山东省威海市2020年中考数学试题(图片版,无答案)
威海市2020年中考数学试卷(I)卷
威海市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016八上·镇江期末) 下列命题中①无理数都是无限小数;② 的平方根是±4;③无理数与数轴上的点一一对应;④﹣<﹣;正确的语句个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2016七上·阳新期中) 下列运算正确的是()A . 3a+2b=5abB . 3a2b﹣3ba2=0C . 3x2+2x3=5x5D . 5y2﹣4y2=13. (2分)二次根式有意义的条件是()A . x>3B . x>﹣3C . x≥﹣3D . x≥34. (2分)(2018·泰州) 如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点出发向轴正方向运动,同时,点从点出发向点运动,当点到达点时,点、同时停止运动,若点与点的速度之比为,则下列说法正确的是()A . 线段始终经过点B . 线段始终经过点C . 线段始终经过点D . 线段不可能始终经过某一定点5. (2分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计。
下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本,其中正确的判断有()。
A . 1个B . 2个C . 3个D . 4个6. (2分) (2019七上·凉州月考) 某次知识竞赛共有25道题,某一题答对给5分,打错或不答都扣3分,小明得了85分,那么他答对的题数是()A . 22B . 20C . 19D . 187. (2分) (2017七下·椒江期末) 如图,直线l1//l2,∠α=∠β,∠1=45°,则∠2的度数为()A . 145°B . 135°D . 115°8. (2分)仓库里堆积着正方体的货箱若干,根据如图所示的三视图可得出箱子的个数是()A . 6B . 7C . 8D . 99. (2分)(2019·南陵模拟) 在▭ABCD中,对角线AC=4,BD=6,P是线段BD上一动点,过P作EF∥AC,与▱ABCD的两边分别交于E、F.设BP=x,EF=y,则反映y与x之间关系的图象是()A .B .C .D .10. (2分)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ 时,连PQ交AC边于D,则DE的长为()B .C .D . 不能确定二、填空题 (共8题;共17分)11. (1分)中国的陆地面积约为9 600 000km2 ,把9 600 000用科学记数法表示为________ .12. (1分)(2020·高台模拟) 因式分解:3x3﹣6x2y+3xy2=________.13. (1分)如图,某学校一块草坪的形状是三角形(设其为△ABC).李俊同学从BC边上的一点D出发,沿DC→CA→AB→B D的方向走了一圈回到点D处.问:李俊从出发到回到原处在途中身体转过的角度是________14. (1分)某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为________.15. (1分)(2017·祁阳模拟) 如图,在⊙O中,弦AC=2 ,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=________.16. (10分)(2020·黄石模拟) 如图,已知的直径AB垂直弦CD于点E,过C点作CG∥AD交AB延长线于点G,连结CO并延长交AD于点F,且CF⊥AD.(1)求证:CG是⊙O的切线;(2)若AB=4,求CD的长.17. (1分) (2019九上·乌鲁木齐期末) 如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF 与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=________.18. (1分)在平面直角坐标系中,点P是反比例函数(x<0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B,若四边形PAOB的面积为6,M是PB的中点,M与N关于y轴对称,反比例函数的图象过点N,则k+m的值是________.三、解答题 (共10题;共89分)19. (5分)(2017·双柏模拟) 解方程: +1= .20. (10分)计算(1)(a+2)2+(1﹣a)(1+a).(2)解不等式组:.21. (8分)(2017·陵城模拟) 在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________ %;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.22. (10分)(2020·芜湖模拟) 在一个不透明的盒子中装有6张卡片,6张卡片的正面分别标有数字﹣4,﹣3,﹣2,﹣1,6,8,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,求恰好抽到标有偶数卡片的概率;(2)先从盒子中任意抽取一张卡片,把它上面的数字作为一个点的横坐标,不放回,再从盒子剩余的卡片中任意抽取一张卡片,把它上面的数字作为这个点的纵坐标,求抽取的点恰好落在第二象限的概率.23. (5分)如图,△ABC中,AD是BC边上的高线,BE是一条角平分线,它们相交于点P ,已知∠EPD=125°,求∠BAD的度数.24. (10分) (2019八上·松滋期中) “综合与实践”学习活动准备制作一组三角形,记这些三角形分别为,用记号表示一个满足条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形.(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;(2)如图,是的中线,线段的长度分别为2个,6个单位长度,且线段的长度为整数个单位长度,过点作交的延长线于点 .①求的长度;②请直接用记号表示 .25. (6分) (2019八上·太原期中) 2019年10月1日是中华人民共和国成立70周年纪念日,红色旅游成为旅游热点.小王要和朋友们去某红色景点旅游,其门票零售价为80元/张.国庆节期间,景点推出优惠活动,方案1:门票一律九折优惠;方案2:对10人以内(含10人)购门票不优惠,超过10人超出部分八折优惠.设小王一行参加(1)小王分别写出方案1和方案2购买门票的费用y(元)与旅游人数x(人)之间的函数表达式如下,请你将空缺部分补充完整:________ ;(2)小王一行共有40人一起去该景点旅游,通过计算,判断选择哪种方案更省钱?26. (10分)(2017·都匀模拟) 如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF= ,求图中阴影部分的面积.27. (15分)(2018·荆州) 为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB=xm,面积为ym2(如图).甲乙丙单价(元/棵)141628合理用地(m2/棵)0.410.4(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2 ,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.28. (10分)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共17分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、17-1、18-1、三、解答题 (共10题;共89分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、。
2020山东威海市中考数学试题图片版及答案
学校:班级:科目:教师:得分:节日热闹:盛况空前普天同庆欢聚一堂人声鼎沸人山人海欢呼雀跃欢声雷动熙熙攘攘载歌载舞红旗招展火树银花灯火辉煌张灯结彩锣鼓喧天金鼓齐鸣看:盯瞧瞅瞟瞥望睹观赏窥顾盼端详注视鸟瞰浏览张望阅览欣赏观赏月光:皎洁的月光明亮的月光清冽的月光清幽的月光朦胧的月光柔和的月光惨淡的月光凄冷的月光月光如水月光如雪月光如银希望:期望盼望渴望奢望指望得表扬:得意扬扬洋洋得意神采飞扬心花怒放乐不可支喜上眉梢春风得意眉开眼笑受批评:心灰意冷垂头丧气郁郁寡欢心灰意懒一蹶不振建筑:金碧辉煌玲珑剔透古色古香庄严肃穆庭院幽深巍然耸立绿瓦红墙描龙绣凤气势磅礴栩俯瞰窥视探望远眺审视环顾扫视瞻仰左顾右盼瞻前顾后袖手旁观先睹为快望眼欲穿东张西望屏息凝视目不转睛成语中的反义词:藕断丝连转危为安左顾右盼阴差阳错争先恐后冬暖夏凉大同小异轻重缓急天南地北舍本逐末比喻手法成语:星罗棋布鳞次栉比玉洁冰清蚕食鲸吞狐朋狗友狼吞虎咽锦衣玉食中国:中华华夏九州四海神州大地长城内外大江南北读书和学习:如饥似渴学而不厌学无止境学以致用博览群书博学多才学海无涯朋友:伙伴同伴旅伴伴侣战友密友故友好友挚友新朋好友良师益友梅花:腊梅墨梅素梅冰肌玉骨疏影横斜暗香浮动清香远溢幽香沁人小溪:波纹粼粼清澈见底终年潺潺柳树:垂柳青青婀娜多姿依依多情花儿好看:绚丽烂漫妖艳素雅争奇斗艳鲜艳夺目花蕾满枝琼花玉叶色彩斑斓花团锦簇灿如云锦花儿好闻:芬芳幽香芳香浓郁清香四溢香气袭人沁人心脾清香袅袅香气扑鼻香飘十里日子:丰衣足食太平昌盛日出而作日入而息守望相助走兽:四肢轻快互相追逐连蹦带跳小巧玲珑乖巧驯良扬蹄飞奔腾空跃起庞然大物生龙活虎威风凛凛万千气象:晚霞朝晖红霞满天霞光万道闲云迷雾云雾缭绕星光灿烂晓风残月月凉如水月色朦胧月淡风清月明星稀皓月当空栩如生造型逼真琼楼玉宇布局合理亭台楼阁历史悠久中西合璧龙腾虎跃打比方成语:如醉如梦如泣如诉如火如荼如饥似渴如兄似弟如胶似漆如花似锦如狼似虎死:去世逝世长眠安息千古永别永诀与世长辞遇难牺牲捐躯殉职夭折圆寂羽化驾崩。
2020山东省威海市中考数学试卷(含答案)
2020年山东省威海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.(3分)(2020•威海)﹣2的倒数是()A.﹣2B.−12C.12D.22.(3分)(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.3.(3分)(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10﹣10B.1×10﹣9C.0.1×10﹣8D.1×1094.(3分)(2020•威海)下列运算正确的是()A.3x3•x2=3x5B.(2x2)3=6x6C.(x+y)2=x2+y2D.x2+x3=x55.(3分)(2020•威海)分式2a+2a 2−1−a+11−a化简后的结果为( )A .a+1a−1B .a+3a−1C .−a a−1D .−a 2+3a 2−16.(3分)(2020•威海)一次函数y =ax ﹣a 与反比例函数y =a x(a ≠0)在同一坐标系中的图象可能是( )A .B .C .D .7.(3分)(2020•威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是( )A .本次调查的样本容量是600B .选“责任”的有120人C .扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D .选“感恩”的人数最多8.(3分)(2020•威海)如图,点P (m ,1),点Q (﹣2,n )都在反比例函数y =4x 的图象上.过点P 分别向x 轴、y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积记作S 1,△POQ 的面积记作S 2,则( )A .S 1:S 2=2:3B .S 1:S 2=1:1C .S 1:S 2=4:3D .S 1:S 2=5:39.(3分)(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB =40cm ,则图中阴影部分的面积为( )A .25cm 2B .1003cm 2 C .50cm 2 D .75cm 210.(3分)(2020•威海)如图,抛物线y =ax 2+bx +c (a ≠0)交x 轴于点A ,B ,交y 轴于点C .若点A 坐标为(﹣4,0),对称轴为直线x =﹣1,则下列结论错误的是( )A .二次函数的最大值为a ﹣b +cB .a +b +c >0C .b 2﹣4ac >0D .2a +b =011.(3分)(2020•威海)如图,在▱ABCD 中,对角线BD ⊥AD ,AB =10,AD =6,O 为BD 的中点,E 为边AB 上一点,直线EO 交CD 于点F ,连结DE ,BF .下列结论不成立的是( )A .四边形DEBF 为平行四边形B .若AE =3.6,则四边形DEBF 为矩形C .若AE =5,则四边形DEBF 为菱形D .若AE =4.8,则四边形DEBF 为正方形12.(3分)(2020•威海)如图,矩形ABCD 的四个顶点分别在直线l 3,l 4,l 2,l 1上.若直线l 1∥l 2∥l 3∥l 4且间距相等,AB =4,BC =3,则tan α的值为( )A .38B .34C .√52D .√1515二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果) 13.(3分)(2020•威海)计算√3−√12−(√8−1)0的结果是 . 14.(3分)(2020•威海)一元二次方程4x (x ﹣2)=x ﹣2的解为 .15.(3分)(2020•威海)下表中y 与x 的数据满足我们初中学过的某种函数关系.其函数表达式为 .x … ﹣1 0 1 3 … y…34…16.(3分)(2020•威海)如图,四边形ABCD 是一张正方形纸片,其面积为25cm 2.分别在边AB ,BC ,CD ,DA 上顺次截取AE =BF =CG =DH =acm (AE >BE ),连接EF ,FG ,GH ,HE .分别以EF ,FG ,GH ,HE 为轴将纸片向内翻折,得到四边形A 1B 1C 1D 1.若四边形A 1B 1C 1D 1的面积为9cm 2,则a = .17.