积的算术平方根的性质

合集下载

《二次根式》期末复习知识清单及典型例题

《二次根式》期末复习知识清单及典型例题

二次根式期末复习知识清单及典型例题知识点1:二次根式的定义:形如()0≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,a 才有意义.【例1】下列各式()511,()52-,()232+-x ,()44,()2315⎪⎭⎫ ⎝⎛-,()a -16,()1272+-a a 其中是,二次根式的是_________(填序号).变式:1、下列各式中,一定是二次根式的是()A 、a B 、10-C 、1a +D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是. 变式:1、使代数式43--x x 有意义的x 的取值范围是() A 、x>3B 、x ≥3C 、x>4D 、x ≥3且x ≠4 2、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、使代数式221x x -+-有意义的x 的取值范围是 【例3】若y=5-x +x -5+2009,则x+y=变式:1、若11x x ---2()x y =+,则x -y 的值为()A .-1B .1C .2D .3 2、当a 取什么值时,代数式112++a 取值最小,并求出这个最小值。

【例4】已知a 是5整数部分,b 是5的小数部分,求12a b ++的值。

变式:1、若3的整数部分是a ,小数部分是b ,则=-b a 3。

2、若17的整数部分为x ,小数部分为y ,求yx 12+的值. 知识点2:2、双重非负性:a a ()≥0是一个非负数.即①0≥a;②0≥a3、平方的形式(双胞胎公式):(1)()()a aa 20=≥;(2)a a a a a a 200==≥-<⎧⎨⎩||()().公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系:(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的. 【例5】若()04322=-+-+-c b a 则c b a +-=.变式:若1+-b a 与42++b a 互为相反数,则()2017b a -=。

(1)二次根式基础知识点

(1)二次根式基础知识点


32

2000
32

2001
______________
思路点拨:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.
类型六、化简求值 12、已知 4x +y -4x-6y+10=0,求(
2
2
+y
2
)-(x
2
-5x
)的值.
思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1) +(y-3) =0,即 x= 式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值. 举一反三
1 1 1 a 2 2 ,其中 a= ”,甲、乙两个学生的解答不同. + 2 a 5 a
甲的解答是:
1 1 1 1 2 49 1 1 a 2 2 = + ( a)2 = + -a= a + 2 a a a a a 5 a a 1 1 1 1 1 1 1 a 2 2 = + ( a)2 = +a- =a= + 2 a a a a 5 a a
知识点三、二次根式的除法法则: 要点诠释:
,即两个二次根式相除,根指数不变,把被开方数相除.
(1)在进行二次根式的除法运算时,对于公式中被开方数 a、b 的取值范围应特别注意,其中
,因为 b 在分母上,
故 b 不能为 0. (2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.
2
2
,y=3.其次,根据二次根
【变式 1】先化简,再求值.(6x
+
)-(4y
+

二次根式 基础知识详解+基本典型例题解析

二次根式 基础知识详解+基本典型例题解析
【总结升华】 a2 a 成立的条件是 a >0;若 a <0,则 a2 a .
【基本典型例题】(2) 类型一、二次根式的乘除
1. 计算:(1)(2014 秋•闵行区校级期中) ×(﹣2 )÷

(2)(2014 春·高安市期中) a 8a 2 a 2 1 2a 2a a
【答案与解析】 解:(1) ×(﹣2 )÷
举一反三: 【变式】下列式子中二次根式的个数有( ).
(1)
1 ;(2) 3
3 ;(3)
x2 1 ;(4)3 8 ;(5)
( 1)2 ;(6) 1 x( x 1 ) 3
A.2 B.3 C.4 D.5 【答案】B.
2. (2016•贵港)式子
在实数范围内有意义,则 x 的取值范围是( )
= ×(﹣2 )×
=﹣
=﹣
=﹣ .
(2)原式= a 8a2 a2 1 2a 2a a
2 2a2 a2 2 2a 2a 2a a
2
2a2
2a a2
2a a
4 2.
【总结升华】根据二次根式的乘除法则灵活运算,注意最终结果要化简.
举一反三:
【变式】 2
a2 b2 6x2
即原式= a b c a c b b c a = a b c
【总结升华】重点考查二次根式的性质:
的同时,复习了
三角形三边的性质.
二、二次根式的乘除基础知识讲解+基本典型例题解析
【学习目标】 1、 掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的 乘除运算. 2、 了解最简二次根式的概念,能运用二次根式的有关性质进行化简.

二次根式的概念和性质

二次根式的概念和性质

基础知识
1、二次根式的定义:
我们已经知道:每一个正实数有且只有两个平方根,一个记作a,称为a的。

算术平方根;另一个是a
我们把形如a的式子叫作二次根式,根号下的数a叫作被开方数.
由于在实数围,负实数没有平方根,因此只有当被开方数是非负实数时,二次根式才在实数围有意义.
2、二次根式的性质
3、二次根式的积的算数平方根的性质
4、最后的计算结果,具有以下特点:
(1)被开方数中不含开得尽方的因数(或因式);
(2)被开方数不含分母.
我们把满足上述两个条件的二次根式,叫作最简二次根式.
注意:①化简二次根式时,最后结果要求被开方数中不含开得尽方的因数.
②化简二次根式时,最后结果要求被开方数不含分母.
③今后在化简二次根式时,可以直接把根号下的每一个平方因子去掉平
方号以后移到根号外(注意:从根号下直接移到根号外的数必须是非负数).题型一、二次根式的概念和条件
【例1】
【例2】
【例3】
【例4】
【例5】
【例6】
题型二、二次根式的性质【例7】计算
【例8】
【例9】【练一练】
4、
5、
6、7、
8、
题型三积的算数平方根的性质【例10】
【例11】
【例12】
【例13】
【例14】
题型四二次根式的化简【例题精析】
【例15】
【例16】【例17】【例18】
【练一练】
4、
5、6、6、
7、。

