滚动轴承内部速度与振动特征频率

合集下载

滚动轴承内外圈都旋转的故障特征频率计算公式

滚动轴承内外圈都旋转的故障特征频率计算公式

滚动轴承是一种常见的旋转机械零部件,它承担着重要的转动功能。

在滚动轴承工作过程中,如果遇到内外圈都旋转的故障,就需要对其特征频率进行计算和分析。

本文将介绍滚动轴承内外圈都旋转的故障特征频率计算公式,希望能够为相关领域的研究和实践提供帮助。

一、滚动轴承内外圈都旋转的故障特征频率计算公式1. 滚动轴承内外圈都旋转的故障特征频率公式如下:f = (P/2) * (1 - (d/D)) * (n/60)其中,f为故障特征频率,P为滚动体的数量,d为滚动体直径,D为滚动道直径,n为转速。

2. 在计算滚动轴承内外圈都旋转的故障特征频率时,需要注意以下几点:(1) 滚动体的数量对故障特征频率有影响,一般来说,滚动体数量越多,故障特征频率越高。

(2) 滚动体直径和滚动道直径的比值(d/D)也会影响故障特征频率,当d/D接近1时,故障特征频率较低;当d/D远离1时,故障特征频率较高。

(3) 转速的变化会直接影响到故障特征频率的计算,转速越高,故障特征频率越高。

二、滚动轴承内外圈都旋转的故障特征频率计算实例分析以某型号滚动轴承为例,其内外圈都旋转的故障特征频率计算如下:1. 已知数据:滚动体数量P=14,滚动体直径d=6mm,滚动道直径D=20mm,转速n=1800rpm。

2. 按照公式进行计算:f = (14/2) * (1 - (6/20)) * (1800/60) = 7 * 0.7 * 30 = 1470Hz。

通过以上实例分析可知,滚动轴承内外圈都旋转的故障特征频率为1470Hz。

这个特征频率对于故障诊断和预防具有重要意义,需要在相关实际应用中加以重视。

三、滚动轴承内外圈都旋转的故障特征频率计算公式的应用意义滚动轴承内外圈都旋转的故障特征频率计算公式的应用意义主要体现在以下几个方面:1. 故障诊断和预防:通过计算故障特征频率,可以帮助实现滚动轴承内外圈都旋转故障的诊断和预防工作,及早发现并解决故障问题,提高设备的可靠性和稳定性。

频谱分析-滚动轴承、齿轮和电气故障

频谱分析-滚动轴承、齿轮和电气故障

使用包络频谱分析轴承状态有两个主要方法。 它们是: 1) 在使用gSE频谱建立了冲击频率后, 检查速度频谱中任一高频峰值 (即 使是振幅很小)。 如果没有,继续。 如果有一些高频故障 ,把跟踪器放 在冲击频率上 (即使是没有峰值) 将谐波连接起来或建立某种联系 ,你就 可以开始评价它的严重性。 加速度频谱在实现这个目的比速度频谱更好。
低压 (离心) 风机或送风机 – 通常不容易发生这类问题。 BPF(叶片通过频率) – 很少见的故障, 除非频率激发了下游管道系 统的共振频率。 通常是归类为噪声问题, 很少是结构问题。 它几乎不 能引起机械故障,如加速轴承或部件磨损。 紊流 – 能引起低频宽带振动 (低于或略高于 1x rpm)。
滚动轴承 分析技术
解释包络谱图 – 正如 ‘包络’ 章节所讨论的, 包络谱图任一峰值的实际振 幅都不如频谱相对于背景噪声的振幅那么重要, 这意味了什么 ? 你的分析器 检测到的噪声级将对你看见的峰值振幅有很大的影响。 不象速度, gSE (使 用已知的单位) 将被其它条件影响,例如轴承载荷和润滑程度等。 润滑不 良,甚至是缺乏润滑都将引起整个频率范围本底或背景噪声 频谱。 运行 的轴承正常的gSE 振幅范围在 0.05 gSE 到2 gSE之间。 振幅等级没有普通 的规则– 它们将随机器和环境改变。 还需要其它的分析方法。
•前面的图3和图4说明在一个月后两个读数相等。 •注意图3包络图中的改善。 这是因为冲击力强度减小了 。
•也要注意如图4速度FFT所示的,轴承的恶化。
•与轴承频率有关的振幅明显增大 (故障频率谐波) 暗示 轴承状态非常恶劣。
滚动轴承 典型症状
前两页展示的是轴承故障如何在速度频谱和gSE频谱上的典型处理 过程。 但是轴承故障的形成还有很多途径。 监测轴承故障有很多种有效 的方法。 包括使用加速度频谱,时域图和超声波噪声监测等 (例如振动 脉冲)。 分析者必须能 “感觉到” 轴承正在出故障,并找到适当的监测 方法适应这种需要。振动速度频谱包括:

