中考数学复习 第14课时 二次函数的实际应用测试
中考数学复习 第14课时 二次函数的实际应用测试
第三单元函数第十四课时二次函数的实际应用1. (8分)(xx眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件,若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?2. (8分)(xx济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?3. (8分)(xx成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间y 2(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需要的时间最短?并求出最短时间.4. (8分)(xx 青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?5. (9分)(xx 河北)某厂按用户的月需求量x (件)完成一件产品的生产,其中x >0.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需要量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.成本y(万元/件)1112需求量x(件/月)120100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.6. (9分)(xx南雅中学一模)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天)1306090每天销售量p(件)1981408020(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.第6题图1. 解:(1)当每件蛋糕利润是14元时,提高了(14-10)÷2=2个档次,∵提高2个档次,∴此批次蛋糕属第3档次产品;(2)设烘焙店生产的是第x 档次的产品,则每件的利润为10+2(x -1),每天的产量为76-4(x -1),由题意可得[10+2(x -1)][76-4(x -1)]=1080, 整理得8x 2-128x +440=0,解得x 1=5,x 2=11(∵11>6,不符合题意,舍去), 答:该烘焙店生产的是第5档次的产品.2. 解:(1)w =(x -30)·y =(x -30)·(-x +60)=-x 2+90x -1800, ∴w 与x 的函数关系式为w =-x 2+90x -1800(30≤x ≤60); (2)w =-x 2+90x -1800=-(x -45)2+225, ∴当x =45时,w 有最大值,w 最大值为225,答:销售单价定为45元时,每天销售利润最大,最大销售利润225元; (3)当w =200时,可列方程-(x -45)2+225=200, 解得x 1=40,x 2=50, ∵50>48,∴x 2=50(不符合题意,应舍去),答:该商店销售这种双肩包每天想要获得200元的销售利润,销售单价应定为40元. 3. 解:(1)设一次函数为y 1=kx +b (k ≠0), 将x =8,y =18和x =9,y =20代入,得⎩⎨⎧8k +b =189k +b =20,解得⎩⎨⎧k =2b =2,∴y 1与x 的函数关系式为y 1=2x +2;(2)设李华从文化宫乘地铁和骑单车回家共需y 分钟,∵y 2=12x 2-11x +78,∴y =y 1+y 2=12x 2-9x +80=12(x -9)2+792,∵12>0, ∴当x =9时,y 最小=792(分钟),答:李华应选择在B 站出地铁,才能使他从文化宫回到家的时间最短,最短时间为792分钟.4. 解:(1)设该酒店有豪华间a 间,则:40000a =24000a -10(1+13), 解得a =50,经检验a =50是原方程的解,符合题意, ∴旺季每间=40000÷50=800(元),答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间上涨x 元,日总收入为w 元,则w =(x +800)(50-x 25)=-125x 2+18x +40000=-125(x -225)2+42025,∵-125<0,∴当x =225时,w 有最大值,此时w max =42025,答:当每间价格上涨225元时,日总收入最高,最高总收入为42025元. 5. 解:(1)由题意,设y =a +b x,由表中数据,得⎩⎪⎨⎪⎧11=a +b12012=a +b 100,解得⎩⎨⎧a =6b =600,∴y =6+600x,由题意,若12=18-(6+600x), 则600x =0,∵x >0,∴600x>0, ∴一件产品的利润不可能是12万元;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,将n =2,x =100代入x =2n 2-2kn +9(k +3),得100=8-4k +9(k +3), 解得k =13,由题意,得18=6+600x,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵b 2-4ac =(-13)2-4×1×47<0, ∴方程无实根,∴不存在某个月既无盈利也不亏损;(3)∵第m 个月的利润为W m =x(18-y )=18x -x(6+600x)=12(x -50)=12(2m 2-26m +144-50)=24(m 2-13m +47),∴第(m +1)个月的利润为W m +1=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W m ≥W m +1,W m -W m +1=48(6-m ),m 取1时,W m -W m +1=240,利润相差最大; 若W m <W m +1,W m +1-W m =48(m -6),m +1≤12,m 取11时,W m +1-W m =240,利润相差最大, ∴m =1或m =11.6. 解:(1)当1≤x ≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b (k 、b 为常数且k ≠0),∵y =kx +b 经过点(0,40)、(50,90),代入得∴⎩⎨⎧b =4050k +b =90,解得⎩⎨⎧k =1b =40,∴售价y 与时间x 的函数关系式为y =x +40; 当50<x ≤90时,y =90, ∴售价y 与时间x 的函数关系式为y =⎩⎨⎧x +40(1≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数), 由数据可知每天的销售量p 与时间x 成一次函数关系,设每天的销售量p 与时间x 的函数关系式为p =mx +n (m 、n 为常数,且m ≠0), ∵p =mx +n 经过点(60,80)、(30,140),代入得,∴⎩⎨⎧60m +n =8030m +n =140,解得⎩⎨⎧m =-2n =200,∴p =-2x +200(1≤x ≤90,且x 为整数),当1≤x ≤50时,w =(y -30)·p=(x +40-30)(-2x +200)=-2x 2+180x +2000; 当50<x ≤90时,w =(90-30)(-2x +200)=-120x +12000, 综上所述,每天的销售利润w 与时间x 的函数关系式是w =⎩⎨⎧-2x2+180x +2000(1≤x≤50,且x 为整数)-120x +12000(50<x≤90,且x 为整数); (2)当1≤x ≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050, ∵a =-2<0且1≤x ≤50,∴当x =45时,w 取最大值,最大值为6050元,当50<x ≤90时,w =-120x +12000,∵k =-120<0,w 随x 增大而减小, ∴当x =50时,w 取最大值,最大值为6000元, ∵6050>6000,∴当x =45时,w 最大,最大值为6050元,答:销售第45天时,当天获得的销售利润最大,最大利润是6050元; (3)24天.【解法提示】当1≤x ≤50时,令w =-2x 2+180x +2000≥5600,即-2x 2+180x -3600≥0, 解得30≤x ≤60, ∵1≤x ≤50, ∴30≤x ≤50, ∴50-30+1=21(天),当50<x ≤90时,令w =-120x +12000≥5600,即-120x +6400≥0, 解得x ≤5313,∵50<x≤90,x为整数,∴50<x≤53,53-50=3(天),综上可知:21+3=24(天),答:该商品在销售过程中,共有24天每天的销售利润不低于5600元.【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。
最新中考数学专题复习——二次函数的实际应用(面积最值问题11页)及答案
第 1 页二次函数的实际应用——面积最大(小)值问题知识要点:在生活理论中,人们经常面对带有“最〞字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用根本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度挪动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度挪动,假如P 、Q 两点同时出发,分别到达B 、C 两点后就停顿挪动.〔1〕运动第t 秒时,△PBQ 的面积y(cm²)是多少?〔2〕此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.〔3〕t 为何值时s 最小,最小值时多少?答案:[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门〔木质〕.花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米那么长为:x x 4342432-=+-(米)那么:)434(x x S -= ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大. [例3]:边长为4的正方形截去一个角后成为五边形ABCDE 〔如图〕,其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,那么矩形PNDM 的面积S=xy 〔2≤x≤4〕易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H那么有△AFB ∽△BHP∴PH BH BF AF =,即3412--=y x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】此题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考察学生的综合应用才能.同时,也给学生探究解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖〔如图(1)所示〕是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,假设将此种地砖按图(2)所示的形式铺设,且能使中间的阴影局部组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 那么BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10]当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2021浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2021庆阳市)兰州市“安居工程〞新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);点(x ,y )都在一个二次函数的图像上,(如下图),那么6楼房子的价格为 元/平方米.提示:利用对称性,答案:2080.3.如下图,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2 ∵AD ∥BC ∴△MAD ∽△MBN第 3 页 ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值. 4.(2021湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大〔 C 〕A .7B .6C .5D .45.如图,铅球运发动掷铅球的高度y (m)与程度间隔 x (m)之间的函数关系式是:35321212++-=x x y ,那么该运发动此次掷铅球的成绩是( D ) A .6 m B .12 m C .8 m D .10m解:令0=y ,那么:02082=--x x 0)10)(2(=-+x x〔图5〕 〔图6〕 〔图7〕6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,假如抛物线的最高点M 离墙1 m ,离地面340m ,那么水流落地点B 离墙的间隔 OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2021乌兰察布)小明在某次投篮中,球的运动道路是抛物线21 3.55y x =-+的一局部,如图7所示,假设命中篮圈中心,那么他与篮底的间隔 L 是〔 B 〕A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.假设设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;〔2〕根据〔1〕中求得的函数关系式,描绘其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,假如用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)假如中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比拟(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,那么宽为350x -米,设面积为S 平方米. ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,那么宽为250+-n x 米,设面积为S 平方米. 那么:)50(212502x x n n x x S -+-=+-⋅= ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式. 解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ.11.(2021年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?解:∵矩形MFGN ∽矩形ABCD∴MF=2MN =2x ∴ EM=10-2x∴S=x 〔10-2x 〕=-2x 2+10x=-2(x-2.5)2+12.5当x=2.5时,S 有最大值12.512.(2021四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,那么绳子的最低点距地面的间隔 为 0.5 米.答案:如下图建立直角坐标系那么:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,第 5 页⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2021黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.〔1〕求S 与x 之间的函数关系式,并写出自变量x 的取值范围;〔2〕当x 是多少时,矩形场地面积S 最大?最大面积是多少?解:〔1〕根据题意,得x x x x S 3022602+-=⋅-= 自变量的取值范围是〔2〕∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2021年南宁市)随着绿城南宁近几年城市建立的快速开展,对花木的需求量逐年进步.某园林专业户方案投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)〔1〕分别求出利润与关于投资量的函数关系式; 〔2〕假如这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解:〔1〕设=,由图12-①所示,函数=的图像过〔1,2〕,所以2=, 故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过〔2,2〕,所以,故利润2y 关于投资量的函数关系式是2221x y =; 〔2〕设这位专业户投入种植花卉万元〔〕,那么投入种植树木(x -8)万元, 他获得的利润是万元,根据题意,得∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧,z 随x 的增大而增大所以,当8 x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子〔纸板的厚度忽略不计〕.〔1〕要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?〔2〕你感到折合而成的长方体盒子的侧面积会不会有更大的情况?假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由;〔3〕假如把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由.解:〔1〕设正方形的边长为cm , 那么. 即. 解得〔不合题意,舍去〕,. 剪去的正方形的边长为1cm .〔2〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 那么与的函数关系式为: 即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.〔3〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2.假设按图1所示的方法剪折, 那么与的函数关系式为: 即. 当时,.假设按图2所示的方法剪折, 那么与的函数关系式为:即.当时,.比拟以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的间隔均为5m.〔1〕将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;〔2〕求支柱的长度;〔3〕拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:〔1〕根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.〔2〕可设,于是从而支柱的长度是米.〔3〕设是隔离带的宽,是三辆车的宽度和,那么点坐标是.过点作垂直交抛物线于,那么.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.第 7 页。
2020年中考数学复习专题练:《二次函数实际应用 》(含答案)
