脱硫烟塔合一技术介绍.
烟塔合一技术在湿法脱硫净烟气排放中的应用
烟塔合一技术在湿法脱硫净烟气排放中的应用摘要:烟塔合一技术作为一种新型排烟技术正在大力推广。
本文分析了烟塔合一技术在湿法脱硫净烟气排放中的应用,介绍了烟塔合一法的基本概念及技术模式,总结了烟塔合一技术优势,分析了采用烟塔合一技术对冷却塔热力性能的影响。
关键词:烟气排放烟塔合一技术脱硫净气应用
煤燃烧过程会产生SO2等腐蚀性气体,对环境造成影响。
为控制SO2的排放,烟气脱硫技术在各电厂得到广泛应用。
石灰石-石膏湿法烟气脱硫工艺在电厂烟气脱硫中的应用最多,不仅因为原料廉价、过程技术成熟、脱硫效率高(95%以上)、系统运行可靠等优点,脱硫过程产生的副产品可回收利用也是该工艺的一大优势。
通常采用湿法进行脱硫后的净烟温度值为55~60℃,并且处于饱和状态,环境温度低时形成白烟。
净烟气直接经烟囱排放不能达到排放标准,需要将烟气进行再加热到80℃以上,以增加烟气的抬升高度、消除“烟羽”和降低烟气污染组分的地面浓度。
烟气的再加热过程要求火电厂必须加装烟气再热排放系统,不仅增加烟气排放系统的复杂性,同时也增大了初始投资及相关的维护费用,过程的经济性优势被减弱。
现今研究较多的“烟塔合一”技术,湿法脱硫后的净烟气不经烟囱排放,而是通过自然通风冷却塔排放到空气中。
该技术能够利用冷却塔的湿热空气包裹脱硫的净烟气,对净烟气起到抬升作用,同时对烟气。
烟塔合一技术认识和国外工程数据
烟塔合一技术认识和国外工程数据林勇(华能国际电力股份有限公司,北京 100031)摘要:烟塔合一技术是政府环境管理和电力系统工艺进步的结合点。
从环境角度冷却塔的巨大热量和热空气量促进了脱硫后烟气的抬升,更好的保证了地方环境质量;从电力行业讲能源效率提高,排放烟气系统大为简单,减少烟囱、GGH换热器,可以合并锅炉引风机和脱硫增压风机,电厂建设费用降低,有利于发电成本降低。
本文对烟塔合一技术从工程使用角度进行了剖析和分析,介绍了主要工艺特点,并整理了德国二个典型电厂的工程数据。
主题词:烟塔合一、工程数据AbstractTechnology of NDCT with flue gas rejection is combination of Government's environmental management and power system process progresses. In a view of environment, enormous heat of NDCT and hot air amount promote exhaust gas after desulfrization lifting, better local environmental quality will be assured. In a view of power industry, energy efficiency is improved, discharge the exhaust gas system is very simple, chimney and GGH heat exchanger is decreased, Boiler air-introduced fan and FGD pressurized air fan can be united, expenses of power plant construction is decreased, all of these help the cost of electricity-generating to reduce. This text has analyzed the technology of NDCT with flue gas rejection from project, introducing the main process characteristic, compiling project data of two German typical power plants.Key word NDCT, Power plant data一、烟塔合一技术背景国内新建火电厂开始大规模脱硫后,电力行业面临脱硫后烟气热量低、含湿量大,对电厂内部来讲脱硫后净烟道、旁路烟道和烟囱造价大幅度上升,对环境管理来讲脱硫后(低热、湿)烟气从烟囱排放环境审查也非常严格,因此脱硫烟气排放成为电力行业和环境管理部门共同关注的一个问题。
脱硫烟塔合一技术介绍
脱硫烟塔合一技术介绍从上个世纪八十年代初期开始,以德国为代表的一些发达国家开始尝试利用冷却塔排放湿法脱硫后的烟气,目的是节省较大的烟气再热器的投资和提高烟气排放的扩散效果,经过二十年的发展,到目前为止,全世界大概已经有三十多台机组采用了这种技术。
烟气通过冷却塔排放,是将烟气用烟气管道送入塔内配水装置的上方集中排放。
这对冷却塔带来了两个方面的影响,一方面,烟气排入会使配水装置上方的气体流量增加,流速有所增加,带来额外的流动阻力,但冷却塔内烟气的流速很低,一般都在1.0m/s左右,即使流速增加30%,带来额外的流动阻力增加也非常有限,与冷却塔的其他阻力(人字柱、进风口、淋水装置、淋水、出口等阻力)相比,还是较小的。
考虑这部分额外的流动阻力增加和烟气管道带来的局部阻力,将冷却塔的总阻力系数增加3。
另一方面,烟气排入冷却塔与配水装置上方的湿空气发生混合换热现象,改变了塔内气体的密度。
锅炉在设计工况运行时,吸收塔出口烟气温度范围为43-50℃(主要决定于吸收塔入口烟气温度),考虑到烟道长度和环境温度变化带来的温度降低,进入冷却塔的烟气温度为3 6-43℃。