滚动轴承振动信号特性分析

滚动轴承振动信号特性分析

滚动轴承振动信号特性分析滚动轴承是一种常见的机械元件,在机械系统中起到支撑转动轴承、减少摩擦和传递载荷的作用。

然而,由于长期使用或其他原因,滚动轴承可能会出现一些故障,如疲劳破坏、过度磨损和松动等。

因此,滚动轴承的振动信号特性分析对于故障检测和预测具有重要的意义。

滚动轴承的振动信号是由于内外圈的滚珠与滚道之间的相对运动而产生的,这些振动信号可以通过加速度传感器等设备进行采集。

基于振动信号的特性分析,可以帮助我们了解滚动轴承在运行过程中的状况,从而判断是否存在故障。

下面将从不同的角度分析滚动轴承振动信号的特性。

首先,可以从时间域来分析滚动轴承的振动信号特性。

利用时间域信号,可以直观地观察到滚动轴承振动信号的波形变化。

通过观察振动信号的幅值和周期,可以初步判断是否存在异常。

通常情况下,正常的滚动轴承振动信号应该是稳定和准周期的。

如果出现振动信号的幅值波动较大或周期不规则,可能表示滚动轴承存在故障。

其次,可以从频域来分析滚动轴承的振动信号特性。

频域分析可以将信号从时域转换为频域,通过频谱图来观察不同频率分量的强度。

通过对滚动轴承振动信号进行傅里叶变换,可以得到其频谱图。

正常的滚动轴承振动信号的频谱图应该是窄带的,且主要集中在轴承的基频和谐波频率上。

如果出现频谱图突然增加了一些频率分量,可能表示滚动轴承存在故障,如滚珠松动、内圈或外圈的损伤等。

此外,滚动轴承的振动信号还可以通过时频分析方法进行特性分析。

时频分析可以将信号的时域信息和频域信息进行联合分析,可以观察到信号在时间和频率上的变化。

通过应用时频分析方法,如短时傅里叶变换(STFT)和小波变换,可以查看滚动轴承振动信号在时间和频率上的瞬态和局部特性。

这种分析方法可以帮助我们检测滚动轴承振动信号的瞬态特征和突变情况,提高故障检测和预测的准确性。

最后,滚动轴承的振动信号特性还可以通过统计学方法进行分析。

通过统计学参数,如均值、标准差和峭度等,可以观察滚动轴承振动信号的集中程度、离散程度和峰态等特性。

滚动轴承的固有振动频率详解

滚动轴承的固有振动频率详解

滚动轴承(rolling bearing)是将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失的一种精密的机械元件。

滚动轴承一般由外圈,内圈,滚动体和保持架组成。

滚动轴承一般由内圈、外圈、滚动体和保持架四部分组成,内圈的作用是与轴相配合并与轴一起旋转;外圈作用是与轴承座相配合,起支撑作用;滚动体是借助于保持架均匀的将滚动体分布在内圈和外圈之间,其形状大小和数量直接影响着滚动轴承的使用性能和寿命;保持架能使滚动体均匀分布,防止滚动体脱落,引导滚动体旋转起润滑作用。

滚动轴承在运行过程中,由于滚动体与内圈或外圈冲击而产生振动,这时的振动频率为轴承各部分的固有频率。

固有振动中,内、外圈的振动表现最明显,如图2所示
轴承圈在自由状态下的径向弯曲振动的固有频率为:
式中n—振动阶数(变形波数),n=2,3,…;
E—弹性模量,钢材为210GPa;
I—套圈横截面的惯性矩,mm 4;
γ—密度,钢材为7.86X10-6kg /mm³;
A—套圈横截面积,A≈bh,mm²;
D—套圈横截面中性轴直径,mm;
g—重力加速度,g=9800mm /S2。

对钢材,将各常数代入式得
有时钢球也会产生振动,钢球振动的固有频率为:
式中R—钢球半径;
E—弹性模量,钢材为210GPa ;
γ—密度,钢材为7.86X10-6kg /mm³;
g—重力加速度,g=9800mm /S²。

轴承振动特征分析

轴承振动特征分析

06 结论与建议
结论总结
轴承故障诊断的准确性得 到提高
通过分析振动信号,可以更准确地判断轴承 的运行状态,及时发现潜在的故障。
故障模式识别更加明确
振动特征分析有助于识别轴承的故障模式,如内圈 、外圈或滚动体的故障,为后续的故障原因分析和 修复提供依据。
定量评估轴承性能
通过分析振动信号的频谱、幅值等信息,可 以对轴承的性能进行定量评估,为轴承的维 护和更换提供决策依据。
原因
主要包括轴承座刚度不足、安装 不良、基础松动等。
振动特征分析方法
通过频谱分析、波形分析、轴心 轨迹分析等方法,对轴承座的振 动信号进行采集、处理和分析, 提取出轴承座的振动特征。
实例分析结果
轴承座的振动特征主要表现为低 频振动信号,其频率与轴承座的 结构和基础有关,通过分析这些 特征可以判断轴承座的工作状态 和故障类型。
轴承振动概述
轴承振动是指轴承在运转过程中产生的振动 现象,其产生的原因主要包括轴承内部元件 的相互作用、轴承座的不稳定以及外部激励 等。
轴承振动特征分析主要通过采集轴承的 振动信号,利用信号处理技术提取特征 ,进而对轴承的工作状态进行评估。
轴承振动通常采用振动烈度来描述, 其评价指标包括加速度、速度和位移 等。
02 轴承振动产生的原因
制造误差
材料不均匀
轴承材料内部存在不均匀性,导 致在运转过程中受力不均,引起 振动。
热处理不当
轴承的热处理工艺不佳,导致材 料内部存在残余应力,在运转过 程中产生振动。
装配误差
安装位置不准确
轴承在安装过程中位置不准确,导致运转过程中受力不均, 引起振动。
装配间隙不当
轴承的装配间隙过小或过大,都会影响轴承的正常运转,产 生振动。