(3分)(2020•威海)如图,点C 在∠AOB 的内部,∠OCA =∠OCB ,∠OCA 与∠AOB 互补.若AC =1.5,BC =2,则OC = .18.(3分)(2020•威海)如图①,某广场地面是用A ,B ,C 三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m ,n )位置恰好为A 型地砖,则正整数m ,n 须满足的条件是 .三、解答题(本大题共7小题,共66分)19.(7分)(2020•威海)解不等式组,并把解集在数轴上表示出来. {4x −2≥3(x −1),①x−52+1>x −3.②20.(8分)(2020•威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.21.(8分)(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)22.(9分)(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.23.(10分)(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.(12分)(2020•威海)已知,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+2m﹣1的顶点为A.点B的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2﹣2mx+m2+2m﹣1与线段BC只有一个交点.25.(12分)(2020•威海)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC 交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC 交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.2020年山东省威海市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.(3分)(2020•威海)﹣2的倒数是()A.﹣2B.−12C.12D.2【解答】解:∵﹣2×(−12)=1.∴﹣2的倒数是−1 2,故选:B.2.(3分)(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的选项D中的几何体,故选:D.3.(3分)(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10﹣10B.1×10﹣9C.0.1×10﹣8D.1×109【解答】解:∵十亿分之一=11000000000=1×10﹣9,∴十亿分之一用科学记数法可以表示为:1×10﹣9.故选:B.4.(3分)(2020•威海)下列运算正确的是()A.3x3•x2=3x5B.(2x2)3=6x6 C.(x+y)2=x2+y2D.x2+x3=x5【解答】解:A.3x3•x2=3x5,故本选项符合题意;B.(2x2)3=8x6,故本选项不合题意;C .(x +y )2=x 2+2xy +y 2,故本选项不合题意;D .x 2与x 3不是同类项,所以不能合并,故本选项不合题意. 故选:A .5.(3分)(2020•威海)分式2a+2a −1−a+11−a化简后的结果为( )A .a+1a−1B .a+3a−1C .−a a−1D .−a 2+32【解答】解:2a+2a 2−1−a+11−a=2a+2a 2−1+a+1a−1=2a+2a 2−1+(a+1)2a 2−1 =2a+2+a 2+2a+1a 2−1=a 2+4a+3a 2−1=(a+3)(a+1)(a+1)(a−1)=a+3a−1. 故选:B .6.(3分)(2020•威海)一次函数y =ax ﹣a 与反比例函数y =ax(a ≠0)在同一坐标系中的图象可能是( )A .B .C .D .【解答】解:A 、由函数y =ax ﹣a 的图象可知a >0,﹣a >0,由函数y =ax (a ≠0)的图象可知a <0,错误;B、由函数y=ax﹣a的图象可知a<0,由函数y=ax(a≠0)的图象可知a>0,相矛盾,故错误;C、由函数y=ax﹣a的图象可知a>0,由函数y=ax(a≠0)的图象可知a<0,故错误;D、由函数y=ax﹣a的图象可知a<0,由函数y=ax(a≠0)的图象可知a<0,故正确;故选:D.7.(3分)(2020•威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多【解答】解:本次调查的样本容量为:108÷18%=600,故选项A中的说法正确;选“责任”的有600×72°360°=120(人),故选项B中的说法正确;扇形统计图中“生命”所对应的扇形圆心角度数为360°×132600=79.2°,故选项C中的说法错误;选“感恩”的人数为:600﹣132﹣600×(16%+18%)﹣120=144,故选“感恩”的人数最多,故选项D中的说法正确;故选:C.8.(3分)(2020•威海)如图,点P(m,1),点Q(﹣2,n)都在反比例函数y=4x的图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A.S1:S2=2:3B.S1:S2=1:1C.S1:S2=4:3D.S1:S2=5:3【解答】解:点P(m,1),点Q(﹣2,n)都在反比例函数y=4x的图象上.∴m×1=﹣2n=4,∴m=4,n=﹣2,∴P(4,1),Q(﹣2,﹣2),∵S1=4,作QK⊥PN,交PN的延长线于K,则PN=4,ON=1,PK=6,KQ=3,∴S2=S△PQK﹣S△PON﹣S梯形ONKQ=12×6×3−12×4×1−12(1+3)×2=3,∴S1:S2=4:3,故选:C.9.(3分)(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A .25cm 2B .1003cm 2 C .50cm 2 D .75cm 2【解答】解:如图:设OF =EF =FG =x ,∴OE =OH =2x ,在Rt △EOH 中,EH =2√2x , 由题意EH =20cm , ∴20=2√2x , ∴x =5√2,∴阴影部分的面积=(5√2)2=50(cm 2) 故选:C .10.(3分)(2020•威海)如图,抛物线y =ax 2+bx +c (a ≠0)交x 轴于点A ,B ,交y 轴于点C .若点A 坐标为(﹣4,0),对称轴为直线x =﹣1,则下列结论错误的是( )A .二次函数的最大值为a ﹣b +cB .a +b +c >0C .b 2﹣4ac >0D.2a+b=0【解答】解:抛物线y=ax2+bx+c过点A(﹣4,0),对称轴为直线x=﹣1,因此有:x=﹣1=−b2a,即2a﹣b=0,因此选项D符合题意;当x=﹣1时,y=a﹣b+c的值最大,选项A不符合题意;抛物线与x轴的另一个交点为(2,0),当x=1时,y=a+b+c>0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b2﹣4ac>0,故选项C不符合题意;故选:D.11.(3分)(2020•威海)如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD 的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形【解答】解:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC∥AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴AE AD=3.66=35,又∵AD AB=610=35,∴AE AD=AD AB,∵∠DAE =∠BAD , ∴△DAE ∽△BAD , ∴AED =∠ADB =90°. 故B 选项结论正确, ∵AB =10,AE =5, ∴BE =5,又∵∠ADB =90°, ∴DE =12AB =5, ∴DE =BE ,∴四边形DEBF 为菱形. 故C 选项结论正确,∵AE =3.6时,四边形DEBF 为矩形,AE =5时,四边形DEBF 为菱形, ∴AE =4.8时,四边形DEBF 不可能是正方形. 故D 不正确. 故选:D .12.(3分)(2020•威海)如图,矩形ABCD 的四个顶点分别在直线l 3,l 4,l 2,l 1上.若直线l 1∥l 2∥l 3∥l 4且间距相等,AB =4,BC =3,则tan α的值为( )A .38B .34C .√52D .√1515【解答】解:作CF ⊥l 4于点F ,交l 3于点E ,设CB 交l 3于点G , 由已知可得, GE ∥BF ,CE =EF ,∴△CEG ∽△CFB , ∴CE CF =CG CB ,∵CE CF =12, ∴CG CB=12,∵BC =3, ∴GB =32, ∵l 3∥l 4, ∴∠α=∠GAB ,∵四边形ABCD 是矩形,AB =4, ∴∠ABG =90°,∴tan ∠BAG =BG AB =324=38,∴tan α的值为38,故选:A .二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果) 13.(3分)(2020•威海)计算√3−√12−(√8−1)0的结果是 −√3−1 . 【解答】解:√3−√12−(√8−1)0 =√3−2√3−1 =−√3−1. 故答案为:−√3−1.14.(3分)(2020•威海)一元二次方程4x (x ﹣2)=x ﹣2的解为 x 1=2,x 2=14 . 【解答】解:4x (x ﹣2)=x ﹣2 4x (x ﹣2)﹣(x ﹣2)=0 (x ﹣2)(4x ﹣1)=0x ﹣2=0或4x ﹣1=0 解得x 1=2,x 2=14. 故答案为:x 1=2,x 2=14.15.(3分)(2020•威海)下表中y 与x 的数据满足我们初中学过的某种函数关系.其函数表达式为 y =﹣x 2+2x +3 .x … ﹣1 0 1 3 … y…34…【解答】解:根据表中y 与x 的数据设函数关系式为:y =ax 2+bx +c , 将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得 ∴{a +b +c =4a −b +c =0c =3, 解得{a =−1b =2c =3,∴函数表达式为y =﹣x 2+2x +3. 当x =3时,代入y =﹣x 2+2x +3=0, ∴(3,0)也适合所求得的函数关系式. 故答案为:y =﹣x 2+2x +3.16.(3分)(2020•威海)如图,四边形ABCD 是一张正方形纸片,其面积为25cm 2.分别在边AB ,BC ,CD ,DA 上顺次截取AE =BF =CG =DH =acm (AE >BE ),连接EF ,FG ,GH ,HE .分别以EF ,FG ,GH ,HE 为轴将纸片向内翻折,得到四边形A 1B 1C 1D 1.若四边形A 1B 1C 1D 1的面积为9cm 2,则a = 4 .【解答】解:∵四边形ABCD 是一张正方形纸片,其面积为25cm 2, ∴正方形纸片的边长为5cm ,∵AE =BF =CG =DH =acm , ∴BE =(5﹣a )cm , ∴AH =(5﹣a )cm ,∵四边形A 1B 1C 1D 1的面积为9cm 2,∴三角形AEH 的面积为(25﹣9)÷8=2(cm 2),12a (5﹣a )=2,解得a 1=1(舍去),a 2=4. 故答案为:4.17.(3分)(2020•威海)如图,点C 在∠AOB 的内部,∠OCA =∠OCB ,∠OCA 与∠AOB 互补.若AC =1.5,BC =2,则OC = √3 .【解答】解:∵∠OCA =∠OCB ,∠OCA 与∠AOB 互补, ∴∠OCA +∠AOB =180°,∠OCB +∠AOB =180°,∵∠OCA +∠COA +∠OAC =180°,∠OCB +∠OBC +∠COB =180°, ∴∠AOB =∠COA +∠OAC ,∠AOB =∠OBC +∠COB , ∴∠AOC =∠OBC ,∠COB =∠OAC , ∴△ACO ∽△OCB , ∴OC AC=BC OC,∴OC 2=2×32=3, ∴OC =√3, 故答案为√3.18.(3分)(2020•威海)如图①,某广场地面是用A ,B ,C 三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m ,n )位置恰好为A 型地砖,则正整数m ,n 须满足的条件是 m 、n 同为奇数或m 、n 同为偶数 .【解答】解:观察图形,A 型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m ,n )位置恰好为A 型地砖,正整数m ,n 须满足的条件为m 、n 同为奇数或m 、n 同为偶数.故答案为m 、n 同为奇数或m 、n 同为偶数. 三、解答题(本大题共7小题,共66分)19.(7分)(2020•威海)解不等式组,并把解集在数轴上表示出来. {4x −2≥3(x −1),①x−52+1>x −3.②【解答】解:{4x −2≥3(x −1),①x−52+1>x −3.②由①得:x ≥﹣1; 由②得:x <3;∴原不等式组的解集为﹣1≤x <3, 在坐标轴上表示:.20.(8分)(2020•威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m 的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.【解答】解:设计划平均每天修建步行道的长度为xm ,则采用新的施工方式后平均每天修建步行道的长度为1.5xm ,依题意,得:1200x −12001.5x =5,解得:x =80,经检验,x =80是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m .21.(8分)(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m .求该大楼的高度(结果精确到0.1m ). (参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)【解答】解:作AH ⊥CD 于H ,如图:则四边形ABDH 是矩形,∴HD =AB =31.6m ,在Rt △ADH 中,∠HAD =38°,tan ∠HAD =HD AH ,∴AH =HD tan∠HAD =31.6tan38°=31.60.78≈40.51(m ), 在Rt △ACH 中,∠CAH =45°,∴CH =AH =40.51m ,∴CD =CH +HD =40.51+31.6≈72.1(m ),答:该大楼的高度约为72.1m .22.