2020年中考数学复习专题练:《二次函数实际应用》1.金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:(1)求y与x之间的函数解析式;(2)求这一天销售羊肚菌获得的利润W的最大值;(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.2.某超市以20元/千克的进货价购进了一批绿色食品,如果以30元/千克销售这些绿色食品,那么每天可售出400千克.由销售经验可知,每天的销售量y(千克)与销售单价x (元)(x≥30)存在如图所示的一次函数关系.(1)试求出y与x的函数关系式;(2)设该超市销售该绿色食品每天获得利润w元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?3.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).4.网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中2<x≤10).(1)若5<x≤10,求y与x之间的函数关系式;(2)销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?5.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)6.某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y(元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x天该产品的销售量z(件)与x(天)满足关系式z=x+15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?7.某品牌服装公司经过市场调査,得到某种运动服的月销量y(件)是售价x(元/件)的一次函数,其售价、月销售量、月销售利润w(元)的三组对应值如下表:注:月销售利润=月销售量×(售价一进价)售价x(元/件)130 150 180月销售量y(件)210 150 60月销售利润w(元)10500 10500 6000(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)当售价是多少时,月销售利润最大?最大利润是多少元?(3)为响应号召,该公司决定每售出1件服装,就捐赠a元(a>0),商家规定该服装售价不得超过200元,月销售量仍满足上关系,若此时月销售最大利润仍可达9600元,求a的值.8.“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩500个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x条生产线后,每条生产线每天可生产口罩y 个.(1)直接写出y与x之间的函数关系式;(2)若每天共生产口罩6000个,在投入人力物力尽可能少的情况下,应该增加几条生产线?(3)设该厂每天可以生产的口罩w个,请求出w与x的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?9.九年级孟老师数学小组经过市场调查,得到某种运动服的月销量y(件)是售价x(元/件)的一次函数,其售价、月销售量、月销售利润w(元)的三组对应值如下表:售价x(元/件)130 150 180月销售量y(件)210 150 60月销售利润w(元)10500 10500 6000注:月销售利润=月销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②运动服的进价是元/件;当售价是元/件时,月销利润最大,最大利润是元.(2)由于某种原因,该商品进价降低了m元/件(m>0),商家规定该运动服售价不得低于150元/件,该商店在今后的售价中,月销售量与售价仍满足(1)中的函数关系式,若月销售量最大利润是12000元,求m的值.10.小明经过市场调查,整理出他妈妈商店里一种商品在第x(1≤x≤30)天的销售量的相关信息如下表:时间第x(天)1≤x≤20 20≤x≤30售价(元/件)x+30 50每天销量(件)160﹣4x已知该商品的进价为每件20元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于2400元?请直接写出结果.11.我市某乡镇在“精准扶贫”活动中销售农产品,经分析发现月销售量y(万件与月份x (月)的关系为:每件产品的利润z(元)与月份x(月)的关系如表:x 1 2 3 4 5 6 7 8 9 10 11 12 z19 18 17 16 15 14 13 12 10 10 10 10 (1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的函数关系式;(2)若月利润w(万元)=当月销售量y(万件)x当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?12.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.若每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x为正整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为w元,每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?13.某超市销售一种高档蔬菜“莼菜”,其进价为16元/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(元/kg)的一次函数,其售价、日销售量对应值如表:售价x(元/kg)20 30 40日销售量y(kg)80 60 40(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)x为多少时,当天的销售利润w(元)最大?最大利润为多少?(3)由于产量日渐减少,该商品进价提高了a元/kg(a>0),物价部门规定该商品售价不得超过36元/kg,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求a的值.14.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子的售价不能超过进价的200%.(1)请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.(2)定价为多少时每天的利润最大?最大利润是多少?15.甲船从A处起以15km/h的速度向正北方向航行,这时乙船从A的正东方向20km的B 处起以20km/h的速度向西航行,多长时间后,两船的距离最小?最小距离是多少?16.某商场经营一种海产品,进价是每千克20元,根据市场调查发现,每日的销售量y(千克)与售价x(元/千克)是一次函数关系,如图所示:(1)求y与x的函数关系式(不求自变量取值范围);(2)某日该商场出售这种海产品获得了21000元的利润,该海产品的售价是多少?(3)若某日该商场这种海产品的销售量不少于650千克,该商场销售这种海产品获得的最大利润是多少?17.某网店专售一款电动牙刷,其成本为20元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x的函数关系式;(2)该款电动牙刷销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)近期武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,为了保证捐款后每天剩余利润不低于550元,如何确定该款电动牙刷的售单价?18.某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“新型冠状病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗“新型冠状病毒”疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.19.某工艺品厂生产一款工艺品,已知这款工艺品的生产成本为60元/件.经市场调研发现,这款工艺品每天的销售量y(件)与售价x(元/件)之间存在着如表所示的一次函数关系:售价x/(元/件)…70 90 …销售量y/件…3000 1000 …(1)求销售量y(件)与售价x(元/件)之间的函数关系式.(2)求每天的销售利润w(元)与售价x(元/件)之间的函数关系式.(3)如何定价才能使该工艺品厂每天获得的销售利润为40000元?20.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m.设矩形菜园的边AB的长为xm,面积为Sm2.(I)写出S关于x的函数解析式,并求出x的取值范围;(Ⅱ)当该矩形菜园的面积为72m2时,求边AB的长;(Ⅲ)当边AB的长为多少时,该矩形菜园的面积最大?最大面积是多少?参考答案1.解:(1)①当12≤x≤20时,设y=kx+b.代(12,2000),(20,400),得解得∴y=﹣200x+4400②当20<x≤24时,y=400.综上,y=(2)①当12≤x≤20时,W=(x﹣12)y=(x﹣12)(﹣200x+4400)=﹣200(x﹣17)2+5000当x=17时,W的最大值为5000;②当20<x≤24时,W=(x﹣12)y=400x﹣4800.当x=24时,W的最大值为4800.∴最大利润为5000元.(3)①当12≤x≤20时,W=(x﹣12﹣1)y=(x﹣13)(﹣2000x+4400)=﹣200(x﹣17.5)2+4050令﹣200(x﹣17.5)2+4050=3600x 1=16,x2=19∴定价为16≤x≤19②当20<x≤24时,W=400(x﹣13)=400x﹣5200≥3600 ∴22≤x≤24.综上,销售价格确定为16≤x≤19或22≤x≤24.2.解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式是y=﹣20x+1000(30≤x≤50);(2)w=(x﹣20)y=(x﹣20)(﹣20x+1000)=﹣20x2+1400x﹣20000=﹣20(x﹣35)2+4500,故当x=35时,w取得最大值,此时w=4500,答:当销售单价为35元/千克时,每天可获得最大利润4500元.3.解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=kx+b,把(1500,55)与(2000,50)代入y=kx+b得,,解得:,∴每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=﹣x+70,当y≥45时,﹣x+70≥45,解得:x≤2500,∴自变量x的取值范围1000≤x≤2500;(2)根据题意得,P=(y﹣40)x=(﹣x+70﹣40)x=﹣x2+30x=﹣(x ﹣1500)2+22500,∵﹣<0,P有最大值,当x<1500时,P随x的增大而增大,∴当x=1500时,P的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P=(﹣x+70﹣40+m)x=﹣x2+(30+m)x,∵对称轴为x=50(30+m),∵1000≤x≤2500,∴x 的取值范围在对称轴的左侧时P 随x 的增大而增大,50(30+m )≥2500,解得:m ≥20,∴m 的取值范围是:20≤m ≤40.故答案为:20≤m ≤40.4.解:(1)设y =kx +b ,把(5,600),(10,400)代入y =kx +b , 得解得 ∴y =﹣40x +800.(2)设每天的销售利润为w 元当2<x ≤5时,w =600(x ﹣2)=600x ﹣1200当x =5时,w max =600×5﹣1200=1800(元);当5<x ≤10时,w =(﹣40x +800)(x ﹣2)=﹣40(x ﹣11)2+3240当x =10时,w max =﹣40×1+3240=3200综上所述,当x =10时,每天的销售利润最大,最大是3200元.5.解:(1)根据题意,以水管在地面安装处为坐标原点,以该处和喷的最远的水柱落地处所在直线为x 轴,建立平面直角坐标系,则喷的最远的水柱所在的抛物线顶点为(3,1),过(0,0.64).可设该抛物线对应的函数表达式是y =a (x ﹣3) 2+1,代入(0,0.64),解得,a =﹣. 所以y =﹣ (x ﹣3) 2+1.令y =0,解得x 1=﹣2(舍),x 2=8.4 分所以,喷灌出的圆形区域的半径为8 m .(2)在边长为16 m 的正方形绿化带上按如图的位置固定安装三个该设备,如图1,喷灌出的圆形区域的半径的最小值是=,8<,这样安装不能完全覆盖;如图2,设CD=x,则BC=16﹣x,DE=8,AB=16,由勾股定理得:82+x2=(16﹣x)2+162解得:x=14∴2r==∴喷灌出的圆形区域的半径的最小值是,8<,这样安装也不能完全覆盖;<,如果喷灌区域可以完全覆盖该绿化带.则一个设备喷灌出的圆形区域的半径的最小值应为m.设水管向上调整a m,则调整后喷的最远的水柱所在的抛物线函数表达式是y=﹣(x﹣3) 2+1+a.代入(,0),解得,a=.0.64+=答:水管高度为时,喷灌区域恰好可以完全覆盖该绿化带.6.解:(1)由图象可知,此时的产量为z=25+15=40(件),设直线BC的关系为y=kx+b,∴,∴,∴y=x+10,故第25天,该商家的成本是:25+10=35(元)则第25天的利润为:(80﹣35)×40=1800(元);故答案为:35,1800;(2)①当0≤x≤20时,w=(80﹣30)(x+15)=50x+750,当20<x≤60时,w=[80﹣(x+10)](x+15)=﹣x2+55x+1050 ∴w=.②当0≤x≤20时w=(80﹣30)(x+15)=50x+750,=1750元;当x=20时,w最大当20<x≤60时,w=﹣x2+55x+1050∵﹣1<0,抛物线开口向下,对称轴为x=∴当x=27或x=28时,w=﹣272+55×27+1050=1806(元)∵1806>1750∴第27天或28天的利润最大,最大为1806元.7.解:(1)设y关于x的函数解析式为:y=kx+b(k≠0)由题意得:,解得:∴y关于x的函数解析式为y=﹣3x+600;(2)运动服的进价是:130﹣10500÷210=80(元)月销售利润w=(x﹣80)(﹣3x+600)=﹣3x2+840x﹣48000=﹣3(x﹣140)2+10800∴当售价是140元时,月销售利润最大,最大利润为10800元;(3)由题意得:w=(x﹣80﹣a)(﹣3x+600)=﹣3x2+(840+3a)x﹣48000﹣600a∴当x=140+a时,w有最大值.∵a>0,且a≤140﹣80∴140<140+a≤170<200∵商家规定该服装售价不得超过200元,此时月销售最大利润仍可达9600元,∴当x=140+a时,有,解得,a=120﹣80,或a=120+80(舍去),故a=120﹣80.8.解:(1)由题意可知该函数关系为一次函数,其解析式为:y=500﹣20x;∴y与x之间的函数关系式为y=500﹣20x(0≤x≤25,且x为整数);(2)由题意得:(10+x)(500﹣20x)=6000,整理得:x2﹣15x+50=0,解得:x1=5,x2=10,∵尽可能投入少,∴x2=10舍去.答:应该增加5条生产线.(3)w=(10+x)(500﹣20x)=﹣202+300x+5000=﹣20(x﹣7.5)2+6125,∵a=﹣20<0,开口向下,∴当x=7.5时,w最大,又∵x为整数,∴当x=7或8时,w最大,最大值为6120.答:当增加7或8条生产线时,每天生产的口罩数量最多,为6120个.9.解:(1)设y关于x的函数解析式为:y=kx+b(k≠0)由题意得:解得:∴y关于x的函数解析式为y=﹣3x+600;(2)运动服的进价是:130﹣10500÷210=80(元)月销售利润w=(x﹣80)(﹣3x+600)=﹣3x2+840x﹣48000=﹣3(x﹣140)2+10800∴当售价是140元时,月销售利润最大,最大利润为10800元.故答案为:80;140;10800;(3)由题意得:w=[x﹣(80﹣m)](﹣3x+600)=﹣3x2+(840﹣3m)x﹣48000+600m对称轴为x=140﹣∵m>0∴140﹣<140<150∵商家规定该运动服售价不得低于150元/件∴由二次函数的性质,可知当x=150时,月销售量最大利润是12000元∴﹣3×1502+(840﹣3m)×150﹣48000+600m=12000解得:m=10∴m的值为10.10.(1)当1≤x<20时,y=(160﹣4x)(x+30﹣20)=﹣4x2+120x+1600;当20≤x≤30时,y=(50﹣20)(160﹣4x)=﹣120x+4800;综上:y=(2)当1≤x<20时,y=﹣4x2+120x+1600=﹣4(x﹣15)2+2500∵a=﹣4<0∴当x=15时,y有最大值,最大值为2500元;当20≤x≤30时,y=﹣120x+4800;∵k=﹣120<0∴y随x的增大而减小∴当x=20时,y有最大值,最大值为2400元,综上可知,当x=15时,当天的销售利润最大,最大利润为2500元.(3)当1≤x<20时,令y=﹣4(x﹣15)2+2500=2400,解得:x1=10,x2=20(舍)∵a=﹣4<0∴当1≤x<20时,有10天每天销售利润不低于2400元;当20≤x≤30时,令y=﹣120x+4800=2400解得:x=20由(2)可知,2400为此时间段的最大值.综上,共有11天每天销售利润不低于2400元.11.解:(1)观察表中数据可得,当1≤x≤8时,z=﹣x+20;当9≤x≤12时,z=10.∴z与x的关系式为:z=;(2)当1≤x≤6时,w=(﹣x+20)(x+8)=﹣x2+12x+160;当7≤x≤8时,w=(﹣x+20)(﹣x+20)=x2﹣40x+400;当9≤x≤12时,w=10(﹣x+20)=﹣10x+200;∴w与x的关系式为:(3)当1≤x≤6时,w=﹣x2+12x+160=﹣(x﹣6)2+196,∴x=6时,w有最大值为196;当7≤x≤8时,w=x2﹣40x+400=(x﹣20)2,w随x增大而减小,∴x=7时,w有最大值为169;当9≤x≤12时,w=﹣10x+200,w随x增大而减小,∴x=9时,w有最大值为110;∵110<169<196,∴x=6时,w有最大值为196.12.解:(1)由题意得:y=200﹣10x∵每件售价不能高于72元∴1≤x≤12,且x为正整数;(2)由题意得:w=(60+x﹣50)(200﹣10x)=(10+x)(200﹣10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250∴当x=5时,60+x=65时,即销售单价为65元时,每个月可获得最大利润,最大月利润是2250元.13.解:(1)①依题意设y=kx+b,则有解得:∴y关于x的函数解析式为y=﹣2x+120;(2)根据题意得,w=(﹣2x+120)×(x﹣16)=﹣2x2+152x﹣1920=﹣2(x﹣38)2+968,∴当售价是38元/件时,日销售利润最大,最大利润是968元;(3)根据题意得,w=(﹣2x+120)×(x﹣16﹣a)=﹣2x2+(152+2a)x﹣1920﹣120a∵a>0,对称轴为直线x=﹣=38+>36,又∵﹣2<0,售价不得超过36元/kg,∴当x≤36时,w随x的增大而增大,∴当x=36时,w有最大值864元,∴﹣2×362+(152+2a )×36﹣1920﹣120a =864,∴解得:a =2,∴a 的值为2.14.解:(1)设每个粽子的定价为x 元时,每天的利润为800元, 根据题意得,, 解得x 1=7,x 2=5,∵售价不能超过进价的200%,∴x ≤3×200%,即x ≤6,∴x =5,∴定价为5元时,每天的利润为800元.(2)设每个粽子的定价为m 元,则每天的利润为w ,则有: w =(m ﹣3)(500﹣10×)=(m ﹣3)(500﹣100m +400)=﹣100(m ﹣3)(m ﹣9)=﹣100(m 2﹣12m +27)=﹣100[(m ﹣6)2﹣9]=﹣100(m ﹣6)2+900∵二次项系数为﹣100<0,m ≤6,∴当定价为6元时,每天的利润最大,最大的利润是900元.15.解:根据题意画出示意图如下:设x 小时后,两船相距ykm ,根据题意,得:y2=(15x)2+(20﹣20x)2=225x2+400﹣800x+400x2=(25x﹣16)2+144∴当x=时,y2有最小值144,则y的最小值为12,答:小时后,两船的距离最小,最小距离是12km.16.解:(1)设y与x之间的函数关系式为y=kx+b,将(25,950),(40,800)代入可得:解得,∴y与x之间的函数关系式为y=﹣10x+1200.(2)根据题目信息可得:(﹣10x+1200)(x﹣20)=21000,整理可得:x2﹣140x+4500=0,解得x=50或x=90.∴该海产品的售价是50元/kg或90元/kg.(3)设所获利润为W,则根据题目信息可得:W=(﹣10x+1200)(x﹣20)=﹣10(x﹣70)2+25000.∵﹣10x+1200≥650,∴x≤55.∴当x=55时,W有最大值.W的最大值为:﹣10(55﹣70)2+25000=22750(元).∴该商场销售这种海产品获得的最大利润是22750元.17.解:(1)设y与x的函数关系式为y=kx+b,将(30,100),(35,50)代入y=kx+b,得,解得,∴y与x的函数关系式为y=﹣10x+400;(2)设该款电动牙刷每天的销售利润为w 元,由题意得 w =(x ﹣20)•y=(x ﹣20)(﹣10x +400)=﹣10x 2+600x ﹣8000=﹣10(x ﹣30)2+1000,∵﹣10<0,∴当x =30时,w 有最大值,w 最大值为1000.答:该款电动牙刷销售单价定为30元时,每天销售利润最大,最大销售利润为1000 元;(3)设捐款后每天剩余利润为 z 元,由题意可得 z =﹣10x 2+600x ﹣8000﹣200=﹣10x 2+600x ﹣8200,令z =550,即﹣10x 2+600x ﹣8200=550,﹣10(x 2﹣60x +900)=﹣250,x 2﹣60x +900=25,解得x 1=25,x 2=35,画出每天剩余利润z 关于销售单价x 的函数关系图象如解图,由图象可得:当该款电动牙刷的销售单价每支不低于25元,且不高于35元时,可保证捐款后每天剩余利润不低于550 元.18.解:(1)根据题意设y =kx +b (k ≠0),将(30,100)、(35,50)代入得, 解得,∴y与x之间的关系式为y=﹣10x+400;(2)设每天的利润为W元,则W=(x﹣22)y=(x﹣22)(﹣10x+400)=﹣10x2+620x﹣8800=﹣10(x﹣31)2+810,∴销售单价定为31元时,每天最大利润为810元.(3)﹣10x2+620x﹣8800﹣100=350,解得x=25或x=37,结合图象和二次函数的特点得出25≤x≤37,又x≤22×(1+20%),综上可得25≤x≤26.4,∴按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元.19.解:(1)设销售量y(件)与售价x(元/件)之间的函数关系式为y=kx+b,,得,即销售量y(件)与售价x(元/件)之间的函数关系式是y=﹣100x+10000;(2)由题意可得,w=(x﹣60)y=(x﹣60)(﹣100x+10000)=﹣100x2+16000x+600000,即每天的销售利润w(元)与售价x(元/件)之间的函数关系式是w=﹣100x2+16000x+600000;(3)当w=40000时,40000=﹣100x2+16000x+600000,解得,x1=x2=80,答:当定价为80元时,才能使该工艺品厂每天获得的销售利润为40000元.20.解:(Ⅰ)∵AB=CD=xm,∴BC=(30﹣2x)m,由题意得S=x(30﹣2x)=﹣2x2+30x(6≤x<15);(Ⅱ)令s=72得:﹣2x2+30x=72,解得:x=3或x=12,当x=3时,30﹣2x=24>18,∴x取12,答:AB的长为12米.(Ⅲ)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,=112.5,∴当x=7.5时,S有最大值,S最大。
2022年中考数学复习:二次函数实际问题应用题
