出租车数学建模问题

合集下载

最优乘车问题数学建模

最优乘车问题数学建模

问题二:本市出租车收费制度在98年进行了调整,由原来5公里起步价14.4元、每公里车费1.8元变为3公里起步价10元、每公里2元,并且10公里以上每公里增收50%、特殊时段(23:00~6:00) 每公里增收30%。

制度改变后,一些精明的乘客在行驶一定里程后,利用换车或让司机重新计价的方法来节省车费。

可现在,这种乘客越来越少见了。

请问适当换车真的省钱吗?建立数学模型解释上述现象。

解答:1、基本假设①假设1998年以前顾客无论乘车距离多远都不会考虑换乘;②假设收费制度改革后,乘车距离小于或等于3公里,乘客也不会考虑换乘; ③假设乘车距离不足1公里的不按1公里计算。

④假设不考虑在正常时段和特殊时段之间的临界换车情况⑤假设计价器准确无误并且不考虑中途停留的情况。

⑥假设在特殊时段乘车时乘客不会考虑换乘2、符号说明 x 表示乘车的距离 (m )y 表示乘车所需费用 (元)[]x 表示x 的整数 (m )3、问题分析本题针对换乘后相对制度改革前是否会节省车费的问题,讨论了不同乘车方式下的费用。

题目给出了不同乘车区间的单价,所以要想知道换乘是否节约费用,只有根据乘车的距离计算出具体费用然后再加以比较才能得出结论。

经分析可知,当行驶的距离在10公里之类时换乘是不划算的,所以本文对于问题的解答,建立了简单的方程模型,只对乘车区间超过10公里的不同乘车方式下的费用进行了计算,通过比较,最终问题得以解决。

4、模型的建立与求解4.1 模型建立4.1.1 制度改变前⎩⎨⎧>+≤=54.58.154.14x x x y (1)4.1.2 制度改变后但不在特殊时段乘车⎪⎩⎪⎨⎧>-≤<+≤=106310342310x x x x x y (2)4.1.3 制度改变后在特殊时段乘车⎪⎩⎪⎨⎧>-≤<+≤=10159.31032.26.2310x x x x x y (3)4.2模型求解上图给出了不同乘车方式距离与费用的线形图(程序代码见附录一),可以看出:收费制度改革后,行驶的距离越远,所收的费用相对制度改革前越多。

出租车资源配置数学建模

出租车资源配置数学建模

出租车资源配置数学建模随着城市化进程的不断加速,出租车作为城市交通中一种便捷的交通方式,在城市生活中扮演着极为重要的角色。

而如何合理利用城市出租车资源,提高出租车的运行效率,实现资源共享和更好的城市出行,已经成为城市交通管理者和出租车企业共同面临的问题。

本文将介绍出租车资源配置数学建模。

数学建模是将现实问题转化为数学问题的一种方法,它通过找到数学模型和函数关系,来解释和预测实际问题。

对于出租车资源配置问题来说,数学建模可以从以下方面入手:一、出租车资源分布情况建模(1)建立交通流量模型。

交通流量是指每秒、每分钟或每小时经过某一道路断面的车辆数量,可以通过车辆计数器、电子眼等技术手段来获取,也可以通过历史交通数据进行统计分析得出。

通过建立交通流量模型,可以分析出某一时间段和区域的出租车流量,为制定出租车资源配置方案提供数据支持。

(2)建立出租车空驶率模型。

空驶率是指出租车在行驶或寻找客人的过程中没有载客的比率。

通过建立出租车空驶率模型,可以分析出不同时段和区域的出租车空驶率,找到优化出租车服务质量和经济效益的路径。

二、城市区域划分模型城市区域划分是指将城市划分为不同的区域,以便对出租车资源进行管理和配置。

城市区域划分可以采取“网格划分”法、“层次分析法”、“聚类分析法”等方法来实现。

通过建立城市区域划分模型,可以对城市交通分析与管理提供有力支撑。

三、出租车调度模型出租车调度是指对出租车进行调度安排,以满足不同时间段和区域的出租车服务需求。

出租车调度模型可以采取“最优化调度模型”、“仿真调度模型”等方法来实现。

通过建立出租车调度模型,可以分析出不同时间段和区域的出租车需求量,优化出租车服务质量和经济效益。

四、出租车双向顺路载客模型出租车双向顺路载客是指在出租车行驶的过程中,在满足原有客人需求的同时,将新的客人路线安排在原有路线的顺路位置上,即在出租车行驶的过程中尽可能地提高载客率。

通过建立出租车双向顺路载客模型,可以在优化出租车服务质量的同时,降低出租车的空驶率,提高出租车运行效率。

机场的出租车问题数学建模题目

机场的出租车问题数学建模题目

机场的出租车问题数学建模题目题目:机场的出租车问题数学建模问题:某机场的出租车围绕机场大厅区域进出载客。

出租车站点A、B、C、D分别位于大厅的四个角落,乘客入口E位于大厅的中央位置。

出租车按照顺时针方向依次编号为1、2、3、4。

已知:1. 每辆出租车从出发到达任意一个出租车站点的时间都相等。

2. 每辆出租车从出发到达乘客入口的时间也相等。

3. 乘客倾向于选择距离乘客入口最近的出租车出行。

现在需要建立一个数学模型,来确定出租车站点A、B、C、D的最佳出租车编号,以最大程度上满足乘客的倾向性选择。

思路:1. 首先,我们可以画一个平面坐标系,以大厅区域的中心点为原点,确定A、B、C、D四个出租车站点的坐标。

2. 假设出租车在单位时间内可以移动的距离相同,即速度相同。

我们可以将每个出租车站点与乘客入口的距离表示为坐标系中的距离。

3. 对于每辆出租车,我们可以计算它到达乘客入口的距离,即求出租车站点到乘客入口的欧几里得距离。

然后将这个距离与其他出租车的距离进行比较。

4. 最后,我们选择离乘客入口最近的出租车站点对应的出租车编号作为最佳选择。

数学建模:设大厅区域中心点的坐标为(0,0)。

站点A的坐标为(x1,y1),站点B的坐标为(x2,y2),站点C的坐标为(x3,y3),站点D的坐标为(x4,y4)。

乘客入口E的坐标为(xe,ye)。

出租车1的坐标为(x1,y1),出租车2的坐标为(x2,y2),出租车3的坐标为(x3,y3),出租车4的坐标为(x4,y4)。

出租车1到乘客入口的距离:dist1 = sqrt((x1-xe)^2 + (y1-ye)^2) 出租车2到乘客入口的距离:dist2 = sqrt((x2-xe)^2 + (y2-ye)^2) 出租车3到乘客入口的距离:dist3 = sqrt((x3-xe)^2 + (y3-ye)^2) 出租车4到乘客入口的距离:dist4 = sqrt((x4-xe)^2 + (y4-ye)^2)最佳选择的出租车编号为min(dist1, dist2, dist3, dist4)注意:这个模型只是一个基本的建模思路,实际情况可能更加复杂,需要根据具体场景进行调整和完善。