滚动轴承常见故障及其振动信号特征

滚动轴承常见故障及其振动信号特征

滚动轴承常见故障及其振动信号特征作者:武栋梁来源:《科技资讯》2012年第18期摘要:轴承为机械设备的关键部件之一,轴承损坏能直接影响设备正常运作,影响生产效率。

本文对轴承的常见故障原因及形式进行分析,并总结其故障检测方法和轴承在发生故障时的振动信号特征。

关键词:轴承故障振动信号中图分类号:TH133 文献标识码:A 文章编号:1672-3791(2012)06(c)-0085-02及时对系统关键部件进行维修和更换可以在一定程度上避免系统工作过程中关键部件损坏带来的系统故障造成的经济损失和人员伤害。

滚动轴承为旋转机械的关键部件,其运行状态直接决定转动部件的效率和安全,本文总结了常见的滚动轴承故障种类和轴承故障检测方法,并对轴承振动信号特点进行分析。

本文对轴承故障的诊断和设备的维修提供参考作用,有助于实现对轴承故障的原因和种类的预先判断。

1 轴承故障形式及原因分析滚动轴承在工作过程中,由于装配不当、润滑欠缺、异物侵入或者超负荷运转等都可能引发轴承损坏,或者过载等都可能引发轴承损坏,或者长时间工作后产生疲劳剥落或者自然磨损导致系统故障。

常见的轴承故障可总结为损伤和磨损两大类。

常见的损伤类故障有疲劳剥落、塑性变形、轴承烧伤、锈蚀、断裂、胶合六种;磨损类故障为轴承长期正常工作引起的渐变性故障。

1.1 疲劳剥落滚动轴承发生故障的典型方式是其滚动接触发生单纯的疲劳剥落。

在工作中,轴承滚子和滚道接触面相对滚动的同时又互相挤压,加上周期交变载荷的作用,长时间工作后,轴承部件接触面将产生小的剥落坑,最终发展为大面积剥落,该现象称作疲劳剥落。

1.2 塑性变形当工作载荷过重时,由于滚动轴承承受的过大的冲击力和静载荷的原因,轴承滚道的表面上形成的不均匀凹坑,这种现象主要发生在低速旋转的轴承上。

另外由于热变形而引起的额外的载荷也可能使轴承产生塑性变形[1]。

1.3 断裂过大的负荷是轴承内部部件断裂的主要原因,另外工作过程中摩擦产生的热应力过大时也能引起轴承零件的断裂。

调心滚子轴承振动标准

调心滚子轴承振动标准

调心滚子轴承振动标准调心滚子轴承振动标准第一章:引言1.1 背景调心滚子轴承是一种常用的机械元件,用于支撑轴的旋转运动。

在运行过程中,由于载荷和运动条件的不同,调心滚子轴承可能会发生振动现象,影响其使用寿命和性能。

因此,制定调心滚子轴承振动标准对于保证其安全可靠运行具有重要意义。

1.2 目的本标准的目的是为了规范调心滚子轴承的振动测试方法和评估标准,以准确判断轴承的振动水平,从而对轴承进行评估和质量控制。

第二章:术语和定义2.1 调心滚子轴承调心滚子轴承是一种滚动轴承,具有内外圈内凹的特殊结构,可适应轴的偏移和倾角。

2.2 振动在调心滚子轴承运行过程中,轴承本身及其连接部件发生的具有周期性的往复或摇摆运动。

第三章:振动测试方法3.1 测试设备3.1.1 加速度传感器:使用频率范围覆盖调心滚子轴承振动频率范围,并满足准确度和灵敏度要求。

3.1.2 预处理器:用于放大、滤波和解调加速度传感器的信号。

3.1.3 数据采集设备:用于记录振动信号。

3.1.4 分析软件:用于对振动信号进行分析和评估。

3.2 测试点选取在调心滚子轴承上选择不同位置进行振动测试,包括内圈、外圈、滚子和笼架位置。

选取的位置应能够全面反映轴承的振动特性。

3.3 测试过程3.3.1 将加速度传感器安装在选定的测试位置上,并连接到预处理器。

3.3.2 启动轴承,并进行稳定运行至少30分钟,以确保轴承处于典型工作状态。

3.3.3 通过数据采集设备记录振动信号,并导入分析软件进行后续分析。

第四章:振动评估标准4.1 振动幅值4.1.1 振动速度幅值:以单位时间内振动速度的最大值表示。

4.1.2 振动加速度幅值:以单位时间内振动加速度的最大值表示。

4.1.3 振动位移幅值:以单位时间内振动位移的最大值表示。

4.2 频率特性4.2.1 振动频率:调心滚子轴承振动的频率范围。

4.2.2 共振频率:振动幅值达到最大值的频率。

4.3 评估标准根据调心滚子轴承的使用要求和工作条件,制定相应的振动评估标准。

滑动轴承、滚动轴承振动故障症状特征分析与解决处理方法(图文并茂详解)