(9分)(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.【解答】证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.23.(10分)(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.【解答】解(1)用列表法表示所有可能出现的结果如下:表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,所以,P (小伟胜)=2436=23,P (小梅胜)=1236=13, 答:P (小伟胜)=23,P (小梅胜)=13;(2)∵23≠13, ∴游戏不公平;根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等, 于是修改为:两次掷的点数之差为1,2,则小伟胜;否则小梅胜.这样小伟、小梅获胜的概率均为12. 24.(12分)(2020•威海)已知,在平面直角坐标系中,抛物线y =x 2﹣2mx +m 2+2m ﹣1的顶点为A .点B 的坐标为(3,5).(1)求抛物线过点B 时顶点A 的坐标;(2)点A 的坐标记为(x ,y ),求y 与x 的函数表达式;(3)已知C 点的坐标为(0,2),当m 取何值时,抛物线y =x 2﹣2mx +m 2+2m ﹣1与线段BC 只有一个交点.【解答】解:(1)∵抛物线y =x 2﹣2mx +m 2+2m ﹣1过点B (3,5),∴把B (3,5)代入y =x 2﹣2mx +m 2+2m ﹣1,整理得,m 2﹣4m +3=0,解,得m 1=1,m 2=3,当m =1时,y =x 2﹣2x +2=(x ﹣1)2+1,其顶点A 的坐标为(1,1);当m =3时,y =x 2﹣6x +m 2+14=(x ﹣3)2+5,其顶点A 的坐标为(3,5);综上,顶点A 的坐标为(1,1)或(3,5);(2)∵y=x2﹣2mx+m2+2m﹣1=(x﹣m)2+2m﹣1,∴顶点A的坐标为(m,2m﹣1),∵点A的坐标记为(x,y),∴x=m,∴y=2x﹣1;(3)由(2)可知,抛物线的顶点在直线y=2x﹣1上运动,且形状不变,由(1)知,当m=1或3时,抛物线过B(3,5),把C(0,2)代入y=x2﹣2mx+m2+2m﹣1,得m2+2m﹣1=2,解,得m=1或﹣3,所以当m=1或﹣3时,抛物线经过点C(0,2),如图所示,当m=﹣3或3时,抛物线与线段BC只有一个交点(即线段CB的端点),当m=1时,抛物线同时过点B、C,不合题意,所以m的取值范围是﹣3≤m≤3且m≠1.25.(12分)(2020•威海)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC 交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC 交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.【解答】解:(1)如图①,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD =∠ACE ,∵∠ABD +∠EBC =∠ABC =60°,∴∠ACE +∠EBC =60°,∴∠BFC =180°﹣∠EBC ﹣∠ACE ﹣∠ACB =60°;(2)如图②,∵∠ABC =∠ADE =α,∠ACB =∠AED =β,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,AB AD =AC AE , ∴∠BAD =∠CAE ,AB AC =AD AE ,∴△ABD ∽△ACE ,∴∠ABD =∠ACE ,∵∠BHC =∠ABD +∠BAC =∠BFC +∠ACE ,∴∠BFC =∠BAC ,∵∠BAC +∠ABC +∠ACB =180°,∴∠BFC +α+β=180°,∴∠BFC =180°﹣α﹣β;(3)∵将线段MN 绕点M 逆时针旋转60°得到线段MK ,∴MN =NK ,∠MNK =60°,∴△MNK 是等边三角形,∴MK =MN =NK ,∠NMK =∠NKM =∠KNM =60°,如图③,将△MOK 绕点M 顺时针旋转60°,得到△MQN ,连接OQ ,∴△MOK≌△MQN,∠OMQ=60°,∴OK=NQ,MO=MQ,∴△MOQ是等边三角形,∴∠QOM=60°,∴∠NOQ=30°,∵OK=NQ,∴当NQ为最小值时,OK有最小值,由垂线段最短可得:当QN⊥y轴时,NQ有最小值,此时,QN⊥y轴,∠NOQ=30°,∴NQ=12OQ=32,∴线段OK长度的最小值为3 2.。
2020年山东省威海市中考数学试卷-解析版
2020年山东省威海市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.−2的倒数是()A. −2B. −12C. 12D. 22.下列几何体的左视图和俯视图相同的是()A. B.C. D.3.人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A. 10×10−10B. 1×10−9C. 0.1×10−8D. 1×1094.下列运算正确的是()A. 3x3⋅x2=3x5B. (2x2)3=6x6C. (x+y)2=x2+y2D. x2+x3=x55.分式2a+2a2−1−a+11−a化简后的结果为()A. a+1a−1B. a+3a−1C. −aa−1D. −a2+3a2−16.一次函数y=ax−a与反比例函数y=ax(a≠0)在同一坐标系中的图象可能是()A. B.C. D.7.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针的是()A. 本次调查的样本容量是600B. 选“责任”的有120人C. 扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D. 选“感恩”的人数最多8.如图,点P(m,1),点Q(−2,n)都在反比例函数y=4的x图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A. S1:S2=2:3B. S1:S2=1:1C. S1:S2=4:3D. S1:S2=5:39.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()cm2 C. 50cm2 D. 75cm2A. 25cm2B. 100310.如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(−4,0),对称轴为直线x=−1,则下列结论错误的是()A.二次函数的最大值为a−b+cB. a+b+c>0C. b2−4ac>0D. 2a+b=011.如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A. 四边形DEBF为平行四边形B. 若AE=3.6,则四边形DEBF为矩形C. 若AE=5,则四边形DEBF为菱形D. 若AE=4.8,则四边形DEBF为正方形12.如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1//l2////l3//l4且间距相等,AB=4,BC=3,则tanα的值为()A. 38B. 34C. √52D. √1515二、填空题(本大题共6小题,共18.0分)13.计算√3−√12−(√8−1)0的结果是______.14.一元二次方程4x(x−2)=x−2的解为______.15.下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为______.x…−1013…y…0340…16.如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=______.17.如图,点C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB互补.若AC=1.5,BC=2,则OC=______.18.如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m,n)位置恰好为A 型地砖,则正整数m ,n 须满足的条件是______.三、解答题(本大题共7小题,共66.0分)19. 解不等式组,并把解集在数轴上表示出来.{4x −2≥3(x −1), ①x −52+1>x −3. ②20. 在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.21. 居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m). (参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)求证:(1)BE=CE;(2)EF为⊙O的切线.23.小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.已知,在平面直角坐标系中,抛物线y=x2−2mx+m2+2m−1的顶点为A.点B的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2−2mx+m2+2m−1与线段BC只有一个交点.交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC 交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N 为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.答案和解析1.【答案】B)=1.【解析】解:∵−2×(−12∴−2的倒数是−1,2故选:B.根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.【答案】D【解析】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的选项D中的几何体,故选:D.分别画出各种几何体的左视图和俯视图,进而进行判断即可.本题考查简单几何体的三视图,掌握三视图的画法是得出正确结论的前提.【解析】解:∵十亿分之一=11000000000=1×10−9,∴十亿分之一用科学记数法可以表示为:1×10−9.故选:B.用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查了科学记数法,解决本题的关键是掌握:用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】A【解析】解:A.3x3⋅x2=3x5,故本选项符合题意;B.(2x2)3=8x6,故本选项不合题意;C.(x+y)2=x2+2xy+y2,故本选项不合题意;D.x2与x3不是同类项,所以不能合并,故本选项不合题意.故选:A.分别根据单项式乘单项式的运算法则,积的乘方运算法则,完全平方公式以及合并同类项法则逐一判断即可.本题主要考查了单项式乘单项式,完全平方公式,合并同类项以及幂的乘方与积的乘方,熟记相关公式与运算法则是解答本题的关键.5.【答案】B【解析】解:2a+2a2−1−a+11−a=2a+2a2−1+a+1a−1=2a+2a2−1+(a+1)2a2−1=2a+2+a2+2a+1a2−1=a2+4a+3a2−1=(a+3)(a+1)(a+1)(a−1)=a+3a−1.故选:B.根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算.本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键.(a≠0)的【解析】解:A、由函数y=ax−a的图象可知a>0,−a>0,由函数y=ax图象可知a<0,错误;(a≠0)的图象可知a>0,相矛盾,B、由函数y=ax−a的图象可知a<0,由函数y=ax故错误;(a≠0)的图象可知a<0,故错误;C、由函数y=ax−a的图象可知a>0,由函数y=ax(a≠0)的图象可知a<0,故正确;D、由函数y=ax−a的图象可知a<0,由函数y=ax故选:D.先根据一次函数的性质判断出a取值,再根据反比例函数的性质判断出a的取值,二者一致的即为正确答案.本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.【答案】C【解析】解:本次调查的样本容量为:108÷18%=600,故选项A中的说法正确;=120(人),故选项B中的说法正确;选“责任”的有600×72°360∘=79.2°,故选项C中的说扇形统计图中“生命”所对应的扇形圆心角度数为360°×132600法错误;选“感恩”的人数为:600−132−600×(16%+18%)−120=144,故选“感恩”的人数最多,故选项D中的说法正确;故选:C.根据条形统计图和扇形统计图中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查条形统计图、扇形统计图、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】解:点P(m,1),点Q(−2,n)都在反比例函数y=4x的图象上.∴m×1=−2n=4,∴m=4,n=−2,∵P(4,1),Q(−2,−2),∵过点P分别向x轴、y轴作垂线,垂足分别为点M,N,∴S1=4,作QK⊥PN,交PN的延长线于K,则PN=4,ON=1,PK=6,KQ=3,∴S=S−S−S=1×6×3−1×4×1−1(1+3)×2=3,故选:C.过点P分别向x轴、y轴作垂线,垂足分别为点M,N,根据图象上点的坐标特征得到P(4,1),Q(−2,−2),根据反比例函数系数k的几何意义求得S1=4,然后根据S2=S△PQK−S△PON−S求得S2=3,即可求得S1:S2=4:3.梯形ONKQ本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,分别求得S1、S2的值是解题的关键.9.