出租车资源配置数学建模

出租车资源配置数学建模

出租车资源配置数学建模出租车资源配置是城市交通管理的重要组成部分,也是市民生活中不可缺少的服务。

如何高效合理地配置出租车资源,对于缓解交通拥堵、提高出租车服务质量和增加司机收入都具有重要意义。

本文将对出租车资源配置问题进行数学建模与分析,以期为实现优质出租车服务、促进城市交通可持续发展提供指导意义。

首先,我们需要确定影响出租车资源配置的因素。

出租车资源配置主要受到市场需求、城市道路交通规划、司机收益和乘客出行习惯等多方面因素的影响。

因此,通过调查和研究,我们可以得出以下指标:1. 日均出租车需求量:该指标反映市场需求的大小,是决定资源配置数量的重要因素。

2. 出租车利用率:衡量出租车资源利用程度的指标,反映出租车行业的效益水平。

3. 路径选择效率:路网状况对出租车运营效能的影响指标,需考虑路况、车流量、限行等因素。

4. 司机工作负荷:司机收入和服务效率的关键指标,需要考虑出车率和等待乘客时间等。

基于以上指标,我们可以建立基础模型。

首先,根据日均出租车需求量,我们可以确定城市出租车资源总量。

因为城市规模和出租车服务商数量不同,我们可以根据当地实际情况进行合理分配,以确保资源利用率最大化。

然后,我们根据出租车需求的高峰时段,确定每个时段的出租车资源需求量,并将之与出租车数量进行比对,再进行调整和分配,以确保出租车利用率最大化。

其次,为了提高路径选择效率,我们需要对城市道路交通规划进行分析和规划。

我们通过模拟乘客上下车点,计算出租车到达目的地的最短路径,并结合路况和车流量等因素,确定出租车行驶路线,以减少通行时间。

同时,为了应对特殊情况和限行政策,我们可以将路线进行多种组合和调整,以避开交通拥堵和限行区域,确保出租车到达目的地的速度和效率,从而提高出租车行业的效益水平。

最后,为了降低司机工作负荷,我们可以通过计算司机出车率、乘客等待时间等指标,确定不同时段的服务区域和出车数量,以确保司机收入与服务效率最优化。

数学建模 出租车调价问题

数学建模 出租车调价问题

出租车调价问题摘要:随着国际燃油价格的不断上涨,国内市场已经进行了多次调价,调价对于本来就经营困难的出租车来说更是雪上加霜。

为了化解高油价给出租车业,尤其是出租车司机带来的压力,各个地方政府采取种种措施化解油价上涨给出租车司机带来的减收问题。

2006年4月17号上海召开出租车运价油价联动机制听证会,就建立出租车行业运价油价联动机制展开论证并且提出了两个运价油价联动计算公式。

本文通过假设和一定的分析而建立一个数学模型以反映上海市的出租车运价与油价联动机制,并经过将大连的实际情况跟上海对比后,对模型做一定的改进以适合大连的情况。

本文利用线形规划模拟分析问题,建立模型并且利用LINGO求解。

最后从理论与实际的角度出发,提出对模型的改进方法和设想。

关键词:出租车调价线性规划数学模型一、问题的重述受国际原油价格持续上涨影响, 经国务院批准,国家发改委通知, 自2006年3月26日起将汽油和柴油出厂价格每吨分别提高300元和200元。

辽宁省的汽油和柴油零售基准价每吨分别提高250元和150元。

大连市93号汽油每升上调0.21元,调价后为每升4.47元。

国家发改委提高成品油价格的消息发布后,一些地方迅速做出反应。

在油价走高的背景下,全国出租车价格涨声一片。

国家发改委要求各地建立出租车运价与油价的联动机制,今后按照联动机制调整运价。

目前北京、上海已经建立了出租车运价与油价的联动机制。

以上海市为例,在2006年4月17日召开的出租车运价油价联动机制听证会上公布了两个公式,运价油价联动机制今后将通过两个公式来操作。

第一个公式用于调整出租车起步费。

按照这个公式,如果油价平均提高一元,根据前期调研,单车每天消耗汽油43.75升,日均载客34次,代入公式,每车起步价需要提高1.29元;第二个公式用于调整超过起步价后的出租车公里单价。

按照这个公式,如果油价每升平均提高1元,每车每天行驶350公里、载客率61%、起步价外公里占总公里数的64%,与公里油耗无关的加价计时等营运附加收入系数0.15,计算后可以发现每公里运价需要提高0.27元。

2019数学建模c题出租车c

2019数学建模c题出租车c

2019数学建模c题出租车c(原创版)目录1.题目背景及要求2.出租车调度问题的解决方案3.数学建模在解决实际问题中的应用4.结论正文1.题目背景及要求2019 年数学建模竞赛的 C 题,题目为“出租车调度问题”。

该题目要求参赛者针对一个城市中的出租车调度问题进行分析,并提出解决方案。

具体而言,需要考虑如何在满足乘客需求的同时,使出租车的运营效率最大化,并降低出租车的空载率。

2.出租车调度问题的解决方案针对出租车调度问题,我们可以从以下几个方面进行分析和求解:(1) 建立问题模型:根据题目描述,可以将出租车调度问题建立一个车辆路径问题(Vehicle Routing Problem, VRP)模型。