滑动轴承、滚动轴承振动故障症状特征分析与解决处理方法(图文并茂详解)

滑动轴承、滚动轴承振动故障症状特征分析与解决处理方法(图文并茂详解)一、滚动轴承症状特征:(一)、滚动轴承故障发展的第一阶段症状特征:1、超声波频率范围(>250K赫兹) 内的最早的指示;2、利用振动加速度包络技术(振动尖峰能量gSE)可最好地评定频谱。

(二)、滚动轴承故障发展的第二阶段症状特征:1、轻微的故障激起滚动轴承部件的自振频率振动。

2、故障频率出现在500-2000赫兹范围内。

3、在滚动轴承故障发展第二阶段的末端,在自振频率的左右两侧出现边带频率。

(三)、滚动轴承故障发展的第三阶段症状特征:1、出现滚动轴承故障频率及其谐波频率。

2、随着磨损严重出现故障频率的许多谐波频率,边带数也增多。

3、在此阶段,磨损可以用肉眼看见,并环绕轴承的圆周方向扩展。

(四)、滚动轴承故障发展的第四阶段症状特征:1、离散的滚动轴承故障频率消失,被噪声地平形式的宽带随机振动取代之。

2、朝此阶段末端发展,甚至影响1X转速频率的幅值。

3、事实上,高频噪声地平的幅值和总量幅值可能反而减小。

二、滑动轴承症状特征:(一)、油膜振荡不稳定性症状特征:1、如果机器在2X转子临界转速下运转,可能出现油膜振荡。

2、当转子升速到转子第二阶临界转速时,油膜涡动接近转子临界转速,过大的振动将使油膜不能支承轴。

3、油膜振荡频率将锁定在转子的临界转速。

4、转速升高,油膜涡动频率也不升高。

(二)、油膜涡动不稳定性症状特征:1、通常出现在旋转转速的42-48%频率范围内。

2、有时,振动幅值非常大油膜涡动是固有不稳定的,因为它增大离心力,所以增大涡动力。

(三)、滑动轴承磨损/间隙故障症状特征:1、滑动轴承磨损故障后阶段将产生幅值很大的旋转转速频率的谐波频率振动。

2、当存在过大的滑动轴承间隙时,很小的不平衡或不对中将导致很大幅值的振动。

滚动轴承内部速度与振动特征频率

滚动轴承内部速度与振动特征频率
1内圈一点与一个滚动体接触的频率fi内圈轴的旋转频率fo外圈的旋转频率fe保持架公转频率fb保持架自转频率相对转动频率轴承损伤引起的特征频率表面波纹度谐波引起的特征频率
滚动轴承内部速度 与振动特征频率
2
滚动体的公转
滚动体绕轴转动一周的周期是关于滚动体的公转问题。由假定 (1):“滚道与滚动体之间无滑动接触”,下式成立。 1 (1)
vm
2
(v i v o )
上式 vi , vo , vm 分别为内圈、外圈的旋转速度和滚动体的公转 速度,各值的计算式如下: (2) Dw v i ri i D pw ni(1 cos ) D pw
v o ro o D pw no(1 Dw cos ) D pw
ne n i n m D 1 (ni no )(1 w cos ) 2 为:
n g no n m
Dw 1 (no ni )(1 cos ) 2 D pw
(7)
4
滚动体的自转速度
滚动体的自转转速、滚动体自转转速和保持器相对于内外 圈的转速比: D pw nb Dw (8) (1 cos ) ne Dw D pw
5
相对转动频率
转速与频率的关系: f=n/60 根据几何学的条件,轴(内圈)旋转时发生的频率如下: (1)内圈一点与一个滚动体接触的频率 Dw 1 fe fi f m (fi fo )(1 cos ) (1 ) 2 D pw (2)外圈一点与一个滚动体接触的频率 D 1 fg fo f m (fo fi )(1 w cos ) 2 D pw (3)滚动体的一点与内环或外环接触的频率 Dw 2 1 D pw fb (fi fo )[1 ( ) cos 2 ] 2 Dw D pw