【答案】C【解析】解:如图:设OF=EF=FG=x,∴OE=OH=2x,在Rt△EOH中,EH=2√2x,由题意EH=20cm,∴20=2√2x,∴x=5√2,∴阴影部分的面积=(5√2)2=50(cm2)故选:C.如图:设OF=EF=FG=x,可得EH=2√2x=20,解方程即可解决问题.本题考查正方形的性质、勾股定理、等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10.【答案】D【解析】解:抛物线y=ax2+bx+c过点A(−4,0),对称轴为直线x=−1,因此有:x=−1=−b,即2a−b=0,因此选项D符合题意;2a当x=−1时,y=a−b+c的值最大,选项A不符合题意;抛物线与x轴的另一个交点为(2,0),当x=1时,y=a+b+c>0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b2−4ac>0,故选项C不符合题意;故选:D.根据抛物线的开口方向、对称轴、顶点坐标、与x轴、y轴的交点以及过特殊点时相应的系数a、b、c满足的关系进行综合判断即可.本题考查二次函数的图象和性质,掌握抛物线的位置与系数a、b、c的关系式正确判断的前提.11.【答案】D【解析】解:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC//AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴AEAD =3.66=35,又∵ADAB =610=35,∴AEAD =ADAB,∵∠DAE=∠BAD,∴△DAE∽△BAD,∴AED=∠ADB=90°.故B选项结论正确,∵AB=10,AE=5,∴BE=5,又∵∠ADB=90°,∴DE=12AB=5,∴DE=BE,∴四边形DEBF为菱形.故C选项结论正确,∵AE=3.6时,四边形DEBF为矩形,AE=5时,四边形DEBF为菱形,∴AE=4.8时,四边形DEBF不可能是正方形.故D不正确.故选:D.根据平行四边形的判定方法,矩形的判定方法,菱形的判定方法,正方形的判定方法解答即可.本题考查了矩形的判定、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、正方形的判定等知识;熟练掌握矩形的判定和菱形的判定,证明三角形全等是解题的关键.12.【答案】A【解析】解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得,GE//BF,CE=EF,∴△CEG∽△CFB,∴CECF =CGCB,∵CECF =12,∴CGCB =12,∵BC=3,∴GB=32,∵l3//l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG=BGAB =324=38,∴tanα的值为38,故选:A.根据题意,可以得到BG的长,再根据∠ABG=90°,AB=4,可以得到∠BAG的正切值,再根据平行线的性质,可以得到∠BAG=∠α,从而可以得到tanα的值.本题考查矩形的性质,解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.13.【答案】−√3−1【解析】解:√3−√12−(√8−1)0=√3−2√3−1=−√3−1.故答案为:−√3−1.根据二次根式的性质以及任何非零数的零次幂等于1计算即可.本题主要考查了实数的运算.熟练掌握二次根式的性质是解答本题的关键.14.【答案】x1=2,x2=14【解析】解:4x(x−2)=x−24x(x−2)−(x−2)=0(x−2)(4x−1)=0x−2=0或4x−1=0解得x1=2,x2=14.故答案为:x1=2,x2=14.根据因式分解法解一元二次方程即可.本题考查了一元二次方程−因式分解法,解决本题的关键是掌握因式分解法.15.【答案】y=−x2+2x+3【解析】解:根据表中y与x的数据设函数关系式为:y=ax2+bx+c,将表中(1,4)、(−1,0)、(0,3)代入函数关系式,得∴{a+b+c=4 a−b+c=0 c=3,解得{a=−1 b=2c=3,∴函数表达式为y=−x2+2x+3.故答案为:y=−x2+2x+3.根据表中y与x的数据设函数关系式为:y=ax2+bx+c,将表中(1,4)、(−1,0)、(0,3)代入函数关系式,即可得结论.本题考查了函数的表示方法,解决本题的关键是掌握函数的三种表示方法:列表法、解析式法、图象法.16.【答案】4【解析】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=(5−a)cm,∴AH=(5−a)cm,∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25−9)÷8=2(cm2),12a(5−a)=2,解得a1=1(舍去),a2=4.故答案为:4.根据正方形的面积可得正方形的边长为5,根据正方形的面积和折叠的性质和面积的和差关系可得8个三角形的面积,进而得到1个三角形的面积,再根据三角形面积公式即可求解.本题考查了折叠问题,正方形的性质,三角形的面积,关键是熟练运用这些性质解决问题.17.【答案】√3【解析】解:∵∠OCA=∠OCB,∠OCA与∠AOB互补,∴∠OCA+∠AOB=180°,∠OCB+∠AOB=180°,∵∠OCA+∠COA+∠OAC=180°,∠OCB+∠OBC+∠COB=180°,∴∠AOB=∠COA+∠OAC,∠AOB=∠OBC+∠COB,∴∠AOC=∠OBC,∠COB=∠OAC,∴△ACO∽△OCB,∴OCAC =BCOC,∴OC2=2×32=3,∴OC=√3,故答案为√3.通过证明△ACO∽△OCB,可得OCAC =BCOC,可求OC=√3.本题考查了相似三角形的判定和性质,证明△ACO∽△OCB是本题的关键.18.【答案】m、n同为奇数和m、n同为偶数【解析】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数和m、n 同为偶数.故答案为m、n同为奇数和m、n同为偶数.几何图形,观察A型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m、n满足的条件.本题考查了坐标表示位置:通过类比点的坐标解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.19.【答案】解:{4x−2≥3(x−1), ①x−52+1>x−3. ②由①得:x≥−1;由②得:x<3;∴原不等式组的解集为−1≤x<3,在坐标轴上表示:.【解析】先求出每个不等式的解集,再求出这些不等式解集的公共部分.此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.【答案】解:设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,依题意,得:1200x −12001.5x=5,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m.【解析】设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,根据工作时间=工作总量÷工作效率结合实际比原计划提前5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.【答案】解:作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD=HDAH,∴AH=HDtan∠HAD =31.6tan38∘=31.60.78≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6≈72.1(m),答:该大楼的高度约为72.1m.【解析】作AH⊥CD于H,则四边形ABDH是矩形,得出HD=AB=31.6m,由三角函数定义求出AH≈40.51(m),证出CH=AH=40.51m,进而得出答案.本题考查了解直角三角形的应用−仰角俯角问题以及等腰直角三角形的判定,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解.22.【答案】证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.【解析】(1)根据圆内接四边形的想知道的∠EAM=∠EBC,根据角平分线的定义得到∠BAE=∠EAM,得到∠BCE=∠EBC,于是得到BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,推出直线EO垂直平分BC,得到EH⊥BC,求得EH⊥EF,根据切线的判定定理即可得到结论.本题考查了切线的判定定理,等腰三角形的性质,圆内接四边形的性质,正确的作出辅助线是解题的关键.23.【答案】解(1)用列表法表示所有可能出现的结果如下:表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,所以,P (小伟胜)=2436=23,P (小梅胜)=1236=13,答:P (小伟胜)=23,P (小梅胜)=13;(2)∵23≠13, ∴游戏不公平;根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等, 于是修改为:两次掷的点数之差为1,2,则小伟胜;否则小梅胜.这样小伟、小梅获胜的概率均为12.【解析】(1)利用列表法表示所有可能出现的结果情况,并求出小伟胜、小梅胜的概率;(2)依据获胜的概率判断游戏的公平性,修改规则时,可使两人获胜的概率相等,或利用积分的形式,使两人的积分相等即可.此题主要考查了游戏的公平性,主要是通过列举出所有的可能结果,求出相应的概率是解决问题的关键.24.【答案】解:(1)∵抛物线y =x 2−2mx +m 2+2m −1过点B(3,5),∴把B(3,5)代入y =x 2−2mx +m 2+2m −1,整理得,m 2−4m +3=0, 解,得m 1=1,m 2=3,当m =1时,y =x 2−2x +2=(x −1)2+1,其顶点A 的坐标为(1,1);当m =3时,y =x 2−6x +m 2+14=(x −3)2+5,其顶点A 的坐标为(3,5);综上,顶点A 的坐标为(1,1)或(3,5);(2)∵y =x 2−2mx +m 2+2m −1=(x −m)2+2m −1,∴顶点A 的坐标为(m,2m −1),∵点A 的坐标记为(x,y),∴x =m ,∴y =2x −1;(3)由(2)可知,抛物线的顶点在直线y =2x −1上运动,且形状不变,由(1)知,当m =1或3时,抛物线过B(3,5),把C(0,2)代入y =x 2−2mx +m 2+2m−1,得m2+2m−1=2,解,得m=1或−3,所以当m=1或−3时,抛物线经过点C(0,2),如图所示,当m=−3或3时,抛物线与线段BC只有一个交点(即线段CB的端点),当m=1时,抛物线同时过点B、C,不合题意,所以m的取值范围是−3≤m≤3且m≠1.【解析】(1)根据待定系数法求得解析式,然后把解析式化成顶点式即可求得;(2)化成顶点式,求得顶点坐标,即可得出y与x的函数表达式;(3)把C(0,2)代入y=x2−2mx+m2+2m−1,求得m=1或−3,结合(1)根据图象即可求得.本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,数形结合是解题的关键.25.【答案】解:(1)如图①,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABD+∠EBC=∠ABC=60°,∴∠ACE+∠EBC=60°,∴∠BFC=180°−∠EBC−∠ACE−∠ACB=60°;(2)如图②,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴△ABC∽△ADE,∴∠BAC=∠DAE,ABAD =ACAE,∴∠BAD=∠CAE,ABAC =ADAE,∴△ABD∽△ACE,∴∠ABD=∠ACE,∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,∴∠BFC=∠BAC,∵∠BAC+∠ABC+∠ACB=180°,∴∠BFC+α+β=180°,∴∠BFC=180°−α−β;(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,∴MN=NK,∠MNK=60°,∴△MNK是等边三角形,∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,∴△MOK≌△MQN,∠OMQ=60°,∴OK=NQ,MO=MQ,∴△MOQ是等边三角形,∴∠QOM=60°,∴∠NOQ=30°,∵OK=NQ,∴当NQ为最小值时,OK有最小值,由垂线段最短可得:当QN⊥y轴时,NQ有最小值,此时,QN⊥y轴,∠NOQ=30°,∴NQ=12OQ=32,∴线段OK长度的最小值为32.【解析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE,由三角形内角和定理可求解;(2)通过证明△ABC∽△ADE,可得∠BAC=∠DAE,ABAD =ACAE,可证△ABD∽△ACE,可得∠ABD=∠ACE,由外角性质可得∠BFC=∠BAC,由三角形内角和定理可求解;(3)由旋转的性质可得△MNK是等边三角形,可得MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,可得∠OMQ=60°,OK=NQ,MO=MQ,则当NQ为最小值时,OK有最小值,由垂线段最短可得当QN⊥y轴时,NQ有最小值,由直角三角形的性质可求解.本题是几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,三角形内角和定理等知识,灵活运用这些性质进行推理是本题的关键.。
2020年山东省威海市中考数学试卷含答案
的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列
结论错误的是( )
A.本次调查的样本容量是 600 B.选“责任”的有 120人 C.扇形统计图中“生命”所对应的扇形圆心角度数为 64.8°
第 2页(共 2页)
D.选“感恩”的人数最多
8.(3分)(2020•威海)如图,点 P(m,1),点 Q(﹣2,n)都在反比例函数 y=4x的图