2022年中考数学复习:二次函数实际问题应用题1.为实现脱贫奔小康,老李在驻村干部的帮助下,利用网络平台进行“直播带货”,销售一批成本为每件30元的土特产,按销售单价不低于成本价,且不高于50元/件销售,经调查发现:该商品每天的销售量y(件)与销售单价x(元/件)之间满足一次函数关系,部分数据如下表所示.(1)求该土特产每天的销售量y(件与销售单价x(元/件)之间的函数关系式(不要求写自变量的取值范围);(2)当销售单价定为多少元/件时,才能使销售该土特产每天获得的利润w(元)最大?最大利润是多少元?2.某电商店铺销售一种儿童服装,其进价为每件50元,现在的销售单价为每件80元,每周可卖出200件,双十二期间,商家决定降价让利促销,经过市场调查发现,单价每针降低1元,每周可多卖出20件.(1)若想满足每周销售利润为7500元,同时尽可能让利于顾客,则销售单价为多少元?(2)销售单价应为多少元,该店铺每周销售利润最大?最大销售利润为多少元?3.如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米,当喷射出的水流与喷灌架的水平距离为10米时,达到最大高度6米,现将喷灌架置于坡地底部点O处,草坡上距离O的水平距离为15米处有一棵高度为1.2米的小树AB AB垂直水平地面且A点到水平地面的距离为3米.,(1)计算说明水流能否浇灌到小树后面的草地.(2)记水流的高度为1y ,斜坡的高度为2y ,求12y y 的最大值.(3)如果要使水流恰好喷射到小树顶端的点B ,那么喷射架应向后平移多少米?4.某经销商以每箱12元的价格购进一批消毒水进行销售,当每箱售价为26元时,日均销量为60箱.为了增加销量,该经销商准备适当降价.经市场调查发现,每箱消毒水降价1元,则可以多销售5箱.设每箱降价x 元,日均销量为y 箱. (1)求日均销量y 关于x 的函数关系式;(2)要使日均利润为800元,则每箱应降价多少元?(3)如果该经销商想获得最大的日均利润,则每箱消毒水应降价多少元最合适?最大日均利润为多少元?5.一座隧道的截面由抛物线和长方形构成,长方形的长OC 为8m ,宽OA 为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系:(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,两辆同样的上述货车相对而行,是否可以同时在隧道内顺利通过,为什么?6.随着“运动让人健康”的理念深入人心,运动装越来越受欢迎,某品牌的运动装在销售中发现,以120元/件的价格购进,并以200元/件的价格售出时,可售出40件,且每降价1元则可多售出2件.(1)商家销售此品牌运动装要实现盈利4200元的目标,则应降价多少元? (2)当销售价定为多少元时,销售该品牌运动装获利最多?最多利润是多少?7.某专卖店的新型节能产品,进价每件60元,售价每件129元,为了支持环保公益事业,每销售一件捐款3元.且未来40天,该产品将开展每天降价1元的促销活动,即从第一天起每天的单价均比前一天降1元,市场调查发现,设第x 天(140x ≤≤且x 为整数)的销量为y 件,y 与x 满足次函数的数量关系:当1x =时,35y =;当5x =时,55y =;(1)求y 与x 的函数关系式;(2)设第x 天去掉捐款后的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大,最大利润是多少元?[注:日销售利润=日销售量⨯(销售单价-进货单价-其他费用)]8.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克. 经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克 设每千克涨价x 元,销售量为y 千克 (1)求出y 与x 的函数关系;(2)当涨价多少元时,该商场每天获得的利润最大?最大利润为多少元?(3)现该商场要保证每天盈利1500元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(4)为了在该批水果保质期内尽快销售完,且又要保证每天盈利不低于1500元,那么涨价多少元时可使销售量最大?最大销售量是多少?9.某商店购进一批单价为8元的商品,若按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)若销售单价为每件x元,每天所获得的利润为y元,求出y与x的关系式;(2)若每天要获得320元的利润,则售价每件应定为多少元?(3)将售价定为多少元时,才能使每天所获利润最大?最大利润是多少?10.某批发商以24元/箱的进价购进某种蔬菜,销往零售超市,已知这种蔬菜的标价为45元/箱,实际售价不低于标价的八折.批发商通过分析销售情况,发现这种蔬菜的日销售量y(箱)与当天的售价x(元/箱)满足一次函数关系,下表是其中的两组对应值.(1)若某天这种蔬菜的售价为42元/箱,求当天这种蔬菜的销售量;(2)若某天该批发商销售这种蔬菜获利1320元,则当天这种蔬菜的售价为多少元?(3)批发商搞优惠活动,购买一箱这种蔬菜,赠送成本为6元的土豆,这种蔬菜的售价定为多少时,可获得日销售利润最大,最大日销售利润是多少元?11.某工厂制作A、B两种手工艺品,B每件获利比A多105元,制作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元;(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B个少于5件.当每天制作B为5件时,每件B 获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.12.某超市以10元/个的价格购进一批新型儿童玩具,当以17元/个的价格出售时,每天可以售出50个.春节期间,在确保不亏本的前提下采取降价促销的方式招揽顾客,经调查发现,当售价每降低0.5元时,每天可多卖出5个玩具.(1)设该玩具的售价降低了x元,每天的销售量为y个,直接写出y与x的函数关系式及自变量x的取值范围.(2)设销售这种玩具一天可获利润为w元,求w与x之间的函数关系式.(3)这种玩具的售价定为每个多少元时,商店每天获得的利润最大?13.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,已知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个.(1)求出每月销售量y(个)与销售单价x(元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w(元)与销售单价x(元)之间的函数关系式;(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?14.某超市购进一种商品,已知该商品的进价为36元/kg,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:62(120172(20402x x y x x x ≤≤⎧⎪=⎨-+<≤⎪⎩且为整数)且为整数),且日销量()kg m 与时间x (天)的关系式为:540m x =+.(1)填空:第10天的日销量为______kg ; (2)哪一天的销售利润最大?最大利润是多少? (3)请求出日销售利润不低于3510元的天数.15.某团体设计生产了一批运动服,每套的成本是65元,为了合理定价,先投放市场进行试销,要求批发价不得低于成本,据市场调查,每天的销售量y (件)与批发价x (元)之间的关系如图所示:(1)设批发价为x (元),每天的销售量为y (件),请写出y 与x 的函数关系式,并求出当批发价为80元时,每天的销量是多少?(2)求出每天的销售利润w (元)与批发价x (元)之间的函数关系式;(3)如果该企业每天的成本不超过39000元,那么批发价为多少元时,每天的销售利润最大?最大利润是多少?(每天的成本=每套成本×每天的销售量)16.某商场购进A 、B 两种商品进行销售,已知购进4件A 商品和6件B 商品需260元,购进5件A 商品和4件B 商品需220元.两种商品以相同的售价销售,A 商品的销售量1y (件)与售价x (元)之间的关系为13105y x =-;当售价为40元时,B 商品可销售100件,售价每提高1元,少销售3件. (1)求A 、B 两种商品每件的进价分别为多少元?(2)当商品售价为多少元时,A、B两种商品的销售利润总和最大?最大利润是多少?17.红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?18.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元/件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,设这一周该商场销售这种商品获得的利润为w(元),求w与x之间的函数关系式,并指出x的取值范围.19.某公司销售一种商品,进价为20元/件,经过市场训查发现,该商品的日销售量y (件)与当天的销售单价x(元/件)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:(1)求y与x的关系式;(2)水该商晶每天获得的利润w(元)的最大值;(3)若因批发商调整进货价格,该商品的进价变为m元,该公司每天的销量与当天的销售单价的关系不变,该公司为了不亏术,至少需按30元/件销售,而物价部门规定,销售单价不超过52元/件,在实际销售过程中,发现该商品每天获得的利润随x的增大而增大,则m的最小值为______.20.某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,在10本外每多买一本,所有书的售价就降低0.10元,但最低价为16元/本.(1)客户一次至少买多少本,才能以最低价购买?x ),书店利润y(元)与购买量x(本)之间的函数关(2)求当一次购买x本时(10系式;(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.参考答案:1.(1)函数关系式为y =-2x +160;(2)销售单价定为50元时,才能使销售该商品每天获得的利润w (元)最大,最大利润是1200元.2.(1)销售单价为65元(2)销售单价应为70元,该店铺每周销售利润最大,最大销售利润为8000元 3.(1)能浇灌到小树后面的草坪; (2)最大值为215; (3)喷射架应向后移动1米. 4.(1)560y x =+. (2)降价4元.(3)当降价1元时,w 的最大值为845(元). 5.(1)抛物线为:y =﹣21(4)4x -+6;(2)货车可以通过 (3)货车可以通过 6.(1)10或50 (2)170;5000元 7.(1)530y x =+(2)函数关系式是253001980w x x =-++,第30天的利润最大,最大利润是6480元 8.(1)20010y x =-(2)当涨价7.5元时,该商场每天获得的利润最大,最大利润为1562.5元 (3)应涨5元(4)涨价5元时可使销售量最大 ,最大销售量为190元 9.(1)10200y x =-+(2)售价每件应定为12元或16元(3)将售价定为14元时,才能使每天所获利润最大,最大利润是360元 10.(1)116(2)当获利为1320元时,当天这种蔬菜的售价为90元 (3)这种蔬菜的售价为65元,可获得最大日利润为2450元11.(1)制作一件A 获利15元,制作一件B 获利120元;(2)16533y x =-+;(3)最大利润为3198元,此时26x =.12.(1)5010y x =+,自变量取值范围是07x ≤≤ (2)21020350w x x =-++(3)每天的销售量为60个,max 360w =元 13.(1)10500y x =-+ (2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元. 14.(1)90(2)当x =32时,最大利润为4000元 (3)共有22天15.(1)202700y x =-+,批发价为80元时,每天的销量是1100件 (2)2204000175500w x x =-+-(3)x 取最小值105,w 最大,最大值为24000元 16.(1)A 、B 两种商品每件的进价分别为20元、30元.(2)当商品售价为45元时,A 、B 两种商品的销售利润总和最大,最大利润是3400元. 17.(1)甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对(2)乙种灯笼的销售单价为65元时,一天获得利润最大,最大利润是2040元 18.(1)50012000y x =-+(2)25001350036000x x w =-+-;3≤x ≤12 19.(1)y =800-10x (2)9000元 (3)2420.(1)客户一次至少买50本,才能以最低价购买(2)20.19(1050)4(50)x x x y x x ⎧-+<≤=⎨>⎩(3)最低价应确定为16.5元/本,。
2021年九年级中考数学专题训练:二次函数的实际应用(含答案)
2021中考数学专题训练:二次函数的实际应用一、选择题1. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个2. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18m2C.24m2D.m23. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m4. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A .①④B .①②C .②③④D .②③5. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 26. 如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数解析式是y=-112x 2+23x +53,则该运动员此次掷铅球的成绩是( )A .6 mB .12 mC .8 mD .10 m7. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A.此抛物线的解析式是y=-15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m8. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同二、填空题9. 某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品的售价为a元,则可卖出(350-10a)件.但物价部门限定每件商品加价不能超过进价的40%,若商店想获得最大利润,则每件商品的价格应定为________元.10. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.11. 竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时达到相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=.12. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.13. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题15. 已知某商品的进价为每件40元,现售价为每件60元,每星期可卖出300件,经市场调查反映,每件每涨价1元,每星期可少卖出10件.(1)要想每星期获得6090元的利润,该商品每件的价格应定为多少元?(2)每星期能否获利7000元?试说明理由.(3)该商品每件的价格定为多少元时,每星期获利最大,最大利润是多少?16. 交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、流速、密度三个概念描述车流的基本特征,其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.速度v(千米/小时) … 5 10 20 32 40 48 …流量q(辆/小时) …550 1000 1600 1792 1600 1152 …需填上正确答案的序号)①q=90v+100;②q=32 000v;③q=-2v2+120v.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q,v,k满足q=vk.请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.17. (2019•辽阳)我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?18. 有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B =90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.2021中考数学专题训练:二次函数的实际应用-答案一、选择题1. 【答案】B[解析] 设利润为y元,涨价x元,则有y=(100+x-90)(500-10x)=-10(x-20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.2. 【答案】C[解析]如图,过点C作CE⊥AB于E,设CD=x,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,∠BCE=∠BCD-∠DCE=30°,BC=12-x.在Rt△CBE中,∵∠CEB=90°,∴BE=BC=6-x,∴AD=CE=BE=6x,AB=AE+BE=x+6-x=x+6,∴梯形ABCD的面积=(CD+AB)·CE=x+x+6·6x=-x2+3x+18=-(x-4)2+24,∴当x=4时,S=24,即CD长为4 m时,使梯形储料场ABCD的面积最大,最大最大面积为24m2,故选C.3. 【答案】C[解析] 以2 m长线段所在直线为x轴,以其垂直平分线为y轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.4. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确; ④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40. 解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.5. 【答案】B[解析] 设二次函数的解析式为y =ax 2.由题可知,点A 的坐标为(-45,-78),代入解析式可得-78=a(-45)2,解得a =-26675,∴二次函数解析式为y =-26675x 2.故选B.6. 【答案】D[解析] 把y =0代入y =-112x 2+23x +53,得-112x 2+23x +53=0,解得x 1=10,x 2=-2.又∵x >0,∴x =10. 故选D.7. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y =ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a =-15.∴y =-15x 2+3.5.可见选项A 正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B 错误. 由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C 错误.将x =-2.5代入抛物线的解析式,得y =-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m 可见选项D 错误. 故选A.8. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确.由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.二、填空题9. 【答案】28 [解析] 设商店所获利润为y 元.根据题意,得 y =(a -21)(350-10a)=-10a 2+560a -7350=-10(a -28)2+490, 即当a =28时,可获得最大利润.又21×(1+40%)=21×1.4=29.4,而28<29.4,所以a =28符合要求. 故商店应把每件商品的价格定为28元,此时可获得最大利润.10. 【答案】150[解析]设AB=x m ,矩形土地ABCD 的面积为y m 2,由题意,得y=x ·=-(x -150)2+33750,∵-<0,∴该函数图象开口向下,当x=150时,该函数有最大值.即AB=150 m 时,矩形土地ABCD 的面积最大.11. 【答案】1.6[解析]设各自抛出后1.1秒时达到相同的最大离地高度h ,则第一个小球的离地高度y=a (t -1.1)2+h (a ≠0), 由题意a (t -1.1)2+h=a (t -1-1.1)2+h , 解得t=1.6.故第一个小球抛出后1.6秒时在空中与第二个小球的离地高度相同.12. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.13. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.14. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB =36 m ,∴AH =BH =18 m. 由题可知:OH =7 m ,CH =9 m , ∴OC =9+7=16(m).设该抛物线的解析式为y =ax 2+k. ∵抛物线的顶点为C(0,16), ∴抛物线的解析式为y =ax 2+16.把(18,7)代入解析式,得7=18×18a +16, ∴7=324a +16, ∴a =-136, ∴y =-136x 2+16.当y =0时,0=-136x 2+16, ∴-136x 2=-16,解得x =±24, ∴E(24,0),D(-24,0), ∴OE =OD =24 m ,∴DE =OD +OE =24+24=48(m).三、解答题15. 【答案】解:设该商品每件涨价x 元时,每星期获得的总利润为y 元. (1)由题意,得(60+x -40)(300-10x)=6090, 整理得x 2-10x +9=0, 解得x 1=1,x 2=9.60+1=61(元),60+9=69(元).