滚动轴承常见故障及其振动信号特征

滚动轴承常见故障及其振动信号特征

滚动轴承常见故障及其振动信号特征轴承长时间未使用或者存储环境不良会导致轴承表面生锈,进而引发轴承锈蚀故障。

另外,轴承在工作过程中也可能因为润滑不良或者介质腐蚀等原因产生锈蚀现象。

1.6胶合轴承在长期运行过程中,可能会因为润滑不足或者介质污染等原因导致轴承内部的胶合现象。

胶合现象会导致轴承的滚动体和滚道之间失去滚动性能,从而引发轴承故障。

2轴承故障检测方法轴承故障检测的方法主要包括视觉检测、声音检测、振动检测、温度检测和油液检测等。

其中,振动检测是最常用的一种方法。

轴承在故障发生时会产生特定的振动信号,通过对振动信号进行分析可以判断轴承是否发生故障,并确定故障的类型和程度。

3轴承故障的振动信号特征轴承故障时产生的振动信号具有一定的特征,不同类型的故障会产生不同的振动信号特征。

常见的轴承故障振动信号特征包括频率、振幅、相位和波形等。

通过对这些特征的分析,可以准确地判断轴承的故障类型和程度,并采取相应的维修措施。

总之,对轴承故障的诊断和维修具有重要意义。

通过本文对轴承常见故障形式、故障检测方法和振动信号特征的分析,可以帮助工程师更好地诊断和处理轴承故障,提高设备的运行效率和安全性。

轴承锈蚀的原因之一是水分侵入。

当轴承停止工作时,温度下降,空气中的水分容易在轴承表面凝结成水珠,如果不及时清理,就会引起轴承锈蚀。

另外,保护不当也会使水分直接进入轴承,导致轴承锈蚀。

在高速高负荷和润滑不足的情况下,轴承部件会迅速升温,摩擦产生的热量能引起轴承部件接触的金属表面相互粘接,这种现象称为胶合。

轴承滚子和滚道相对运动产生的挤压力和侵入轴承滚道的杂物也会引起轴承表面的磨损。

磨损会增大轴承的游隙,降低运转精度,增加工作噪音。

常见的滚动轴承故障检测方法包括油样分析法、温度监测法、声发射法和振动法。

油样分析法通过分析轴承润滑油中的金属颗粒来判断轴承的运转状况。

温度监测法通过监测轴承附近部件的温度来观测轴承是否正常运转。

声发射法可以通过分析发声周期来判断故障类型和部位。

滚动轴承故障诊断中精确转频的实用计算新方法

滚动轴承故障诊断中精确转频的实用计算新方法

和公式 ( 7)可以得到时域上平均每周期的数据点数 N t
和频域上平均每周期的数据点数 N f 分别为:
Nt=
fs fr
( 8)
Nf=
fr = df
fr fs
@N FFT
如果 N t > Nf

f f
s
r
>
fr fs
@N FFT,
fr<
( 9)
f s 时在时域 N FFT
上求取转频误差会比较小。反之, 如果 f r > fs 时, N FFT
进行精确调节与选择的过程中, 择近原则是利用某一
66
振 动与 冲击
2007年第 26卷
加权函数对各转频点及其各阶倍频进行加权计算, 认 为计算后的结果就是该转频点处的能量值, 具有最大 能量总和的转频即为最佳转频。因此加权函数的选取 和参与加权计算的数据个数很重要, 可以根据实际情 况进行调节。
4 应用实例
p @ ( 2+
K@w ) 2 @ fs
@f r
@ v, 一般取
10 左右 的正 整数 。
5) 对于每一转频 f ri, 定义贴近度为
m
E R( f ri, S ) = R (f rij, S ) j= 1
( 14)
那么具有最大贴近度的转频 fri 即为最佳转频。这就是
择近原则的基本原理。
从上可以看出, 在对目标转 频前后若干个转频点
fr;
v为每个转频的倍频数, 一般
取 10左右的正整数。
2) 为提高频率分辨率, 对时标脉冲信号补 0 处
理, 进行频域分析, 求其功率谱 S
S = { sl }, l = 1, 2, ,, p

滚动轴承振动信号特性分析

滚动轴承振动信号特性分析

西南交通大学本科毕业设计(论文)滚动轴承振动信号特性分析年级:2010级学号:**********:***专业:机械制造工艺及其设备****:***2014年 6月院系机械工程系专业机械设计制造及其自动化(机械制造)年级 2010级姓名刘元是题目滚动轴承振动信号特性分析指导教师评语指导教师 (签章) 评阅人评语评阅人 (签章) 成绩答辩委员会主任 (签章)年月日毕业设计(论文)任务书班级 2010机制1班学生姓名刘元是学号 20107151 发题日期:2014年 2月 24日完成日期: 6月 20日题目滚动轴承振动信号特性分析1、本论文的目的、意义:滚动轴承的优点众多,因此滚动轴承在工程实践中得到充分的应用。

但是滚动轴承有时的工作条件十分恶劣并且在机械设备中承载载荷、传递载荷。

滚动轴承损坏尤其是突然损坏不仅会导致机械设备的故障失效,甚至可能造成更为严重或许是灾难性的事故。

本论文主要针对滚动轴承振动信号进行研究,在对滚动轴承结构有一定了解的基础上,重点研究滚动轴承振动信号特点,并基于滚动轴承振动实测信号进行分析验证,掌握常见的信号谱分析方法,并尝试对滚动轴承零件故障进行分析。

2、学生应完成的任务(1)基于滚动轴承振动信号进行常见分析的分析方法,如时域分析、FFT分析、功率谱分析研究所实测振动信号,并得出相应结论。

(2)利用小波或其它信号分析方法研究所实测振动信号,并得出相应结论。

(3)利用MATLAB编制信号分析GUI,实现计算信号特征参数及实现简单的信号分析功能。

(4)完成毕业论文。

3、论文各部分内容及时间分配:(共 16 周)第一部分了解滚动轴承的功能、构成 (2周) 第二部分了解滚动轴承常见的失效形式(2周) 第三部分基于实测滚动轴承振动信号利用功率谱等方法分析其特性 (4周) 第四部分利用典型时频分析方法分析滚动轴承振动信号特性并编GUI(6周) 第五部分论文撰写(2周) 评阅及答辩(2周)备注(1)CNKI关于滚动轴承故障分析的论文.(2)功率谱分析、小波分析、希尔伯特-黄变换有关书籍(3)matlab编程方面的书籍指导教师:年月日审批人:年月日摘要滚动轴承在工程实践中得到了充分的应用,但是滚动轴承却十分容易损坏。