以下是就烟塔合一时可能遇到的问题进行探讨:一、烟气能否从烟塔顺利排出烟气能否从烟塔顺利排出,根本是看烟塔内填料上方混合气体的密度是否比环境空气的密度低。
这两个密度差越大,通风量越大,混合气体的热浮力越大,烟气从烟塔排放的扩散效果就越好。
在烟塔运行的绝大多数时间里,烟塔内填料上方混合气体的密度都比环境空气的密度低,烟气都会顺利排放。
当夏季环境温度达到38℃,烟气温度只有为40℃时,烟气仍然可以通过烟塔顺利排出。
但我们必须保证在机组运行的任何情况下,烟塔都能顺利排烟,就必须考虑到烟塔运行的极端情况。
对烟塔来说,最极端恶劣的烟气排放工况就是:环境温度为极热(42℃),并且烟塔不通循环水。
这时如果使烟气顺利排放,烟气温度必须达到52.5℃以上。
环境温度为38℃,并且烟塔不进循环水时,使烟气顺利排放的最低烟气温度为48℃。
烟塔合一新技术
烟塔合一新技术0 概述三河发电厂地处北京周边,电厂厂址位于河北省三河市燕郊,地处燕郊经济技术开发区东侧,厂址西距通州区17km、北京市区37.5km,东距三河市17km。
电厂规划容量为1300MW~1400MW。
一期工程已安装2台350MW凝汽式汽轮发电机组,#1、#2机组分别于1999年12月、2000年4月投产。
二期工程将安装2台300MW供热机组,烟气采用脱硫、脱硝、“烟塔合一”技术,计划将于2007年10月、12月投产发电。
国华三河电厂扩建的二期工程为热电联产扩建工程,采用“烟塔合一”技术并将一、二期机组同步建设脱硫,达到了整个电厂“增产不增污、增产减排污”的目的。
1“烟塔合一”技术的优点“烟塔合一”技术是针对电力企业研制的当今世界上先进的环保技术,在城市规划和环境改善方面具有以下明显优势:一是充分利用冷却塔的巨大能量,对除尘、脱硫后的湿烟气进行有效抬升,促进净烟气中未脱除污染物的扩散,降低其落地浓度。
二是由于机组不必再建设烟囱及脱硫系统的烟气再加热装置。
这样不仅可缓解城市建设用地紧张和建筑物限高等问题,并且可以显著改善城市周边电厂建设同城市整体规划的适应性和灵活度,有利于缩小热源、电源与负荷中心间的距离,提高电厂的经济性并有利于城市供热、供电的可靠性。
?此项技术在国外已成功实施近二十多年,技术已臻成熟。
目前我国有许多电厂正在实施这种技术。
2“烟塔合一”技术在三河电厂的应用目前,河北三河电厂、天津国电津能公司和华能北京热电公司在新建机组均采用“烟塔合一”技术进行除尘、脱硝和脱硫排放,三河电厂是第一个采用国产化的“烟塔合一”技术的机组。
国华三河电厂为满足城市社会经济的快速发展,改善北京市区的大气环境质量,三河电厂二期工程(2×300MW机组)项目决定采用烟塔合一技术,主要基于以下几方面考虑:第一、由于采用石灰石一石膏湿法脱硫系统,脱硫系统排放烟气温度只有50℃左右,若采用烟囱排放须对其进行再加热,温度达到S02的露点温度(72℃)以上。
科普知识投稿:电力环保烟塔合一技术
电力环保烟塔合一技术烟塔合一技术是利用冷却塔巨大热量和热空气量对脱硫后湿烟气进行抬升,在大多数情况下,其混合气体的抬升高度远高于比冷却塔高几十~100 m 的烟囱,从而促进烟气内污染物的扩散。
同时,该技术可提高电力系统能源利用效率,简化电厂烟气系统的工艺设计,在一定程度上降低电厂投资。
对于无烟气换热器的石灰石—石膏湿法脱硫系统,脱硫后的净烟气是直接接入经过防腐改造的烟囱进行排放,而除此方法外,脱硫后的净烟气也可以接入冷却塔进行排放,这就是烟气脱硫中广泛关注的烟塔合一技术。
烟塔合一技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔巨大的热湿空气对脱硫后的净烟气形成一个环状气幕,对脱硫后净烟气形成包裹和抬升,增加烟气的抬升高度,从而促进烟气中污染物的扩散。
采用该技术后,不仅可以提高火力发电系统的能源利用效率,而且大大简化了火电厂的烟气系统,减少了设备投资和脱硫系统的运行维护费用。
图1 烟塔合一与烟筒排烟对比该技术始于20 世纪70 年代德国。
1982 年建设烟塔合一火电厂。
并对一批老机组也进行了烟塔合一改造。
我国华能北京热电厂也于2006年采用了该项技术,并成为我国乃至亚洲首个可以取消烟囱的电厂。
现在国内相继有多家火力发电厂开始上马投入使用烟塔合一技术,曾经标志着火力发电辉煌的地标志建筑——烟筒,在逐步被先进的投资少、环保的烟塔合一技术所代替。
图2 干、湿烟气抬升高度的对比目前国内大型火电厂机组烟囱高度一般都在180~240 m,冷却塔高度在110~150 m,高度相差较大。
在相同条件下,湿烟气的抬升高于干烟气。
可以看出同样体积的湿烟气的抬升高度相当于将干烟气加热了近30℃。
爬升高度增加了近150m,相当于冷却塔排放高度在250m~300m之间,达到或超过烟筒排放效果。
同时美化了城市。
现阶段我国火力发电厂对环保要求越来越严格,而脱硫、脱硝系统也成为即锅炉岛、汽轮机岛、发电机岛后的第四大岛——脱硫脱硝岛,整个脱硫脱硝系统的投资也占据了火力发电厂建设投资的15%~20%左右。
脱硫除尘一体化介绍
脱硫除尘一体化介绍(高效旋流板塔)旋流板塔旋流板塔技术可以实现脱硫、除尘一体化。
塔内的工作机理是针对烟尘成份组成的特征,采用成功的碱液吸收法,经过旋流、喷淋、吸收、吸附、氧化、中和、还原等物理、化学过程,以及脱水、除雾,达到脱硫、除尘、除湿、净化烟气的目的。
1、脱硫原理一般情况下,脱硫是利用二氧化硫的特性,即酸性、氧化性、还原性。
氧化性与还原性是在强氧化剂强还原剂与催化剂的作用下氧化成酸性更强的SO3与还原成原素硫。
一般情况下,利用碱液脱硫时关键应考虑溶解性:SO2溶解于水,但溶解度不大,那么当碱液量一定时,只能靠增大碱液与SO2的接触面积,使SO2溶于水后与碱快速反应生成盐再次溶解SO2,或直接SO2与H2O、碱同时接触反应。