在这个模型中,出租车作为车辆,乘客作为需求点,每辆出租车需要在满足乘客需求的同时,选择一条最优路径,使得总运营效率最大。

(2) 求解算法:针对 VRP 模型,可以采用各种算法进行求解,如穷举法、贪心算法、遗传算法等。

在实际应用中,常用的求解方法是遗传算法,因为它可以在较短时间内找到较优解。

(3) 实际应用:将求解出的最优路径应用于实际出租车调度,通过智能调度系统,实时调整出租车的运营路线,从而满足乘客需求,提高出租车的运营效率,降低空载率。

3.数学建模在解决实际问题中的应用数学建模是一种强有力的工具,能够帮助我们解决实际问题。

在本题中,通过建立 VRP 模型,并采用遗传算法求解,我们可以找到一个较优的出租车调度方案。

这种方法不仅可以应用于出租车调度,还可以应用于许多其他领域,如物流、生产调度等,充分体现了数学建模在解决实际问题中的广泛应用价值。

4.结论总之,2019 年数学建模 C 题“出租车调度问题”通过建立 VRP 模型,并采用遗传算法求解,为解决实际中的出租车调度问题提供了一种有效方法。

机场的出租车问题数学建模题目

机场的出租车问题数学建模题目

机场的出租车问题数学建模题目机场出租车问题是指在机场附近出租车的数量有限,而需求却很大,导致乘客等待时间过长的问题。

为了解决这个问题,我们可以通过数学建模来优化出租车的分配和调度,使得乘客的等待时间最小化。

首先,我们需要确定机场出租车的数量和位置。

假设机场周围有n 辆出租车,我们可以将它们的位置表示为(x1, y1), (x2, y2), ..., (xn, yn)。

这些位置可以通过GPS系统获取,我们可以将其转换为平面上的坐标,方便后续的计算。

其次,我们需要确定乘客的需求分布。

假设在机场附近有m个乘客需要出租车,我们可以将他们的位置表示为(x1', y1'), (x2',y2'), ..., (xm', ym')。

乘客的需求分布可能受到时间、天气等因素的影响,我们可以通过历史数据和统计分析来确定乘客的出现概率和位置分布。

接着,我们需要确定出租车的调度规则。

一般来说,我们希望出租车能够以最短的时间到达乘客的位置,并且尽量减少乘客的等待时间。

为了实现这一目标,我们可以采用最短路径算法来确定每辆出租车的调度顺序和路径规划,以便最大程度地满足乘客的需求。

另外,我们还可以考虑出租车的容量和载客规则。

为了提高出租车的利用率,我们可以考虑将多个乘客的需求合并,让一辆出租车同时满足多位乘客的需求。

这就涉及到了乘客需求的匹配问题,我们可以通过数学建模和算法设计来实现这一目标。

在实际应用中,我们还需要考虑一些约束条件。

比如,每辆出租车的最大载客量、路况和交通限制、乘客等待时间的最大限制等。

这些约束条件可以通过线性规划或整数规划来描述,并且我们可以通过求解优化问题来获得最优的出租车调度方案。

除了以上提到的问题,我们还可以考虑一些扩展问题。

比如,机场出租车的调度问题可能会受到节假日或活动等因素的影响,我们可以通过实时数据和预测分析来进行调整;另外,我们还可以考虑解决出租车的分配问题,比如在机场附近的不同区域分别安排不同数量的出租车,以适应不同区域的需求特点。

2019数学建模c题出租车c

2019数学建模c题出租车c

2019数学建模c题出租车c
对于这个出租车问题,我们可以使用数学建模来解决。

以下是一个可能的建模过程:
1. 定义问题:我们需要找到最优的出租车调度方案,使得所有乘客的需求都能得到满足,并且最小化出租车的总行驶里程。

2. 建立数学模型:设想我们有n辆出租车和m个乘客。

我们需要确定每个乘客的出发地和目的地,以及每辆出租车的行驶路线。

我们可以将每个乘客的起始点和目的地表示为坐标点(x1, y1)和(x2, y2),每辆出租车的位置也可以表示为坐标点(x, y)。

3. 求解过程:我们可以使用最优化算法来找到最佳的出租车调度方案。

一种常用的方法是线性规划。

我们可以将出租车的总行驶里程作为目标函数,并设置一些约束条件。

例如,每个乘客只能被一辆出租车接送,出租车的行驶里程不能超过一定的限制等等。

4. 实施方案:根据求解结果,我们可以获得每个乘客的出租车选择和行驶路径。

然后,我们可以将乘客指派给出租车,并通知出租车司机按照指定路径行驶。

5. 评估结果:我们可以通过比较实际行驶里程和最优解计算得到的行驶里程,来评估方案的效果。

如果实际行驶里程较接近最优解,说明我们的模型和算法是有效的。

总之,数学建模可以帮助我们解决出租车调度问题,优化出租车的行驶路径,提高运输效率。

当然,具体的建模过程还需要根据实际情况进行调整和扩展。

数学建模汽车租赁问题

数学建模汽车租赁问题

数学建模汽车租赁问题在如今的社会中,汽车租赁服务已经成为了越来越受欢迎的选择。

然而,在汽车租赁公司的运营过程中,如何合理地分配汽车资源以满足用户需求并提高运营效益成为了一项重要的问题。

在本文中,我们将运用数学建模的方法来探讨汽车租赁问题,以期得到最佳的汽车分配方案。

1. 问题描述我们假设有一家汽车租赁公司,该公司拥有不同型号和品牌的汽车,以满足不同用户的需求。

公司面临着以下问题:(1)如何根据用户需求高效地分配汽车资源?(2)如何合理安排汽车的调度和维修?(3)如何确定合适的租金策略以满足公司运营需求?2. 模型建立为了解决上述问题,我们可以建立以下数学模型:(1)需求预测模型:分析历史数据,通过时间序列分析或机器学习算法预测用户的汽车租赁需求。

将预测结果应用于汽车资源的分配,以避免资源浪费和不足的问题。

(2)运输调度模型:基于实时数据和优化算法,建立汽车调度模型,合理安排汽车的运输路径和时间,以提高运输效率和降低成本。

(3)维修决策模型:分析汽车日常维修和保养的历史数据,建立维修决策模型,包括维修周期、维修数量和维修质量等方面,以确保汽车的正常运行和延长使用寿命。

(4)租金策略模型:结合市场需求和竞争对手定价策略,建立租金策略模型,以确定合适的租金水平,同时考虑用户的支付能力和公司的利润目标。

3. 数据获取与分析为了建立有效的模型,我们需要收集并分析大量的数据,包括但不限于以下方面:(1)用户需求数据:通过调查问卷、网站访问记录等方式,获取用户对不同品牌和型号汽车的需求数据。