答:要想每星期获得6090元的利润,该商品每件的价格应定为61元或69元. (2)不能.理由:列方程,得(60+x -40)(300-10x)=7000, 整理得x 2-10x +100=0. ∵Δ=(-10)2-4×1×100<0, ∴此方程无实数解,∴销售该商品每星期不能获利7000元.(3)y =(60+x -40)(300-10x)=-10x 2+100x +6000=-10(x -5)2+6250, ∴当x =5时,y 最大=6250,60+x =65.答:该商品每件的价格定为65元时,每星期获利最大,最大利润为6250元.16. 【答案】【思路分析】(1)可用图象得出函数关系,也可直接代入数据进行检验;(2)由已知的二次函数q =-2v 2+120v 解析式,用配方法或公式法直接可求得最大值;(3)①把q =vk 代入q =-2v 2+120v 中,消去q ,得到k 和v 的关系式,再根据v 的取值范围12≤v <18,就可求得k 的取值范围;②由(2)中已知,当v =30时,q的最大值为1800,代入k =-2v +120中,求得k =60,因为d =1000k ,把k =60代入,得d =503. 解:(1)③;(3分)【解法提示】解法一:根据数据用描点法画出图象,得出一个开口向下的二次函数图象,故选③;解法二:用代入法进行检验:把表中的数据v =5,q =550代入,可排除②;由数据v =20,q =1600可排除①;所以刻画q ,v 关系最准确的是③;(2)q =-2v 2+120v =-2(v -30)2+1800,(6分) 当v =30时,q 最大=1800;(8分)(3)①由⎩⎨⎧q =-2v 2+120vq =vk得,k =-2v +120,∵12≤v<18,∴84<-2v+120≤96,即84<k≤96;(10分)②当v=30时,q最大=1800,此时k=60,d=100060=503.(12分)17. 【答案】(1)(2)∴抛物线开口向下,即,销售单价为每千克60元时,日获利最大,最大获利为1950元.18. 【答案】解:(1)①若所截矩形材料的一条边是BC,如图①所示:过点C作CF⊥AE于点F,则S1=AB·BC=6×5=30;②若所截矩形材料的一条边是AE,如图②所示:过点E作EF∥AB交CD于点F,过点F作FG⊥AB于点G,过点C作CH⊥FG 于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∴AE=FG=6,HG=BC=5,BG=CH,∠BCH=90°.∵∠BCD=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴BG=CH=FH=FG-HG=6-5=1,∴AG=AB-BG=6-1=5,∴S2=AE·AG=6×5=30.(2)能.如图③,在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C 作CG⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∴MG=BC=5,BM=CG,∠BCG=90°.∵∠BCD=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴FG=CG.设AM=x,矩形AMFN的面积为S,则BM=6-x,∴FM=GM+FG=GM+CG=BC+BM=11-x,∴S=AM·FM=x(11-x)=-x2+11x=-(x-5.5)2+30.25,∴当x=5.5时,S取得最大值,最大值为30.25.故这些矩形材料面积的最大值为30.25.。
中考数学总复习《二次函数的实际应用与几何问题》练习题-附带答案
中考数学总复习《二次函数的实际应用与几何问题》练习题-附带答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c的图象如图所示,则|a+b+c|+|a﹣b+c|+|2a+b|=()A.2a+3 b B.2c﹣b C.2a﹣b D.b-2c 2.如图,用20m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积为()m2A.45B.50C.60D.65 3.如图,坐标系的原点为O,点P是第一象限内抛物线y=14x2﹣1上的任意一点,PA⊥x轴于点A.则OP﹣PA值为()A.1B.2C.3D.4 4.如图所示,将一根长2m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系5.如图,AC为矩形ABCD的对角线,已知AD=3,CD=4.点P沿折线C−A−D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.6.如图所示,⊥DEF中⊥DEF=90°,⊥D=30°,DF=16,B是斜边DF上一动点,过B 作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,⊥ABD的面积为y,则y与x 之间的函数图象大致为()A.(B.C.D.(7.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A .75m 2B .752m 2C .48m 2D .2252m 28.如图,点A 是二次函数y = √3 x 2图象上的一点,且位于第一象限,点B 是直线y=﹣ √32x 上一点,点B′与点B 关于原点对称,连接AB ,AB′,若⊥ABB′为等边三角形,则点A 的坐标是( )A .( 13 , 19√3 ) B .( 23 , 49√3 )C .(1, √3 )D .( 43 , 169√3 ) 9.在平面直角坐标系中抛物线y=﹣(x ﹣2)2+1的顶点是点P ,对称轴与x 轴相交于点Q ,以点P 为圆心,PQ 长为半径画⊥P ,那么下列判断正确的是( ) A .x 轴与⊥P 相离 B .x 轴与⊥P 相切 C .y 轴与⊥P 相切D .y 轴与⊥P 相交10.如图,已知边长为4的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,作EF ⊥AE 交⊥BCD 的外角平分线于F ,设BE =x ,⊥ECF 的面积为y ,下列图象中能表示y 与x 的函数关系的图象大致是( )A .B .C .D .11.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 212.如图,抛物线y=ax 2+2ax-3a(a>0)与x 轴交于A ,B 顶点为点D ,把抛物线在x 轴下方部分关于点B 作中心对称,顶点对应D’,点A 对应点C ,连接DD’,CD’,DC ,当⊥CDD’是直角三角形时a 的值为( )A .12 , √32B .13 , √32 C .13 , √33 D .12二、填空题(共6题;共7分)13.如图,已知抛物线 y =(x −2)2−1 与 x 轴交于A 、C 两点,与 y 轴交于点B ,在抛物线的对称轴上找一点Q ,使⊥ABQ 成为等腰三角形,则Q 点的坐标是 。
中考数学第一阶段复习考点过关练习:二次函数的实际应用
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学第一阶段复习考点过关练习:二次函数的实际应用考点1:应用二次函数解决抛物线型实际问题1.(2018年四川省巴中市)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.(2018年江苏省连云港市)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m3.(2018年四川省绵阳市)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.4.(2018年浙江省衢州市)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.5.(2018年山东省滨州市)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?考点2:应用二次函数解决利润最大问题6.(2018年广西贺州市)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为元.7.(2018年河南省)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.(2018年甘肃省兰州市(a卷))某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?9.(2018年湖北省天门、仙桃、潜江、江汉油田市)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?10.(2018年浙江省温州市)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.11.(2018年浙江省台州市)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P 与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.12.(2018年贵州省黔南州、黔东南州、黔西南州)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?13.(2018年四川省甘孜州)某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?14.(2018年四川省眉山市)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)15.(2018年湖北省荆门市)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)考点3:应用二次函数解决面积最大问题16.(2018年辽宁省沈阳市)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB= m时,矩形土地ABCD的面积最大.17.(2018年福建省(A卷))如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.18.(2018年湖北省荆州市)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m 长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)14 16 28合理用地(m2/棵)0.4 1 0.419.(2018年内蒙古呼和浩特市)某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系构成一次函数,(1≤x≤7且x为整数),且第一和第三年竣工投入使的公租房面积分别为和百万平方米;后5年每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系是y=﹣x+(7<x≤12且x为整数).(1)已知第6年竣工投入使用的公租房面积可解决20万人的住房问题,如果人均住房面积,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨等因素的影响,已知这12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此类推,分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12年中每年竣工投入使用的公租房的年租金W关于时间x的函数解析式,并求出W的最大值(单位:亿元).如果在W取得最大值的这一年,老张租用了58m2的房子,计算老张这一年应交付的租金.答案解析1.【考点】二次函数的应用【分析】A、设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值;B、根据函数图象判断;C、根据函数图象判断;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,当x=﹣2,5时,即可求得结论.解:A、∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.故本选项正确;B、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误;C、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,∴当x=﹣2.5时,h=﹣0.2×(﹣2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m.故本选项错误.故选:A.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.2.【考点】二次函数的应用【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.3.【考点】二次函数的应用【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.4.【考点】二次函数的应用.【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.【点评】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.5.【考点】二次函数的应用【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.6.【考点】二次函数的应用【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解:设利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.【点评】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.7.【考点】二次函数的应用,一元二次方程的应用,一元一次不等式的应用【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.【考点】二次函数的应用【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵a=﹣2<0,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.【点评】此题主要考查了二次函数的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.9.【考点】二次函数的应用【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.10.【考点】一元二次方程的应用;二次函数的应用【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式,用x表示总利润利用二次函数性质讨论最值.解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负数∴取x=26时,m=13,65﹣x﹣m=26即当x=26时,W最大值=3198答:安排26人生产乙产品时,可获得的最大利润为3198元.【点评】本题以盈利问题为背景,考查一元二次方程和二次函数的实际应用,解答时注意利用未知量表示相关未知量.11.【考点】二次函数的应用【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.【点评】本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.12.【考点】二次函数的应用【分析】(1)找出当x=6时,y1、y2的值,二者做差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者做差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.解:(1)当x=6时,y1=3,y2=1,∵y1﹣y2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y1=mx+n,y2=a(x﹣6)2+1.将(3,5)、(6,3)代入y1=mx+n,,解得:,∴y1=﹣x+7;将(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a=,∴y2=(x﹣6)2+1=x2﹣4x+13.∴y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣x2+x﹣6=﹣(x﹣5)2+.∵﹣<0,∴当x=5时,y1﹣y2取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣x2+x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.13.【考点】二次函数的应用【分析】(1)根据题意可以得到y与x的函数关系式;(2)根据(1)中的函数关系式,然后化为顶点式即可解答本题.解:(1)由题意得,商品每件降价x元时单价为(100﹣x)元,销售量为(128+8x)件,则y=(128+8x)(100﹣x﹣80)=﹣8x2+32x+2560,即y与x之间的函数解析式是y=﹣8x2+32x+2560;(2)∵y=﹣8x2+32x+2560=﹣8(x﹣2)2+2592,∴当x=2时,y取得最大值,此时y=2592,∴销售单价为:100﹣2=98(元),答:A商品销售单价为98元时,该商场每天通过A商品所获的利润最大.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.14.【考点】二次函数的应用【分析】(1)把y=280代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,,解得,∴p=0.1x+1,①0≤x≤6时,w=(4﹣2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,∵a=﹣2<0,∴当x=﹣=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.15.【考点】二次函数的应用【分析】(1)根据题意列出方程组,求出方程组的解得到m与n的值即可;(2)根据图象,分类讨论利用待定系数法求出y与P的解析式即可;(3)根据W=ya﹣mt﹣n,表示出W与t的函数解析式,利用一次函数与二次函数的性质求出所求即可.解:(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:。
2024年中考数学《二次函数的实际应用》真题含解析版