或碱液对SO2进行包溶,那么,在其它条件相同时(如PH值为定值、碱液量相同时)碱液的雾化质量越好、脱硫效率越高。
旋流板塔独特的设计能使高速运动的气流对碱液作激烈的搅拌,产生涡流内循环,重复雾化,使碱液完全雾化,液滴粒径基本在0.2mm以下,达到最佳雾化质量,液雾与SO2充分搅拌在一起,达到最佳的接触方法与接触面积,从而达到理想的脱硫效果。
2、除尘原理烟气自脱硫除尘塔底部切向进入后,绕着底部的稳流柱旋转上升,利用离心力作用除去70%的较大尘粒,然后变速通过三层涡流旋流板。
在这三次大的变速运动中,高速气流对碱液做激烈搅拌使水达到最佳的雾化质量(液滴直径0.2mm),从而使得烟气与碱液达到最大的接触面积(是水膜除尘器中的水与烟气接触面积的200倍以上)。
这样,较大的尘粒在离心力作用下被除去,较小的尘粒受到液滴的碰撞与拦截,受到粒子上的冷凝,受到多次的布朗扩散等作用而凝并成较大的尘粒而被除去,此外,还有部分微小尘粒通过絮流、吸附、聚凝、催化传质后被捕集,最后都流至塔底部再排至沉灰池。
3、原理的独特设计1)旋流板上的碱液基本不下落,在板上做抛物运动;2)该技术能使气液接触面积至最大化,又使气相紊动剧烈,增强了碱性液体对酸性气体的吸收作用;3)独特的用水量设计是利用雾化水量、阻力、烟气温降、三方互益的坐标极限来设计的,使得阻力、温降、用水量都最为合理;4)有效的利用碱液的结垢周期,控制碱液在除尘器内的停留时间,使碱液在除尘器内不结垢。
[“烟塔合一”技术在环评中有关问题的探讨] 烟塔合一.doc
摘要:介绍了国内外燃煤电厂“烟塔合一”技术的应用现状,阐述了“烟塔合一”的工艺流程及技术特点,重点进行了“烟塔合一”排烟方案与常规的烟囱排烟方案对环境影响的对比分析,并针对燃煤电厂“烟塔合一”技术在环评过程中存在的问题进行探讨。
关键词:燃煤电厂;烟塔合一;环境影响评价中图分类号:X169文献标识码:B文章编号:1005-569X(2010)06-0098-031 引言“烟塔合一”技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔巨大热量和热空气量对脱硫后湿烟气进行抬升,在大多数情况下,其混合气体的抬升高度高于比冷却塔高几十米的烟囱,从而促进烟气内污染物的扩散。
“烟塔合一”技术起源于德国。
我国燃煤电厂自2005年开始引用“烟塔合一”技术,该技术不仅可以提高火力发电系统的能源利用效率,而且大大简化了火电厂的烟气系统,减少了设备投资并节约了有限的土地资源。
2 “烟塔合一”技术的应用现状2.1 国外应用现状德国于20世纪70年代开始研究“烟塔合一”技术,于1982年建设第一座“烟塔合一”火电厂,即Volklingen电厂。
1985年完成一系列测评。
自此,“烟塔合一”技术在德国新建电厂中得到了广泛应用。
同时,德国结合工程实际制订了“烟塔合一”技术的相关技术标准和评价准则。
随着“烟塔合一”技术的逐步成熟,德国、波兰、土耳其、希腊等国家改建和新建了很多无烟囱电厂,其中大部分集中在德国。
目前,德国采用“烟塔合一”技术且已运行的有20多座电厂,装机总容量超过12000MW,最大单机容量已达到1000MW[1],如德国的Neurath电厂,装设2×1100MW机组。
德国要求“烟塔合一”的塔入口SO2质量浓度为400mg/m3,NOx质量浓度为200mg/m3。
对一些燃烧褐煤且采用“烟塔合一”技术的电厂,则未要求其对排烟进行脱硝(比如黑泵电厂)处理。
其他国家投运的“烟塔合一”机组台数不多,目前尚未见到相关要求。
烟塔合一技术原理
烟塔合一技术原理
烟塔合一技术原理,简单来说就是将原本分开的脱硫、脱硝和除尘设备合并在一起,通过一套工艺流程完成对烟气中污染物的处理。
这种技术的出现,既解决了传统烟气处理设备占地面积大、投资高、运行成本高的问题,也有利于提高烟气处理效率、减少对环境的污染。
烟塔合一技术的原理主要包括以下几个方面:首先是烟气的预处理,将含尘颗粒物去除,通常采用静电除尘器或布袋除尘器进行处理。
接着是脱硫过程,利用石灰石浆液对烟气中的二氧化硫进行吸收,生成石膏并排出系统。
然后是脱硝过程,利用氨水对烟气中的氮氧化合物进行还原,将其转化为氮气和水蒸气,从而减少对大气的污染。
最后是烟气的净化处理,通过干法除尘或湿法除尘等方法,将烟气中的微小颗粒物和有机物去除,最终排放出清洁的烟气。
烟塔合一技术的原理是基于烟气处理的工艺特点和环保要求,通过整合各项处理工艺,实现烟气多污染物一体化处理,从而达到节能
减排、降低运行成本和提高处理效率的目的。
相比传统的烟气处理设备,烟塔合一技术不仅占地面积小、投资成本低,而且运行稳定,管理维护方便。
因此,在工业烟气治理和环保建设中得到越来越广泛的应用。
总之,烟塔合一技术通过对烟气进行预处理、脱硫、脱硝和净化等工艺步骤,实现了烟气多污染物的一体化处理,为减少大气污染、改善环境质量发挥了积极的作用。
随着环保技术的不断进步和完善,相信烟塔合一技术将在未来得到更广泛的推广和应用。
浅析火电厂脱硫烟塔合一技术的应用
文 章 编 号 :0 5 6 3 ( 0 1 1— 18 0 10 — 0 3 2 1 )2 0 4 — 3
S I E H IF R A IN D V L P E T&E O O Y C- C O M TO E E O M N T N CNM
21 年 第 2 卷 0 1 1
有 烟 囱排 烟温 度 应 超过 7 2℃的规 定 。 因此 , 为满 足脱 硫 后 烟温 的
0 05 . 10 . 15 . 2O . 2 5 . 3O . 3 5 4. 4 5 5 O . 0 . .