边形 A1B1C1D1的面积为 9cm2,则 a=
.
17.(3分)(2020•威海)如图,点 C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB
互补.若 AC=1.5,BC=2,则 OC=
.
18.(3分)(2020•威海)如图①,某广场地面是用 A,B,C三种类型地砖平铺而成的.三
种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第
表达式为
.
x
… ﹣1 0
1
3
…
y
…
0
3
4
0
…
第 4页(共 4页)
16.(3分)(2020•威海)如图,四边形 ABCD是一张正方形纸片,其面积为 25cm2.分别
在边 AB,BC,CD,DA上顺次截取 AE=BF=CG=DH=acm(AE>BE),连接 EF,FG,
GH,HE.分别以 EF,FG,GH,HE为轴将纸片向内翻折,得到四边形 A1B1C1D1.若四
A.
3 8
B.
3 4
C.
5 2
D.
15 15
二、填空题(本大题共 6小题,每小题 3分,共 18分.只要求填出最后结果)
13.(3分)(2020•威海)计算 3-12-( 8-1)0的结果是
2020年山东省威海市中考数学试卷含答案解析
2020年山东省威海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.﹣2的倒数是()A.﹣2B.﹣C.D.22.下列几何体的左视图和俯视图相同的是()A.B.C.D.3.人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10﹣10B.1×10﹣9C.0.1×10﹣8D.1×1094.下列运算正确的是()A.3x3•x2=3x5B.(2x2)3=6x6C.(x+y)2=x2+y2D.x2+x3=x55.分式﹣化简后的结果为()A.B.C.﹣D.﹣6.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.7.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多8.如图,点P(m,1),点Q(﹣2,n)都在反比例函数y=的图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A.S1:S2=2:3B.S1:S2=1:1C.S1:S2=4:3D.S1:S2=5:3 9.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm210.如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是()A.二次函数的最大值为a﹣b+cB.a+b+c>0C.b2﹣4ac>0D.2a+b=011.如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB 上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形12.如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.计算﹣﹣(﹣1)0的结果是.14.一元二次方程4x(x﹣2)=x﹣2的解为.15.下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…16.如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=.17.如图,点C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB互补.若AC=1.5,BC=2,则OC=.18.如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是.三、解答题(本大题共7小题,共66分)19.(7分)解不等式组,并把解集在数轴上表示出来.20.(8分)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m 的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.21.(8分)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)22.(9分)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.23.(10分)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.(12分)已知,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+2m﹣1的顶点为A.点B 的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2﹣2mx+m2+2m﹣1与线段BC只有一个交点.25.(12分)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC 交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC 交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.2020年山东省威海市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.﹣2的倒数是()A.﹣2B.﹣C.D.2解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.下列几何体的左视图和俯视图相同的是()A.B.C.D.解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的选项D中的几何体,故选:D.3.人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10﹣10B.1×10﹣9C.0.1×10﹣8D.1×109解:∵十亿分之一==1×10﹣9,∴十亿分之一用科学记数法可以表示为:1×10﹣9.故选:B.4.下列运算正确的是()A.3x3•x2=3x5B.(2x2)3=6x6C.(x+y)2=x2+y2D.x2+x3=x5解:A.3x3•x2=3x5,故本选项符合题意;B.(2x2)3=8x6,故本选项不合题意;C.(x+y)2=x2+2xy+y2,故本选项不合题意;D.x2与x3不是同类项,所以不能合并,故本选项不合题意.故选:A.5.分式﹣化简后的结果为()A.B.C.﹣D.﹣解:﹣======.故选:B.6.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.解:A、由函数y=ax﹣a的图象可知a>0,﹣a>0,由函数y=(a≠0)的图象可知a <0,错误;B、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a>0,相矛盾,故错误;C、由函数y=ax﹣a的图象可知a>0,由函数y=(a≠0)的图象可知a<0,故错误;D、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a<0,故正确;故选:D.7.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多解:本次调查的样本容量为:108÷18%=600,故选项A中的说法正确;选“责任”的有600×=120(人),故选项B中的说法正确;扇形统计图中“生命”所对应的扇形圆心角度数为360°×=79.2°,故选项C中的说法错误;选“感恩”的人数为:600﹣132﹣600×(16%+18%)﹣120=144,故选“感恩”的人数最多,故选项D中的说法正确;故选:C.8.如图,点P(m,1),点Q(﹣2,n)都在反比例函数y=的图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A.S1:S2=2:3B.S1:S2=1:1C.S1:S2=4:3D.S1:S2=5:3解:点P(m,1),点Q(﹣2,n)都在反比例函数y=的图象上.∴m×1=﹣2n=4,∴m=4,n=﹣2,∵P(4,1),Q(﹣2,﹣2),∵过点P分别向x轴、y轴作垂线,垂足分别为点M,N,∴S1=4,作QK⊥PN,交PN的延长线于K,则PN=4,ON=1,PK=6,KQ=3,∴S2=S△PQK﹣S△PON﹣S梯形ONKQ=﹣﹣(1+3)×2=3,∴S1:S2=4:3,故选:C.9.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm2解:如图:设OF=EF=FG=x,∴OE=OH=2x,在Rt△EOH中,EH=2x,由题意EH=20cm,∴20=2x,∴x=5,∴阴影部分的面积=(5)2=50(cm2)故选:C.10.如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是()A.二次函数的最大值为a﹣b+cB.a+b+c>0C.b2﹣4ac>0D.2a+b=0解:抛物线y=ax2+bx+c过点A(﹣4,0),对称轴为直线x=﹣1,因此有:x=﹣1=﹣,即2a﹣b=0,因此选项D符合题意;当x=﹣1时,y=a﹣b+c的值最大,选项A不符合题意;抛物线与x轴的另一个交点为(2,0),当x=1时,y=a+b+c>0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b2﹣4ac>0,故选项C不符合题意;故选:D.11.如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB 上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形解:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC∥AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴,又∵,∴,∵∠DAE=∠BAD,∴△DAE∽△BAD,∴AED=∠ADB=90°.故B选项结论正确,∵AB=10,AE=5,∴BE=5,又∵∠ADB=90°,∴DE=AB=5,∴DE=BE,∴四边形DEBF为菱形.故C选项结论正确,∵AE=3.6时,四边形DEBF为矩形,AE=5时,四边形DEBF为菱形,∴AE=4.8时,四边形DEBF不可能是正方形.故D不正确.故选:D.12.如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得,GE∥BF,CE=EF,∴△CEG∽△CFB,∴,∵,∴,∵BC=3,∴GB=,∵l3∥l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG==,∴tanα的值为,故选:A.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.计算﹣﹣(﹣1)0的结果是﹣﹣1.解:﹣﹣(﹣1)0==.故答案为:.14.一元二次方程4x(x﹣2)=x﹣2的解为x1=2,x2=.解:4x(x﹣2)=x﹣24x(x﹣2)﹣(x﹣2)=0(x﹣2)(4x﹣1)=0x﹣2=0或4x﹣1=0解得x1=2,x2=.故答案为:x1=2,x2=.15.下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为y=﹣x2+2x+3.x…﹣1013…y…0340…解:根据表中y与x的数据设函数关系式为:y=ax2+bx+c,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得∴,解得,∴函数表达式为y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3.16.如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=4.解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=(5﹣a)cm,∴AH=(5﹣a)cm,∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.17.如图,点C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB互补.若AC=1.5,BC=2,则OC=.解:∵∠OCA=∠OCB,∠OCA与∠AOB互补,∴∠OCA+∠AOB=180°,∠OCB+∠AOB=180°,∵∠OCA+∠COA+∠OAC=180°,∠OCB+∠OBC+∠COB=180°,∴∠AOB=∠COA+∠OAC,∠AOB=∠OBC+∠COB,∴∠AOC=∠OBC,∠COB=∠OAC,∴△ACO∽△OCB,∴,∴OC2=2×=3,∴OC=,故答案为.18.如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是m、n同为奇数和m、n同为偶数.解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数和m、n同为偶数.故答案为m、n同为奇数和m、n同为偶数.三、解答题(本大题共7小题,共66分)19.(7分)解不等式组,并把解集在数轴上表示出来.解:由①得:x≥﹣1;由②得:x<3;∴原不等式组的解集为﹣1≤x<3,在坐标轴上表示:.20.(8分)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m 的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.解:设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,依题意,得:﹣=5,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m.21.