二次函数的实际应用(21题)一、单选题1(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t20≤t≤6.有下列结论:①小球从抛出到落地需要6 s;②小球运动中的高度可以是30 m;③小球运动2 s时的高度小于运动5 s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【分析】本题考查二次函数的图像和性质,令�=0解方程即可判断①;配方成顶点式即可判断②;把t=2和t=5代入计算即可判断③.【详解】解:令�=0,则30t-5t2=0,解得:t1=0,t2=6,∴小球从抛出到落地需要6 s,故①正确;∵�=30t-5t2=-5x-32+45,∴最大高度为45m,∴小球运动中的高度可以是30 m,故②正确;当t=2时,�=30×2-5×22=40;当t=5时,�=30×5-5×52=25;∴小球运动2 s时的高度大于运动5 s时的高度,故③错误;故选C.2(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt△ABC中,∠BAC=90°,AB=12,动点E,F同时从点A出发,分别沿射线AB和射线AC的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接EF,以EF为边向下做正方形EFGH,设点E运动的路程为x0<x<12,正方形EFGH和等腰Rt△ABC重合部分的面积为下列图像能反映y与x之间函数关系的是()A. B.C. D.【答案】A 【分析】本题考查动态问题与函数图象,能够明确y 与x 分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当HG 与BC 重合时,及当x ≤4时图象的走势,和当x >4时图象的走势即可得到答案.【详解】解:当HG 与BC 重合时,设AE =x ,由题可得:∴EF =EH =2x ,BE =12-x ,在Rt △EHB 中,由勾股定理可得:BE 2=BH 2+EH 2,∴2x 2+2x 2=12-x 2,∴x =4,∴当0<x ≤4时,y =2x 2=2x 2,∵2>0,∴图象为开口向上的抛物线的一部分,当HG 在BC 下方时,设AE =x ,由题可得:∴EF =2x ,BE =12-x ,∵∠AEF =∠B =45°,∠A =∠EOB =90°,∴△FAE ∽△EOB ,∴AE EF =EO EB ,∴x 2x=EO 12-x ,∴EO =12-x 2,∴当4<x <12时,y =2x ·12-x 2=12-x x =-x 2+12x ,∵-1<0,∴图象为开口向下的抛物线的一部分,综上所述:A 正确,故选:A .3(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,AB =6cm ,BC =8cm ,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =23cm ,∠E =60°,现将菱形EFGH 以1cm/s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD重叠部分的面积S cm 2 与运动时间t s 之间的函数关系图象大致是()A. B.C. D.【答案】D 【分析】本题考查了解直角三角形的应用,菱形的性质,动点问题的函数图象,二次函数的图象的性质,先求得菱形的面积为63,进而分三种情形讨论,重合部分为三角形,重合部分为五边形,重合部分为菱形,分别求得面积与运动时间的函数关系式,结合选项,即可求解.【详解】解:如图所示,设EG ,HF 交于点O ,∵菱形EFGH ,∠E =60°,∴HG =GF又∵∠E =60°,∴△HFG 是等边三角形,∵EF =23cm ,∠HEF =60°,∴∠OEF =30°∴EG =2EO =2×EF cos30°=3EF =6∴S 菱形EFG H =12EG ⋅FH =12×6×23=63当0≤x ≤3时,重合部分为△MNG ,如图所示,依题意,△MNG 为等边三角形,运动时间为t ,则NG =t cos30°=233t ,∴S =12×NG ×NG ×sin60°=34233t 2=33t 2当3<x≤6时,如图所示,依题意,EM=EG-t=6-t,则EK=EMsin60°=6-t32=2336-t∴S△EKJ=12EJ⋅EM=12×2336-t2=336-t2∴S=S菱形EFGH-S△EKJ=6-336-t2=-33t2+43t-123+6∵EG=6<BC∴当6<x≤8时,S=63当8<x≤11时,同理可得,S=6-33t-82当11<x≤14时,同理可得,S=336-t-82=3314-t2综上所述,当0≤x≤3时,函数图象为开口向上的一段抛物线,当3<x≤6时,函数图象为开口向下的一段抛物线,当6<x≤8时,函数图象为一条线段,当8<x≤11时,函数图象为开口向下的一段抛物线,当11<x≤14时,函数图象为开口向上的一段抛物线;故选:D.二、填空题4(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是74m ,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .【答案】353【分析】本题考查的是二次函数的实际应用,设抛物线为y =a x -5 2+4,把点0,74,代入即可求出解析式;当y =0时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:y =a x -5 2+4,把点0,74 代入得:25a +4=74,解得:a =-9100,∴抛物线解析式为:y =-9100x -5 2+4;当y =0时,-9100x -5 2+4=0,解得,x 1=-53(舍去),x 2=353,即此次实心球被推出的水平距离OM 为353m .故答案为:3535(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系y =-0.02x 2+0.3x +1.6的图象,点B 6,2.68 在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD =4m ,高DE =1.8m 的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当x =2时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵CD =4m ,B 6,2.68 ,∴6-4=2,在y =-0.02x 2+0.3x +1.6中,当x =2时,y =-0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴可判定货车能完全停到车棚内,故答案为:能.6(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.三、解答题7(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L 1与缆索L 2均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离OC =100m ,AO =BC =17m ,缆索L 1的最低点P 到FF 的距离PD =2m (桥塔的粗细忽略不计)(1)求缆索L 1所在抛物线的函数表达式;(2)点E 在缆索L 2上,EF ⊥FF ,且EF =2.6m ,FO <OD ,求FO 的长.【答案】(1)y =3500x -50 2+2;(2)FO 的长为40m .【分析】本题考查了二次函数的应用,待定系数法求二次函数解析式,根据题意求得函数解析式是解题的关键.(1)根据题意设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入求解即可;(2)根据轴对称的性质得到缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,由EF =2.6m ,把y =2.6代入求得x 1=-40,x 2=-60,据此求解即可.【详解】(1)解:由题意得顶点P 的坐标为50,2 ,点A 的坐标为0,17 ,设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入得17=a 0-50 2+2,解得a =3500,∴缆索L 1所在抛物线的函数表达式为y =3500x -50 2+2;(2)解:∵缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,∴缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,∵EF =2.6,∴把y =2.6代入得,2.6=3500x +50 2+2,解得x 1=-40,x 2=-60,∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.8(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为Scm2.(1)求y与x,s与x的关系式.(2)围成的矩形花圃面积能否为750cm2,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.【答案】(1)y=80-2x19≤x<40;s=-2x2+80x(2)能,x=25(3)s的最大值为800,此时x=20【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据AB+BC+CD=80可求出y与x之间的关系,根据墙的长度可确定x的范围;根据面积公式可确立二次函数关系式;(2)令s=750,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【详解】(1)解:∵篱笆长80m,∴AB+BC+CD=80,∵AB=CD=x,BC=y,∴x+y+x=80,∴y=80-2x∵墙长42m,∴0<80-2x≤42,解得,19≤x<40,∴y=80-2x19≤x<40;又矩形面积s=BC⋅AB=y⋅x=80-2xx=-2x2+80x;(2)解:令s=750,则-2x2+80x=750,整理得:x2-40x+375=0,此时,Δ=b 2-4ac =-40 2-4×375=1600-1500=100>0,所以,一元二次方程x 2-40x +375=0有两个不相等的实数根,∴围成的矩形花圃面积能为750cm 2;∴x =--40 ±1002,∴x 1=25,x 2=15,∵19≤x <40,∴x =25;(3)解:s =-2x 2+80x =-2x -20 2+800∵-2<0,∴s 有最大值,又19≤x <40,∴当x =20时,s 取得最大值,此时s =800,即当x =20时,s 的最大值为8009(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度h m 满足关系式h =-5t 2+v 0t ,其中t s 是物体运动的时间,v 0m/s 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后s 时离地面的高度最大(用含v 0的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【答案】(1)v 010(2)20m/s (3)小明的说法不正确,理由见解析【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可;(2)把t =v 010,h =20代入h =-5t 2+v 0t 求解即可;(3)由(2),得h =-5t 2+20t ,把h =15代入,求出t 的值,即可作出判断.【详解】(1)解:h =-5t 2+v 0t=-5t -v 010 2+v 0220,∴当t =v 010时,h 最大,故答案为:v 010;(2)解:根据题意,得当t =v 010时,h =20,∴-5×v 0102+v 0×v 010=20,∴v 0=20m/s (负值舍去);(3)解:小明的说法不正确.理由如下:由(2),得h =-5t 2+20t ,当h =15时,15=-5t 2+20t ,解方程,得t 1=1,t 2=3,∴两次间隔的时间为3-1=2s ,∴小明的说法不正确.10(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线y =ax 2+x 和直线y =-12x +b .其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①a =-115,b =8.1;②8.4km (2)-227<a <0【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将9,3.6 代入即可求解;②将y =-115x 2+x 变为y =-115x -152 2+154,即可确定顶点坐标,得出y =2.4km ,进而求得当y =2.4km 时,对应的x 的值,然后进行比较再计算即可;(2)若火箭落地点与发射点的水平距离为15km ,求得a =-227,即可求解.【详解】(1)解:①∵火箭第二级的引发点的高度为3.6km∴抛物线y=ax2+x和直线y=-12x+b均经过点9,3.6∴3.6=81a+9,3.6=-12×9+b解得a=-115,b=8.1.②由①知,y=-12x+8.1,y=-115x2+x∴y=-115x2+x=-115x-1522+154∴最大值y=154km当y=154-1.35=2.4km时,则-115x2+x=2.4解得x1=12,x2=3又∵x=9时,y=3.6>2.4∴当y=2.4km时,则-12x+8.1=2.4解得x=11.44-3=8.4km∴这两个位置之间的距离8.4km.(2)解:当水平距离超过15km时,火箭第二级的引发点为9,81a+9,将9,81a+9,15,0代入y=-12x+b,得81a+9=-12×9+b,0=-12×15+b解得b=7.5,a=-2 27∴-227<a<0.11(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),求y关于x的函数表达式并求出y的最大值.【答案】(1)猪肉粽每盒50元,豆沙粽每盒30元(2)y=-10x2+1200x-35000或y=-10x-602+1000,当x=60时,y取得最大值为1000元【分析】本题考查列分式方程解应用题和二次函数求最值,解决本题的关键是正确寻找本题的等量关系及二次函数配方求最值问题.(1)设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元.根据“用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同”即可列出方程,求解并检验即可;(2)根据题意可列出y关于x的函数解析式,再根据二次函数的性质即可解答.【详解】(1)解:设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元由题意得:5000n+20=3000n解得:n=30经检验:n=30是原方程的解且符合题意∴n+20=50答:猪肉粽每盒50元,豆沙粽每盒30元.(2)解:设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),则y=x-50180-10x-52=-10x2+1200x-35000=-10x-602+1000∵52≤x≤70,-10<0,∴当x=60时,y取得最大值为1000元.12(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元⋯1214161820⋯销售量y/盒⋯5652484440⋯(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.【答案】(1)y=-2x+80(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y与x的函数表达式为y=kx+b,把x=12,y=56;x=20,y=40代入,得12k+b=56 20k+b=40 ,解得k =-2b =80 ,∴y 与x 的函数表达式为y =-2x +80;(2)解:设日销售利润为w 元,根据题意,得w =x -10 ⋅y=x -10 -2x +80=-2x 2+100x -800=-2x -25 2+450,∴当x =25时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;(3)解:设日销售利润为w 元,根据题意,得w =x -10-m ⋅y=x -10-m -2x +80=-2x 2+100+2m x -800-80m ,∴当x =-100+2m 2×-2=50+m 2时,w 有最大值为-250+m 2 2+100+2m 50+m 2 -800-80m ,∵糖果日销售获得的最大利润为392元,∴-250+m 22+100+2m 50+m 2 -800-80m =392,化简得m 2-60m +116=0解得m 1=2,m 2=58当m =58时,x =-b 2a=54,则每盒的利润为:54-10-58<0,舍去,∴m 的值为2.13(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润×销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,w =5-x -2 100+50x=-50x 2+50x +300=-50x-122+312.5,∵-50<0,∴当x=12时,w有最大值,最大值为312.5,∴5-x=4.5,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.14(2024·四川遂宁·中考真题)某酒店有A、B两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【答案】(1)A种客房每间定价为200元,B种客房每间定价为为120元;(2)当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【分析】(1)设A种客房每间定价为x元,B种客房每间定价为为y元,根据题意,列出方程组即可求解;(2)设A种客房每间定价为a元,根据题意,列出W与a的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.【详解】(1)解:设A种客房每间定价为x元,B种客房每间定价为为y元,由题意可得,24x+20y=7200 10x+10y=3200,解得x=200 y=120 ,答:A种客房每间定价为200元,B种客房每间定价为为120元;(2)解:设A种客房每间定价为a元,则W=24-a-200 10a=-110a2+44a=-110a-2202+4840,∵-110<0,∴当a=220时,W取最大值,W最大值=4840元,答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.15(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)y=10x+60(0≤x≤10)(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,1 根据题意设每件A类特产的售价为x元,则每件B类特产的售价为132-x元,进一步得到关于x的一元一次方程求解即可;2 根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;3 结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为132-x元.根据题意得3x+5132-x=540.解得x=60.则每件B类特产的售价132-60=72(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得y=10x+60∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴0≤x≤10.答:y=10x+60(0≤x≤10).(3)w=(60-50-x)(10x+60)+100×(72-60)=-10x2+40x+1800=-10(x-2)2+1840.∵-10<0,∴当x=2时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【答案】任务1:y=-13x+703;任务2:w=-2x2+72x+3360(x>10);任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有70-x-y人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有70-x-y人,∵“正”服装总件数和“风”服装相等,∴70-x-y×1=2y,整理得:y=-13x+703;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,∴w=2y×24+70-x-y×48+x100-2x-10,整理得:w=-16x+1120+-32x+2240+-2x2+120x∴w=-2x2+72x+3360(x>10)任务3:由任务2得w=-2x2+72x+3360=-2x-182+4008,∴当x=18时,获得最大利润,y=-13×18+703=523,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,y=533,不符合题意;当x=19时,y=513=17,符合题意;∴70-x-y=34,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.17(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?【答案】(1)y=-25x2+20x+12000,每辆轮椅降价20元时,每天的利润最大,为12240元(2)这天售出了64辆轮椅【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;(2)令y=12160,得到关于x的一元二次方程,进行求解即可.【详解】(1)解:由题意,得:y=200-x60+x10×4=-25x2+20x+12000;∵每辆轮椅的利润不低于180元,∴200-x≥180,∴x≤20,∵y=-25x2+20x+12000=-25x-252+12250,∴当x<25时,y随x的增大而增大,∴当x=20时,每天的利润最大,为-25×20-252+12250=12240元;答:每辆轮椅降价20元时,每天的利润最大,为12240元;(2)当y=12160时,-25x2+20x+12000=12160,解得:x1=10,x2=40(不合题意,舍去);∴60+1010×4=64(辆);答:这天售出了64辆轮椅.18(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数y=ax2+bx a<0刻画,斜坡可以用一次函数y=14x刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如下表:x012m4567⋯y07261528152n72⋯(1)①m =,n =;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系y =-5t 2+vt .①小球飞行的最大高度为米;②求v 的值.【答案】(1)①3,6;②152,158;(2)①8,②v =410【分析】本题主要考查二次函数的应用以及从图象和表格中获取数据,(1)①由抛物线的顶点坐标为4,8 可建立过于a ,b 的二元一次方程组,求出a ,b 的值即可;②联立两函数解析式求解,可求出交点A 的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v 值.【详解】(1)解:①根据小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律表可知:抛物线顶点坐标为4,8 ,∴-b 2a =4-b 24a =8 ,解得:a =-12b =4 ,∴二次函数解析式为y =-12x 2+4x ,当y =152时,-12x 2+4x =152,解得:x =3或x =5(舍去),∴m =3,当x =6时,n =y =-12×62+4×6=6,故答案为:3,6.②联立得:y =-12x 2+4x y =14x ,解得:x =0y =0 或x =152y =158,∴点A 的坐标是152,158,(2)①由题干可知小球飞行最大高度为8米,故答案为:8;②y =-5t 2+vt =-5t -v 10 2+v 220,则v 220=8,解得v =410(负值舍去).19(2024·江苏苏州·中考真题)如图,△ABC 中,AC =BC ,∠ACB =90°,A -2,0 ,C 6,0 ,反比例函数y =k xk ≠0,x >0 的图象与AB 交于点D m ,4 ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数y =k xk ≠0,x >0 图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM ∥AB ,交y 轴于点M ,过点P 作PN ∥x 轴,交BC 于点N ,连接MN ,求△PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)m =2,k =8(2)S △PMN 最大值是92,此时P 3,83【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM =QP ,设点P 的坐标为t ,8t ,2<t <6 ,则可求出S △PMN =12⋅6-t ⋅t ,然后利用二次函数的性质求解即可.【详解】(1)解:∵A -2,0 ,C 6,0 ,∴AC =8.又∵AC =BC ,∴BC =8.∵∠ACB =90°,∴点B 6,8 .设直线AB 的函数表达式为y =ax +b ,将A -2,0 ,B 6,8 代入y =ax +b ,得-2a +b =06a +b =8 ,。