幄
束
升高 ,德 国前期建设 的湿法脱硫装置 中全部设置有 烟气—烟 气 换热器( G 。 G H) 但经过多年运行 , 发现设置 G H不仅能耗高、 G 投
烟道 引接 无 此 限制 ,但 也 需 保 证 烟 道 引 入 冷 却 塔 内应 有 一 定 的
排烟高度。图 3 为湿冷塔立体图 。
图 5 冷却塔壁开孔加 固后情况图
应 的 防腐 措 施 。
而对应于 间冷塔 , 由于塔 内无 大量水汽包 围 , 正常情 况下 , 塔 内烟气气流较细 , 且被 大量 于燥气流包裹 , 干燥气流会 在具有
塔) 合二为一 , 取消烟囱 , 利用冷却塔的巨大热量 , 排放并 有效抬
升脱硫后的净烟气。
此 项技 术 的 研究 始 于 2 O世 纪 7 代 ,O年 代 初 应 用 于 德 O年 8
祟5 0 0
咖咖 ∞∞∞∞∞∞∞∞O 伽 瑚啪。
霉
3o 0
O
国, 经过近 4 0年的试验 、 研究 、 分析和改进 , 日趋成熟。迄今为 已
2 烟塔 合一技术 成 因及 特点
烟塔合一
4.3 冷却塔本体防腐设计
• 烟气经过脱硫后仍含有低浓度的SOx 和 NOx,与湿空气混合后,只要塔壁内温度 达到结露点,上塔壁的内表面将被低浓度 的酸(pH 值3.5 到6.0)或直接被浓缩蒸汽 化学腐蚀。为了克服这一缺陷,通常在塔 壁内表面施以厚度不小于150 μm 的聚丙稀 环脂涂层。
• 然而考虑到电站应尽量减少启停,对冷却 塔巨大的塔壁内表面积进行必要的多次维 护几乎是不可能的。为了解决这个问题, 德国目前发展了命名为SRB- ARHPC85/35 的新型高抗酸性高性能混凝 土并得到成功应用。这种混凝土的改进成 分是高浓度的混凝料和少量的水泥。它经 过特殊的设计和严格的测试具有高强度、 高结构密度和高抗冻性,为烟塔合一的冷 却塔耐久性的扩展提供了一个改进的材料 平台。
• 烟气中残余SO2和飞灰不会对循环冷却水 造成污染。经脱硫和高效除尘后,烟气中 残余SO2和飞灰含量降低,SO2(包括 SO3)露点温度相应降低,在塔内结露的 可能性小,加之SO2 吸收塔和冷却塔均有 除水装置,塔内气体带水滴(雾)少,烟 气中飞灰不易与水滴(雾)结合而沾附在 塔内壁。因此,烟气中残余SO2 和飞灰不 会对冷却塔和循环冷却水产生污染。
7.利用冷却塔排放烟气还存在的 问题
• 利用冷却塔排放烟气是一种技术先进,经 济适用的方法。在国外已有十几年的成功 经验,在技术上是完全可行的,在投资上 是节省的。以下问题需要我们做更进一步 的研究。
• 烟气排入冷却塔后对冷却塔热力性能的影 响。 • 烟气排入冷却塔后对循环水质的影响。 • 烟气对填料、通风筒的污染和腐蚀及其防 治措施的分析研究。 • 进塔烟道材料及结构形式的研究。 • 通风筒上有较大开孔时其结构稳定性分析。
• 此项技术在国外从70 年代就开始研究,通 过不断的试验、研究、分析和改进,已日 趋成熟,以德国的SHU 公司和比利时的 Hmaon Sobelco 公司为代表。在德国新建 火电厂中,已经广泛地利用冷却塔排放脱 硫烟气,成为没有烟囱的火电厂。2003年 投产的1,000 MW 级Neideraussem电厂 也采用此项技术,应该说该技术是成熟可 行的。
火电厂脱硫、脱硝、除尘及烟塔的一体化技术
一 脱硫脱硝除尘工序的一体化设计 $&吸附法 火力发电之中最主要的污染就是在煤炭的燃烧过程之中 其中的杂质在燃烧之中产生的含硫气体以及燃烧烟尘 含硫 物质在逸散的过程之中会进入大气环境之中长期的含硫物质 的排放会造成酸雨影响我国的生态环境和农业发展 而烟尘 会影响空气的洁净度过多的烟尘排放会造成雾霾现象影响 我国的大气环境 因此为了提升我国的环境质量同时提高 火电厂的发电效率在实际生产的车间的建设时要注意对有 毒有害物质进行统一的吸收或是处理这就要求在一体化建设 设施内具有可以将有害物质统一处理的方法 在当前的建设之中施工人员一般会使用耐磨耐压的活 性焦来作为一体化设施之中的有害物质的净化方法 活性焦 比起传统的活性炭具有更高的强度且其吸附有害物质的性能 更强 在实际净化工作之中活性焦可以凭借其表面的微孔对 火电厂燃烧产物内的含硫物质含硝物质以及烟尘进行吸附 避免其排放到大气之中对我国生态环境和大气环境造成影 响 活性焦自身卓越的吸附有害物质的能力保证其可以在一 体化的净化工作之中发挥较好的作用 在凭借活性焦进行吸附作业之后施工技术人员还要对其 所吸附的含硫含硝物质进行处理 尽管这些有害物质在排放 到大气之中后会对国家的生态环境造成很大的影响但是假 如进行适当的处理则和谐物质可以作为生产化肥和化学产品 的基本原料 一般在经过吸附处理之后其中的含硫物质会在 处理之中转化为浓硫酸等物质可以作为化学产品出售 含有 氮氧化合物的烟尘则会与氨气在活性焦的表面进行反应生成 氮气和水并可以在之后的处理之中作为生产氮肥的原料 一 体化处理程序对于有害物质可以做到从吸收到处理的一站化 服务在火电厂的排放物处理之中可以发挥很大的作用 )&氧化法 除了在车间的一体化建设之中使用吸附法处理之外技术 人员还可以通过另一种处理方法来完成这一工序 第二种几
循环水热能的利用-烟塔合一技术
摘要当今世界,节能已成为一项重要的研究课题。
作为耗能大户的发电厂,提高其能源利用效率和减低污染物排放是亟需解决的问题。
提高电厂循环水热能利用可以很大程度上提高电厂热效率,针对提高电厂循环水热能利用的方法,目前主要有水源热泵方案、烟塔合一方案和汽轮机低真空运行方案。
本文主要介绍了烟塔合一技术,烟塔合一技术利用循环水的热能加热烟气,可提高脱硫后净烟气的抬升高度,有利于降低污染;同时提高电厂的热效率。
并且烟塔合一技术可以简化湿法脱硫系统,不再需要净烟气再热器,取消了传统火电厂的烟囱,可以将锅炉引风机和脱硫增压风机合而为一,大大降低电厂建设费用。
本文首先介绍了烟塔合一技术的概念,并研究了相对应装置的设计与工艺系统的布置;接着分析研究了烟塔合一技术对电厂循环水和冷却塔的影响,提出相应的解决办法;然后研究了烟塔合一技术烟羽抬升高度和烟气扩散浓度,并对传统的烟囱排烟方式烟气抬升高度进行计算,分析了烟塔合一技术的环境方面的优点和推广该技术所面临问题;最后,分析了该技术的经济优势、新增加的投资和社会综合效益,综合比较分析了其经济性。
通过本文的研究,为电厂循环水热能利用的方法提供了依据。
关键词:热能利用;装置设计;烟塔合一;环境保护;经济性ITitle Power plant circulating water heat energy utilizationand study on design of deviceAbstractNowadays, energy saving has become an important research subject. As a major energy power plant, improve its energy efficiency and reduce emissions of pollutants is an urgent need to solve the problem. Improve power plant circulating water heat energy utilization can greatly improve power plant thermal efficiency, to improve power plant circulating water heat energy utilization method, is the main water source heat pump, Cooling tower with flue gas and steam turbine low vacuum operation scheme. This paper mainly introduces the integrated technology of stack and cooling tower, Cooling tower with flue gas technology using circulating water heat energy to heat the flue gas can be rise the gas, can improve the uplift height, is beneficial for reducing pollution; at the same time, improve the thermal efficiency of power plant. And the smoke tower integrated technology can simplify the wet desulPHurization system, no longer need to clean flue gas reheated, the abolition of the traditional thermal power plant chimneys, the boiler fan