(2)租赁历史数据:统计汽车租赁的历史数据,包括租赁时长、租赁地点、租车用途等信息,以便进行需求预测和调度规划。

(3)汽车维修和保养数据:记录汽车的维修和保养历史,包括维修周期、维修费用、维修质量等信息,用于建立维修决策模型。

(4)竞争对手数据:调研竞争对手的租金策略、汽车品牌和型号等信息,以便制定适当的租金策略模型。

4. 模型求解基于收集的数据,我们可以利用数学优化算法和模拟仿真等方法求解建立的模型,得到最优的汽车分配方案和租金策略。

数学建模汽车租赁问题

数学建模汽车租赁问题

数学建模汽车租赁问题随着城市交通的发展和人们生活水平的提高,汽车租赁业务也逐渐兴起。

汽车租赁公司为个人和企业提供短期或长期租赁服务,给用户提供了更方便、灵活和经济的出行方式。

但是,如何合理安排租车方案,以最大程度地满足用户需求,同时又能使汽车租赁公司的利益最大化,是一个复杂的数学建模问题。

本文将探讨数学建模在汽车租赁问题中的应用。

首先,对于汽车租赁问题来说,主要涉及到两个关键因素:用户需求和汽车数量。

用户需求是指在一定时间内,用户对租车的需求量;汽车数量是指汽车租赁公司可提供的汽车数量。

为了使建模更具体,我们可以将时间分为若干时间段,每个时间段内的用户需求是一个已知的数值。

将用户需求和汽车数量通过数学表达式进行描述,建立数学模型成为解决问题的关键。

其次,在建立数学模型时,需要考虑到用户的租车时长。

用户可以根据个人需求选择租车的时间长度,汽车租赁公司通常会提供一天、一周或一个月的不同租赁方案。

因此,在数学建模中,我们需要根据用户的租车时长来确定租车费用,以便在最大程度满足用户需求的同时,实现汽车租赁公司的利益最大化。

另外,为了提高租车服务的质量,汽车租赁公司通常会对汽车进行维护和保养。

在数学模型中,我们可以引入维护和保养成本,以考虑到这一因素。

维护和保养成本可以通过每次租车的费用中加入一个折旧费用来体现。

通过适当调整租车费用,可以使得租车公司在满足用户需求的同时,合理分摊维护和保养成本,进而实现公司的利益最大化。

此外,汽车租赁公司还可以通过灵活制定不同类型的车辆租赁费用来满足不同用户的需求。

例如,对于高端汽车的租赁费用可以相对较高,而对于经济型汽车的租赁费用可以相对较低。

通过灵活制定不同类型的车辆租赁费用,可以吸引更多的用户选择租赁公司的服务,并进一步实现公司的利益最大化。

最后,在数学建模中,我们还可以考虑一些其他因素,如季节性需求的变化、市场竞争等。

通过分析这些因素对租车需求的影响,可以在制定租车方案时进行合理的调整,以更好地满足用户需求。

2019数学建模c题出租车c

2019数学建模c题出租车c

2019数学建模c题出租车c
摘要:
1.题目背景及要求
2.出租车调度问题的解决方案
3.数学建模在出租车调度中的应用
4.结论
正文:
1.题目背景及要求
2019 年数学建模竞赛的C 题是关于出租车调度的问题。

具体来说,题目描述了一个城市中有多个出租车司机,他们需要根据乘客的叫车请求来决定如何分配车辆。

这个问题需要参赛者运用数学建模的方法,为出租车司机提供一个高效的调度策略。

2.出租车调度问题的解决方案
针对这个问题,我们可以采用一种基于遗传算法的解决方案。

具体来说,我们可以将每个出租车司机看作是一个个体,每个个体都有一组基因,表示该司机当前的位置和行驶方向。

然后,我们可以通过模拟自然选择和基因遗传的过程,逐步优化所有个体的基因组合,从而找到一种最优的调度策略。

3.数学建模在出租车调度中的应用
在这个问题中,数学建模主要体现在以下几个方面:
首先,我们需要建立一个数学模型来描述出租车司机和乘客之间的互动关系。

这个模型可以用一个图来表示,其中出租车司机对应图中的节点,乘客的
叫车请求对应图中的边。

其次,我们需要运用一些数学方法(如遗传算法)来求解这个模型。

这些方法可以帮助我们在大量的可能解决方案中,找到一种最优的调度策略。

最后,我们还需要运用一些统计学方法来评估我们的调度策略是否有效。

例如,我们可以通过计算乘客的平均等待时间来判断我们的策略是否能够提高出租车的使用效率。

4.结论
通过运用数学建模的方法,我们可以为出租车司机提供一个高效的调度策略。

这种策略可以帮助他们更好地满足乘客的需求,提高出租车的使用效率。

数学建模 出租车运营问题

数学建模 出租车运营问题

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):出租车经营管理问题摘要本文解决的是出租车经营管理的问题,探究出租车在一、二两条线路上的运行情况及差异,利用excel对附件中数据进行筛选、处理,通过matlab,spss软件对处理后的数据进行分析。

针对问题一,利用作差法得到乘车时间,利用matlab软件做出乘车时间与费用的图像,针对问题二,针对问题三,针对问题四,利用Excel通过对附件数据处理,计算不同乘车时间的频率,用频率作为概率来处理。

全国数学建模大赛试题——出租车模型及数据(C)

全国数学建模大赛试题——出租车模型及数据(C)

全国数学建模大赛试题——出租车模型及数据(C)2005 年全国部分高校研究生数学建模竞赛C 题城市交通管理中的出租车规划最近几年,出租车经常成为居民、新闻媒体议论的话题。

某城市居民普遍反映出租车价格偏高,而另一方面,出租车司机却抱怨劳动强度大,收入相对来说偏低,甚至发生出租车司机罢运的情况,这反映出租车市场管理存在一定问题,整个出租车行业不景气,长此以往将影响社会稳定,值得关注。

我国城市在未来一段时间内,规模会不断扩大,人口会不断增长,人民生活水平将不断提高,对出租车的需求也会不断变化。

如何配合城市发展的战略目标,最大限度地满足人民群众的出行需要,减少环境污染和资源消耗,协调各阶层的利益关系,是值得深入研究的。

(附录中给出了某城市的相关数据)。

(1)考虑以上因素,结合该城市经济发展和自身特点,类比国内外城市情况,预测该城市居民出行强度和出行总量,同时进一步给出该城市当前与今后若干年乘坐出租车人口的预测模型。

(2)给出该城市出租车最佳数量预测模型。

(3)按油价调价前后(3.87元/升与4.30元/升),分别讨论是否存在能够使得市民与出租车司机双方都满意的价格调整方案。

若存在,给出最优方案。

(4)本题给出的数据的采集是否合理,如有不合理之处,请你给出更合理且实际可行的数据采集方案。

(5)请你们站在市公用事业管理部门的立场上考虑出租车规划问题,并将你们的研究成果写成一篇短文,向市公用事业管理部门概括介绍你们的方案。

附录11、2004年某城市的城市规模和道路情况如下:(1)城市现辖6区,2004年城市建成区面积181.77平方公里,人口185.15万。

(2)道路总长度998公里,道路铺装面积928万平方米,道路广场面积1371.45万平方米,道路网密度7.71公里/平方公里,人均道路长度0.7米,人均道路面积6.16平方米。

(3)城市总体规划人口通过对岀行特征的分析,把岀行特征相近的人口划归为一类,常住人口和暂住人口称为第一类人口,短期及当日进出人口称为第二类人口。

数学建模——汽车租赁问题(生活经验)