全面剖析二次根式的乘除及化简

全面剖析二次根式的乘除及化简

全面剖析二次根式的乘除及化简1.二次根式的乘法法则(1)二次根式的乘法法则(性质3): a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立. ②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根.③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4×3.6;(2)545×3223.分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法.解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230.2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a≥0,b≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a,b是限制公式右边的,对公式的左边,只要ab≥0即可.②公式中的a,b可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab=a·b(a≥0,b≥0)可以推广为abc=a·b·c(a≥0,b≥0,c≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简:(1)300;(2)21×63;(3)(-50)×(-8);(4)96a3b6(a>0,b>0).分析:根据积的算术平方根的性质:ab=a·b(a≥0,b≥0)进行化简.解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a3b6=42·6·a2·a·(b3)2=4ab36a.3.二次根式的除法法则对于两个二次根式a,b,如果a≥0,b>0,那么ab=ab.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a≥0,b>0,则有a b =ab.②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a≥0,b>0与二次根式乘法的条件a≥0,b≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =mnab (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用 通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =ab,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用: (1)数学表达式:如果a ≥0,b >0,则有a b =ab;(2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握) 【例4】把下列各式中根号外的因数(式)移到根号内. (1)535; (2)-2a 12a ;(3)-a-1a ; (4)xyx (x <0,y <0).分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15.(2)∵12a >0,∴a >0. ∴-2a 12a =-(2a )2·12a =-(2a )2·12a =-2a .(3)∵-1a >0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a )=-a .(4)∵x <0,y <0, ∴x y x=-(-x )2y x=-(-x )2·y x =-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式. ①被开方数的因数是整数,因式是整式; ②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式; ②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +bb 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎨⎧ a +b =2,3a +b =b ,解得⎩⎨⎧a =0,b =2.所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算 (1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用. (3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件; ②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上; ④误认为形如a 2+b 2的式子是能开得尽方的二次根式. 【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a ).分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除.解:(1)9145÷(3235)×12223=(9÷32×12)145÷35×83 =(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12aba 2b ·a b·a =-12ab a 4=-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式.a与a;a+b与a-b;a+b与a-b;a b+c d与a b-c d.③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab<0时,化简ab2,得__________.(2)把代数式x-1x根号外的因式移到根号内,化简的结果为__________.(3)把-x3(x-1)2化成最简二次根式是__________.(4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是().A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙的解法都正确D.甲、乙的解法都不正确解析:(1)在ab2中,因为ab2≥0,所以ab·b≥0.因为ab<0,b≠0,所以b<0,a>0.原式=b2·a=-b a.(2)因为-1x≥0,又由分式的定义x≠0,得x<0.所以原式=-(-x)-1x=-(-x)2(-1x)=--x.(3)化简时,需知道x,x-1的符号,而它们的符号可由题目的隐含条件推出.∵(x-1)2>0(这里不能等于0),∴-x3≥0,即x≤0,1-x>0.故原式=(-x)2·(-x)(1-x)2=-x1-x-x.(4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a(2)--x(3)-x1-x-x(4)C8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用. 如:借助于计算器可以求得 42+32=__________, 442+332=__________, 4442+3332=__________, 4 4442+3 3332=__________, ……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55, 4442+3332=308 025=555, 4 4442+3 3332 =30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.分析:式子a b =ab ,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎨⎧ 9-x ≥0,x -6>0,即⎩⎨⎧x ≤9,x >6.∴6<x ≤9.∵x 为偶数,∴x =8. ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6. 【例8-2】观察下列各式: 223=2+23,338=3+38.验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23;338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38.(1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用.解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415.(2)猜想:nnn2-1=n+nn2-1(n≥2,n为正整数).证明:因为nnn2-1=n3n2-1=n3-n+nn2-1=n(n2-1)+nn2-1=n+nn2-1,所以nnn2-1=n+nn2-1.11 / 11。

二次根式的性质(积的算术平方根)

二次根式的性质(积的算术平方根)

课题:二次根式的性质(积的算术平方根)课型:新授课学习目标:1、学习2a (a ≥0)的性质并能利用这一性质解决一些简单的问题2、学习二次根式的性质:积的算术平方根等于积中每一个因式的算术平方根的积。

并能利用这一性质进行二次根式的化简。

一、自主探究:(阅读课本126—127页回答下列问题)1、当a ≥0时二次根式2a 的值是什么?计算2)4(-= 2)21(-= 2)44(-=你能发现什么?2、思考2a 与(a )2有怎样的相同点和不同点?3、积的算术平方根的性质:公式:语言叙述为: 二、合作交流成果展示1、交流上面的问题,教师点拨2、例题:(当a ≥0时2a =a 的运用):(1)已知=-2)4(a a —4成立, 则a 的范围为(2)已知1≤x ≤3 化简2)1(-x +4-x3、例题:(积的算术平方根的运用):(1)已知式子)2)(1(--x x =21-⨯-x x 成立,则x 的范围为(2)化简:①259⨯ ②216a ③300 ④y x 2三、利用规律巩固新知:1、已知=-2)21(a 21--a 成立, 则a 的范围为 2、已知2≤x ≤4 化简2)4(-x +2)2(x -的值3、判断下列各式是否成立:(1)94)9()4(-⨯-=-⨯- (2)5121322=-(3)b a b a +=+22 (4)323)2(2-=⨯-4、化简下列式子:(1)188⨯ (2)225253⨯⨯ (3)2)4(9-x (4)428n m(5)2243+ (6)32a a + (7))()(223b a b a --选做题:1、化简:325025m m +=2、将根号外的因式移入根号内 aa 1= 四、课堂小结,检测反馈1、通过这节课的学习你的学习目标完成了吗?2、检测:(1)已知式子)2)(1(x x -+=x x -⨯+21成立,则x 的范围为(2)化简下列各式: 4625⨯ b a 316 3)2(8-x 221213-选做题: 1、将根号外的因式移入根号内 a a1-= 2、若x ≤0 化简y x 28=五、课外自评:课本随堂练习2以及试一试六、教后反思:。

平方根算术平方根立方根重点例题讲解

平方根算术平方根立方根重点例题讲解

6.1 平方根、算术平方根、立方根例题讲解第一部分:知识点讲解1、学前准备【旧知回顾】2. 平方根(1)平方根的定义:一般的,如果一个数的平方等于a ,那么这个数叫做a的平方根,也叫做二次方根。

即若x2a,(a 0),则x叫做a的平方根。

即有x a ,(a 0)。

(2)平方根的性质:3)注意事项:x a ,a 称为被开方数,这里被开方数一定是一个非负数(a 0 )。

4)求一个数平方根的方法:( 5)开平方: 求一个数平方根的运算叫做开平方。

它与平方互为逆运算。

3. 算术平方根( 1)算术平方根的定义: 若x 2 a ,(a 0),则x 叫做 a 的平方根。

即有 x a ,a 0)。

其中 x a 叫做 a 的算术平方根。

2)算术平方根的性质:2 5 (-2)2 ,其中 2, 5分别指的是 2 和5 的算术平方根。

4. 几种重要的运算:★★★ 若 a b 0 ,则 (a b)25. 立方根3)注意点: 在以后的计算题中,像 ① ab a ? b a0,ba ?b ab a 0,b 0②b a ab (a 0,b0)bb a(a 0,b 0)③ ( a)2 a (a 0)a 2a ,(-a )2 a(1)立方根的定义:一般地,如果一个数的立方等于a,那么这个数叫做a 的立方根,也叫做三次方根。