and desulPHurization booster fan be made one, greatly reduce the power plant construction costs.This paper first introduces the Cooling tower with flue gas technology concept, and to study the corresponding device design and process system arrangement; then analyzed the integrated technology of stack and cooling tower in power plant circulating water and cooling tower impact, proposed the corresponding solution; then the plume rise height and gas diffusion concentration and traditional chimney flue are calculated, analyzed the integrated technology of stack and cooling tower of the environmental advantages and promote the technical problems; at last, analyzed the technical economy advantage, increase investment and social benefits, comprehensive comparison and analysis of its economic. Through this study, for the power plant circulating water heat energy utilization method provide the basis. Keywords:energy utilization; design reach equipment; Cooling tower with flue gas; environmental protection; economic performanceII目录摘要 (I)Abstract....................................................................................................................... I I 第1章绪论 ..................................................................................................... - 1 -1.1 课题研究背景 ........................................................................................... - 1 -1.2 国内外研究现状 ....................................................................................... - 1 -1.3 本文的研究内容 ....................................................................................... - 2 - 第2章烟塔合一技术及装置 ............................................................................. - 4 -2.1 烟塔合一技术 ........................................................................................... - 4 -2.1.1 烟塔合一技术概况 ......................................................................... - 4 -2.1.2 烟塔合一技术的发展 ..................................................................... - 5 -2.1.3 烟塔合一技术原理 ......................................................................... - 6 -2.2 烟塔合一回收余热 ................................................................................... - 7 -2.2.1 加热冷风 ......................................................................................... - 7 -2.2.2 加热城市热网水 ............................................................................. - 7 -2.3 工艺系统的布置方式 ............................................................................... - 7 -2.3.1 湿法脱硫工艺流程不同的烟塔合一工艺 ..................................... - 7 -2.3.2 脱硫装置布置位置不同的烟塔合一工艺 ..................................... - 8 -2.4 烟塔的结构与型式 ................................................................................... - 9 -2.5 烟道技术 ................................................................................................. - 10 -2.5.1 净烟道设计技术 ........................................................................... - 10 -2.5.2 湿烟气烟道的选材 ....................................................................... - 10 -2.5.3 净烟道支撑结构 ........................................................................... - 11 -2.5.4 烟道连接 ....................................................................................... - 11 -2.5.5 吸收塔及内部件设计 ................................................................... - 12 - 第3章烟塔合一技术对电厂循环水系统的影响 ........................................... - 13 -3.1 对循环水水量及水温的要求 ................................................................. - 13 -3.2 对循环水水质的影响 ............................................................................. - 14 -3.2.1 循环水系统浓缩倍率增大 ........................................................... - 14 -3.2.2 降低循环水系统PH ..................................................................... - 14 -3.3 处理对策 ................................................................................................. - 