数学建模——汽车租赁问题(生活经验)

一家汽车租赁公司在3个相邻的城市运营,为方便顾客起见公司承诺,在一个城市租赁的汽车可以在任意一个城市归还。

根据经验估计和市场调查,一个租赁期内在A市租赁的汽车在,,A B C市归还的比例分别为0.6,0.3,0.1;在B市租赁的汽车归还比例0.2,0.7,0.1;C市租赁的归还比例分别为0.1,0.3,0.6。

若公司开业时将600辆汽车平均分配到3个城市,建立运营过程中汽车数量在3个城市间转移的模型,并讨论时间充分长以后的变化趋势。

二、模型假设1.假设在每个租赁期开始能把汽车都租出去,并都在租赁期末归还;2.假设一个租赁期为一年;3.假设在每个租赁期该租赁公司都有600辆汽车可供租赁。

三、符号说明k:租赁期(k=0,1,2,3……)n:年数1()x k:第k个租赁期A市的汽车数量2()x k:第k个租赁期B市的汽车数量3()x k:第k个租赁期C市的汽车数量A:刻画汽车在,,A B C三市归还比例的矩阵(:,1)x:第一年,,A B C三市拥有的汽车数量的矩阵(:,1)x k+:第1k+年,,A B C三市拥有的汽车数量矩阵四、模型分析该问题是差分方程下的一个简单问题,根据题目中给出的初始条件和三个城市的归还比例,可以列出差分方程的模型公式,便可清晰的看出每个租赁期三个城市的汽车数量与下一个租赁期三个城市汽车数量之间的关系。

建模过程中可直接选择10年后或是20年之间的汽车变化情况,得出具体的模型,大致如下:x1(k)x2(k)x3(k)从图中我们可以清晰的看出,大概在8年以后,三个城市的汽车数量基本趋于稳定,是一个定值,而这三个城市归还比例之和为:A 市为0.9,B 市为1.3,C 市为0.8,易得出n 年以后B 市的汽车数量最高,其次是A 市,然后是C 市,这与我们得出的模型与结论基本相同,即可得出该模型是正确的。

而当初始值不同时,每个城市的归还比例是不会随之改变的,所以在时间充分长以后三市所拥有的汽车数量都是趋近于180,300,120.五、模型及其求解记第k 个租赁期末公司在ABC 市的汽车数量分别为123(),(),()x k x k x k (也是第k+1个租赁期开始各个城市租出去的汽车数量),很容易写出第k+1个租赁期末公司在ABC 市的汽车数量(k=0,1,2,3……)由题意可得初始,,A B C 三市的汽车数量为200,200,200,在,,A B C 三市租赁的汽车在A 市归还的比例为0.6,0.2,0.1,由此可得差分方程为:1123(1)0.6()0.2()0.1()x k x k x k x k +=++同理可得在B 市的归还的差分方程为:2123(1)0.3()0.7()0.3()x k x k x k x k +=++在C 市的归还的差分方程为:3123(1)0.1()0.1()0.6()x k x k x k x k +=++综上所述,我们建立一阶差分方程模型为:11232123(1)0.6()0.2()0.1()(1)0.3()0.7()0.3()x k x k x k x k x k x k x k x k +=++⎧⎪+=++⎨用矩阵表示用matlab 编程,计算x(k),观察n 年以后的3个城市的汽车数量变化情况,见附录一。