即若x3a,则x叫做a的立方根。

即有x 3a 。

2)立方根的性质:3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。

6. 几个重要公式:第二部分:例题讲解题型1:求一个数的平方根、算术平方根、立方根。

1. 求平方根、算术平方根、立方根。

④ (3 a) a (a可以为任何数)(b 0)1211) 0 的平方根是 ,算术平方根是 2) 25 的平方根是,算术平方根是 3) 11 的平方根是64,算术平方根是4) ( 9)2的平方根是,算术平方根是5) 23 的平方根是,算术平方根是6)16 的平方根是 ,算术平方根是题型 2:计算类题型 2. 计算下列各式的值(6) ( 16) 的平方根是 ,算术平方根是 (8) -9 的平方根是 ,算术平方根是8 9) 的立方根是 125 。

(完整版)平方根、算术平方根、立方根重点例题讲解

(完整版)平方根、算术平方根、立方根重点例题讲解

6.1平方根、算术平方根、立方根例题讲解第一部分:知识点讲解1、学前准备【旧知回顾】2.平方根( 1)平方根的定义:一般的,若是一个数的平方等于a ,那么这个数叫做 a 的平方根,也叫做二次方根。

即若 x2 a ,( a0) ,则x叫做a的平方根。

即有 x a ,(a0 )。

( 2)平方根的性质:( 3)注意事项:x a , a 称为被开方数,这里被开方数必然是一个非负数(a0 )。

( 4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。

它与平方互为逆运算。

3.算术平方根( 1)算术平方根的定义:若x2 a , (a 0) ,则x叫做a的平方根。

即有x a ,( a 0 )。

其中x a 叫做 a 的算术平方根。

( 2)算术平方根的性质:( 3)注意点:在今后的计算题中,像22, 5 分别指的是 2 和25 ( - 2),其中5的算术平方根。

4.几种重要的运算:①ab a ? b a 0, b 0, a ? b ab a 0,b0②a a0),a a0,b0) b(a 0,bb(ab b③(a )2a ( a 0) ,2,2aaa( - a)★★★ 若 a b 0,则(a b)2 a b a b a b5.立方根(1)立方根的定义:一般地,若是一个数的立方等于 a ,那么这个数叫做 a 的立方根,也叫做三次方根。

即若x3 a ,则x叫做a的立方根。

即有x 3 a。

(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。

6.几个重要公式:3ab 33,33b3ab③ a ?b a ?a 33a a3a(b 0),3(b 0) b33b bb④3333,33( a ) a (a可以为任何数),a a(- a)-a 第二部分:例题讲解题型 1:求一个数的平方根、算术平方根、立方根。

1.求平方根、算术平方根、立方根。

(1) 0 的平方根是,算术平方根是.(2) 25 的平方根是,算术平方根是.(3)1的平方根是,算术平方根是. 64(4)(9) 2的平方根是,算术平方根是.(5) 23 的平方根是,算术平方根是.(6)16的平方根是,算术平方根是.(6)(2,算术平方根是. 16)的平方根是(8)- 9的平方根是,算术平方根是.(9)8。

积的算术平方根的性质

积的算术平方根的性质

积的算术平方根的性质积的算术平方根,简称为“积”,是数学领域中一个重要的概念。

“积”的定义是:由两个或两个以上的正实数的乘积所组成的正实数。

就是说,如果我们想要计算一个积的平方根,我们需要找到乘积中的两个正实数,分别作为积的平方根的被乘数和乘数。

积的算术平方根有着多种不同的性质。

首先,积的算术平方根不受正负号影响。

不管积的被乘数和乘数是正数还是负数,积的平方根都是正数。

其次,积的平方根与乘积之间也存在一种特殊的关系,即积的平方根与乘积之间存在着公约数。

由于乘积的根号和被乘数的根号相乘的结果就是积的平方根,因此,若被乘数和乘数的公约数不为1,则它们乘积的根号就是它们积的平方根。

此外,积的平方根也应用在了方程式求解中,其解法有多种,如弗洛伊德方法、克莱因多项式分解法、正、反特征值方法等。

弗洛伊德方法可以用于求解方程的根号积的平方根,也就是说,它可以帮助我们解决一元二次方程的根号积,从而求解出积的平方根,其解法如下:设x^2+px+q=0,若p^2-4q=k,则其实根的积的平方根为frac{p+sqrt{k}}{2},y^2+qx+r=0,若q^2-4r=l,则其实根的积的平方根为frac{q+sqrt{l}}{2}。

在多元方程求解中,积的平方根也有着重要的应用,例如多元一次方程组求解、椭圆方程求解以及抛物线求解中都有其应用。

例如,在椭圆方程求解中,可以用积的平方根求出椭圆的长短轴,把椭圆的焦点在坐标轴上画出来。

同样,抛物线求解中,积的平方根也可以用来求出抛物线的焦点和离心率。

从以上可见,积的算术平方根在数学中具有重要的地位,它应用于一元方程组、多元方程组以及椭圆方程和抛物线求解中,为我们提供了许多有用的工具,并能够广泛地应用于实际中。

总结起来,积的算术平方根有着多种不同的性质和应用,包括不受正负号影响、与乘积之间存在着公约数、积的平方根在一元二次方程求解、多元方程求解以及椭圆方程和抛物线求解中的应用等等。

算术平方根及平方根2

算术平方根及平方根2

算术平⽅根及平⽅根2算术平⽅根与平⽅根知识点1:平⽅根的概念及其性质1、概念:⼀般地,如果⼀个数的平⽅等于a ,那么这个数叫做a 的平⽅根或⼆次⽅根.这就是说,如果2x =a ,那么x 叫做a 的平⽅根.2、表⽰:正数 a 的平⽅根可表⽰为⼠2a ,读作“正负根号a ”,其中“ 2 '’是根指数,当根指数是 2时可省略不写,“”读作“根号” , “a ”是被开⽅数.3、性质:(1)⼀个正数a 有两个平⽅根,其中⼀个是“a ”,另⼀个为“⼀a ”,它们互为相反数;(2)0 的平⽅根是0;(3)负数没有平⽅根.注意:1.被开⽅数 a 是⾮负数(⾮负数即指正数和零),2. 平⽅与开⽅是互逆运算关系例1.填空:1、的平⽅是64,所以64的平⽅根是;2、平⽅数是它本⾝的数是;平⽅数是它的相反数的数是;3、若x 的平⽅根是±2,则x= ;4、在下列各数中0,254, 2(5)--,222x x ++,|1|a -,||1a -数是个. 5、求下列各数的平⽅根:(1)0;(2)1;(3)1.21;(4)8;(4)(-3)2;(5)49151;(6)47 6、计算:(1)22810-;(2)9141+;(3)144251;(4)-1691。

变式练习:1、若a x =2,则() A 、x>0 B 、x≥0 C、a>0 D 、a≥02、⼀个数若有两个不同的平⽅根,则这两个平⽅根的和为()A 、⼤于0B 、等于0C 、⼩于0D 、不能确定3、下列说法正确的是()A .1的平⽅根是1±;B .24±=C 、81的平⽅根是3±;D 、0没有平⽅根;4的平⽅根是,35±是的平⽅根.知识点2:算术平⽅根的概念及表⽰⽅法。

