中考数学复习 第14课时 二次函数的实际应用测试

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三单元函数

第十四课时二次函数的实际应用

1. (8分)(xx眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.

(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;

(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件,若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?

2. (8分)(xx济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:

y=-x+60(30≤x≤60).

设这种双肩包每天的销售利润为w元.

(1)求w与x之间的函数解析式;

(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?

(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?

3. (8分)(xx成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:

(1)求y1关于x的函数表达式;

(2)李华骑单车的时间y 2(单位:分钟)也受x 的影响,其关系可以用y 2=1

2x 2-11x +78来描

述.请问:李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需要的时间最短?并求出最短时间.

4. (8分)(xx 青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨1

3

.下表是去年该酒店豪华间某两天的相关记录:

(1)该酒店豪华间有多少间?旺季每间价格为多少元?

(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?

5. (9分)(xx 河北)某厂按用户的月需求量x (件)完成一件产品的生产,其中x >0.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需要量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,1≤n ≤12)符合关系式

x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.

(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;

(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.

6. (9分)(xx南雅中学一模)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).

时间x(天)1306090

每天销售量p(件)1981408020

(1)求出w与x的函数关系式;

(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;

(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.

第6题图

答案

1. 解:(1)当每件蛋糕利润是14元时,提高了(14-10)÷2=2个档次,

∵提高2个档次,

∴此批次蛋糕属第3档次产品;

(2)设烘焙店生产的是第x档次的产品,则每件的利润为10+2(x-1),每天的产量为76-4(x -1),

由题意可得[10+2(x-1)][76-4(x-1)]=1080,

整理得8x2-128x+440=0,

解得x1=5,x2=11(∵11>6,不符合题意,舍去),

答:该烘焙店生产的是第5档次的产品.

2. 解:(1)w =(x -30)·y =(x -30)·(-x +60)=-x 2+90x -1800, ∴w 与x 的函数关系式为w =-x 2+90x -1800(30≤x ≤60); (2)w =-x 2+90x -1800=-(x -45)2+225, ∴当x =45时,w 有最大值,w 最大值为225,

答:销售单价定为45元时,每天销售利润最大,最大销售利润225元; (3)当w =200时,可列方程-(x -45)2+225=200, 解得x 1=40,x 2=50, ∵50>48,

∴x 2=50(不符合题意,应舍去),

答:该商店销售这种双肩包每天想要获得200元的销售利润,销售单价应定为40元. 3. 解:(1)设一次函数为y 1=kx +b (k ≠0), 将x =8,y =18和x =9,y =20代入,

得⎩⎨⎧8k +b =189k +b =20,解得⎩

⎨⎧k =2b =2,

∴y 1与x 的函数关系式为y 1=2x +2;

(2)设李华从文化宫乘地铁和骑单车回家共需y 分钟,

∵y 2=12

x 2

-11x +78,

∴y =y 1+y 2=12x 2-9x +80=12(x -9)2

+792

∵1

2

>0, ∴当x =9时,y 最小=79

2

(分钟),

相关文档
最新文档