14 -3.3.1 循环冷却水处理 ........................................................................... - 15 -3.3.2 循环冷却水系统的材料和流速控制 ........................................... - 16 -3.3.3 循环冷却水系统的监测 ............................................................... - 16 -3.3.4 其它措施 ....................................................................................... - 17 - 第4章烟塔合一技术对冷却塔的影响 ........................................................... - 18 -4.1 冷却塔设计技术 ..................................................................................... - 18 -4.1.1 最低热负荷的要求 ....................................................................... - 18 -4.1.2 塔内气体流动工况的影响 ........................................................... - 18 -III4.1.4 对冷却塔的强度的影响 ............................................................... - 19 -4.2 对冷却塔的腐蚀 ..................................................................................... - 20 -4.2.1 腐蚀介质 ....................................................................................... - 20 -4.2.2 冷却塔的防腐 ............................................................................... - 21 - 第5章环保分析 ............................................................................................... - 22 -5.1 烟气抬升 ................................................................................................. - 22 -5.1.1 烟气抬升机理及影响因素分析 ................................................... - 22 -5.1.2 实际抬升高度分析 ....................................................................... - 24 -5.3 传统烟囱排放烟气抬升高度计算 ......................................................... - 25 -5.2烟羽扩散 .................................................................................................. - 28 -5.2.1 S/P模式简介.................................................................................. - 28 -5.2.2 所需参数 ....................................................................................... - 29 -5.2.3 烟塔合一烟气抬升高度 ............................................................... - 29 -5.2.4 烟气排放速度对烟气抬升高度的影响 ....................................... - 30 -5.4 落地浓度 ................................................................................................. - 31 -5.4.1 不同形式的冷却塔对SO2落地浓度的影响 ............................... - 31 -5.4.2 烟塔合一和烟囱排放烟气地面浓度对比 ................................... - 32 -5.4.3 烟气排放的扩散范围 ................................................................... - 33 - 第6章综合经济评价 ....................................................................................... - 34 -6.1 经济优势 ................................................................................................. - 34 -6.1.1 节省烟囱 ....................................................................................... - 34 -6.2.2 节省烟气再热器GGH .................................................................. - 34 -6.2.3 节省脱硫增压风机 ....................................................................... - 34 -6.2.4 其他方面 ....................................................................................... - 35 -6.2 新增投资 ................................................................................................. - 36 -6.2.1 冷却塔防腐 ................................................................................... - 36 -6.2.2 烟道投资 ....................................................................................... - 36 -6.2.3 水耗增加 ....................................................................................... - 37 -6.3 社会经济效益 ......................................................................................... - 37 -6.3.1 经济效益分析 ............................................................................... - 37 -6.3.2 社会效益分析 ............................................................................... - 37 - 结论 ................................................................................................................... - 39 - 致谢 ................................................................................................................... - 40 - 参考文献 ............................................................................................................... - 41 -IV第1章绪论1.1 课题研究背景能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。