关于出租车计费的数学问题并解答

关于出租车计费的数学问题并解答

出租车计费是日常生活中不可或缺的一部分,尤其对于城市居民来说。

而其中涉及的数学问题也是非常值得探讨的。

本文将从计费方式、数学模型和实际问题等方面展开深入讨论,帮助读者更深入地理解出租车计费背后的数学原理。

1.计费方式在大多数城市,出租车的计费方式主要分为起步价和里程费。

起步价即乘坐出租车的最低花费,一般包括起步里程。

超过起步里程后,乘客需要支付额外的里程费用。

还有些地方采用时间计费,即乘客在车上的时间超过一定时长后会额外收费。

2.数学模型出租车计费背后的数学模型主要涉及到距离、时间和费用之间的关系。

其中,距离与费用的关系可以用线性函数来表示,即费用 = 距离× 单位距离费率。

而时间与费用的关系则需要考虑起步时间和超时时间的不同计费方式,可以用分段函数来表示。

这些数学模型为计算机程序设计提供了基础,也方便了后续的数学分析。

3.实际问题在实际生活中,出租车计费涉及到的数学问题还有很多。

如何选择最经济的乘车路线?如何在司机改道或绕行时准确估算里程和费用?这些问题需要运用数学知识和技巧,对实际情况做出合理的估计和计算。

总结回顾通过本文的讨论,我们可以更清晰地理解出租车计费的数学原理。

起步价、里程费以及时间费用的计算,都可以用数学模型来描述。

在实际问题中,这些数学模型也能帮助我们更好地理解和解决实际问题。

对于出租车计费的数学问题,我们需要通过数学模型的建立和分析,来更好地理解和应用相关知识。

个人观点和理解作为一个数学爱好者,我对出租车计费这个实际问题产生了浓厚的兴趣。

通过对其数学原理的深入了解和分析,我深深地感受到了数学在现实生活中的应用和重要性。

希望在未来的生活中,能够通过更多的数学分析和技巧,解决更多实际问题。

结语关于出租车计费的数学问题,我们可以从多个角度来进行深入地探讨和解答。

通过本文的分析和讨论,相信读者们对这一问题有了更深刻的理解和认识。

希望本文能够对大家有所启发,也希望大家能够在日常生活中更加关注数学知识的应用和实际意义。

数学建模汽车租赁调度问题

数学建模汽车租赁调度问题

数学建模汽车租赁调度问题汽车租赁业务在现代社会中越来越受到欢迎。

为了提高租车服务的质量和效率,如何合理地调度汽车成为一个重要的问题。

本文将利用数学建模方法,探讨汽车租赁调度问题,并提出一种有效的解决方案。

一、问题概述在汽车租赁公司中,通常有一定数量的汽车可供顾客租用。

假设每辆汽车都有相同的基本租金。

顾客提前预约租车,并在预定时间到租赁公司领取车辆。

为了提高利润和顾客满意度,汽车租赁公司需要合理地安排汽车的调度,以保证每个顾客都能按时得到租赁车辆。

二、模型假设1. 假设每位顾客的租车时间和归还时间都已提前确定,不会发生变化。

2. 假设每辆汽车都有固定的油耗,即不考虑汽车在租赁过程中需要加油的情况。

3. 假设所有汽车的行驶速度相同,不受交通拥堵等因素的影响。

4. 假设所有顾客对汽车的租赁时间都严格遵守,不会延误还车时间。

三、模型建立1. 数据收集:首先,收集所需的数据,包括汽车数量、顾客数量、每辆汽车的基本租金以及每位顾客的租车和归还时间。

2. 路线规划:根据每个租赁订单的时间要求,为每辆汽车规划最佳的路线。

考虑到租车和归还的顺序,采用TSP(Traveling Salesman Problem,旅行商问题)算法,通过动态规划求解最优路径。

3. 调度策略:确定汽车的调度策略,使租车公司的利润最大化。

可以考虑以下几个因素:a. 汽车的利用率:通过合理安排汽车的调度,尽量减少汽车空闲时间,提高汽车的利用率。

b. 顾客的满意度:尽量减少顾客等待租车的时间,确保顾客能够按时得到租车。

c. 路程的最优化:通过动态规划算法求解最佳路径,减少汽车行驶的总路程。

四、模型求解根据以上建立的数学模型,可以使用计算机编程语言来求解。

首先,将所需的数据输入程序中,通过计算得到最优路径和调度策略。

然后,根据计算结果,安排汽车的调度,使得汽车的利润最大化,并确保顾客能够按时得到租车。

五、实例分析以某汽车租赁公司为例,假设该公司有10辆汽车和50个顾客。

出租车运价数学建模报告

出租车运价数学建模报告

出租车运价数学建模报告出租车计费问题数学建模摘要:数学建模论文A市出租车起步价10元,3千米后每千米价为1.2元;试问在A市乘坐出租车6(x>3)千米的费用是多少元?如果行驶了x公里,费用又是多少?关键词:建模、一次函数模型问题重述:生活中我们经常会遇到外出打出租车计费、打电话计费的问题,如A市出租车起步价10元,3千米后每千米价为1.2元;试问在A市乘坐出租车6(x>3)千米的费用是多少元?如果行驶了x公里,费用又是多少?这样的问题我们应如何解决,能不能利用电脑中的EXCEL来快速计算出费用。

分析:首先,要解决这道题我们必须先找到有关这道题的关键词,再确定建立何种数学模型。

由题意得,该题中有两个变量公里数、总费用,并且费用随着公里数的变化而变化,这是函数的基本特征,所以这道题应用函数解决;我们只要建立了一次函数模型。

那么这道题便很容易解决了!解答及符号说明:数学计算方法:总费用=起步价+(总公里数--3)*1.2P:总费用a:起步价s:总公里数模型建立及求解:模型:P=a+(s-3)*1.2A市出租车起步价10元,3千米后每千米价为1.2元;乘坐出租车6千米的费用是10+(6-3)*1.2=13.6.模型推广:出租车计费起步价总公里数总公里数减3单价总费用10631.213.6应用:在生产生活中掌握市场上的变化规律,制定恰当的方案,运用一次函数加以解决,合理安排,这样的吻题就很容易解决。

总结:所以说建模是解决数学问题最常见和最有效的方法。

在日常生活中,当我们遇到一些数学问题时,我们应该运用学过的数学知识,建立适当的数学模型,来解决实际问题。

因此,无论什么实际问题,只要运用所学的数学知识,建立正确的数学模型,任何问题都会迎刃而解。

数学建模A题

数学建模A题

A 题出租车合乘业务系统设计
出租车合乘业务是指路线相同或相近的两位或多位乘客共同乘坐同一辆出租车出行,系统根据合乘人数、乘车时间、实际路线等因素,分别计算出每位乘客的车费(通常低于各自独乘时的车费)。

司机收入则为所有乘客支付的车费总和。

该业务可以在不增加运营车辆总数的情况下提高运力,有助于缓解打车难,而且能够降低乘客出行成本,同时提高司机收入。

因此,相当一部分乘客、司机愿意接受该业务,特别是在打车的高峰时段。

某出租车公司拟开展合乘业务。

通过调研发现,某城市的合乘业务是以下模式 :
“一口价”模式。

利用网上调度系统和手机打车软件,在同意合乘的前提下,乘客通过手机软件提交打车请求(起始位置等信息),系统根据历史数据预估车费,显示为“一口价”,即乘客若接受该报价,则无论实际乘车过程中是否有合乘,均按此一口价结算。

该价格一般低于正常的车费。

系统针对当前打车需求信息,动态调度合乘路线。

该模式对乘客友好,便于控制乘车费用,而且合乘条件低,合乘方案灵活,可以提高合乘比例。

假设某城市的路网为正方形网格,网格边长500 米,道路均可双向行驶。

请完成以下任务:
1.现有如下数据:(见附件)
附件 1 是某城市当前的打车乘客的位置,
附件 2 是当前空驰出租车的位置信息。

假设出租车均为4座车,即,除司机外,至多可搭乘3位客人。

请根据“一口价”模式,设计合乘方案,使所需出租车数量尽量少,并将你们的合乘方案按附件 3 中指定的格式给出。

2. 请在任务 1 的基础上,考虑乘客的花费和司机的收益,设计与合乘方案相应的合理的车费计算方法。

出租车交接班问题的数学模型

出租车交接班问题的数学模型

出租车交接班问题的数学模型出租车交接班问题的数学模型主要是基于线性规划或者整数规划的方法来求解。

以下是一个简单的解析:问题描述:假设有n辆出租车,每辆车有两个司机,每个司机只能开一辆车。

现在需要将这n辆车分成两组,使得每组的司机数量大致相等,同时尽可能使得每组的车辆工作时间尽量接近,这样可以提高车辆的利用率。

数学模型:变量定义:1.x_i:第i辆车是否被第1组司机驾驶(1表示是,0表示否)2.y_i:第i辆车是否被第2组司机驾驶(1表示是,0表示否)目标函数:最小化所有车辆的工作时间差异,这可以表示为:复制代码scss`minimize sum_{i=1}^{n} abs(x_i + y_i -1)`约束条件:每组司机的数量大致相等,这可以表示为:复制代码scss`sum_{i=1}^{n} x_i ~= sum_{i=1}^{n}y_i`每辆车只能被一个司机驾驶,这可以表示为:复制代码scss`x_i + y_i <= 1 for alli`问题类型:这是一个整数规划问题,因为决策变量x_i和y_i都是整数。