1、概念:⼀般地,如果⼀个正数 x 的平⽅等于 a ,即2x = a ,那么这个正数x 叫做 a 的算术平⽅根.a 的算术平⽅根记为a ,读作“根号 a ”, a叫做被开⽅数.2、表⽰⽅法:⾮负数a 的算术平⽅根表⽰为a ,读作“根号a ”.例如: 24=16 , 16 的算术平⽅根是 4 ,表⽰为了丽16=4 .3、性质:(1)正数 a 的算术平⽅根为a ;(2) 0 的算术平⽅根是 o ,即0=0;(3)负数没有算术平⽅根。

二次根式方法总结大全

二次根式方法总结大全

二次根式一一、二次根式的定义一般地,0)a ≥的式子叫做二次根式。

A 叫做被开方数。

叫做二次根号。

注意:二次根式必须满足两个条件:(1;(2)被开方数一定是非负数。

考点一:识别二次根式例1 下列各式中,哪些是二次根式?哪些不是二次根式?1x x>0)1x y+x ≥0,y ≥0)总结:判断一个式子是不是二次根式,一定要紧扣定义,看所给的式子是不是具备二次根式的两个特征。

二、二次根式的性质1、积的算术平方根的性质:)0,0(≥≥•=b a b a ab ;2、商的算术平方根的性质:)0,0(>≥=b a bab a 。

考点二:二次根式的化简 例2 求下列各式的值:(1 (2; (3 (4 例3 化简:(1 (2 (3随堂练习一1、在式子(1(2(3;(4;(5中,是二次根式的有( )个A 、2B 、3C 、4D 、5 2、下列各式中,一定是二次根式的是( ).A 、23-B 、2)3.0(-C 、2-D 、x3、化简:(1(2(3(4三、最简二次根式与同类二次根式1、一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的根式叫做最简二次根式。

注意:最简二次根式必须具备两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式。

2、几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。

注意:同类二次根式以下三点: ①都是二次根式,即根指数都是2;②必须先化成最简二次根式;③被开方数相同。

考点三:化成最简二次根式 例4 把下列根式化成最简根式(1)16;(2)12;(3)8;(4)125 ;(5;(6例5下列根式中,哪些是同类二次根式?为什么?,总结:在判断同类二次根式时,一定要看清楚被开方数和根指数是否相同。

随堂练习二1、把下列二次根式32,27,125,454,82,18,12,15化简后,与2 的被开方数相同的有________;与3的被开方数相同的有________;与5的被开方数相同的有________.2、化简后,与2的被开方数相同的二次根式是( ).A 、12B 、18C 、41 D 、61 3、在二次根式①12;②23;③32;④27中,与3是同类二次根式的是( ) A 、①,③ B 、②,③ C 、①,④ D 、③,④4 )A B C D乘除法法则:(10,0)a b ≥≥;(20,0)a b=≥>。

平方根和开平方(基础)知识讲解学习资料

平方根和开平方(基础)知识讲解学习资料

平方根和开平方(基础)知识讲解平方根和开平方(基础)【学习目标】1•了解平方根、算术平方根的概念,会用根号表示数的平方根.2•了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.平方根的定义如果X2 a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.a叫做被开方数.平方与开平方互为逆运算.2.算术平方根的定义正数a的两个平方根可以用“,a”表示,其中,a表示a的正平方根(又叫算术平方根),读作“根号a”;.a表示a的负平方根,读作“负根号a ” .要点诠释:当式子,a有意义时,a 一定表示一个非负数,即,.a > 0,a > 0. 要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:■•一a和' a2•联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根•因此,我们可以利用算术平方根来研究平方根•要点三、平方根的性质a a 0a2 | a | 0 a 0a a 0、a a a 0要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位•例如:62500 250,. 625 25,一625 2.5,.0.0625 0.25 .【典型例题】【答案】C;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为'、25 = 5,所以本说法正确;B.因为±"二±1,所以I是I的一个平方根说法正确;C.因为±..4 2=±、、16 = ±4,所以本说法错误;D.因为'一0 = 0,■ 0 = 0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)9没有平方根•()A.5是25的算术平方根B.I2C. 4的平方根是一 4D.0是I的一个平方根的平方根与算术平方根都是类型一、平方根和算术平方根的概念(2).16 4 .( )1 1(3)( —)2的平方根是一.( )1010(4)| 2是暮的算术平方根.( )【答案】V ;x; V; x,提示:(2)皿4;(4)§是善的算术平方根. 仇、填空:(1)_________ 4是的负平方根.(2)_____________ 16表示 __________________ 的算术平方根,、.16 -(3)______________________ ;的算术平方根为 .(4)___________________ 若3,则x ____________ ,若7 3,则x .【思路点拨】(3) 1就是丄的算术平方根二-,此题求的是-的算术平方V81 81 9 9根•1 1 1【答案与解析】(1)16 ;⑵ 一;—(3)-⑷9 ; ±316 4 3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ②9的平方根是3.③4是8的正的平方根.④8是64的负的平方根.A. 1个 B . 2个 C . 3个 D . 4个【答案】B;提示:①④是正确的•【变式2】(2015?凉山州)材苟的平方根是_____________ .【答案】土 3.解:因为 -=9, 9的平方根是土3,所以答案为土 3.03、使代数式屮灯〒有意义的x的取值范围是 __________________ .【答案】x > 1 ;【解析】x + 1>0,解得x > 1.【总结升华】当式子有意义时,a一定表示一个非负数,即 a >0, a >0.举一反三:【变式】代数式y二x 3有意义,则x的取值范围是______________________ 【答案】x 3.类型二、利用平方根解方程(2015春?鄂州校级期中)求下列各式中的x值,2(1)169x =1442(2)( x - 2) - 36=0 .【思路点拨】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【答案与解析】2解:( 1) 169x =144,2 144x =169x= 144 ■169,12x= 一13 .2(2)( x - 2) - 36=0,2(x - 2) =36,x - 2= 36 ,x - 2=±6,••• x=8 或x= - 4.【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数.类型三、平方根的应用C5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米•求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x・3 X = 13233 x =1323x 21x = - 21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数。

平方根与算术平方根的应

平方根与算术平方根的应

平方根与算术平方根的应用xx年xx月xx日•平方根与算术平方根的基础知识•平方根的应用•算术平方根的应用•平方根与算术平方根在科学计算中的应用目•平方根与算术平方根在生活中的应用•总结与展望录01平方根与算术平方根的基础知识平方根的定义与性质平方根的定义:对于任何一个非负数x,它的平方根记作√x,即若a²=x,则a为x的平方根。