烟塔合一技术
表 I 德 国 采 用烟 塔 合 一 的 电 厂
电厂名称
Vok ig n ll e n Wes i rF i wel e
气也 可 以接入 冷 却塔 进行 排 放 , 就 是 烟 气 脱 硫 这 中广泛 关 注 的烟塔 合一 技术 [ 9。 z 3  ̄ 烟塔 合一 技术 是将 火 电厂烟 囱和冷却 塔合 二 为一 , 消烟 囱 , 用 冷却塔 巨 大 的热 湿 空气 对脱 取 利
德 国环境 界 认 为 , 由于 冷 却 塔 热 空 气 的作 用 将 脱硫后 净 烟气 抬 升 排 人 大 气 , 抬 升 效 果 比传 其
统 的 烟 囱排 放 要 好 。
一
台 6 0Mw 机 组 锅 炉 排 放 的 烟 气 量 约 为 0
2 0万 m。 h 烟气 排 放 温 度 1 0 时 其 热 量 为 燃 0 /, 2℃
2
90 0 18 0 4
22 0 0
德 国于 2 0世 纪 7 0年 代开 始研 究烟 塔合 一技 术 ,9 2年 建 设 烟 塔 合 一 火 电 厂 , 运 行 2 18 已 0多 座 , 机总 容量 超 过 1 装 3GW ,最 大单 机 容 量 已达 到 1GW 。并对 一批 老机 组 也进 行 了 烟 塔合 一 改 造 。我 国华 能 北 京 热 电 厂也 采 用 了此 该 项 技 术 , 并在 2 0 0 6年 1 2月投 入 运 行 , 为 我 国乃 至亚 洲 成 首个 可 以取 消 烟 囱 的 电厂 口 。此 外 , 津 东 北 郊 ] 天 热 电厂 、 北 陡河 电厂 、 江宁海 电厂新 扩建 机组 河 浙 也 有意采 用 烟塔合 一 技术 。
中 图分 类 号 : 7 1 3 X o . 文 献标 识 码 : B
“烟塔合一”脱硫技术应用中应注意的问题
钢管 ),因此造价 为同容量湿式塔 的4 倍 ,再加 上国 布置在间冷塔 内的吸收塔顶部垂直烟道对空排放 ;脱硫 ~6 外技术引进及关键设备 进 口等费用 ,间冷塔 比常规湿 式 系统停 运时 ,关闭吸收塔进 、出 口挡板 门,打开旁路烟 冷却塔一次性投资要高 出很 多。
气 挡板 门 ,原烟气就经旁路烟道 即也从此垂直烟道对空 该 项 目的间冷塔直径为10 高度15 2 3 0 6m, 6m; X 0 MW
与管外 空气 的温差 ,形成接触传热而冷却 。问冷塔 的外
但到 目前为止 , “ 烟塔合一 ”的脱硫项 目还处 于建
形 与常规双曲线湿式冷却塔相似 ,但 间冷塔 的下部环塔 设 当中,尚没有实 际投运 的经验 。本 文结合 山阴电厂烟
一
周 均布 置翅片式 散热器 ,如 山西山 阴电厂项 目的2 台 气排放系统工程项 目简述 了该项 目与常规湿法脱硫不 同
组 正常运行时, 间冷塔 内的温度最高在5%~ 3C 间。 8 6 ̄之
脱硫 岛采用一 炉一塔布 置 ,采用石 灰石一 石膏湿法
设备耐温 问题需从设备本体和电机两个方面来考虑。
( ) 1 氧化风机
脱硫工 艺 ,配置二级 石膏脱 水系统 。公用 系统包 括吸收
系统 、石膏脱水 系统 ,废水处理系统等 。
其 简易流程如 图。
目前脱硫 系统 的氧化风机普遍 采用 高效率容 积式罗 超过4 ℃时 ,就应采取相应的降温措施 ,以提高风机使 0 用寿命和降低故 障率 。实 际运行项 目 中,在超过4 ℃环境下运行 的风机 , 0
塔 区工 艺水 系统 、脱水 区工 艺水 系统 、石 灰石 湿磨 制浆 茨风机 ,风机 在不 大于4 ℃的环境 温度 下可长期 使用 , 0
“烟塔合一”技术浅述
“烟塔合一”技术浅述刘婷张文涛(秦皇岛玻璃工业研究设计院有限公司秦皇岛市066001)摘要“烟塔合一”是将烟囱放置于双曲线冷却塔内,通过冷却塔热空气抬升烟气的技术。
采用此技术具有降低烟气污 染物最大落地浓度、节省烟道系统投资、降低排烟温度提高能源效率等优点,但也存在其特有的技术限制。
在国内大气污染物排放标准日益严格的情况下,采用烟塔合一技术在技术上是可行的,具有一定经济效益和环境效益。
关键词烟塔合一环境保护烟囱冷却塔中图分类号:TQ171文献标识码:A文章编号:1003-1987(2019)09-0053-04A Brief Introduction to the"Smoke Tower Integration"TechnologyLIU Ting,ZHANG Wentao(Qinhuangdao Glass Industry Research and design Institute Company Limited,Qinhuangdao,066001) Abstract:"Smoke tower integration"is a technique in which a chimney is placed in a hyperbolic cooling tower to raise the flue gas through the cooling tower's hot air.The use of this technology has the advantages of reducing the maximum concentration of flue gas pollutants,saving the investment of the flue system, reducing the exhaust gas temperature and improving energy efficiency;however,there are also unique technical limitations.In the case of increasingly strict domestic air pollutant emission standards,the use of smoke tower integration technology is technically feasible and has certain economic and environmental benefits.Key Words:smoke tower integration,environmental protection,chimney,cooling tower0引言烟塔合一技术最早于上世纪70年代末出现在德国,80年代初在德国试验性建设并在随后几年获得成功,并逐渐推广至欧洲各国。
脱硫系统“烟塔合一”技术的应用
侧各设两 道纵肋 吸 收塔 与烟 囱连接 变径段上 下各设一 道环
肋. 变 径段部分 每隔 1 5度 设 纵 向加 劲 肋 。
《 烟 囱设 计规 范 》 ( G B 5 0 0 5 1 — 2 0 0 2 ) 中 仅 对 烟 囱在 弯 矩
小 型 项 目脱 硫 改 造 开 辟 了新 的 路 线
关 键 词 烟 气 脱 硫 ( F G D) 吸收塔 烟 塔 合 一 铜 烟 囱 烧 结 机
一
中图分类号 : X 7 0 1 . 3
文献标识 码 : A
文章编号 : 1 6 7 2 — 9 0 6 4 ( 2 0 1 5 ) o 5 — 0 8 2 — 0 2
解决 电厂 、 钢厂 等烟气 脱硫 系统 中存在 的 问题 , 是项 目得 以
最 优 化 实 施 的 关 键 所 在 本 文 所 介 绍 的 烟 囱~ 脱 硫 吸收塔
“ 烟 塔 合 一 ”脱 硫 技 术 在 钢 厂烧 结 机 脱 硫 工 程 的实 施 中得 到 了 实 际检 验 运 用 该 技 术 可 合 理 优 化 烟 气 脱 硫 系 统 配 置 . 有
径 1 2 m ,烟 囱直 径 6 . 6 m,总 高 度 8 0 m。 对 于 本 工 程 h / d = 8 0 / 6 . 6 = 1 2 . 1 < 2 0 . 可 采 用 自立 式 钢 烟 囱 。
2 . 2 钢 烟 囱结 构 初 步 计 算
图 1 由于脱硫后 的湿烟 气腐蚀性 很强 . 老烟 囱原 有的 防腐
之 比. 不宜小于 1 / 8
当 前 . 我 国 环 境 状 况 总 体 恶 化 的 趋 势 尚 未 得 到 根 本 遏
制, 环境矛盾 日益凸显 . 环保压 力持续加大 。 部 分区域和城 市
单塔一体化脱硫除尘深度净化技术介绍