中考数学复习专题训练 二次函数的综合应用(含解析)
中考数学复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是( )A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。
2023年华东师大版备考 中考数学二轮复习 专题14 二次函数
华师大版备考2023中考数学二轮复习 专题14 二次函数一、综合题1.(2022九上·青田期中)如图,抛物线y =−x 2+2x +3与x 轴交于点A ,点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是抛物线上的一个动点.(1)求直线BD 的解析式;(2)当点P 在第一象限时,求四边形BOCP 面积的最大值,并求出此时P 点的坐标;(3)在点P 的运动过程中,是否存在点P ,使△BDP 是以BD 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.2.(2022九上·莲都期中)已知,点M 为二次函数y =﹣(x ﹣b )2+4b+1图象的顶点,直线y =mx+5分别交x 轴正半轴,y 轴于点A ,B.(1)判断顶点M 是否在直线y =4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A ,B ,且mx+5>﹣(y ﹣b )2+4b+1,根据图象,写出x 的取值范围.(3)如图2,点A 坐标为(5,0),点M 在△AOB 内,若点C (14,y 1),D (34,y 2)都在二次函数图象上,试比较y1与y2的大小.3.(2022九上·定海期中)设抛物线y=(x−m)(x−n)(m、n是实数).(1)若m=2,n=1,求二次函数的对称轴,并求出该函数的最小值;(2)当m=−3,n=1时,已知抛物线y=(x+3)(x−1)与x轴交于A,B两点(点A在点B 的左侧),将这条抛物线向右平移a(a>0)个单位,平移后的抛物线于x轴交于C,D两点(点C 在点D的左侧),若B,C是线段AD的三等分点,求a的值;(3)当0<m<n<1时,已知二次函数的图象经过(0,p),(1,q)两点(p,q是实数),求证:0<pq<1 16 .4.(2022九上·南湖期中)如图,二次函数y1=−x2+bx+c的图象与一次函数y2的图象交于点A(a,1),B(3,4).(1)若y2的解析式为y2=32x−12,求点A的坐标和y1的函数表达式;(2)在(1)的条件下若点P(m,0)是x轴上一点,过点P做直线l垂直x轴于点P,直线l与函数y1,y2交于点M,N,当线段MN=1时,求m的值;(3)若点C(n,1)(n>a)是二次函数y1上的点,且AC=5,请直接写出二次函数y1的对称轴. 5.(2022九上·嘉兴期中)如图1,已知抛物线y=x2+bx+c经过原点O,它的对称轴是直线x=2,动点P从抛物线的顶点A出发,在对称轴上以每秒1个单位的速度向上运动,设动点P运动的时间为t 秒,连接OP并延长交抛物线于点B,连接OA,AB.(1)求抛物线的函数解析式;(2)当△AOB为直角三角形时,求t的值;(3)如图2,⊙M为△AOB的外接圆,在点P的运动过程中,点M也随之运动变化,请你探究:在1≤t≤5时,求点M经过的路径长度.6.(2022九上·津南期中)如图,在平面直角坐标系中,抛物线y=ax2+bx−4(a≠0)与x轴交于点A(−1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式及对称轴;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求△PAD面积的最大值.7.(2022九上·浦江期中)如图,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B (0,4).经过原点O的抛物线y=﹣x2+bx+c交直线AB于点A,C,抛物线的顶点为D.(1)求抛物线y=﹣x2+bx+c的表达式;(2)M是线段AB上一点,N是抛物线上一点,当MN△y轴且MN=2时,求点M的坐标;(3)P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.8.(2022九上·舟山月考)如图,抛物线y=−x2+mx+n交x轴于点A(−2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标.9.(2022九上·新昌期中)已知菱形OABC的边长为5,且点A(3,4),点E是线段BC的中点,过点A,E的抛物线y=ax2+bx+c与边AB交于点D,(1)求点E 的坐标;(2)连接DE ,将△BDE 沿着DE 翻折.①当点B 的对应点B ′恰好落在线段AC 上时,求点D 的坐标;②连接OB ,BB ′,若△BB ′D 与△BOC 相似,请直接写出此时抛物线二次项系数a = . 10.(2022九上·舟山期中)已知抛物线y =ax 2−3ax −4a 与x 轴交于A 、B 两点(A 左B 右),交y 轴负半轴点C ,P 是第四象限抛物线上一点.(1)若S △ABC =5,求a 的值;(2)若a =1,过点P 作直线垂直于x 轴,交BC 于点Q ,求线段PQ 的最大值,并求此时点P 的坐标;(3)直线AP 交y 轴于点M ,直线BP 交y 轴于点N ,求4OM+ON OC的值. 11.(2022九上·龙港期中)如图,抛物线y =−x 2+bx+c 经过点A (﹣1,0),点B (3,0),与y 轴交于点C ,点D 在射线CO 上运动.(1)求该抛物线的表达式和对称轴.(2)过点D作x轴的平行线交抛物线于点E,F(点E在点F的左侧),若EF=2OC,求点E的坐标.(3)记抛物线的顶点关于直线EF的对称点为点P,当点P到x轴的距离等于1时,求出所有符合条件的线段EF的长.12.(2022·攀枝花)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为−1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,△PAB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.答案解析部分1.【答案】(1)解:对于y=−x2+2x+3①,令x=0,则y=3,令y=−x2+2x+3=0,解得x=−1或3,故点A、B、C的坐标分别为(−1,0)、(3,0)、(0,3),∵点D与点C关于x轴对称,故点D(0,−3),设直线BD的表达式为y=kx+b,则{b=−30=3k+b,解得{k=1b=−3,故直线BD的表达式为y=x−3(2)解:连接BC,过点P作y轴的平行线交BC于点H,由点B、C的坐标,同理可得,直线BC的表达式为y=−x+3,设点P(x,−x2+2x+3),则点H(x,−x+3),则四边形BOCP面积=S△OBC+S△PHC+S△PHB=12×OB⋅OC+12×PH×OB=12×3×3+12×3×(−x 2+2x+3+x−3)=−32x2+92x+92,∵−32<0,故四边形BOCP面积存在最大值,当x=32时,四边形BOCP面积最大值为458,此时点P(32,154);(3)解:存在,理由:①当∠PBD为直角时,如上图所示,此时点P与点C重合,过点P的坐标为(0,3);②当∠PDB为直角时,由BD的表达式知,直线BD与x轴的倾斜角为45°,当∠PDB为直角时,即PD⊥BD,则直线PD与x轴负半轴的夹角为45°,故设直线PD的表达式为y=−x+t,将点D的坐标代入上式得,−3=0+t,解得t=−3,故直线PD的表达式为y=−x−3②,联立①②并解得:x=3±√332,故点P的坐标为(3+√332,−9+√332)或(3−√332,−9−√332),综上,点P的坐标为(3+√332,−9+√332)或(3−√332,−9−√332)或(0,3).【知识点】待定系数法求一次函数解析式;二次函数图象上点的坐标特征;直角三角形的性质;二次函数y=ax^2+bx+c的性质【解析】【分析】(1)利用y=−x2+2x+3求出B、C的坐标,由点D与点C关于x轴对称可求出D 坐标,利用待定系数法求出直线BD解析式即可;(2)连接BC,过点P作y轴的平行线交BC于点H,先求出直线BC解析式为y=−x+3,设点P(x,−x2+2x+3),则点H(x,−x+3),则四边形BOCP面积=S△OBC+S△PHC+S△PHB,据此求出关于x关系式,再利用二次函数的性质求解即可;(3)分两种情况:①当∠PBD为直角时,②当∠PDB为直角时,据此分别求解即可.2.【答案】(1)解:点M在直线y=4x+1上,理由:∵点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)解:如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5),又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A (5,0),由图象,得当mx+5>﹣(x ﹣b )2+4b+1时,x 的取值范围是x <0或x >5;(3)解:把A (5,0)代入y =mx+5得,0=5m+5,解得m =﹣1,∴y =﹣x+5,∵M (b ,4b+1)在△AOB 内部,∴{0<b <50<4b +1<−b +5, 解得0<b <45, 当点C ,D 关于对称轴对称时,b =14+342=12, ∴0<b <12时,y 1>y 2, b =12时,y 1=y 2, 12<b <45,y 1<y 2. 【知识点】一次函数的图象;二次函数与不等式(组)的综合应用;二次函数图象上点的坐标特征;二次函数y=ax^2+bx+c 的性质【解析】【分析】(1)先求出顶点M 的坐标,再代入y =4x+1中检验即可;(2)由y =mx+5求出B (0,5) ,再将其代入y =﹣(x ﹣b )2+4b+1 中求出b 值,即得y =﹣(x ﹣2)2+9, 从而求出A (5,0),由图象可知当x <0或x >5时,直线y =mx+5的图象在y =﹣(x ﹣b )2+4b+1 图象的上方,据此即得结论;(3)由(2)可得y =﹣x+5, 由M (b ,4b+1)在△AOB 内部, 可求出0<b <45, 当点C ,D 关于对称轴对称时可求出b =12, 从而得出当0<b <12时,y 1>y 2,当b =12时,y 1=y 2,当12<b <45,y 1<y 2.3.【答案】(1)解:将m =2,n =1代入y =(x −m)(x −n),得y =(x −2)(x −1)=x 2−3x +2=(x −32)2−14, 则该二次函数的对称轴是x =32,且当x =32时,有最小值为−14; (2)解:分为两种情况:①如图,当C 在B 的左侧时,B ,C 是线段AD 的三等分点,∴AC =BC =BD ,∵抛物线向右平移a 个单位,∴AC =BD =a ,当y =0时,(x +3)(x −1)=0, 解得x 1=−3,x 2=1,∵点A 在点B 的左侧,∴A(−3,0),B(1,0),∴AB =1−(−3)=4,∴AC =BC =2,∴a =2;②同理,当C 在B 的右侧时, ∵AB =1−(−3)=4,∴AB =BC =CD =4,∴a =AB +BC =4+4=8;(3)解:∵y =(x −m)(x −n)图象经过(0,p),(1,q)两点, ∴p =mn ,q =(1−m)(1−n), ∴pq =mn(1−m)(1−n),=(m −m 2)(n −n 2),=[−(m −12)2+14][−(n −12)2+14],∵0<m <n <1,结合y =−(x −12)2+14的函数图象, ∴0<−(m −12)2+14≤14,∴0<−(n−12)2+14≤14,∵m<n,∴m、n不能同时等于14,∴0<pq<116.【知识点】二次函数图象的几何变换;二次函数的最值;二次函数图象上点的坐标特征;二次函数y=ax^2+bx+c的性质【解析】【分析】(1)将m=2与n=1代入y=(x-m)(x-n)可得该函数的解析式,进而将解析式配成顶点式,即可得出答案;(2)分为两种情况:①如图,当C在B的左侧时,B,C是线段AD的三等分点,令解析式中的y=0算出对应的自变量的值可得点A、B的坐标,可得AB的长,据此即可求出答案;②当C在B的右侧时,同理可得AB的长,进而即可根据a=AB+BC算出答案;(3)根据函数图象上的点的坐标特征可得p=mn,q=(1-m)(1-n),进而可表示出pq并配方成顶点式的乘积形式,由0<m<n<1,结合y=−(x−12)2+14的函数图象,可得m、n不能同时等于14,据此即可得出答案.4.【答案】(1)解:将A点坐标代入得:1=32a−12,解得:a=1,∴A(1,1),将A、B点代入二次函数解析式得:{−12+b+c=1−32+3b+c=4,解得:{b=112c=−72,∴二次函数解析式为:y1=−x2+112x−72.(2)解:将x=m代入一次函数和二次函数解析式得:y 1=−m2+112m−72,y2=32m−12,∵线段MN=1,∴|y1−y2|=1,即|−m2+112m−72−32m+12|=1,∴−m2+4m−3=1或−m2+4m−3=−1,解得:m1=2+√2;m2=2−√2;m3=m4=2.(3)对称轴为x=6±√132【知识点】二次函数与一次函数的综合应用【解析】【解答】解:(3)将点B代入二次函数解析式得:4=−9+3b+c,则c=13−3b,∵A(a,1),C(n,1)(n>a),在二次函数图象上,得c=13-3b,∴a、n是方程−x2+bx+c=1的两个根,根据韦达定理得,n+a=b,na=1−c=1−(13−3b)=3b−12,∵AC=5,∴n−a=5,∵(n−a)2=(n+a)2−4an,∴25=b2−4(3b−12)=b2−12b+48,解得:b=6±√13,.∴对称轴为直线x=6±√132【分析】(1)将点A(a,1)代入y2的解析式,求出a的值,从而可得点A的坐标,将A、B两点的坐标分别代入y1=-x2+bx+c得出关于字母b、c的方程组,求解可得b、c的值,从而求出y1的解析式;(2)将x=m分别代入两个函数解析式算出y1与y2,根据MN=1可得|y1−y2|=1,求解得出m 的值;(3)将点B代入二次函数y1=-x2+bx+c得c=13-3b,根据二次函数与一元二次方程的关系,结合A、C两点的纵坐标相同可得A、C两点的横坐标是方程-x2+bx+c=1的解,根据一元二次方程根与系数的关系得n+a=b,na=1-c=3b-12,再结合AC=5可得n-a=5,进而利用完全平方公式变形可得关于字母b的方程,求解得b的值,最后根据抛物线的对称轴直线公式即可得出抛物线的解析式. 5.【答案】(1)解:∵抛物线y=x2+bx+c经过原点O,且对称轴是直线x=2,,∴c=0,−b2=2则b=−4、c=0,∴抛物线解析式为y=x2−4x(2)解:设点B(a,a2−4a),∵y=x2−4x=(x−2)2−4,∴点A(2,−4),则OA2=22+42=20、OB2=a2+(a2−4a)2、AB2=(a−2)2+(a2−4a+4)2,①若OB2=OA2+AB2,则a2+(a2−4a)2=20+(a−2)2+(a2−4a+4)2,解得a=2(舍)或a=5 2,∴B(52,−154),则直线OB解析式为y=−32x,当x=2时,y=−3,即P(2,−3),∴t=(−3+4)÷1=1;②若AB2=OA2+OB2,则(a−2)2+(a2−4a+4)2=20+a2+(a2−4a)2,解得a=0(舍)或a=9 2,∴B(92,94),则直线OB解析式为y=12x,当x=2时,y=1,即P(2,1),∴t=[1−(−4)]÷1=5;③若OA2=AB2+OB2,则20=(a−2)2+(a2−4a+4)2+a2+(a2−4a)2,整理,得:a3−8a2+21a−18=0,a3−3a2−5a2+15a+6a−18=0,a2(a−3)−5a(a−3)+6(a−3)=0,(a−3)(a2−5a+6)=0,(a−3)2(a−2)=0,则a=3或a=2(舍),∴B(3,−3),∴直线OB解析式为y=−x,当x=2时,y=−2,即P(2,−2),∴t=[−2−(−4)]÷1=2;综上,当△AOB为直角三角形时,t的值为1或2或5(3)解:∵⊙M为△AOB的外接圆,∴点M在线段OA的中垂线上,∴当1≤t≤5时,点M的运动路径是在线段OA中垂线上的一条线段,当t=1时,如图1,由(2)知∠OAB=90°,∴此时Rt△OAB的外接圆圆心M是OB的中点,∵B(52,−154),∴M(54,−158);当t=5时,如图2,由(2)知,∠AOB=90°,∴此时Rt△OAB的外接圆圆心M是AB的中点,∵B(92,94)、A(2,−4),∴M(134,−78);当t =2时,如图3,由(2)知,∠OBA =90°,∴此时Rt △OAB 的外接圆圆心M 是OA 的中点,∵A(2,−4),∴M(1,−2);则点M 经过的路径长度为√(54−1)2+(−158+2)2+√(1−134)2+(−2+78)2=√58+9√58=5√54. 【知识点】待定系数法求一次函数解析式;待定系数法求二次函数解析式;勾股定理;三角形的外接圆与外心;直角坐标系内两点的距离公式【解析】【分析】(1)将(0,0)代入y=x 2+bx+c 中可得c=0,根据对称轴为直线x=2可得b=-4,据此可得抛物线的解析式;(2)设B (a ,a 2-4a ),根据抛物线的解析式可得A (2,-4),由两点间距离公式表示出OA 2、OB 2、AB 2,然后结合勾股定理求出a 的值,得到点B 的坐标,利用待定系数法求出直线OB 的解析式,令x=2,求出y 的值,得到点 P 的坐标,进而可得t 的值;(3)由题意可得点M 在线段OA 的中垂线上,故当1≤t≤5时,点M 的运动路径是在线段OS 中垂线上的一条线段,当t=1时,Rt△OAB 的外接圆圆心M 是OB 的中点,据此可得点M 的坐标;当t=5时,Rt△OAB 的外接圆圆心M 是AB 的中点,利用中点坐标公式可得点M 的坐标;当t=2时,Rt△OAB 的外接圆圆心M 是OA 的中点,同理可得点M 的坐标,然后结合两点间距离公式可求出点M 经过的路径长度.6.【答案】(1)解:将A(−1,0),B(4,0)代入y =ax 2+bx −4得{a −b −4=016a +4b −4=0解得{a=1b=−3∴y=x2−3x−4,对称轴为直线x=3 2(2)解:过点P作PH∥y轴交直线AD于H当x=0时,y=−4,∴点C(0,−4),∵点D与点C关于直线l对称,且对称轴为直线,∴D(3,−4),∵A(−1,0),∴直线AD的函数关系式为:y=−x−1,设P(m,m2−3m−4),则H(m,−m−1),∴PH=−m−1−(m2−3m−4)=−m2+2m+3,∴SΔAPD=SΔAPH+SΔDPH=12⋅PH⋅4=2(−m2+2m+3)=−2m2+4m+6,当m=−42×(−2)=1时,SΔAPD最大为8.【知识点】待定系数法求二次函数解析式;二次函数与一次函数的综合应用【解析】【分析】(1)将点A、B的坐标代入y=ax2+bx−4求出a、b的值即可;(2)过点P作PH∥y轴交直线AD于H,先求出直线AD的解析式y=−x−1,设P(m,m2−3m−4),则H(m,−m−1),再求出SΔAPD=SΔAPH+SΔDPH=12⋅PH⋅4=2(−m2+2m+3)=−2m 2+4m +6,最后利用二次函数的性质求解即可。
浙江专版中考数学第三章函数第14讲二次函数的应用精讲本课件
(1)求雕塑高 OA; (2)求落水点 C,D 之间的距离; (3)若需要在 OD 上的点 E 处竖立雕塑 EF,OE=10 m, EF=1.8 m,EF⊥OD.问:顶部 F 是否会碰到水柱?请通 过计算说明.
解:(1)当 x=0 时,y=-1 (0-5)2+6=11 ,∴点 A 的坐标为
6
6
2
2
EF·EH×40 = (20 + 30)×5×20 + (10 + 20)×5×60 +
20×10×40=22 000;
解:(2)E F =(20-2x )米,E H =(30-2x )米,参考(1),由 题意得:y=(30+30-2x)·x·20+(20+20-2x)·x·60+(30 -2x)(20-2x)·40=-400x+24 000(0<x<10);
题 型 三 二次函数的应用——几何图形类
例 3.用承重指数 W 衡量水平放置的长方体木板的最大承 重量.实验室有一些同材质同长同宽而厚度不一的木板, 实验发现:木板承重指数 W 与木板厚度 x(厘米)的平方成 正比,当 x=3 时,W=3.
பைடு நூலகம்
(1)求 W 与 x 的函数关系式; (2)如图,选一块厚度为 6 厘米的木板,把它分割成与原 来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板 的厚度为 x(厘米),Q=W 厚-W 薄. ①求 Q 与 x 的函数关系式; ②x 为何值时,Q 是 W 薄的 3 倍?[注:(1)及(2)中的①不 必写 x 的取值范围]
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有 2 万、3 万和 2 万,并且当甲、乙两种门票价格不变时,丙 种门票价格每下降 1 元,将有 600 人原计划购买甲种门票的 游客和 400 人原计划购买乙种门票的游客改为购买丙种门 票. ①若丙种门票价格下降 10 元,求景区六月份的门票总收入;
2020年浙江数学中考复习第三单元函数之第14课时 二次函数综合题
∴mn=x1x2(1-x1)(1-x2) ∵0<x1<x2<1,
=(x
1-x
21)(x
2-x
22)
=[-(x
1-12)2+14]·[-(x
2-12)2+14]
,
∴∵0x<1≠x-2,(x∴1-012<)2m+n14<≤11614
,0<-(x2-12 .