•非负性:对于任何实数x,它的平方根有2个,记作±√x。

平方根的性质•对于正数a,它的算术平方根记作√a,即√a≥0。

算术平方根的定义与性质算术平方根的定义:对于任何一个正数x,它的算术平方根记作√x。

•正数a的算术平方根记作√a,即√a>0。

算术平方根的性质•对于非负数x,它的算术平方根记作√x,即若√x²=x,则√x≥0。

平方根与算术平方根的异同•相同点•都是用来求解x的方程的方法。

•对于正数a,它们的结果相同,即√a=a。

•不同点•定义范围不同:平方根定义在实数范围内,而算术平方根定义在正数范围内。

•结果的符号不同:平方根有正负两个值,而算术平方根只有一个正值。

•处理方式不同:求解方程ax²=b时通过平方根来求解,求解方程ax=b时通过算术平方根来求解。

02平方根的应用利用平方根的性质对一元二次方程进行求解,例如将方程$ax^2+bx+c=0$ 转化为 $x^2=(b^2-4ac)/4a$,再利用平方根求得方程的根。

代数方程的求解利用平方根进行等式的变换,例如将 $x^2-9=0$ 转化为$(x+3)(x-3)=0$,从而简化计算。

等式变换利用平方根进行等式变换计算面积和体积利用平方根可以计算矩形、正方形和圆形等形状的面积,以及圆柱体、圆锥和球体等形状的体积。

测量和计算利用平方根可以测量和计算一些实际生活中的问题,例如通过测量房间的面积来计算需要多少平方米的壁纸。

利用平方根解决实际问题统计学在统计学中,平方根常被用于计算标准差等指标。

积的算术平方根

积的算术平方根

二次根式教学内容2.积的算术平‎方根教学目标1.知识与技能‎.会进行简单‎的二次根式‎的乘法运算‎,能够利用积‎的算术平方‎根的性质进‎行二次根式‎的简写运算‎.2.过程与方法‎.经历探究二‎次根式乘法‎法则以及积‎的算术平方‎根的过程,掌握应用的‎方法.3.情感、态度与价值‎观培养学生数‎感和逆向思‎维,感受二次根‎式乘法的实‎际应用价值‎,形成良好的‎思维品质.重难点、关键1.重点:会进行简单‎的二次根式‎的乘法运算‎,•会利用积的‎算术平方根‎的性质化简‎二次根式.2.难点:二次根式的‎乘法与积的‎算术平方根‎的关系及应‎用.3.关键:采用从特殊‎到一般总结‎归纳的方法‎、类比的方法‎逐步有序地‎展开,•由于性质、法则关系式‎较集中,在计算、化简和应用‎中又相互交‎错,综合运用,教学中应采‎取讲练结合‎法,让学生在认‎识过程中脉‎络清楚,条理分明.教学准备1.教师准备:投影仪、制作投影片‎.2.学生准备:复习二次根‎式定义、性质,预习本节课‎内容.教学内容回顾交流,导入新知课堂复习.(投影显示)请同学们完‎成下列各题‎.1.填空.(1‎_‎__.(2‎___‎__.(3=_____‎___‎___.参考上述结‎果,用“>”、“<”或“=”填空.‎_‎‎2.利用计算器‎计算填空.(填入“>”、“<”或“=”)(1‎_(2‎_(3‎_(4‎_学生活动:先独立完成‎上述复习题‎,再与同伴一‎起讨论,寻找其规律‎.实际上,从计算中容‎易得用计算器‎同样可以得‎教师活动:在学生讨论‎的基础上,教师进行归‎纳.教师归纳如‎下:从上述练习‎中可以得出‎两个二次根‎式相乘,实际上就是‎将这两个二‎次根式的被‎开方数相乘‎,根指数不变‎.师生共识:二次根式乘‎法法a≥0,b≥0).引导关注:同学们应该‎注意a≥0,b≥0这个条件‎,若没有这个‎条件,•上述法则不‎能成立.因为当a<0,b<0‎内却没有意‎义,•乘法法则显‎然不能成立‎.例如:a=-2,b=-3,则=有意义,但却无意义‎范例学习,提高认知1.例1:计算.(1(2)教师板书:(1)(2)×学生活动:参与教师讲‎例,理解乘法法‎则的运用方‎法以及注意‎问题.随堂练习,理解新知1.计算下列各‎式.(1(2)(3)2.学生活动:先独立完成‎上述练习,再与同伴交‎流.教师活动:请三位同学‎上讲台演示‎,而后再次强‎调乘法公式‎的计算方法‎:(1)•被开方数相‎乘,根指数不变‎;(2)•最后结果要‎检验被开方‎数中是否还‎有能开出来‎的因数,以达到最简‎的要求.继续探究,拓展延伸1.例2:计算.(1) 思路点拨:例2与例1‎不同的是被‎开方数是含‎有字母,因此在被开‎方数运算中‎,要充分运用‎整式乘法法‎则进行运算‎,然后再进行‎化简.教师讲例:(1)中根号外因‎数要相乘3‎×2=6,被开方数相‎乘5a ·10b=50ab ,这样就有‎50化‎成5×2,把5开出来‎有:(2)中出现10‎-1意义,关于10-1意义,大家在整式‎乘除一章中‎学过,即10-1=110,这样(2)可用乘法法‎则化评析:这里补充例‎2,其意图是对‎例1的拓展‎,这│a │,当然,•本章没有特‎殊说明,字母均表示‎正数.2.课堂演练.计算.(1 学生活动:在理解了例‎2的基础上‎,做上述三道‎题,进行巩固.教师活动:板书演练题‎,请两位学生‎上讲台完成‎演练题,•再通过学生‎“板演”中出现的问‎题进行纠正‎,加深法则的‎应用.逆向思维,专题讨论a ≥0,b ≥0)(投影显示)教师讲述:请同学们观‎=,由于这是一‎个等式,因此也可以‎这样写a ≥0,b ≥0),这里运用了‎数学中的逆‎向思维,•可以得出积‎的算术平方‎根的性质:积的算术平‎方根,等于积中各‎因式的算术‎平方根的积‎.这里同样必‎须a≥0,b≥0.范例学习,加深理解1.例3:化简.(1(2思路点拨:本例是充分‎运用积的算‎术平方根性‎质进行化简‎,对于(2因‎数,‎性质解题.教师讲例:(1)×9=45;(2×2学生活动:参与其中,理解积的算‎术平方根性‎质的应用.方法说明:从上例可以‎看出,如果一个二‎次根式的被‎开方数中有‎的因式(或因数)能开得尽方‎,可以利用积‎的算术平方‎根的性质,将这些因式‎(或因数)开出来,从而将二次‎根式化简,上述例题用‎到(a≥0).2.例4:化简.(1思路点拨:例4是在例‎3的基础上‎进行延伸的‎,在解(2)中,会遇到a2‎+y2这个式‎子,请注意这个‎式子不能再‎开方了.师生活动:例4可以采‎取教师引导‎下,学生自主完‎成,在学生思考‎几分钟后,•请一位学生‎上讲台来讲‎解例4.学生解答:(1)==(2==评析:由例4可以‎看出,在化简时,•一般先将被‎开方数进行‎因式分解或‎因数分解,然后就可以‎将能开得尽‎方的因式或‎因数,用它们的算‎术平方根代‎替,移到根号外‎,也就是开出‎来.课堂练习,巩固新知1.课本P7“做一做”.2.探究时空.(1.(2)一个长方形‎的长,宽,求这个长方‎形的面积.(3)设直角三角‎形的两条直‎角边分别是‎a,b,斜边是c,如果a=4,c=12,求b.课堂小结本节主要学‎习二次根式‎的乘法法则‎以及积的算‎术平方根性‎质,并围绕这两‎个结论进行‎简单的二次‎根式化简与‎运算,这里,化简是将根‎号内能开得‎尽方的因式‎或因数开出‎来,运算是指简‎单的二次根‎式相乘,不包括所得‎结果的根号‎内出现分式‎或分数的情‎况.这里提出公‎式中a、b均为非负‎数,如果没有特‎殊说明,所有字母都‎表示正数,当然,还要注意产‎生字母只表‎示正数的片‎面认识.布置作业 1.课本P9习‎题22.2第1、2(1)~(3)、3题.。

