z1
p1
g
1V12
2g

z2

p2
g
2V22
2g
hw
H0

z

p
g

V 2
2g
H 01 H 02 hw
总流能量方程的应用
应用条件:
(1)恒定(定常) (2)不可压流体 (3)重力场 (4)所选过流断面流动均匀或渐变流 (5)无其它能量的输入或输出 (6)总流量沿程不变
x y z


(5)沿流线 有v=u(dy/dx) w=u(dz/dx)
du dx du udt udu d u2
dt dt
2
dv dy d v2
dt
2
dw dz d w2
dt
2
u u u u
1 p
t
u
x
v
y
w z

fx


x
(a)
v u v v v w v
若存在能量的输入或输出 则有 H H01 H02 hw
其中H表示流体机械输入给单位重量流体的机械能
伯努利方程应用
一.小孔定常出流 二.毕托管测速原理 三.文丘里流量计
例 已知无穷远 V=1.2m/s , p=0
求:驻点处的压强ps 解:
V
p
s
V2 2g

p

z
Vs2 2g
t s
2
由0-0到1-1点积分有
p0 0
h 1
x
1
l
s1 u
s0 t
ds gz1
p1

u2 2

gz0

p0

u02 2
积分得
du
u2
l gh
dt
2
u du
0 gh u 2
1 l
t
dt
0
2
u 2 gh tanh(
t 0 u0 2 gh
t) 2l
g

2V22
2g
)
H
2 2
将H=z1-z2和p1=p2=0 及 V1=0 2=1.0 则有
hw

H
Байду номын сангаасV22 2g

H

Q2 2 gA2
hw

4.5

2

0.12 9.8 0.0312
4.5 0.53 3.97(m)
例 已知: zc=9.5m zB=6m 不计损失
求: c 点压能和动能
(z

p
g
) gVdA

g (z

p
g
)Q
dA p
dz dl

G P+dP
(B)
V 2 gVdA gV 3 (V )3 dA
A 2g
2g A V

gV
2g
2
VA A
V ( AV
)3 dA (gQ) V 2
2g
1

A
V ( AV
)
3
dA


1 (V )3 dA AA V
t
x y
z

fy

1

p y
(b)
w u w v w w w
t
x y
z

fz

1

p z
( c)
(a)dx+(b)dy+( c)dz
积分得
u2 v2 w2
p
d(
) dW d( )
2

V2 p d( W) 0
2
V2 2

p

dds 2r cos
gdAdscos
0
cos dz
ds
cos dr
ds
d ( gz p Vr2 2r 2 ) 0
ds
2
2
叶轮机械内相对运 动的伯努利方程
对于同一流线上任意两点, 可写为
dvr
dt p p ds
s
s


dA
p
z1

p1
g
理想
定常 重力场 不可压
沿流线S伯努利积分
as

fs
1

p s
as

u t
u
u s
u u s

fs

1

p s
r
g
fs

g cos

g
z s
u u g z ( p )
s
s s

p u2
(gz ) 0
s
2
z p u2 C
8 9.5 2 3.5m
叶轮机械内相对运动的伯努利方程
叶轮
S
微元体
叶片

R2
R1 r
0
叶轮
S
微元体
叶片

R2
R1 r
dvr
dt p p ds
s
s


dA
p

0
S方向的力平衡方程为(座标固结叶轮上)
o
pd ( p
p s
ds)d ddsVr
Vr s
U形管中液体的振荡

x
0
l 0
u t
ds

gz1

p1


u12 2

gz0

p0

u02 2
du l gx(sin sin )
dt
u dx dt
x
1


d2x dt 2


2
x

0
x x0 sin(t)
g(sin sin )
l
作业 : 3-11 3-15
预习 第三章 理想流体动力学基 本方程
§3-11动量方程和动量矩方 程及其应用
Vr21 2g
2 (r22 r12 )
2g

z2

p2
g
Vr22 2g

H1

2 (R22
2g
R12 )

H2
o
可对流体机械 (水轮机, 汽轮机, 水泵, 风机) 的解释
非定常流动的伯努利方程
0
一. 容器旁管非定常出流
u (gz p u 2 ) 0
第三章 理想流体动力学基本方程
• §3-6 压强沿流线法向的变化 • §3-7 总流的伯努利方程 • §3-8 伯努利方程应用举例 • §3-9 叶轮机械内相对运动的伯努利方程 • §3-10 非定常流动的伯努利方程
伯努利方程
(1)理想 (2)恒定
u u u u
1 p
t
u x
v y
w z

fx


x
v u v v v t x y
w v z

fy
相关文档
最新文档