滚动轴承振动产生的可能原因及其特征频率

滚动轴承振动产生的可能原因及其特征频率

滚动轴承振动产⽣的可能原因及其特征频率通过前⾯的⽂章《滚动轴承的运动学》,我们了解了滚动轴承运转产⽣的特征频率,但实际上,除了这些频率之外,还存在⼀些其他的频率成分。

产⽣这些复杂的振动频率的原因可以分两类:第⼀类为外界激励所引起的,如轴不平衡、不对中、临界转速、结构共振等,这些故障(或缺陷)可以按照它们各⾃的特征频率来处理;第⼆类是由于滚动轴承⾃⾝结构特点以及故障缺陷所引起的。

通常,滚动轴承不会仅受到⼀种激励作⽤,更多是两种激励同时作⽤引起轴承振动,这就使得振动频谱更为错综复杂,对轴承的故障诊断增加难度。

另⼀⽅⾯,除了存在各⾃的特征频率成分及其谐波之外,还会存在相互调制效应,产⽣边频带。

当轴承各元件出现各种故障时,《滚动轴承的运动学》中的轴承频率公式提供了频率成分的理论计算,这些计算是基于这样的假设:当轴承各元件遭遇故障时,会产⽣⼀个理想的脉冲。

对于轴承局部故障,如滑动和点蚀,会产⽣短时尖的冲击,这些冲击将激起结构共振,相应的振动通过外部安装在轴承座上的传感器能测量到。

每次遭遇⼀个局部故障产⽣的冲击,测量到的振动信号将是按指数衰减的正弦振荡。

1载荷引起的振动滚动轴承在运转过程中,如受到通过轴⼼的轴向载荷,可以认为各个滚动体平均分担,即各滚动体受⼒相等。

但在受到径向载荷F r作⽤时,内圈沿径向载荷⽅向会移动⼀段路径δ0,如图1中虚线所⽰,此时上半圈滚动体不受⼒,下半圈的各个滚动体由于接触点上的弹性变形量δi不同⽽承受不同的载荷Q i。

处于F r作⽤线最下端位置的滚动体受⼒Q0最⼤,对应的变形量δ0也最⼤。

下半圈受载荷作⽤的其他各接触点滚动体的法向变形量为δi与径向载荷⽅向处变形量δ0的关系为图1 轴承元件上的受⼒分析各个接触点法向⼒Q i与沿径向载荷⽅向处的法向⼒Q0的关系为因此,在受载荷作⽤的半圈内,各接触点处的受⼒⼤致呈余弦分布状态,并引起相应规律的应⼒变化。

滚动轴承各元件在⼯作时承受变动的接触应⼒,如单颗滚动体受到的接触应⼒从⼩变⼤,然后再变⼩的周期性变化,⽽在不受载荷的半圈内不受接触应⼒作⽤,内圈上的某⼀点的接触应⼒也有类似的规律。

什么是轴承的特征频率

什么是轴承的特征频率

什么是轴承的特征频率?轴承失效四个阶段,第一阶段(超声频率) 轴承问题的最早期表现在超声频率的异常,从250kHz 到350kHz范围;此后随故障的发展,异常频率逐步下移到20kHz到60kHz范围,可由冲击包络监测到,一般可达到0.5gE,实际值与测点位置、轴承型号和机器转速相关;可采集加速度包络频谱确认轴承是否进入第一失效阶段第二阶段(轴承固有频率)轴承产生轻微缺陷,激起轴承部件固有频率(fn)振动或轴承支承结构共振,一般在500Hz到2kHz范围;在第二阶段末期,固有频率周围开始出现边频带;第三阶段(轴承缺陷频率及其倍频)在第三阶段,轴承缺陷频率及其倍频出现;随着轴承内磨损的发展,更多的缺陷频率倍频开始出现,围绕这些倍频以及轴承部件固有频率的边频带的数量也逐步上升,冲击包络值继续上升第四阶段(随机宽带振动)在第四阶段,轴承失效接近尾声,甚至工频1X 也受影响而上升,并产生许多工频的倍频原先离散的轴承缺陷频率和固有频率开始“消失”,取而代之是随机的宽带高频“噪声振动”轴承缺陷频率:轴承缺陷频率术语/ Terms of Defect Freqs1. BPFI: Ball Pass Frequency on Inner race内圈缺陷频率2. BPFO:Ball Pass Frequency on Outer race外圈缺陷频率3. BSF: Ball Spin Frequency滚珠缺陷频率4. FTF: Fundamental Train Frequency保持架缺陷频率轴承缺陷频率与轴承部件尺寸及轴的转速相轴承缺损频率计算/Compute Defect FreqsBPFI=Nb/2*S(1+(Bd/Pd)*cosA)BPFO=Nb/2*S(1-(Bd/Pd)*cosA)BSF=(Pd/2Bd)*S*(1-(Bd/Pd)*CosA)2FTF=S/2*(1-(Bd/Pd)*CosANb: the number of balls/轴承滚子数S:speed/轴转速Bd:ball diameter/滚子直径Pd: Pitch diameter/滚子分布圆直径A: the contact angle( degrees)/接触角(度)。