二次根式的运算

二次根式的运算

二次根式的运算编稿:庄永春审稿:邵剑英责编:张杨一、目标认知1.学习目标(1)理解二次根式的乘法法则和积的算术平方根的性质及二次根式的除法法则和商的算术平方根的性质,并能利用它们进行计算和化简;(2)了解最简二次根式的概念,能运用二次根式的有关性质进行化简;(3)理解同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;(4)会利用运算律和运算法则进行二次根式的混合运算.2.重点(1)理解,及利用它们进行计算和化简;(2)理解,及利用它们进行计算和化简;(3)最简二次根式的运用;(4)合并同类二次根式;(5)二次根式的混合运算.3.难点(1)发现规律,归纳出二次根式的乘除法则;(2)会判定一个二次根式是否是最简二次根式,及二次根式的化简.二、知识要点梳理知识点一:二次根式的乘法法则:,即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数)(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能写成的形式,则应化简,如.知识点二、积的算术平方根的性质,即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.知识点三、二次根式的除法法则:,即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,其中,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题.知识点五:最简二次根式1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式.要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的代分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数;(2)被开方数是多项式的要进行因式分解;(3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;(5)化去分母中的根号;(6)约分.知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式;(3)不是同类二次根式,不能合并.知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;(3)合并同类二次根式.知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次根式之和或差,或是有理式.三、规律方法指导二次根式的运算,主要研究二次根式的乘除和加减.(1)二次根式的乘除,只需将被开方数进行乘除,其依据是:;;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.经典例题透析类型一、二次根式的乘除运算1、计算(1)×;(2)×;(3)×;(4)×.思路点拨:直接利用计算即可.解:(1)×=;(2)×==;(3)×==9;(4)×==.2、计算:(1);(2);(3);(4).思路点拨:直接利用便可直接得出答案.解:(1)===2;(2)==×2=2;(3)===2;(4)===2.3、化简(1);(2);(3);(4);(5).思路点拨:利用直接化简即可.解:(1)=×=3×4=12;(2)=×=4×9=36;(3)=×=9×10=90;(4)=×=××=3xy;(5)==×=3.举一反三【变式1】判断下列各式是否正确,不正确的请予以改正:(1);(2)×=4××=4×=4=8.解:(1)不正确.改正:==×=2×3=6;(2)不正确.改正:×=×====4.4、化简:(1);(2);(3);(4).思路点拨:直接利用就可以达到化简之目的.解:(1)=;(2)=;(3)=;(4)=.举一反三【变式1】已知,且x为偶数,求(1+x)的值.思路点拨:式子=,只有a≥0,b>0时才能成立.因此得到9-x≥0且x-6>0,即6<x≤9,又因为x为偶数,所以x=8.解:由题意得,即∴6<x≤9,∵x为偶数,∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴当x=8时,原式的值==6.5、计算(1)·(-)÷(m>0,n>0);(2)-3÷()×(a>0).解:(1)原式=-÷=-==-;(2)原式=-2=-2=- a.类型二、最简二次根式的判别6、下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).思路点拨:判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是最简二次根式.解:和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.总结升华:对于最简二次根式的判断,一定要把握其实质,既要注意其中的“似是而非”,还要注意其中的“似非而是”,特别象这样的式子,带有很大的隐蔽性,更应格外小心.7、把下列各式化成最简二次根式.(1);(2);(3);(4);(5)思路点拨:把被开方数分解因数或分解因式,再利用积的算术平方根的性质及进行化简.解:(1) ;(2) ;(3) ;(4) ;(5) .类型三、同类二次根式8、如果两个最简二次根式和是同类二次根式,那么a、b的值是( )A.a=2,b=1B.a=1,b=2C.a=1,b=-1D.a=1,b=1思路点拨:根据同类二次根式的识别方法,在最简二次根式的前提下,被开方数相同.解:根据题意,得解之,得,故选D.总结升华:同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式1】下列根式中,能够与合并的是( )A. B. C. D.思路点拨:首先要把不是最简二次根式的化成最简二次根式,然后比较它们的被开方数是否相同,如果相同,就能进行合并,反之,则不能合并.解:合并,故选B.总结升华:同类二次根式的判断,关键是能够熟练准确地化二次根式为最简二次根式.【变式2】若最简根式与根式是同类二次根式,求a、b 的值.思路点拨:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简成|b|·,才由同类二次根式的定义得3a-b=•2,2a-b+6=4a+3b.解:首先把根式化为最简二次根式:==|b|·由题意得,∴,∴a=1,b=1.类型四、二次根式的加减运算9、计算(1)+(2)-思路点拨:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1)+=2+3=(2+3)=5(2)-=4-8=(4-8)=-4总结升华:一定要注意二次根式的加减要做到先化简,再合并.举一反三【变式1】计算(1)3-9+3;(2)(+)+(-);(3);(4).解:(1)3-9+3=12-3+6=(12-3+6)=15;(2)(+)+(-)=++-=4+2+2-=6+;(3)(4)【变式2】已知≈2.236,求(-)-(+)的值.(结果精确到0.01)解:原式=4---=≈×2.236≈0.45.类型五、二次根式的混合运算10、计算:(1)(+)×;(2)(4-3)÷2.思路点拨:二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2;(2)(4-3)÷2=4÷2-3÷2=2-.11、计算(1)(+6)(3-);(2)(+)(-).思路点拨:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3;(2)(+)(-)=()2-()2=10-7=3.类型六、化简求值12、已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:4x2+y2-4x-6y+10=04x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3原式=+y2-x2+5x=2x+-x+5=x+6当x=,y=3时,原式=×+6=+3.举一反三【变式1】先化简,再求值.(6x+)-(4y+),其中x=,y=27.解:原式=6+3-(4+6)=(6+3-4-6)=-,当x=,y=27时,原式=-=-.【变式2】已知=2-,其中a、b是实数,且a+b≠0,化简+,并求值.思路点拨:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式=+=+=(x+1)+x-2+(x+1)+x+2=4x+2∵=2-∴b(x-b)=2ab-a(x-a)∴bx-b2=2ab-ax+a2∴(a+b)x=a2+2ab+b2∴(a+b)x=(a+b)2∵a+b≠0∴x=a+b∴原式=4x+2=4(a+b)+2.类型七、二次根式的应用与探究13、一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?解:设底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,x=×=30.答:铁桶的底面边长是30厘米.14、如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)思路点拨:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.解:设x 后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x依题意,得:x·2x=35,x2=35,x=所以秒后△PBQ的面积为35平方厘米.PQ==5答:秒后△PBQ的面积为35平方厘米,PQ的距离为5厘米.15、探究过程:观察下列各式及其验证过程.(1)2=验证:2=×====(2)3=验证:3=×====同理可得:45,……通过上述探究你能猜测出:a=_______(a>0),并验证你的结论.解:a=验证:a====.总结升华:解答此类问题的特点是根据题目给出的条件,寻找内在联系和一般规律,然后猜想所求问题的结果,有利于提高综合分析能力.学习成果测评基础达标一、选择题1.下列根式是最简二次根式的是()A. B. C.D.2. 下列各式不是最简二次根式的是()A. B. C. D.3.下列根式中,与是同类二次根式的为()A. B.C.D.4.(江苏省无锡市)下列各式中,与是同类根式的是()A. B. C.D.5.若最简二次根式与是同类二次根式,则a=()A.1 B.2 C.D.–26. 下面说法正确的是()A. 被开方数相同的二次根式一定是同类二次根式B. 与是同类二次根式C. 与不是同类二次根式D. 同类二次根式是根指数为2的根式7. 与不是同类二次根式的是()A. B. C. D.8. 若,则化简的结果是()A. B. C. 3 D. -39. 若,则的值等于()A. 4B.C. 2D.10.(辽宁省大连市) 计算的结果是()A.B.2 C.D.1.411.(四川省攀枝花市) 下列计算中,正确的是()A. B.C. D.12.(山东省东营市)下列计算正确的是( )A.B.==1 C. D.13. 下列式子中正确的是()A. B.C. D.二、填空题1.若最简根式与根式是同类二次根式,则a = ____________.2. 计算:.3. 计算:.4.(广东省) 化简= ____________.5.(安徽省) 计算的结果是___________.6.(南昌) 计算:___________.7.(重庆市) 化简: = ___________.8.计算:___________.9.计算:=___________.10.计算:=___________.11.一个三角形的三边长分别为,则它的周长是_________cm.12.已知,则.三、解答题1. 计算:2. 计算:⑴⑵⑶⑷3.计算:(1);(2).能力提升一、选择题1. 已知,化简二次根式的正确结果为()A. B. C. D.2. 对于所有实数,下列等式总能成立的是()A. B.C. D.3. 和的大小关系是()A. B. C. D. 不能确定4.(山东省济南市)已知,则代数式的值为()A.B. C.D.5.(山东省临沂市) 计算的值为( )A.2 B.-2 C.-2-2D.-2+26.化简甲,乙两同学的解法如下:甲:=乙:=对他们的解法,正确的判断是()A.甲、乙的解法都正确B.甲的解法正确,乙的解法不正确C.乙的解法正确,甲的解法不正确D.甲、乙的解法都不正确7. 若的整数部分为,小数部分为,则的值是()A. B. C. 1 D. 3二、填空题1. 当,时,.2.若,则___________.3.若最简二次根式与是同类二次根式,则.4. 已知,则.5. 长方形的宽为,面积为,则长方形的长约为_______(精确到0.01).6.(天津市)已知x=,则的值等于____________.7.计算:___________.三、解答题1. 把根号外的因式移到根号内:;.2.计算:3.(辽宁省锦州市)计算:.4.(广西省贺州市) 计算:.5.(江苏省南通市) 计算:.6. 计算及化简:⑴;⑵;⑶;⑷.7. 已知:,求的值.综合探究先观察下列等式,再回答问题:①=②=③=(1) 根据上面三个等式提供的信息,请猜想的结果,并进行验证;(2) 请按照上面几个等式反映的规律,试写出用(为正整数)表示的等式.答案与解析基础达标一、选择题1.B2.D3.C4.C5.A6.A7.A8.C9.C 10.C 11.B 12.A 13.C二、填空题1.2;2.,18;3.-5;4.;5.-1;6.;7.;8.;9.-1;10.;11.;12..三、解答题1. ;2. ;3.解:(1)原式(2)原式能力提升一、选择题1.D2.C3.A4.A5.B6.A7.C二、填空题1.;2.3.1,1;4.10;5.2.83;6.4;7..解:原式三、解答题1.2.解:3.解:4.解:5.解:6. ;7.解:综合探究解:(1)结果为.,验证:;(2).。