单塔一体化脱硫除尘深度净化技术介绍关键词:脱硫脱硫技术脱硫效率单塔一体化脱硫除尘深度净化技术是通过一个一体化吸收塔完成全部高效脱硫、除尘过程,烟气自入口向上依次经过第二代高效旋汇耦合脱硫除尘装置、节能高效喷淋装置、离心管束式除尘装置实现超净排放。
1.高效旋汇耦合脱硫除尘技术该技术基于多相紊流掺混的强传质机理,利用气体动力学原理,通过特制的旋汇耦合装置产生气液旋转翻覆湍流空间,气液固三相充分接触,迅速完成传质过程,从而达到气体净化的目的。
旋汇耦合器基于多相紊流掺混的强传质机理,利用气体动力学原理,通过特制的旋汇耦合装置产生气液旋转翻腾的湍流空间,气液固三相充分接触,大大降低了气液膜传质阻力,大大提高传质速率,迅速完成传质过程,从而达到提高脱硫效率的目的,该技术与同类脱硫技术相比,除具有空塔喷淋的防堵、维修简单等优点外,由于增加了气体的漩流速度,还具有脱硫效率高和除尘效率高的优点。
2.高效节能喷淋技术优化喷淋层结构,改变喷嘴布置方式,提高单层浆液覆盖率达到300%以上,增大化学吸收反应所需表面积,完成第二步的洗涤,烟气经高效旋汇耦合装置和高效节能喷淋装置2次洗涤反应,两次脱硫效率的叠加,可实现烟气中二氧化硫可降低至35mg/Nm3以下。
3.离心式管束式除尘除雾技术3.1离心式管束式除尘除雾装置结构汇流环—控制液膜厚度,维持合适的气流分布状态。
管束筒体—内筒壁面光洁,筒体垂直,断面圆滑,无偏心。
导流环—控制气流出口状态,防止捕悉液滴被二次夹带增速器—确保以最小的阻力条件提升气流的旋转运动速度分离器—实现不同粒径的雾滴在烟气中分离3.2离心式管束式除尘除雾装置原理管束式除尘装置的使用环境是含有大量液滴的~50℃饱和净烟气,特点是雾滴量大,雾滴粒径分布范围广,由浆液液滴、凝结液滴和尘颗粒组成;除尘主要是脱除浆液液滴和尘颗粒。
1)细小液滴与颗粒的凝聚大量的细小液滴与颗粒在高速运动条件下碰撞机率大幅增加,易于凝聚、聚集成为大颗粒,从而实现从气相的分离。
烟塔合一技术的环保优势
烟塔合一技术的环保优势0引言烟塔合一技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔排放烟气,冷却塔既有原有的散热功能,又替代烟囱排放脱硫后的洁净烟气。
此项技术在国外从70年代就开始研究,通过不断的试验、研究、分析和改进,已日趋成熟,以德国的SHU公司和比利时的HmaonSobelco公司为代表。
在德国新建火电厂中,已经广泛地利用冷却塔排放脱硫烟气,成为没有烟囱的火电厂。
我国的环保要求越来越严格,湿法烟气脱硫技术已经广泛应用,新建机组大部分都采用了湿法烟气脱硫工艺。
湿法烟气脱硫工艺的广泛应用,其高脱硫效率使电厂排放的烟气中SO 2含量大大减少,使得烟塔合一技术的采用成为可能。
利用冷却塔排放烟气,脱硫后的净烟气无需再加热,不仅节省了烟囱的费用,还节省了烟气再热系统的投资和运行、保养费用,虽然冷却塔排放低温烟气,增加了防腐蚀的费用,但节省了总的初投资和运行维护费用。
此外由于省去了烟气再热系统,还避免了未净化烟气泄漏而造成最终脱硫效率的下降。
此外,一些城市电厂由于烟囱限高要求,只能采用新的排烟技术来达到特殊的外部要求和环境要求,这些,都为烟塔合一技术在我国的应用提供了广阔的发展空间。
1烟塔合一技术概述烟塔合一工艺系统通常有2种排放形式,分别为外置式和内置式。
1.1外置式把脱硫装置安装在冷却塔外,脱硫后的洁净烟气引入冷却塔内排放。
脱硫装置安装在冷却塔外,净烟气直接引到冷却塔喷淋层的上部,通过安装在塔内的除雾器除雾后均匀排放,与冷却水不接触。
国外早期当脱硫系统运行故障时,由于原烟气的温度和二氧化硫的含量相对较高,不适于通过冷却塔排放,需经干式烟囱排放。
目前由于脱硫装置运行稳定,冷却塔外一般不设旁路烟囱。
1.2内置式近几年国外的烟塔合一技术进一步发展,开始趋向将脱硫装置布置在冷却塔里面。
使布置更加紧凑,节省用地。
其脱硫后的烟气直接从冷却塔顶部排放。
由于省去了烟囱、烟气热交换器,减少了用地,可大大降低初投资,并节约运行和维护费用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱硫烟塔合一技术介绍
从上个世纪八十年代初期开始,以德国为代表的一些发达国家开始尝试利用冷却塔排放湿法脱硫后的烟气,目的是节省较大的烟气再热器的投资和提高烟气排放的扩散效果,经过二十年的发展,到目前为止,全世界大概已经有三十多台机组采用了这种技术。
烟气通过冷却塔排放,是将烟气用烟气管道送入塔内配水装置的上方集中排放。
这对冷却塔带来了两个方面的影响,一方面,烟气排入会使配水装置上方的气体流量增加,流速有所增加,带来额外的流动阻力,但冷却塔内烟气的流速很低,一般都在1.0m/s左右,即使流速增加30%,带来额外的流动阻力增加也非常有限,与冷却塔的其他阻力(人字柱、进风口、淋水装置、淋水、出口等阻力)相比,还是较小的。
考虑这部分额外的流动阻力增加和烟气管道带来的局部阻力,将冷却塔的总阻力系数增加3。
另一方面,烟气排入冷却塔与配水装置上方的湿空气发生混合换热现象,改变了塔内气体的密度。
锅炉在设计工况运行时,吸收塔出口烟气温度范围为43-50℃(主要决定于吸收塔入口烟气温度),考虑到烟道长度和环境温度变化带来的温度降低,进入冷却塔的烟气温度为36-43℃。
以下是就烟塔合一时可能遇到的问题进行探讨:
一、烟气能否从烟塔顺利排出
烟气能否从烟塔顺利排出,根本是看烟塔内填料上方混合气体的密度是否比环境空气的密度低。
这两个密度差越大,通风量越大,混合气体的热浮力越大,烟气从烟塔排放的扩散效果就越好。
在烟塔运行的绝大多数时间里,烟塔内填料上方混合气体的密度都比环境空气的密度低,烟气都会顺利排放。
当夏季环境温度达到38℃,烟气温度只有为40℃时,烟气仍然可以通过烟塔顺利排出。
但我们必须保证在机组运行的任何情况下,烟塔都能顺利排烟,就必须考虑到烟塔运行的极端情况。
对烟塔来说,最极端恶劣的烟气排放工况就是:环境温度为极热(42℃),并且烟塔不通循环水。
这时如果使烟气顺利排放,烟气温度必须达到52.5℃以上。
环境温度为38℃,并且烟塔不进循环水时,使烟气顺利排放的最低烟气温度为48℃。
但从吸收塔的热力计算可知,吸收塔出口的烟气温度变化范围有限,一般在43-50℃之间,从吸收塔出口到冷去塔出口还有一定的温度损失,为使烟气在极端工况时也能顺利从冷却塔排出,必须考虑设有对净烟气进行加热的措施。
最简单实用的办法就是用一部分烟气走脱硫旁路的办法应付这种极端情况。
二、烟气通过冷却塔排放后,对冷却塔冷却效率影响
判别烟气通过冷却塔排烟对冷却塔冷却效率影响的依据是:烟气密度是否低于填料上方空气的密度。
当烟气密度比填料上方空气的密度低时,烟气的排入会使冷
却塔填料上面的混合气体的密度比原来填料上方的空气密度低,从而增大了塔内外气体的密度差,导致冷却塔的通风量增加,冷却效率提高;反之则会使冷却效率降低。
烟气密度与填料上方空气密度的差距越大, 冷却效率提高的幅度越大;填料上方的空气密度受环境温度、循环水量、循环水进水温度的影响,其中,环境温度的影响最大,在冷却塔的设计温度(干球温度25.8℃——意味着夏季最热三个月的平均温度有90%的时间低于此温度)下,在烟气温度为43℃(考虑克服附加阻力带来的负面影响,提高1℃烟气温度,从42℃提高到43℃)时,夏季有90%的时间都不会产生负面的影响,相对于全年(假设其它月份的温度最高温度都没有超过25.8℃),就是有97.5%的时间不产生负面影响,也就意味着在全年有97.5%的时间里,烟气通过冷却塔排放都会使循环水温降比同工况运行的旧塔大或相等,使机组总体热效率向好。
当然这种估算偏乐观,保守估计,烟塔全年应该有90%以上的时间都会比相同条件下的冷却塔效率高。
但烟气温度降低时,使烟塔热效率向好的时间将有所缩短。
环境温度提高时,对烟塔冷却效率起正面影响的临界烟气温度也将提高,环境温度为38℃时,这个临界温度大约为51-52℃。
不难理解,当烟气的排入对冷却塔的冷却效率起正面影响时,烟气量降低(锅炉降负荷)会削弱冷却效率,而当烟气的排入对冷却的塔冷却效率起负面影响时,烟气量降低(锅炉降负荷)会提高冷却效果,在炎热的夏季,就可以通过降低锅炉负荷的方法提高烟塔的冷却效率和扩散效果。
三、烟气温度对烟塔冷却效率和的烟气扩散效果的影响
从上面的分析可以看出:进入冷却塔的烟气温度对机组的经济性和安全性都至关重要,温度越高越好。
但吸收塔出口的烟气温度相对固定,一般在43-50℃之间,应该在系统布置和烟道保温方面想办法,尽量提高排入烟塔的烟气温度,从而提高机组的经济性、烟气排放的安全性和扩散效果。
四、对机组运行的经济性影响
从前面的分析又可知,当进入烟塔的烟气温度为43℃以上时,全年至少有90%的时间,烟塔的冷却效果都比旧塔好。
冬季烟气温度如果为30℃时,温降提高0.33℃, 如果假设烟塔循环水温降全年平均提高0.1℃。
一般300MW的机组,循环水温降增加1℃,可以降低煤耗2-2.5克, 相当于降低燃煤0.7%左右。
五、对循环水系统的影响。