)2+ 1 4
≤1 4
,∴0<mn≤
1, 16
第14课时 二次函数综合题
①当-4≤- b ≤-2,即4≤b≤8时,
2 如解图①所示,x=1时,函数取最大值y=1+3b;
当x=- b时,函数取最小值y= 8b-b2,∴(1+3b)- 8b-b2=16,
2
4
4
即b2+4b-60=0.∴b1=6,b2=-10(舍去).
②当-2<- b ≤0,即0≤b<4时,如解图②所示,
2 x=-5时,函数取最大值y=25-3b;x=-
当a<0时,a(x-2)(x-1)>0,即y1>y2.
第14课时 二次函数综合题
返回目录
4. (2018杭州22题12分)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0). (1)判断该二次函数图象与x轴交点的个数,说明理由; (1)解:该二次函数图象与x轴有1个或2个交点. 理由如下:∵a≠0,Δ=b2+4a(a+b)=(b+2a)2≥0, ∴该二次函数图象与x轴有1个或2个交点;
第14课时 二次函数综合题
返回目录
(6)已知二次函数y=mx2-2mx+3,若P(-1,y1),Q(4,y2)两点在此函数图象上, 试比较y1,y2的大小. 【思维教练】要比较函数图象上两点纵坐标的大小,只需求出抛物线的对称轴,分 m>0和m<0两种情况,根据两点到抛物线对称轴的距离即可判断.
江苏省中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)
江苏省中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)函数第14课时二次函数的应用江苏近5年中考真题精选(2013~2017)命题点1二次函数的实际应用(盐城1考,淮安1考,宿迁1考)考向一最大利润问题1. (2016徐州26题8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)2. (2013盐城25题10分)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)第2题图3. (2017扬州27题12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克) 30 35 40 45 50日销售量p(千克) 600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a值.(日获利=日销售利润-日支出费用) 考向二费用问题4. (2016宿迁24题8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.考向三 几何图形面积问题5. (2014淮安25题10分)用长为32 m 的篱笆围一个矩形养鸡场,设围成的矩形一边长为x m ,面积为y m 2.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60 m 2?(3)能否围成面积为70 m 2的养鸡场?如果能,请求出其边长;如果不能,请说明理由. 6. (2013连云港23题10分)小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48 cm 2.”他的说法对吗?请说明理由.命题点2 二次函数的综合应用(盐城必考,淮安2考,宿迁必考)7. (2016淮安27题12分)如图,在平面直角坐标系中,二次函数y =-14x 2+bx +c的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0).(1)求该二次函数的表达式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .①求S 的最大值;②在点F 的运动过程中,当点E 落在该二次函数图象上时,请直接写出此时S 的值.第7题图8. (2013南京26题9分)已知二次函数y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为C,与x轴交于A、B两点,与y轴交于点D.①当△ABC的面积等于1时,求a的值;②当△ABC的面积与△ABD的面积相等时,求m的值.9. (2016宿迁26题10分)如图,在平面直角坐标系xOy中,将二次函数y=x2-1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.第9题图10. (2013宿迁27题12分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx -3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y =t(t为常数)与抛物线交于不同的两点P、Q.(1)求a和b的值;(2)求t 的取值范围;(3)若∠PCQ =90°,求t 的值.第10题图 答案1. 解:(1)设y =kx +b ,将(180,100),(260,60)代入得:⎩⎨⎧=+=+60260100180b k b k , 解得⎪⎩⎪⎨⎧==19021-b k ,(2分) ∴y 与x 之间的函数表达式为y =-12x +190(180≤x ≤300);(4分)(2) 设利润为w ,w =y·x -100y -60(100-y )=x (-12x +190)-100(-12x +190)-60[100-(-12x +190)]=-12x 2+210x -13600=-12(x -210)2+8450,∵180<210<300, (6分)∴当x =210时,w 最大=8450(元),答:当房价为210元时,宾馆当日利润最大,最大利润为8450元.(8分)2. 解:(1)设现在实际购进这种水果每千克a 元,则原来购进这种水果每千克(a +2)元,根据题意,得80(a +2)=88a , 解得a =20.答:现在实际购进这种水果每千克20元; (2)①设y 与x 之间的函数关系式为y =kx +b ,将(25,165),(35,55)代入,得⎩⎨⎧=+=+553516525b k b k ,解得⎩⎨⎧==44011-b k , 故y 与x 之间的函数关系式为y =-11x +440;②设这种水果的销售单价为x 元时,所获利润为w 元, 则w =(x -20)y =(x -20)(-11x +440) =-11x 2+660x -8800 =-11(x -30)2+1100, ∵a =-11<0,∴当x =30时,w 有最大值1100.答:将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元. 3. 解:(1)p 与x 之间满足一次函数关系p =kx +b (k ≠0),因为点(50,0),(30,600)在图象上,所以⎩⎨⎧=+=+60030050b k b k ,解得⎩⎨⎧==150030-b k , ∴p 与x 之间的函数表达式为p =-30x +1500(30≤x ≤50);(2)设日销售价格为x 元/千克,日销售利润为w 元,依题意得w =(-30x +1500)(x -30)=-30x 2+2400x -45000(30≤x ≤50), ∵a =-30<0, ∴w 有最大值,当x =-24002×(-30)=40 (元/千克)时,w 有最大值,即最大值为w 最大=4×(-30)×(-45000)-240024×(-30)=3000(元);答:销售价格为40元/千克时,日销售利润最大;(3)∵w =p (x -30-a)=-30x 2+(2400+30a )x -(1500a +45000), 对称轴为x =-2400+30a 2×(-30)=40+12a ,①若a >10,当x =45时取最大值,(45-30-a )×150=2250-150a <2430(舍去), ②若a <10,当x =40+12a 时取最大值,将x =40+12a 代入,得w =30(14a 2-10a +100),令w =2430,则30(14a 2-10a +100)=2430,解得a =2或a =38(舍去). 综上所述,a =2. 4. 解:(1)由题意得,y =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤=≤<+=≤)<()()()()()()<100-150]30-120[30150--150]30-120[300(1202x m x m m x m x x x x x x x x x ;(4分) (2)由(1)知当0<x ≤30或m <x ≤100时, 函数值都是随着x 的增大而增大, 当30<x ≤m 时,y =x [120-(x -30)]=x(150-x ) =-x 2+150x=-(x 2-150x +752-752) =-(x -75)2+752,∴当30<m ≤75时,收取的总费用随着团队中人数的增加而增加.(8分)5. 解:(1)已知围成的矩形一边长为x m ,则矩形的邻边长为(32÷2-x ) m .依题意得:y =x (32÷2-x )=-x 2+16x ,∴y 关于x 的函数关系式是y =-x 2+16x ;(3分)(2)由(1)知y =-x 2+16x , 当y =60时,-x 2+16x =60,即(x -6)(x -10)=0, 解得 x 1=6,x 2=10,即当x 是6 m 或10 m 时,围成的养鸡场面积为60 m 2;(5分) (3)不能围成面积为70 m 2的养鸡场.(6分) 理由如下:由(1)知,y =-x 2+16x , 当y =70时,-x 2+16x =70, 即x 2-16x +70=0,(8分) ∵b 2-4ac =(-16)2-4×1×70 =-24<0, ∴该方程无解;即不能围成面积为70 m 2的养鸡场.(10分)6. 解:(1)设剪成的较短的一段为x cm ,较长的一段就为(40-x)cm ,由题意得:)4(x 2+(4-40x )2=58, 解得x 1=12,x 2=28,当x =12时,较长的为40-12=28 cm , 当x =28时,较长的为40-28=12<28(舍去), ∴较短的一段为12 cm ,较长的一段为28 cm ;(2)设剪成的较短的一段为m cm ,较长的一段就为(40-m)cm ,由题意得:(4m )2+(4-40m )2=48, 变形为:m 2-40m +416=0, ∵b 2-4ac =(-40)2-4×416 =-64<0,∴原方程无实数根,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2. 7. 解:(1)∵二次函数y =-14x 2+bx +c 过A (0,8)、B (-4,0)两点,∴⎪⎩⎪⎨⎧==+⨯804-4-41-2c c b )(, 解得⎩⎨⎧==81c b , ∴二次函数的解析式为y =-14x 2+x +8,当y =0时,解得x 1=-4,x 2=8, ∴C 点坐标为(8,0);(2)①如解图,连接DF 、OF ,设F (m ,-14m 2+m +8),第7题解图∵S 四边形OCFD =S △CDF +S △OCD =S △ODF +S △OCF , ∴S △CDF =S △ODF +S △OCF -S △OCD ,=12×4×m +12×8×(-14m 2+m +8)-12×8×4 =2m -m 2+4m +32-16 =-m 2+6m +16=-(m -3)2+25,∴当m =3时,△CDF 的面积有最大值,最大值为25,∵四边形CDEF 为平行四边形,∴S 四边形CDEF =2S △CDF =50,∴S 的最大值为50;②18.【解法提示】∵四边形CDEF 为平行四边形,∴CD ∥EF ,CD =EF ,∵点C 向左平移8个单位,再向上平移4个单位得到点D ,∴点F 向左平移8个单位,再向上平移4个单位得到点E ,即E (m -8,-14m 2+m +12), ∵E (m -8,-14m 2+m +12)在抛物线上, ∴-14(m -8)2+(m -8)+8 =-14m 2+m +12, 解得m =7,当m =7时,S △CDF =-(7-3)2+25=9,∴此时S 四边形CDEF =2S △CDF =18.8. (1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am .∵当a ≠0时,[-(2am +a )]2-4a (am 2+am )=a 2>0.∴方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根,∴不论a 与m 为何值且a ≠0时,该函数的图象与x 轴总有两个公共点;(3分)(2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a ,∴点C 的坐标为(212+m ,-4a).当y =0时,a (x -m )2-a (x -m )=0,解得x 1=m ,x 2=m +1,∴AB =1.当△ABC 的面积等于1时,有12×1×|-4a|=1,∴12×1×(-4a )=1,或12×1×4a=1,∴a =-8或a =8;(6分)②当x =0时,y =am 2+am ,所以点D 的坐标为(0,am 2+am ),当△ABC 的面积与△ABD 的面积相等时,12×1×|-a 4|=12×1×|am 2+am |;即|4a|=|am 2+am |,∵a ≠0,∴14=|m 2+m |,∴m 2+m =±14,即m 2+m +14=0或m 2+m -14=0,∴m =-12或m =-1-22或m =-1+22.(9分) 9. 解:(1)由题意得N 的函数表达式为y =-(x -2)2+9;(3分)(2)∵点P 的坐标为(m ,n),点A 为(-1,0),点B 为(1,0),∴PA 2+PB 2=(m +1)2+(n -0)2+(m -1)2+(n -0)2=m 2+2m +1+n 2+m 2-2m +1+n 2=2m 2+2n 2+2=2(m 2+n 2)+2=2OP 2+2,∴当PA 2+PB 2最大时,要满足OP 最大,即满足直线OP 经过点C ,(5分)又∵点P (m , n )是以点C (1,4)为圆心、1为半径的圆上一动点,∴CP =1,∵OC =12+42=17,∴OP =17+1,∴PA 2+PB 2=2OP 2+2=2(17+1)2+2=38+417;(7分) (3)由⎩⎨⎧+==92--1-22)(x y x y 得两二次函数交点坐标为(-1,0),(3,8). 两曲线围成的封闭图形如解图所示,第9题解图纵坐标的取值范围为:-1≤y ≤9,横坐标的取值范围-1≤x ≤3,∴M 与N 所围成封闭图形内(包括边界)的整点有:(-1,0),(0,-1),(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,8)共25个.(10分)10. 解:(1)将点A (-3,0)、点B (1,0)坐标代入y =ax 2+bx -3中可得: ⎩⎨⎧==+03-3-903-b a b a , 解得⎩⎨⎧==21b a ;(2)由(1)知抛物线的解析式为y =x 2+2x -3,动直线y =t ,联立两个解析式可得:x 2+2x -3=t ,即x 2+2x -(3+t)=0.∵动直线y =t (t 为常数)与抛物线交于不同的两点,∴b 2-4ac =4+4(3+t )>0,解得t >-4;(3)∵y =x 2+2x -3=(x +1)2-4,∴抛物线的对称轴为直线x =-1,当x =0时,y =-3,∴C (0,-3).设点Q 的坐标为(m ,t ),则点P 的坐标为(-2-m ,t),如解图,设PQ 与y 轴交于点D ,第10题解图则CD =t +3,DQ =m ,DP =m +2,∵∠PCQ =∠PCD +∠QCD =90°,∠DPC +∠PCD =90°,∴∠QCD =∠D P C ,又∵∠PDC =∠QDC =90°,∴△QCD ∽△CPD ,∴DQ DC =DC PD , 即3+t m =23++m t ,整理得:t 2+6t +9=m 2+2m ,∵Q =(m ,t)在抛物线上,∴t =m 2+2m -3,∴m 2+2m =t +3,∴t 2+6t +9=t +3,化简得t 2+5t +6=0,解得t =-2或t =-3,当t =-3时,动直线y =t 经过点C ,故不合题意,舍去,∴t =-2.。
中考数学《二次函数的实际应用与几何问题》专项练习题及答案
中考数学《二次函数的实际应用与几何问题》专项练习题及答案一、单选题1.如图,正六边形的边长为10,分别以正六边形的顶点A、B、C、D、E、F为圆心,画6个全等的圆.若圆的半径为x,且0<x≤5,阴影部分的面积为y,能反映y与x之间函数关系的大致图形是()A.B.C.D.2.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为( ) A.y=x2+16B.y=(x+4)2C.y=x2+8x D.y=16−4x23.若抛物线y=x2-4x-12与x轴交于点A,B,与y轴交于点C,则△ABC的面积为()A.24B.36C.48D.964.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.5.已知抛物线y=−316(x−1)(x−9)与x轴交于A,B两点,对称轴与抛物线交于点C,与x轴交于点D,⊙C的半径为2,G为⊙C上一动点,P为AG的中点,则DP的最大值为()A.72B.√412C.√342D.2√36.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A.(B.C.D.(7.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为ℎ=30t−5t2,那么水流从喷出至回落到地面所需要的时间是( )A.6s B.4s C.3s D.2s8.如图,从1×2的矩形ABCD 的较短边AD 上找一点E ,过这点剪下两个正方形,它们的边长分别是AE 、DE ,当剪下的两个正方形的面积之和最小时,点E 应选在( )A .AD 的中点B .AE :ED=(√5﹣1):2C .AE :ED=√2:1D .AE :ED=(√2﹣1):29.有一个矩形苗圃园,其中一边靠墙,另外三边用长为20m 的篱笆围成.已知墙长为15m ,若平行于墙的一边长不小于8m ,则这个苗圃园面积的最大值和最小值分别为( )A .48m 2,37.5m 2B .50m 2,32m 2C .50m 2,37.5m 2D .48m 2,32m 210.已知二次函数y=(x+m )2–n 的图象如图所示,则一次函数y=mx+n 与反比例函数y= mnx 的图象可能是( )A .B .C .D .11.在平面直角坐标系中,已知点M ,N 的坐标分别为(−1,3),(3,3),若抛物线y =x 2−2mx +m 2−m +2与线段MN 只有一个公共点,则m 的取值范围是( )A .−1⩽m <0或7−√172<m ⩽7+√172B .−1⩽m <0或m >7−√172C .m <0或7−√172<m ⩽7+√172D .−1⩽m ⩽7+√17212.如图所示是二次函数y= −12x 2+2 的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为可能的值是( )A .4B .163C .2πD .8二、填空题13.