(8分)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)解:作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD=,∴AH===≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6≈72.1(m),答:该大楼的高度约为72.1m.22.(9分)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.23.(10分)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.解(1)用列表法表示所有可能出现的结果如下:表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,所以,P(小伟胜)==,P(小梅胜)==,答:P(小伟胜)=,P(小梅胜)=;(2)∵,∴游戏不公平;根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等,于是修改为:两次掷的点数之差为1,2,则小伟胜;否则小梅胜.这样小伟、小梅获胜的概率均为.24.(12分)已知,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+2m﹣1的顶点为A.点B 的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2﹣2mx+m2+2m﹣1与线段BC只有一个交点.解:(1)∵抛物线y=x2﹣2mx+m2+2m﹣1过点B(3,5),∴把B(3,5)代入y=x2﹣2mx+m2+2m﹣1,整理得,m2﹣4m+3=0,解,得m1=1,m2=3,当m=1时,y=x2﹣2x+2=(x﹣1)2+1,其顶点A的坐标为(1,1);当m=3时,y=x2﹣6x+m2+14=(x﹣3)2+5,其顶点A的坐标为(3,5);综上,顶点A的坐标为(1,1)或(3,5);(2)∵y=x2﹣2mx+m2+2m﹣1=(x﹣m)2+2m﹣1,∴顶点A的坐标为(m,2m﹣1),∵点A的坐标记为(x,y),∴x=m,∴y=2x﹣1;(3)由(2)可知,抛物线的顶点在直线y=2x﹣1上运动,且形状不变,由(1)知,当m=1或3时,抛物线过B(3,5),把C(0,2)代入y=x2﹣2mx+m2+2m﹣1,得m2+2m﹣1=2,解,得m=1或﹣3,所以当m=1或﹣3时,抛物线经过点C(0,2),如图所示,当m=﹣3或3时,抛物线与线段BC只有一个交点(即线段CB的端点),当m=1时,抛物线同时过点B、C,不合题意,所以m的取值范围是﹣3≤m≤3且m≠1.25.(12分)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC 交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC 交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.解:(1)如图①,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABD+∠EBC=∠ABC=60°,∴∠ACE+∠EBC=60°,∴∠BFC=180°﹣∠EBC﹣∠ACE﹣∠ACB=60°;(2)如图②,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠BAD=∠CAE,,∴△ABD∽△ACE,∴∠ABD=∠ACE,∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,∴∠BFC=∠BAC,∵∠BAC+∠ABC+∠ACB=180°,∴∠BFC+α+β=180°,∴∠BFC=180°﹣α﹣β;(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,∴MN=NK,∠MNK=60°,∴△MNK是等边三角形,∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,∴△MOK≌△MQN,∠OMQ=60°,∴OK=NQ,MO=MQ,∴△MOQ是等边三角形,∴∠QOM=60°,∴∠NOQ=30°,∵OK=NQ,∴当NQ为最小值时,OK有最小值,由垂线段最短可得:当QN⊥y轴时,NQ有最小值,此时,QN⊥y轴,∠NOQ=30°,∴NQ=OQ=,∴线段OK长度的最小值为.。
山东省威海市2020年中考数学试卷C卷
山东省威海市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(本大题有10小题,每小题4分,共40分) (共10题;共40分)1. (4分)已知a,b所表示的数如图所示,下列结论错误的是()A . a>0B . b<0C . <D . b< a2. (4分)据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学记数法表示为()A . 2.78×1010B . 2.78×1011C . 27.8×1010D . 0.278×10113. (4分)(2017·营口模拟) 如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .4. (4分)小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是()A . 40只C . 15只D . 3只5. (4分) (2019八下·南海期中) 如图,在△ABD中,AB的垂直平分线DE交BC于点D ,∠B=30°,AD =AC ,∠BAC的度数为()A . 80°B . 85°C . 90°D . 105°6. (4分) (2019八上·禅城期末) 已知点,,都在直线上,则,,的大小关系是()A .B .C .D .7. (4分)(2019·金台模拟) 若将二次函数y=x2﹣4x+3的图象绕着点(﹣1,0)旋转180°,得到新的二次函数y=ax2+bx+c(a≠0),那么c的值为()A . ﹣15B . 15C . 17D . ﹣178. (4分)如下图OA=OB=OC且∠ACB=30°,则∠AOB的大小是()A . 40°B . 50°C . 60°9. (4分)如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A . 4B . 6C . 8D . 910. (4分)(2020·阜新) 如图,在平面直角坐标系中,将边长为1的正六边形绕点O顺时针旋转i个45°,得到正六边形,则正六边形的顶点的坐标是()A .B .C .D .二、填空题(本大题有6小题,每小题5分,共30分) (共6题;共30分)11. (5分) (2019七上·静安期中) 分解因式: ________.12. (5分)(2018·安徽) 不等式的解集是________.13. (5分) (2019七上·安岳月考) 如果|a+1|+|b-2|=0,那么a+b=________.14. (5分) (2019八下·黄石期中) 如图长方形内两相邻正方形的面积分别是8和3,则长方形内阴影部分的面积是________.15. (5分)(2017·潍坊) 如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在B′C边上,记为D′,折痕为CG,B′D′=2,BE= BC.则矩形纸片ABCD的面积为________.16. (5分)(2020·中模拟) 如图,正方形ABCD的边长为8,E为BC的四等分点(靠近点B的位置),F为B 边上的一个动点,连接EF ,以EF为边向右侧作等边△EFG ,连接CG ,则CG的最小值为________.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小 (共8题;共80分)17. (8分)(2019·义乌模拟)(1)计算:()﹣2+ ﹣8cos60°﹣(π+ )0;(2)已知a﹣b= ,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.18. (8分)如图,线段AB、CD分别是一辆轿车的油箱剩余油量y1(升)与另一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1、y2关于x的函数解析式,并写出定义域;(2)如果两车同时出发,轿车的行驶速度为每小时100千米,客车的行驶速度为每小时80千米,当油箱的剩余油量相同时,两车行驶的时间相差几分钟?19. (8分)(2018·萧山模拟) 某学校为了解该校七年级学生的身高情况,抽样调查了部分同学身高,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):(1)请根据所提供的信息补全频数分布直方图;(2)样本的中位数落在________(身高值)段中;(3)如果该校七年级共有500名学生,那么估计全校身高在160cm或160cm以上的七年级学生有________人;(4)如果上述七年级样本的平均数为157cm,方差为0.8;该校八年级学生身高的平均数为159cm,方差为0.6,那么________学生的身高比较整齐.(填“七年级”或“八年级”)20. (8分)如图,反比例函数y= (n为常数,n≠0)的图象与一次函数y=kx+b(k、b为常数,k≠0)的图象在第一象限内交于点C(2,m),一次函数y=kx+b与x轴、y轴分别交于A、B两点.已知tan∠ABO= ,AB=2 .(1)求一次函数的解析式和反比例函数的解析式;(2)若点P在x轴上且使得△PCD面积为△ABO面积的3倍,求满足条件的P点坐标.21. (10分)(2017·峄城模拟) 如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB= ,AB=3,求BD的长.22. (12分)(2017·泸州模拟) 如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E 点的坐标.23. (12分) (2019八上·东台期中) 如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边中点,过D点作DE⊥DF,分别交边AB、BC于点E、F,连接BD.(1)求证:△BDE≌△CDF.(2)若AE=4,FC=3,求EF长.24. (14.0分) (2016八上·海门期末) 如图,矩形AOBC,点A、B分别在x、y轴上,对角线AB、OC交于点D,点C(,1),点M是射线OC上一动点.(1)求证:△ACD是等边三角形;(2)若△OAM是等腰三角形,求点M的坐标;(3)若N是OA上的动点,则MA+MN是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.参考答案一、选择题(本大题有10小题,每小题4分,共40分) (共10题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本大题有6小题,每小题5分,共30分) (共6题;共30分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本大题有8小题,第17~20小题每小题8分,第21小 (共8题;共80分) 17-1、17-2、18-1、18-2、19-1、19-2、19-3、19-4、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
威海市中考数学试题解析版
2020年山东省威海市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.﹣的相反数是()A.3 B.﹣3 C.D.﹣2.函数y=的自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0C.x≠0D.x>0且x≠﹣23.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°4.下列运算正确的是()A.x3+x2=x5 B.a3•a4=a12C.(﹣x3)2÷x5=1 D.(﹣xy)3•(﹣xy)﹣2=﹣xy5.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣16.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.67.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.4 B.﹣4 C.16 D.﹣168.实数a,b在数轴上的位置如图所示,则|a|﹣|b|可化简为()A.a﹣b B.b﹣a C.a+b D.﹣a﹣b9.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14 B.19,20,20 C.18.4,20,20 D.18.4,25,2010.如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A. = B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH =S△CEG11.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.12.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分13.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为.14.化简: = .15.分解因式:(2a+b)2﹣(a+2b)2= .16.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.17.如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.18.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2020的纵坐标为.三、解答题:本大题共7小题,共66分19.解不等式组,并把解集表示在数轴上..20.某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.21.