如果考虑司机和车辆数量的不平衡,那么可能涉及到非线性规划。

求解方法:可以使用标准的整数规划求解器(如Gurobi或CPLEX)来求解这个问题。

也可以使用启发式方法,如贪心算法或遗传算法来得到近似解。

优化策略:为了提高车辆的利用率,可以引入其他优化目标或约束条件,例如最小化总行驶距离、考虑车辆维护时间等。

实际应用:这个模型可以应用于出租车公司的调度系统,帮助公司更有效地安排司机和车辆,从而提高运营效率。

总结:出租车交接班问题的数学模型主要涉及到整数规划或线性规划的方法,目的是将车辆分组,使得每组的司机数量大致相等,同时尽量减少工作时间差异。

通过引入不同的优化目标和约束条件,可以进一步优化车辆的调度和利用效率。

出租车数学建模问题

出租车数学建模问题

五、模型建立与求解5。

1问题一模型的建立和求解5。

1.1问题的分析随着社会的进步和时代的发展,人们对出行的要求也变得越来越高。

由于出租车行业对社会的服务逐步体现为供少于求,一种新兴的打车方式正在逐步成为主流。

多家公司使用网络工作平台实现了出租车司机和乘客在网络上的沟通,并且对出租车提供了多种补贴方案.现在需要得到不同时间在不同城市的出租车与乘客之间的供求匹配程度。

供求匹配程度的关键是供和求,供体现为出租车对乘客的服务普及度主要体现为成功登车率,乘客等待时间,里程利用率和万人拥有量,求体现为乘客对出租车的需求量。

从供与求之间选择合适的指标作为对供求匹配程度的做出综合评价.对于空间的选择,由于现在数据采集只能收集一些城市的有关数据,所以我们可以采用将各种拥有出租车服务的地区划分具有方位代表性的一级城市(反映中国一级城市在互联网平台打车方案下的出租车供求匹配程度).从这些城市中选择代表该区域平均水平的城市,作为需要的评价的空间.对于时间的选择,由于需求量对应不同时间段的变化较明显,我们选择具有代表性的时间段对于需求量的不同时间段可以划分为工作日高峰期和低峰期和节假日.针对这些具有代表性的不同时间和不同地点的乘客在等车时间上的消耗,出租车的里程利用率,车辆的万人拥有量和乘客成功登车率根据综合评价函数对供求匹配程度做出综合评价。

综合评价的方式采用灰色关联分析法和自己构造的综合评价函数。

5.1。

2模型的准备(1)指标的标准化:(1)成本型指标的标准化:采用如下规则标准化:1i i M x x M m -=-1,2,,i n =其中{}{}min ,max i i m x M x ==,1i x 为i x 的标准化指标。

(2)效益型指标的标准化:对于乘客的成功登车率和出租车的里程利用率,它们的值越大对供求匹配贡献也越大,所以它们属于效益型指标,并采用如下规则标准化:1i i x m x M m -=-1,2,,i n =其中{}{}min ,max i i m x M x ==,1i x 为i x 的标准化指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、模型建立与求解5、1问题一模型得建立与求解5、1、1问题得分析随着社会得进步与时代得发展,人们对出行得要求也变得越来越高.由于出租车行业对社会得服务逐步体现为供少于求,一种新兴得打车方式正在逐步成为主流。

多家公司使用网络工作平台实现了出租车司机与乘客在网络上得沟通,并且对出租车提供了多种补贴方案。

现在需要得到不同时间在不同城市得出租车与乘客之间得供求匹配程度.供求匹配程度得关键就是供与求,供体现为出租车对乘客得服务普及度主要体现为成功登车率,乘客等待时间,里程利用率与万人拥有量,求体现为乘客对出租车得需求量.从供与求之间选择合适得指标作为对供求匹配程度得做出综合评价。

对于空间得选择,由于现在数据采集只能收集一些城市得有关数据,所以我们可以采用将各种拥有出租车服务得地区划分具有方位代表性得一级城市(反映中国一级城市在互联网平台打车方案下得出租车供求匹配程度)。

从这些城市中选择代表该区域平均水平得城市,作为需要得评价得空间。

对于时间得选择,由于需求量对应不同时间段得变化较明显,我们选择具有代表性得时间段对于需求量得不同时间段可以划分为工作日高峰期与低峰期与节假日。

针对这些具有代表性得不同时间与不同地点得乘客在等车时间上得消耗,出租车得里程利用率,车辆得万人拥有量与乘客成功登车率根据综合评价函数对供求匹配程度做出综合评价。

综合评价得方式采用灰色关联分析法与自己构造得综合评价函数。

5、1、2模型得准备(1)指标得标准化:(1)成本型指标得标准化:采用如下规则标准化:其中,为得标准化指标.(2)效益型指标得标准化:对于乘客得成功登车率与出租车得里程利用率,它们得值越大对供求匹配贡献也越大,所以它们属于效益型指标,并采用如下规则标准化:其中,为得标准化指标。

(3)中间型指标得标准化:每万人对应得车辆如果过少则乘客需求会大于出租车得供给,过多则供给会大于需求,所以每万人对应得车辆拥有量会对应一个最佳平衡点,使用供需平衡达到最佳。

乘客得等待时间如果过短,那么说明在这个阶段空载得出租车辆较多,乘客较易打到车,情况为供过于求,等待时间过长,则说明此时车辆得满载率较高以至于供小于求,空车数量较少,乘客需等待一段较长得时间才能打到车。

所以等待时间有一个最佳值,反应最佳供需平衡点。

综上,车辆得万人拥有量与乘客得等待时间均为中间型指标,对于乘客得等待时间,采用如下规则标准化:其中,为得标准化指标。

根据城市得级别不同对应得最佳万人拥有量也不同,对于一、二、三线城市我们用如下得标准化:其中,为得标准化指标。

5、1、3模型得建立与求解我们以乘客在节假日,工作日得上下班高峰期为研究对象根据对有关资料得收集,且以不同城市为样本.对不同时间,不同地区得乘车匹配度做出综合评价,评分越高供求匹配程度越好.采用灰色关联分析法进行综合评价1、基于灰色关联分析法得各个时间段对不同城市得评价模型:模型得假设:所有得指标得重要性就是一样得。

(1) 确定评价对象与评价指标:评价对象就是北京、武汉、广州、济南与宁波等5个城市,评价指标有4个:乘客得成功登车率、出租车得万人拥有量、出租车得里程利用率与乘客得等待时间。

规定参考数列为,比较数列为(2) 权重得处理原则就是超标倍数越多权重越大,因此,11111223344212112233443131122334441411223344////////////////////X k w X k X k X k X k X k w X k X k X k X k X k w X k X k X k X k X k w X k X k X k X k =+++=+++=+++=+++其中,这里得就是4个主要指标得标准限值。