滚动轴承的振动机理与信号特征(1)

滚动轴承的振动机理与信号特征(1)

滚动轴承的振动机理与信号特征(1) 中国设备管理网(2005-06-13)文章来源:中国设备管理网滚动轴承的振动可由外部振源引起,也可由轴承本身的结构特点及缺陷引起。

此外,润滑剂在轴承运转时产生的流体动力也可以是振动(噪声)源。

上述振源施加于轴承零件及附近的结构件上时都会激励起振动。

一、滚动轴承振动的基本参数1.滚动轴承的典型结构滚动轴承的典型结构如图1所示,它由内圈、外圈、滚动体和保持架四部分组成。

图1 滚动轴承的典型结构图示滚动轴承的几何参数主要有:轴承节径D:轴承滚动体中心所在的圆的直径滚动体直径d:滚动体的平均直径内圈滚道半径r1:内圈滚道的平均半径外圈滚道半径r2:外圈滚道的平均半径接触角α:滚动体受力方向与内外滚道垂直线的夹角滚动体个数Z:滚珠或滚珠的数目2.滚动轴承的特征频率为分析轴承各部运动参数,先做如下假设:(1)滚道与滚动体之间无相对滑动;(2)承受径向、轴向载荷时各部分无变形;(3)内圈滚道回转频率为fi;(4)外圈滚道回转频率为fO;(5)保持架回转频率(即滚动体公转频率为fc)。

参见图1,则滚动轴承工作时各点的转动速度如下:内滑道上一点的速度为:V i=2πr1f i=πf i(D-dcosa)外滑道上一点的速度为:V O=2πr2f O=πf O(D+dcosa)保持架上一点的速度为:V c=1/2(V i+V O)=πf c D由此可得保持架的旋转频率(即滚动体的公转频率)为:从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与d/2r1成反比。

由此可得滚动体相对于保持架的回转频率(即滚动体的自转频率,滚动体通过内滚道或外滚道的频率)fbc根据滚动轴承的实际工作情况,定义滚动轴承内、外圈的相对转动频率为一般情况下,滚动轴承外圈固定,内圈旋转,即:同时考虑到滚动轴承有Z个滚动体,则滚动轴承的特征频率如下:滚动体在外圈滚道上的通过频率zfoc为:滚动体在内圈滚道上的通过频率Zfic为:滚动体在保持架上的通过频率(即滚动体自转频率fbc)为:3.止推轴承的特征频率止推轴承可以看作上述滚动轴承的一个特例,即α=90°,同时内、外环相对转动频率为轴的转动频率fr,此时滚动体在止推环滚道上的频率为:滚动体相对于保持架的回转频率为:以上各特征频率是利用振动信号诊断滚动轴承故障的基础,对故障诊断非常重要。

滚动轴承常见故障及其振动信号特征

滚动轴承常见故障及其振动信号特征

滚动轴承常见故障及其振动信号特征摘要:轴承为机械设备的关键部件之一,轴承损坏能直接影响设备正常运作,影响生产效率。

本文对轴承的常见故障原因及形式进行分析,并总结其故障检测方法和轴承在发生故障时的振动信号特征。

关键词:轴承故障振动信号及时对系统关键部件进行维修和更换可以在一定程度上避免系统工作过程中关键部件损坏带来的系统故障造成的经济损失和人员伤害。

滚动轴承为旋转机械的关键部件,其运行状态直接决定转动部件的效率和安全,本文总结了常见的滚动轴承故障种类和轴承故障检测方法,并对轴承振动信号特点进行分析。

本文对轴承故障的诊断和设备的维修提供参考作用,有助于实现对轴承故障的原因和种类的预先判断。

1 轴承故障形式及原因分析滚动轴承在工作过程中,由于装配不当、润滑欠缺、异物侵入或者超负荷运转等都可能引发轴承损坏,或者过载等都可能引发轴承损坏,或者长时间工作后产生疲劳剥落或者自然磨损导致系统故障。

常见的轴承故障可总结为损伤和磨损两大类。

常见的损伤类故障有疲劳剥落、塑性变形、轴承烧伤、锈蚀、断裂、胶合六种;磨损类故障为轴承长期正常工作引起的渐变性故障。

1.1 疲劳剥落滚动轴承发生故障的典型方式是其滚动接触发生单纯的疲劳剥落。

在工作中,轴承滚子和滚道接触面相对滚动的同时又互相挤压,加上周期交变载荷的作用,长时间工作后,轴承部件接触面将产生小的剥落坑,最终发展为大面积剥落,该现象称作疲劳剥落。