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用着六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.22.如图,在△BCE中,点A时边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.23.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A 的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;=5,求点E的坐标.(2)点E为y轴上一个动点,若S△AEB24.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.25.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.2020年山东省威海市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.﹣的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选C2.函数y=的自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0C.x≠0D.x>0且x≠﹣2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0,故选:B.3.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°【考点】平行线的性质.【分析】利用已知条件易求∠A CD的度数,再根据两线平行同位角相等即可求出∠1的度数.【解答】解:∵DA⊥AC,垂足为A,∴∠CAD=90°,∵∠ADC=35°,∴∠ACD=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.4.下列运算正确的是()A.x3+x2=x5 B.a3•a4=a12C.(﹣x3)2÷x5=1 D.(﹣xy)3•(﹣xy)﹣2=﹣xy【考点】整式的混合运算;负整数指数幂.【分析】A、原式不能合并,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用幂的乘方及单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用同底数幂的乘法法则计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=a7,错误;C、原式=x6÷x5=x,错误;D、原式=﹣xy,正确.故选D.5.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣1 【考点】根与系数的关系.【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故选:A.6.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.6【考点】由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层立方体的个数,相加即可.【解答】解:由题中所给出的俯视图知,底层有3个小正方体;由左视图可知,第2层有1个小正方体.故则搭成这个几何体的小正方体的个数是3+1=4个.故选:B.7.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.4 B.﹣4 C.16 D.﹣16【考点】代数式求值.【分析】把(x2﹣3y)看作一个整体并求出其值,然后代入代数式进行计算即可得解.【解答】解:∵x2﹣3y﹣5=0,∴x2﹣3y=5,则6y﹣2x2﹣6=﹣2(x2﹣3y)﹣6=﹣2×5﹣6=﹣16,故选:D.8.实数a,b在数轴上的位置如图所示,则|a|﹣|b|可化简为()A.a﹣b B.b﹣a C.a+b D.﹣a﹣b【考点】实数与数轴.【分析】根据数轴可以判断a、b的正负,从而可以化简|a|﹣|b|,本题得以解决.【解答】解:由数轴可得:a>0,b<0,则|a|﹣|b|=a﹣(﹣b)=a+b.故选C.9.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14 B.19,20,20 C.18.4,20,20 D.18.4,25,20【考点】众数;扇形统计图;加权平均数;中位数.【分析】根据扇形统计图给出的数据,先求出销售各台的人数,再根据平均数、中位数和众数的定义分别进行求解即可.【解答】解:根据题意得:销售20台的人数是:20×40%=8(人),销售30台的人数是:20×15%=3(人),销售12台的人数是:20×20%=4(人),销售14台的人数是:20×25%=5(人),则这20位销售人员本月销售量的平均数是=18.4(台);把这些数从小到大排列,最中间的数是第10、11个数的平均数,则中位数是=20(台);∵销售20台的人数最多,∴这组数据的众数是20.故选C.10.如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A. = B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH =S△CEG【考点】黄金分割;全等三角形的判定;线段垂直平分线的性质.【分析】由题意知AB=AC、∠BAC=108°,根据中垂线性质得∠B=∠DAB=∠C=∠CAE=36°,从而知△BDA∽△BAC,得=,由∠ADC=∠DAC=72°得CD=CA=BA,进而根据黄金分割定义知==,可判断A;根据∠DAB=∠CAE=36°知∠DAE=36°可判断B;根据∠BAD+∠DAE=∠CAE+∠DAE=72°可得∠BAE=∠CAD,可证△BAE≌△CAD,即可判断C;由△BAE≌△CAD知S△BAD =S△CAE,根据DH垂直平分AB,EG垂直平分AC可得S△ADH =S△CEG,可判断D.【解答】解:∵∠B=∠C=36°,∴AB=AC,∠BAC=108°,∵DH垂直平分AB,EG垂直平分AC,∴DB=DA,EA=EC,∴∠B=∠DAB=∠C=∠CAE=36°,∴△BDA∽△BAC,∴=,又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°,∴∠ADC=∠DAC,∴CD=CA=BA,∴BD=BC﹣CD=BC﹣AB,则=,即==,故A错误;∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°,即∠DAB=∠DAE=∠CAE=36°,∴AD,AE将∠BAC三等分,故B正确;∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,∴∠BAE=∠CAD,在△BAE和△CAD中,∵,∴△BAE≌△CAD,故C正确;由△BAE≌△CAD可得S△BAE =S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE,∴S△BAD =S△CAE,又∵DH垂直平分AB,EG垂直平分AC,∴S△ADH =S△ABD,S△CEG=S△CAE,∴S△ADH =S△CEG,故D正确.故选:A.11.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】观察二次函数图象,找出a>0,b>0,再结合反比例(一次)函数图象与系数的关系,即可得出结论.【解答】解:观察二次函数图象,发现:图象与y轴交于负半轴,﹣b<0,b>0;抛物线的对称轴a>0.∵反比例函数y=中ab>0,∴反比例函数图象在第一、三象限;∵一次函数y=ax+b,a>0,b>0,∴一次函数y=ax+b的图象过第一、二、三象限.故选B.12.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【考点】矩形的性质;翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.二、填空题:本大题共6小题,每小题3分,共18分13.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为7.3×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000073用科学记数法表示为7.3×10﹣5.故答案为:7.3×10﹣5.14.化简: = .【考点】二次根式的加减法.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.15.分解因式:(2a+b)2﹣(a+2b)2= 3(a+b)(a﹣b).【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).16.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为2.【考点】正多边形和圆.【分析】连接AC、OE、OF,作OM⊥EF于M,先求出圆的半径,在RT△OEM中利用30度角的性质即可解决问题.【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90°,∴AC是直径,AC=4,∴OE=OF=2,∵OM⊥EF,∴EM=MF,∵△EFG是等边三角形,∴∠GEF=60°,在RT△OME中,∵OE=2,∠OEM=∠CEF=30°,∴OM=,EM=OM=,∴EF=2.故答案为2.17.如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为(﹣8,﹣3)或(4,3).【考点】位似变换;一次函数图象上点的坐标特征.【分析】首先解得点A和点B的坐标,再利用位似变换可得结果.【解答】解:∵直线y=x+1与x轴交于点A,与y轴交于点B,令x=0可得y=1;令y=0可得x=﹣2,∴点A和点B的坐标分别为(﹣2,0);(0,1),∵△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,∴==,∴O′B′=3,AO′=6,∴B′的坐标为(﹣8,﹣3)或(4,3).故答案为:(﹣8,﹣3)或(4,3).18.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2020的纵坐标为﹣()2020.【考点】坐标与图形性质.【分析】先求出A1、A2、A3、A4、A5坐标,探究规律,利用规律解决问题.【解答】解:∵A 1(1,0),A 2[0,()1],A 3[﹣()2,0].A 4[0,﹣()3],A 5[()4,0]…,∴序号除以4整除的话在y 轴的负半轴上,余数是1在x 轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x 轴的负半轴上, ∵2020÷4=504,∴A 2020在y 轴的负半轴上,纵坐标为﹣()2020.故答案为﹣()2020.三、解答题:本大题共7小题,共66分 19.解不等式组,并把解集表示在数轴上..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可. 【解答】解:由①得:x≥﹣1, 由②得:x <,∴不等式组的解集为﹣1≤x<, 表示在数轴上,如图所示:20.某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.【考点】分式方程的应用.【分析】设乙班的达标率是x,则甲班的达标率为(x+6%),根据“甲、乙两班的学生数相同”列出方程并解答.【解答】解:设乙班的达标率是x,则甲班的达标率为(x+6%),依题意得: =,解这个方程,得x=0.9,经检验,x=0.9是所列方程的根,并符合题意.答:乙班的达标率为90%.21.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用着六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.【考点】游戏公平性;列表法与树状图法.【分析】(1)直接利用概率公式进而得出答案;(2)画出树状图,得出所有等可能的情况数,找出两次摸到小球的标号数字同为奇数或同为偶数的情况数,即可求出所求的概率.【解答】解:(1)∵1,2,3,4,5,6六个小球,∴摸到标号数字为奇数的小球的概率为: =;(2)画树状图:如图所示,共有36种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有18种,摸到小球的标号数字为一奇一偶的结果有18种,∴P(甲)==,P(乙)==,∴这个游戏对甲、乙两人是公平的.22.如图,在△BCE中,点A时边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.【考点】切线的判定与性质;扇形面积的计算.【分析】(1)欲证明CB是⊙O的切线,只要证明BC⊥OB,可以证明△CDO≌△CBO 解决问题.(2)首先证明S阴=S扇形ODF,然后利用扇形面积公式计算即可.【解答】(1)证明:连接OD,与AF相交于点G,∵CE与⊙O相切于点D,∴OD⊥CE,∴∠CDO=90°,∵AD∥OC,∴∠ADO=∠1,∠DAO=∠2,∵OA=OD,∴∠ADO=∠DAO,∴∠1=∠2,在△CDO和△CBO中,,∴△CDO≌△CBO,∴∠CBO=∠CDO=90°,∴CB是⊙O的切线.(2)由(1)可知∠3=∠BCO,∠1=∠2,∵∠ECB=60°,∴∠3=∠ECB=30°,∴∠1=∠2=60°,∴∠4=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OD=OF,∵∠1=∠ADO,在△ADG和△FOG中,,∴△ADG≌△FOG,∴S△ADG =S△FOG,∵AB=6,∴⊙O的半径r=3,∴S阴=S扇形ODF==π.23.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A 的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A 的坐标代入y=,求出反比例函数的解析式,把点B 的坐标代入y=,得出n 的值,得出点B 的坐标,再把A 、B 的坐标代入直线y=kx+b ,求出k 、b 的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m ),连接AE ,BE ,先求出点P 的坐标(0,7),得出PE=|m ﹣7|,根据S△AEB =S △BEP ﹣S △AEP =5,求出m 的值,从而得出点E 的坐标. 