为某个时间在某个城市统计得到得数据。

(3) 计算灰色关联系数:为比较比较数列在参考数列在第个指标上得关联系数,其中为分辨系数。

其中,称,分别为两级最小差与最大差(4) 计算灰色加权关联度:为第个评价指标对应得权重。

(5) 评价分析,根据灰色加权关联度得大小,对各评价对象进行排序,关联度越大,评价结果越好。

评价结果如下:2、基于Bord a计数法得计分评价模型:(1)综合时间段对不同地区得总体评分根据以上建立得灰色关联分析法模型对节假日,高峰期与低峰期三个特殊时间段得6个主要城市得打车得供求匹配程度进行评价,考虑要综合这三个特殊时间段得评价效果,并再进行综合评价,采用Borda 计数法,根据不同城市在不同时间段得出租车供求匹配程度得排序进行评分,并计算出3次评分后得总分,总分越大匹配程度越高,则第个地区(被评价对象)得Bor da 数为:其中为在第个排序方案中排在第个被评价对象后得个数对城市供求匹配程度得评分与排序:(2)综合地区对不同时间段得总体评分综合考虑在不同时段内得不同地区得供求匹配程度,根据不同城市在不同时期得供求匹配程度得排名,采用Borda计数法,根据不同城市在不同时间段得出租车供求匹配程度得排序进行评分,总分越大匹配程度越高,则第个时期(被评价对象)得Borda数为:其中为在第个排序方案中排在第个被评价对象后得个数对于时期供求匹配程度得评分与排序:5、2问题二模型得建立与求解5、2、1问题得分析为了增加平台得下单数量,平台公司通过推出补贴政策对乘客与司机进行鼓励,刺激乘客消费与出租车保有量得增加。

问题二就是对各公司得补贴方案作出合理评价,补贴方案按照补贴对象得不同分为对出租车司机得补贴与对乘客得补贴。

需要缓解打车难,我们以成功乘车率,乘客得等待时间与出租车得万人拥有量作为衡量打车难易程度得指标。

且以实行补贴方案后得成功乘车率,乘客得等待时间与出租车得万人拥有量得变化量作为评价指标,做出对缓解程度大小得评价.对不同得方案在同一个城市之中对打车难得缓解程度做出评价,由于,方案在不同级别得城市中得对缓解打车难得效果不同,我们分别对这些方案在一线城市与三线城市推出后得效果做出评价。

评分最高得方案,作为对打车难问题缓解最有效得方案。

补贴方案按照补贴对象得不同分为对出租车司机得补贴与对乘客得补贴。

乘车率指标反映了乘客能够打到出租车得概率,该指标能够较全面得反映打车得难易程度,我们认为出租车司机得补贴与对乘客得补贴对乘车率也有影响,采用多元回归得方式得出补贴金额与乘车率之间得关系。

考虑到,金额大小对人们在心理因素上有所吸引,我们可以构造对出租车司机得平均补助资金一个对出租车司机得吸引程度得大小得相关函数,以及构造对乘客得平均补助资金对乘客得吸引程度得相关函数。

从心理因素方面分析出补贴金额与乘车率之间得关系,与回归分析得结果进行比较.5、2、2模型得建立与求解(1)对一级城市与三级城市在不同方案下得打车难易度得缓解程度得评价: 1、指标得选取:我们选择与打车难易度得相关指标,成功乘车率,乘客得等待时间与出租车得万人拥有量得变化量作为评价指标:成功乘车率得变化量:为方案实行前得成功乘车率,为方案实行后得成功乘车率,为成功乘车率得变化量.乘客等待时间得变化量:为方案实行前得乘客得等待时间,为方案实行后得乘客得等待时间,为等待时间得变化量。

出租车得万人拥有量得变化量:为方案实行前得出租车得万人拥有量,为方案实行后得出租车得万人拥有量,出租车得万人拥有量得变化量。

以上指标均为效益型指标,我们认为即使在供过于求得时刻,这些指标也就是越大越好,因为我们只考虑缓解乘客方面得打车难问题.在问题一得评价模型得基础上,分别对一线城市代表与三线城市代表在方案实行后得缓解程度做出综合评价:2、结果如下:(2)补贴金额对缓解打车难程度影响得研究:乘车率指标反映了乘客能够打到出租车得概率,该指标能够较全面得反映打车得难易程度,我们认为出租车司机得补贴与对乘客得补贴对乘车率也有影响,所以在研究中我们只选择乘车率作为衡量打车难易程度得指标.1、基于多元分析法得补贴金额与打车难度得关系分析我们将乘车率作为衡量打车难得指标:为乘车率,为运营出租车得保有量,为运营出租车得需求量。

我们假设与,与之间存在相关性,并进行相关性检验,结果如下:目前需要得到得关系就是对司机得补贴与对乘客得补贴对乘车率变化得影响,对于该模型得影响我们不能直接得出,我们通过多元回归得方法得出:为乘车率得增加量,为对司机得补助金额,为对乘客得补助金额。

得出理论上得最佳方案与现有最佳方案。

2、基于心理因素影响得补贴金额与打车难度得关系分析同时,我们可以考虑对乘客得补助对潜在乘客数量(即运营出租车得保有量)得影响,车费越少,越能引起人们打车得消费。

以及对司机得补助对现有运营车辆得影响,补助越多,越能吸引人们加入出租车司机得行业中。

根据这些心理因素引起得不同补助金额对运营出租车得保有量与需求量影响得关系,我们同样也能得出补贴政策对乘车率得影响,并且利用该模型对多元回归模型得结果进行比较与检验。

由心理学得相关知识与模糊数学隶属度得概念,根据人们对一件事物得心理变化遵循规律,定义1)有意担任司机这个职位人得心理曲线为:为对司机得补助金额,为常量(根据历史数据求得)实行补贴政策后得出租车保有量为为实行政策前得出租车保有量2)乘客得心理曲线为:为对司机得补助金额,为常量(根据历史数据求得)实行补贴政策后得出租车需求量为:为实行政策前得出租车需求量由此,实行政策后得乘车率与补贴金额得关系为:5、2、2模型得分析与检验5、3问题三模型得建立与求解5、3、1问题得分析问题三就是为打车软件服务平台设置最佳得补贴方案,对于一个软件服务平台得合理性进行评价得因素为乘车率与平台得盈利。

以这两个目标得作为需要优化得目标函数,对于平台得利益我们需要考虑维护成本,补贴支出与下单收入.建立多目标优化模型:对于平台收益:为下一笔订单得收入,为对顾客得补助金额,为对出租车司机得补助金额,为订单得数量,为平台固有维护成本。

对于乘车率:为为运营出租车得需求量。

订单得数量也会受到对乘客补助影响,与原来价格高低得影响。

模型:对于。

相关文档
最新文档