平方根、算术平方根和立方根

平方根、算术平方根和立方根

唯一性
对于非负实数$a$,其算 术平方根是唯一的。
递增性
随着$a$的增大, $sqrt{a}$也增大。
算术平方根的运算规则
乘法运算
$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$b geq 0$)。
加法运算
$sqrt{a} + sqrt{b} = sqrt{(a + b)^2 - ab}$($a geq 0$,$b geq 0$)。
能够正确计算各种平 方根、算术平方根和 立方根的值。
02 平方根的概念和性质
平方根的定义
平方根
如果一个数的平方等于给定的数, 则这个数称为给定数的平方根。
算术平方根
非负数的平方根称为算术平方根, 表示为√。
立方根
如果一个数的立方等于给定的数, 则这个数称为给定数的立方根。
平方根的性质
01
02
03
平方根、算术平方根和立方根
目 录
• 引言 • 平方根的概念和性质 • 算术平方根的概念和性质 • 立方根的概念和性质 • 平方根、算术平方根和立方根的应用 • 总结与回顾
01 引言
主题简介
平方根
平方根是数学中的一个概念,它表示一 个数的平方等于给定值。例如,4的平方 根是±2,因为2^2=4和-2^2=4。
例如
如果 $a^3 = b$,则 $a$ 是 $b$ 的立 方根。
立方根的性质
非负性
01
一个数的立方根总是非负的。
奇偶性
02
如果一个数是奇数,那么它的立方根也是奇数;如果一个数是
偶数,那么它的立方根也是偶数。
连续性
03
在实数范围内,任何两个不相等的实数都有唯一的介于它们之