【解答】解:(1)把点A (2,6)代入y=,得m=12, 则y=.把点B (n ,1)代入y=,得n=12,则点B 的坐标为(12,1).由直线y=kx+b 过点A (2,6),点B (12,1)得,解得,则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB =S△BEP﹣S△AEP=5,∴×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).24.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.【考点】全等三角形的判定与性质;正方形的判定.【分析】(1)由等腰直角三角形的性质得出∠ABC=∠ACB=45°,求出∠ABF=135°,∠ABF=∠ACD,证出BF=CD,由SAS证明△ABF≌△ACD,即可得出AD=AF;(2)由(1)知AF=AD,△ABF≌△ACD,得出∠FAB=∠DAC,证出∠EAF=∠BAD,由SAS证明△AEF≌△ABD,得出对应边相等即可;(3)由全等三角形的性质得出得出∠AEF=∠ABD=90°,证出四边形ABNE是矩形,由AE=AB,即可得出四边形ABNE是正方形.【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△A BF和△ACD中,,∴△ABF≌△ACD(SAS),∴AD=AF;(2)证明:由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,,∴△AEF≌△ABD(SAS),∴BD=EF;(3)解:四边形ABNE是正方形;理由如下:∵CD=CB,∠BCD=90°,∴∠CBD=45°,由(2)知,∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.25.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可.(2)分①点E在直线CD上方的抛物线上和②点E在直线CD下方的抛物线上两种情况,用三角函数求解即可;(3)分①CM为菱形的边和②CM为菱形的对角线,用菱形的性质进行计算;【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h=0(舍)h=∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣ m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,菱形CM′P′N′的边长为(4﹣2)=4﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,﹣ n2+n+4),∴CQ=n,OQ=n+2,∴n+4=﹣n2+n+4,∴n=0(舍),∴此种情况不存在.∴菱形的边长为4﹣4.2020年6月23日。
2020年山东省威海市中考数学试卷及答案
2020年山东省威海市中考数学试卷一、单项选择题:认真审题,仔细想一想,然后选出唯一正确答案。
(本大题共12小题,每 小题3分,共36分.)1. (3分)(2020•威海)-2的倒数是( )1 C."22.(3分)(2020•威海)下列几何体的左视图和俯视图相同的是(B.C.D. 、~/3. (3分)(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导 航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫 星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分 之一用科学记数法可以表示为( )A. 10X10 10B. 1X10 94. (3分)(2020•威海)下列运算正确的是( A.343・7 = 39C. (x+v ) 2=A 2+V 29f 9fA. - 2D. 2C. 0.1X10 SD. 1X109)B. (2?) 3=6X 6D. A 2+.?=X 5(3分)(2。
2。
•威海)分式署一害化简后的结果为(6. (3分)(2020•威海)一次函数y=nx -。
与反比例函数y= 2(〃W0)在同一坐标系中的7. (3分)(2020•威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对 初二级部学生进行了问卷调杳,其中一项是:疫情期间出现的哪一个高频词汇最触动你 的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列B.选“货任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8,D.选“感恩”的人数最多8. (3分)(2020•威海)如图,点P (阳,1),点。
(-2, 〃)都在反比例函数>=士的图象上.过点P 分别向大轴、y 轴作垂线,垂足分别为点M, N.连接OP, OQ, PQ.若四 第2页(共28页)5. A. a+1 a-1 B.a+3 a-1D.a 2+3C.边形OMPN的面枳记作Si,△P。
2020年山东省威海市中考数学试题及答案
2020年山东省威海市中考数学试题及答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.(3分)(2020•威海)﹣2的倒数是()A.﹣2 B.C.D.22.(3分)(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.3.(3分)(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10﹣10B.1×10﹣9C.0.1×10﹣8D.1×1094.(3分)(2020•威海)下列运算正确的是()A.3x3•x2=3x5B.(2x2)3=6x6C.(x+y)2=x2+y2D.x2+x3=x55.(3分)(2020•威海)分式化简后的结果为()A. B.C.D.6.(3分)(2020•威海)一次函数y=ax﹣a与反比例函数y(a≠0)在同一坐标系中的图象可能是()A.B.C.D.7.(3分)(2020•威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多8.(3分)(2020•威海)如图,点P(m,1),点Q(﹣2,n)都在反比例函数y的图象上.过点P分别向x 轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A.S1:S2=2:3 B.S1:S2=1:1 C.S1:S2=4:3 D.S1:S2=5:39.(3分)(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm210.(3分)(2020•威海)如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是()A.二次函数的最大值为a﹣b+cB.a+b+c>0C.b2﹣4ac>0D.2a+b=011.(3分)(2020•威海)如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形12.(3分)(2020•威海)如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.(3分)(2020•威海)计算(1)0的结果是.14.(3分)(2020•威海)一元二次方程4x(x﹣2)=x﹣2的解为.15.(3分)(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1 0 1 3 …y…0 3 4 0 …16.(3分)(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA 上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=.17.(3分)(2020•威海)如图,点C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB互补.若AC=1.5,BC=2,则OC=.18.(3分)(2020•威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是.三、解答题(本大题共7小题,共66分)19.(7分)(2020•威海)解不等式组,并把解集在数轴上表示出来.20.(8分)(2020•威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.21.(8分)(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)22.(9分)(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E 作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.23.(10分)(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.(12分)(2020•威海)已知,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+2m﹣1的顶点为A.点B的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2﹣2mx+m2+2m﹣1与线段BC只有一个交点.25.(12分)(2020•威海)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.参考答案与试题解析一、选择题1.B. 2. D. 3. B. 4. A. 5. B. 6. D.7. C. 8. C. 9. C. 10. D. 11. D. 12. A.二、填空题13..14.x1=2,x2.15.表达式为y=﹣x2+2x+3 .16. a= 4 .17..18.条件是m、n同为奇数或m、n同为偶数.三、解答题19.解:由①得:x≥﹣1;由②得:x<3;∴原不等式组的解集为﹣1≤x<3,在坐标轴上表示:.20.解:设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,依题意,得:5,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m.21.解:作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD,∴AH40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6≈72.1(m),答:该大楼的高度约为72.1m.22.证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.23.解(1)用列表法表示所有可能出现的结果如下:表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,所以,P(小伟胜),P(小梅胜),答:P(小伟胜),P(小梅胜);(2)∵,∴游戏不公平;根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等,于是修改为:两次掷的点数之差为1,2,则小伟胜;否则小梅胜.这样小伟、小梅获胜的概率均为.24.解:(1)∵抛物线y=x2﹣2mx+m2+2m﹣1过点B(3,5),∴把B(3,5)代入y=x2﹣2mx+m2+2m﹣1,整理得,m2﹣4m+3=0,解,得m1=1,m2=3,当m=1时,y=x2﹣2x+2=(x﹣1)2+1,其顶点A的坐标为(1,1);当m=3时,y=x2﹣6x+m2+14=(x﹣3)2+5,其顶点A的坐标为(3,5);综上,顶点A的坐标为(1,1)或(3,5);(2)∵y=x2﹣2mx+m2+2m﹣1=(x﹣m)2+2m﹣1,∴顶点A的坐标为(m,2m﹣1),∵点A的坐标记为(x,y),∴x=m,∴y=2x﹣1;(3)由(2)可知,抛物线的顶点在直线y=2x﹣1上运动,且形状不变,由(1)知,当m=1或3时,抛物线过B(3,5),把C(0,2)代入y=x2﹣2mx+m2+2m﹣1,得m2+2m﹣1=2,解,得m=1或﹣3,所以当m=1或﹣3时,抛物线经过点C(0,2),如图所示,当m=﹣3或3时,抛物线与线段BC只有一个交点(即线段CB的端点),当m=1时,抛物线同时过点B、C,不合题意,所以m的取值范围是﹣3≤m≤3且m≠1.25.解:(1)如图①,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABD+∠EBC=∠ABC=60°,∴∠ACE+∠EBC=60°,∴∠BFC=180°﹣∠EBC﹣∠ACE﹣∠ACB=60°;(2)如图②,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠BAD=∠CAE,,∴△ABD∽△ACE,∴∠ABD=∠ACE,∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,∴∠BFC=∠BAC,∵∠BAC+∠ABC+∠ACB=180°,∴∠BFC+α+β=180°,∴∠BFC=180°﹣α﹣β;(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,∴MN=NK,∠MNK=60°,∴△MNK是等边三角形,∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,∴△MOK≌△MQN,∠OMQ=60°,∴OK=NQ,MO=MQ,∴△MOQ是等边三角形,∴∠QOM=60°,∴∠NOQ=30°,∵OK=NQ,∴当NQ为最小值时,OK有最小值,由垂线段最短可得:当QN⊥y轴时,NQ有最小值,此时,QN⊥y轴,∠NOQ=30°,∴NQ OQ,∴线段OK长度的最小值为.。