1.2 塑性变形当工作载荷过重时,由于滚动轴承承受的过大的冲击力和静载荷的原因,轴承滚道的表面上形成的不均匀凹坑,这种现象主要发生在低速旋转的轴承上。

另外由于热变形而引起的额外的载荷也可能使轴承产生塑性变形[1]。

1.3 断裂过大的负荷是轴承内部部件断裂的主要原因,另外工作过程中摩擦产生的热应力过大时也能引起轴承零件的断裂。

1.4 轴承烧伤轴承装配存在较大偏斜量时,容易引起轴承温度升高,并出现轴承烧伤现象。

另外,轴承润滑不良、应用不合格或者变质的润滑油、装配过紧都能引起轴承的烧伤。

轴承振动特征分析含轴承故障特征频率的特点及计算

轴承振动特征分析含轴承故障特征频率的特点及计算

轴承故障原因及其解决
• 污染 – 污染是轴承失效的主要原因之一 – 污染的征兆是在滚道和滚动体表面有点痕,导致振 动加大和磨损 – 清洁环境,工具,规范操作。新轴承的储运。
• 润滑油失效 – 滚道和滚子的变色(蓝、棕)是润滑失效的征兆, 随之产生滚道、滚子和保持架磨损,导致过热和严 重故障。 – 滚动轴承的正常运行取决于各部件间存在良好油膜 失效常常由润滑不足和过热引起
滚动轴承故障频率计算(2)
保持架故障频率: FTF=(N/2)[1-(d/D)Cos φ]
滚动体旋转故障频率: BSF=(N/2)(D/d){1-[(d/D)Cos φ]²}
外环故障频率: BPFO=(N/2)n[1-(d/D)Cosφ]
内环故障频率: BPFI=(N/2)n[1+(d/D)Cosφ]
轴承故障原因及其解决
• 腐蚀 –其征兆是在滚道、滚子、保 持架或其他位置出现红棕色 区域 –原因是轴承接触腐蚀性流体 和气体 –严重情况下,腐蚀引起轴承 早期疲劳失效 –除掉腐蚀流体,尽可能使用 整体密封轴承
轴承故障原因及其解决
• 不对中
– 征兆是滚珠在滚道上产生的磨痕与滚道边缘不平行 – 如果不对中超过0.001in/in,会产生轴承和轴承座异常
轴承故障特征频率的特点
12. 评定的低速机器的轴承状态:
评定尤其是低于100转/分转速的机器轴承状态时,推荐采集时域波形和 (FFT)频谱二者。当转速很低时,滚动体滚动通过轴承内外环上缺陷时发 生的脉冲没有足够能量产生清楚的,可以检测出来的FFT谱中的频率,但 是在时域波形中仍然可能清楚的看出来。
保持架故障频率:
FTFe≌N(0.5-1.2/n)
估算公式
n=滚动体数目; N=轴的转速。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

nb
Dw 2 1 D pw (ni no )[1 ( ) cos 2 ] (10) 2 Dw D pw
5
相对转动频率
转速与频率的关系: f=n/60 根据几何学的条件,轴(内圈)旋转时发生的频率如下: (1)内圈一点与一个滚动体接触的频率 Dw 1 fe fi f m (fi fo )(1 cos ) (1 ) 2 D pw (2)外圈一点与一个滚动体接触的频率 D 1 fg fo f m (fo fi )(1 w cos ) 2 D pw (3)滚动体的一点与内环或外环接触的频率 Dw 2 1 D pw fb (fi fo )[1 ( ) cos 2 ] 2 Dw D pw
滚动轴承内部速度 与振动特征频率
2
滚动体的公转
滚动体绕轴转动一周的周期是关于滚动体的公转问题。由假定 (1):“滚道与滚动体之间无滑动接触”,下式成立。 1 (1)vm Nhomakorabea2
(v i v o )
上式 vi , vo , vm 分别为内圈、外圈的旋转速度和滚动体的公转 速度,各值的计算式如下: (2) Dw v i ri i D pw ni(1 cos ) D pw
fi——内圈 (轴)的旋转频率 fo——外圈的旋转频率 fe——保持架公转频率 fb——保持架自转频率
(2)
(3 )
6
轴承损伤引起的特征频率
表面波纹度谐波引起的特征频率
v o ro o D pw no(1 Dw cos ) D pw
(3)
vm
1 d pw m D pw n m 2
(4)
3
将(1)~(3)式代入(4)式,可得
nm
Dw Dw 1 [ni(1 cos ) no(1 cos )] 2 D pw D pw
(7)
4
滚动体的自转速度
滚动体的自转转速、滚动体自转转速和保持器相对于内外 圈的转速比: D pw nb Dw (8) (1 cos ) ne Dw D pw
D pw nb Dw (1 cos ) ng Dw D pw
(9)
式中右侧的负号(-)表示从静止座标系统来看内圈旋 转方向和滚动体的自转方向相反。 滚动体相对内圈或外圈的自转转速nb为:
(5)
这是按静止座标系统确定的滚动体公转频率。所以,将保持器 作为静止坐标系统来考虑,内滚道相对滚动体的相对转速ne为:
ne n i n m D 1 (ni no )(1 w cos ) 2 D pw
(6)
外滚道相对滚动体的相对转速ng为:
n g no n m
Dw 1 (no ni )(1 cos ) 2 D pw
相关文档
最新文档