数学算术平方根

数学算术平方根
算术平方根
一个数的算术平4的非负平方根。
算术平方根的性质
01
02
03
04
非负性
算术平方根总是非负的,即对 于任何实数a,√a≥0。
唯一性
对于非负实数a,其算术平方 根是唯一的。也就是说,如果
b是a的算术平方根,那么 b^2=a。
递增性
对于任意实数a和b,如果 a<b,那么√a<√b。
详细描述
公式法适用于任何正实数,可以通过使用算术平方根的公式 来求解。算术平方根的公式为sqrt(x) = x^(1/2),其中x为正 实数。使用公式法可以快速准确地求得任何正实数的算术平 方根。
03
CATALOGUE
算术平方根的应用
在几何学中的应用
勾股定理
勾股定理是几何学中一个重要的定理,它涉及到直角三角形的边长关系,其中一个直角边 的平方等于另一直角边和斜边的平方和。算术平方根在勾股定理中起到关键作用。
02 03
函数值域
在确定函数值域时,算术平方根可以用于确定函数的下界和上界。例如 ,对于非负函数,其最小值可以通过求最小正数解的算术平方根来得到 。
参数取值范围
在解决与参数取值范围相关的问题时,算术平方根可以用于确定参数的 最小值和最大值。
在日常生活中的应用
建筑测量
在建筑行业中,测量是必不可少的环 节。算术平方根可以帮助计算建筑物 的面积、体积以及材料用量等。
配方法
总结词
配方法是一种通过配方将原式转化为完全平方形式,从而求得算术平方根的方 法。
详细描述
配方法适用于一些复杂的平方数,可以通过配方将原式转化为完全平方形式, 然后开平方求得算术平方根。例如,求9的算术平方根,可以先将9配方为(3)^2 ,然后开平方得到3。

《平方根》实数

《平方根》实数
求解立体图形的体积
立体图形的体积通常可以表示为立方根的形式。例如,求解正方体的体积为 $a^3$的立方根,可以得到正方体的边长为$a^{1/3}$。
05
平方根的扩展知识
无理数的平方根
定义
无理数是指无限不循环小 数,例如$\pi$和 $\sqrt{2}$等。无理数的 平方根即为求解该无理数 的问题。
性质
无理数的平方根是无限不 循环小数,同样具有无理 数的性质。
应用
在数学、物理、工程等领 域中,无理数的平方根都 有广泛的应用。
复数的平方根
定义
复数是指具有实部和虚部的数, 例如$3+4i$。复数的平方根即为
求解该复数的问题。
性质
复数的平方根有两个,它们互为相 反数,其中一个为实数,另一个为 虚数。
《平方根》实数
汇报人: 日期:
目 录
• 平方根的定义 • 平方根的性质 • 平方根的运算 • 平方根的应用 • 平方根的扩展知识
01
平方根的定义
定义及公式
平方根
如果一个数的平方等于另一个数 ,那么这个数就是另一个数的平 方根。
公式的描述
设a是一个正数,那么a的平方根 记作√a,读作“根号a”,其中a 叫做被开方数。
求解高次方程
高次方程的解通常可以表示为多个平方根的形式。例如,求 解$(x - a)(x - b) = 0$的平方根,可以得到$x = a \pm \sqrt{b}$。
在几何学中的应用
求解圆的面积
通过求解圆的半径的平方根,可以得到圆的面积。例如,求解圆的半径为$r$的 平方根,可以得到圆的面积为$\pi r^2$。
平方根与算术平方根
算术平方根
在实数范围内,正数的平方根有两个 ,它们互为相反数,正的平方根即为 这个数的算术平方根。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 积的算术平方根的性质
1.下列运算正确的是
( )
A.3×27=3×27=3×33=6
B.3×27=3×3×9=32×9=3×3=9
C.4x 2=4·x 2=4x (x ≥0)
D.4x 2=2x
2.下列二次根式,不是最简二次根式的是
( )
A.39
B.5y +9
C.
1
2
D.142y 3.计算1
32的结果是
( )
A .3232 B.1
3232 C.1
8 2
D.1412 4.化简二次根式(-5)2×3=
( )
A .-53
B .5 3
C .±53
D.75
5.化简:48=________;135×1
4=________;22+42=________. 6.化简:8a 3=________;
-m 3
12=________.
7.化简:(1)64x 4y 3=________(y >0);(2)12a 2b 3=________(a >0,b >0). 8.化简下列二次根式:
(1)9
8;(2)
3b2
8a3(a>0,b<0).
9.计算:
(1)3
424×
2
36;
(2)-3
2 2.25×
1
51
2
9;
(3)2
b ab
2






3
2a
3b×1
3
a
b(a≥0,b>0).
10.计算:
12⎝
⎛⎭
⎪⎫212+418-348-(-3)2
×⎝ ⎛⎭⎪⎫-32-1× 3.
11.观察下列各式及验证过程: 2
2
3=
2+23, 验证:2
23
=233
=(23-2)+2
22-1
=2×(22-1)+2
22-1=
2+23;
3
38=
3+38, 验证:3
38=
338=
(33-3)+3
32-1

3×(32-1)+3
32-1

3+38.
(1)按照上述两等式及验证过程的思路,猜想4
4
15的变形结果并验证;
(2)针对上述各式反映的规律,给出用n (n 为自然数,且n ≥2)表示的等式,并进行证明.
答案解析
1.B 2.C
3.C 【解析】 将被开方数的分子、分母都乘2,得132=
264=264=18
2. 4.B
5.43
10
5 2 5 6.2a 2a -m
6-3m 7.8x 2y y 2ab 3b 8.解:(1)
98
=3222
×2=3
2
12=32
1×22×2=3
4
2; (2)因为a >0,b <0, 所以
3b 28a 3=
32a ·b 2(2a )2=
⎪⎪⎪⎪
⎪⎪
b 2a 32a =-b 2a
32a =-b
2a
3×2a
2a ×2a

-b
4a 2 6a .
9.解:(1)原式=34×4×6×2
3×6=6. (2)原式=-3

225100 ×15×1
9×11
=-32×1510×15×13×11=-3
20 11.
(3)原式=2b ·a ·b 2·⎝ ⎛⎭⎪⎫-32 a 2·ab ·13 a b =2 a b ·b ·
⎝ ⎛⎭⎪⎫-32a ·1
3·ab ·a
b
=-a 2 a . 10.解:原式=12⎝

2
22
×3+4
⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭
⎪⎫12-
=12⎝


⎪⎫
4 3+2 12-12 3+6 3 =2 3+1
2-6 3+6 3 =2 3+12=2 3+2
2.
11.解:(1)猜想:4415=4+4
15. 验证:4
415=
4315=
(43-4)+4
42-1
=4×(42-1)+4
42-1
=4+
4
15.
(2)n
n
n2-1
=n+
n
n2-1
(n为自然数,且n≥2).
证明:n
n
n2-1

n3
n2-1

(n3-n)+n
n2-1
=n(n2-1)+n
n2-1
=n+
n
n2-1
.。

相关文档
最新文档