矩形的周长为 20cm ,当矩形的长为 cm 时,面积有最大值是 cm 2 . 14.如图,坐标平面上,二次函数 y =−x 2+4x −k 的图形与 x 轴交于 A 、 B 两点,与 y 轴交于 C 点,其顶点为 D ,且 k >0 .若 ΔABC 与 ΔABD 的面积比为 1:3 ,则 k 值为 .15.在第一象限内作射线OC ,与x 轴的夹角为60°,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H ,在抛物线y=x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是16.如图,有一块直角三角形土地,它两条直边AB=300米,AC=400米,某单位要沿着斜边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,这个矩形DEFG的面积最大值是.17.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴,y轴分别交于点A和点B,与反比例函数y=mx(m>0)的图象交于点C(2,4),B为线段AC的中点,若点D为线段AC上的一个动点,过点D作DE∥x轴,交反比例函数图象于点E,连接OD,OE,则△ODE面积的最大值为.18.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为 m2.三、综合题19.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示).设矩形的一边AB的长为x米(要求AB<AD),矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使花圃的面积最大,AB边的长应为多少米?20.如图,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P为抛物线在第二象限内一点,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,若点P在点Q左边,设点P的横坐标为m.①当矩形PQNM的周长最大时,求△ACM的面积;②在①的条件下,当矩形PMNQ的周长最大时,G是直线AC上一点,F是抛物线上一点,是否存在点G,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请求出F点的坐标;若不存在,请说明理由.21.如图,在矩形ABCD的场地内,修建横竖两条甬道,场地其余部分种植草评,已知竖向甬道的宽度是横向甬道宽度的2倍,AD=20米,AB=16米,设横向甬道的宽度为x米,草坪面积为y米2.(1)请写出y与x之间的函数关系式;(不必写出自变量的取值范围)(2)若草坪面积为270米2,请求出横向甬道的宽度.22.如图,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A,B两点(点B在点A的右侧),与y轴的正半轴交于点C,顶点为D.若以BD为直径的⊙M经过点C.(1)请直接写出C,D的坐标(用含a的代数式表示);(2)求抛物线的函数表达式;(3)⊙M上是否存在点E,使得∠EDB=∠CBD?若存在,请求出所满足的条件的E的坐标;若不存在,请说明理由.23.已知,抛物线y=-x2+bx+c经过点A(-1,0)和C(0,3).(1)求抛物线的解析式;(2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标. 24.某农场造一个矩形饲养场ABCD,如图所示,为节省材料,一边靠墙(墙足够长),用总长为77m的木栏围成一块面积相等的矩形区域:矩形AEGH,矩形HGFD,矩形EBCF,并在①②③处各留1m装门(不用木栏),设BE长为x(m),矩形ABCD的面积为y(m2)(1)∵S矩形AEGH=S矩形HGFD=S矩形EBCF,∴S矩形AEFD=2S矩形EBCF,∴AE:EB=.(2)求y关于x的函数表达式和自变量x的取值范围.(3)当x为何值时,矩形ABCD的面积有最大值?最大值为多少?参考答案1.【答案】A 2.【答案】C 3.【答案】C 4.【答案】A 5.【答案】A 6.【答案】B 7.【答案】A 8.【答案】A 9.【答案】C 10.【答案】C 11.【答案】A 12.【答案】B 13.【答案】5;25 14.【答案】115.【答案】( √3 ,3)或( 13 , √33 )或( 23 , 2√33)或(2,2 √3 )16.【答案】30000平方米 17.【答案】9218.【答案】7519.【答案】(1)解:∵四边形ABCD 是矩形,AB 的长为x 米∴CD=AB=x(米).∵矩形除AD 边外的三边总长为36米 ∴BC=36−2x(米).∴S =x(36−2x)=−2x 2+36x. 自变量x 的取值范围是0<x<12. (说明:由0<x<36−2x 可得0<x<12.)(2)解:∵S =−2x 2+36x =−2(x −9)2+162, 且x=9在0<x<12的范围内 ∴当x=9时,S 取最大值即AB 边的长为9米时,花圃的面积最大.20.【答案】(1)解:∵直线y=x+3与x 轴交于点A ,与y 轴交于点B ,∴A (﹣3,0),B (0,3).∵抛物线y=﹣x 2+bx+c 经过A 、B 两点,∴{−9−3b +c =0c =3 ,解得: {b =−2c =3 ,∴抛物线的解析式为y=﹣x 2﹣2x+3;(2)解:①∵点P 的横坐标为m ,∴P (m ,﹣m 2﹣2m+3),PM=﹣m 2﹣2m+3.∵抛物线y=﹣x 2﹣2x+3的对称轴为x=﹣ b 2a =﹣ −22×(−1)=﹣1,∴PQ=2(﹣1﹣m )=﹣2m ﹣2,∴矩形PQMN 的周长=2(PM+PQ )=2(﹣m 2﹣2m+3﹣2m ﹣2)=﹣2m 2﹣8m+2=﹣2(m+2)2+10,当m=﹣2时,矩形PQMN 的周长最大,此时点C 的坐标为(﹣2,1),CM=AM=1,∴S △ACM = 12 ×1×1= 12 ;②∵C (﹣2,1),∴P (﹣2,3),∴PC=3﹣1=2.∵点P 、C 、G 、F 为顶点的四边形是平行四边形,GF ∥y 轴,∴GF ∥PC ,且GF=PC .设G (x ,x+3),则F (x ,﹣x 2﹣2x+3),当点F 在点G 的上方时,﹣x 2﹣2x+3﹣(x+3)=2,解得x=﹣1或x=﹣2(舍去),当x=﹣1时,﹣x 2﹣2x+3=4,即F 1(﹣1,4);当点F 在点G 的下方时,x+3﹣(﹣x 2﹣2x+3)=2,解得:x= −3+√172 或x= −3−√172 .当x= −3+√172 时,﹣x 2﹣2x+3= −1+√172 ;当x= −3−√172 时,﹣x 2﹣2x+3= −1−√172 ,故F 2( −3+√172,−1+√172 ),F 3( −3−√172,−1−√172).综上所示,点F 的坐标为F 1(﹣1,4),F 2( −3+√172,−1+√172 ),F 3( −3−√172,−1−√172).21.【答案】(1)解:设横向甬道的宽度为x 米,草坪面积为y 米2,则横向甬道的宽度为2x 米,剩余部分可合成为长(16-x )米,宽(20-2x )米的矩形,依题意可得y =(20−2x)(16−x)即y =2x 2−52x +320;(2)解:由题意可知2x 2−52x +320=270 解得:x 1=25,x 2=1∵x 1=25>16,不符合题意舍去 ∴只取x 2=1答:横甬道的宽度为1m .22.【答案】(1)解:当x=0时,ax 2﹣2ax ﹣3a ﹣3a ,则点C 的坐标为(0,﹣3a );∵y=ax 2﹣2ax ﹣3a=a (x ﹣1)2﹣4a ∴点D 的坐标为(1,﹣4a )(2)解:当y=0时,ax 2﹣2ax ﹣3a=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0) ∵BD 为⊙M 的直径 ∴∠BCD=90°而BC 2=(0﹣3)2+(﹣3a ﹣0)2=9a 2+9,CD 2=(0﹣1)2+(﹣3a+4a )2=a 2+1,BD 2=(3﹣1)2+(0+4a )2=16a 2+4在Rt △BCD 中,∵BC 2+CD 2=BD 2 ∴9a 2+9+a 2+1=16a 2+4整理得a 2=1,解得a 1=﹣1,a 2=1(舍去); ∴抛物线解析式为:y=﹣x 2+2x+3 (3)解:存在.a=1,CD 2=a 2+1=2,BC 2=9a 2+9=18 ∵∠EDB=∠CBD ∴CD=BE 而BD 为直径 ∴∠BED=90° ∴Rt △BED ≌Rt △DCB ∴DE=BC 设E (x ,y )∴ED 2=(x ﹣1)2+(y ﹣4)2,BE 2=(x ﹣3)2+y 2 ∴(x ﹣1)2+(y ﹣4)2=18,(x ﹣3)2+y 2=2解得x=4,y=1或x= 85 ,y=﹣ 15∴满足条件的E 点坐标为(4,1)、( 85 ,﹣ 15).23.【答案】(1)解: ∵ 抛物线y=-x 2+bx+c 经过点A (-1,0)和C (0,3)∴ 将A (-1,0)和C (0,3)代入抛物线,得 {−1−b +c =0c =3 解得: {b =2c =3 ∴ y=-x 2+2x+3(2)解: ∵ y=-x 2+2x+3=-(x-1)2+4 ∴ 点M 的横坐标为1. 设点M 的坐标为(1,m ) 则MC= √(1−0)2+(m −3)2第 11 页 共 11 CA= √[0−(−1)]2+(3−0)2 = √10MA= √[1−(−1)]2+(m −0)2 .分两种情况考虑:①当∠ACM=90°时,则MA 2=CA 2+MC 2,即4+m 2=10+1+ (m −3)2 ,解得:m= 83∴ 点M 的坐标为(1, 83). ②当∠CAM=90°时,则MC 2=MA 2+CA 2,即1+ (m −3)2 =4+m 2+10,解得:m= −23∴ 点M 的坐标为(1, −23). 综上所述:当△MAC 是直角三角形时,点M 的坐标为:(1, 83 )或(1, −23) 24.【答案】(1)2:1(2)解:∵BE =x∴AE =HG =EF =2x根据题意得,EF =BC = 77−2x−2x×3+32=40-4x ∴y =(40﹣4x)•3x ,即y =﹣12x 2+120x∵0<BC < 77+32 ,且0<AB < 77+383∴0<40﹣4x <40,且0<3x <30∴0<x <10故y =﹣12x 2+120x(0<x <10)(3)解:∵y =﹣12x 2+120x =﹣12(x ﹣5)2+300(0<x <10)∴当x =5时,y 有最大值为:300故当x =5m 时,y 有最大值,最大值为300m 2.。
河南数学中考题型汇总二次函数的实际应用题型练习含答案
河南数学中考题型汇总二次函数的实际应用题型练习含答案类型 1 抛物线形问题1.[2022甘肃兰州]掷实心球是兰州市高中阶段学校招生体育考试的选考项目.一名女生投掷实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图所示,掷出时起点处高度为5m,当水平距离为3 m时,3实心球行进至最高点(距地面3 m处).(1)求y关于x的函数解析式.(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于或等于6.70 m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.2.[2022开封二模]如图(1)是古典凝重的开封北门,也叫安远门.其主门洞的截面如图(2),上部分可看作是抛物线形,下部分可看作是矩形,边AB为16米,BC为6米,最高处点E到地面AB的距离为8米.(1)请在图(2)中建立适当的平面直角坐标系,并求出抛物线的解析式.(2)若该主门洞内设双向行驶车道,正中间有0.6米宽的双黄线,车辆必须在双黄线两侧行驶,不能压双黄线,并保持车辆最高点与门洞正上方有不少于0.6米的空隙(安全距离).一辆大型货运汽车装载某大型设备后,宽3.7米,高6.6米,试判断它能否安全通过该主门洞,并说明理由.图(1)图(2)3.[2022江苏扬州中考改编]如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8 dm,外轮廓线是抛物线的一部分,对称轴为y 轴,高度OC=8 dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长.4.如图(1)是一个高脚杯的截面图,杯体CPD呈抛物线形(杯体厚度不计),点P是抛物线的顶点,点O是杯底AB的中点,且OP⊥AB,OP=CD=6 cm,杯子的高度(即CD,AB之间的距离)为15 cm.以O为原点,AB所在直线为x轴,OP所在直线为y轴建立平面直角坐标系(1个单位长度表示1 cm).(1)求杯体CPD所在抛物线的解析式.(2)将杯子向右平移2 cm,并倒满饮料,杯体CPD与y轴交于点E,如图(2),过D点放一根吸管,吸管底部碰触到杯壁后不再移动,喝过一次饮料后,发现剩余饮料的液面低于点E,设吸管所在直线的解析式为y=kx+b,求k的取值范围.图(1)图(2)5.某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A 在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函(x-5)2+6.数表达式为y=-16(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10 m,EF=1.8 m,EF⊥OD.问:顶部F 是否会碰到水柱?请通过计算说明.6.[2022浙江台州中考改编]如图(1),灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地面的竖直高度为1.5 m.如图(2),可以把灌溉车喷出的水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象.把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3 m,竖直高度EF=0.5 m.下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2 m,高出喷水口0.5 m,灌溉车到l的距离OD为d(单位:m).(1)求上边缘抛物线的函数解析式,并求灌溉车喷出的水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.图(1)图(2)7.[2022安徽]如图(1),隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式.(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图(2)、图(3)中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(i)修建一个“”型栅栏,如图(2),点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值.(ii)现修建一个总长为18米的栅栏,有如图(3)所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).图(1)图(2)图(3)(方案一)图(3)(方案二)类型 2 面积问题8.[2022湖南湘潭]为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12 m)和21 m长的篱笆墙,围成Ⅰ,Ⅱ两块矩形劳动实践基地(即矩形ADGH,矩形BCGH).某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题.(1)方案一:如图(1),全部利用围墙的长度(即AB=12 m),但要在Ⅰ区中留一个宽度AE=1 m的矩形水池,且需保证总种植面积为32 m2,试分别确定CG,DG的长.(2)方案二:如图(2),要使围成的两块矩形总种植面积最大,请问BC应设计为多长.此时最大面积为多少?9.某校计划花费1 200元建造一个长方形牡丹花圃,如图,其中一边靠墙(墙长24 m),另外三边选用不同材料建造.已知平行于墙的边的费用为20元/m,垂直于墙的边的费用为15元/m,设平行于墙的边长x m.(1)设垂直于墙的一边长y m,直接写出y与x之间的函数关系式.(2)设花圃的面积为S m2,求S与x的函数关系式,并求出当S=546时x的值.(3)小明计算出花圃的最大面积是600 m2,小明计算的结果对吗?请说明理由.类型 3 利润问题10.[2022山东滨州]某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元/件)的一次函数.(1)求y关于x的函数解析式.(2)当销售价格定为多少元/件时,每月获得的利润最大?并求此最大利润.11.[2022湖北仙桃]某超市销售一种进价为18 元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售价格x(元/千克)有如下表所示的关系:销售价格x/…2022.52537.540…(元/千克)销售量y/千克…3027.52512.510…(1)根据表中的数据在下图中描点(x,y),并用平滑曲线连接这些点,请用所学知识求出y关于x的函数解析式.(2)设该超市每天销售这种商品的利润为w(元)(不计其他成本),①求出w关于x的函数解析式,并求出获得最大利润时,销售价格为多少;②超市本着“尽量让顾客享受实惠”的销售原则,求w=240(元)时的销售价格.类型 4 其他问题12.[2022湖北武汉]如图,在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70 cm处.小聪测量黑球减速后的运动速度v (单位:cm/s)、运动距离y (单位:cm)随运动时间t (单位:s)变化的数据,整理得下表.运动时间t/s 01234运动速度v/(cm/s) 10 9.5 9 8.5 8运动距离y/cm0 9.75 19 27.75 36小聪探究发现,黑球的运动速度v 与运动时间t 之间成一次函数关系,运动距离y 与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64 cm 时,求它此时的运动速度;(3)若白球一直以2 cm/s 的速度匀速运动,问黑球在运动过程中会不会碰到白球,请说明理由.答案:题型十三 二次函数的实际应用1.(1)设y 关于x 的函数解析式为y=a (x-3)2+3,把(0,53)代入,得53=a (0-3)2+3, 解得a=-427,故y 关于x 的函数解析式为y=-427(x-3)2+3.(2)该女生在此项考试中是得满分.理由:令y=0,则-427(x-3)2+3=0,解得x 1=7.5,x 2=-1.5(舍去).∵7.5>6.70,∴该女生在此项考试中是得满分.2.(1)建立如图所示的平面直角坐标系(建立坐标系的方法不唯一).由题意知E(0,8),故可设抛物线的解析式为y=ax2+8.∵矩形ABCD的边BC=6 m,AB=16 m,∴C(8,6).把C(8,6)代入y=ax2+8,得64a+8=6,解得a=-1,32故抛物线的解析式为y=-1x2+8.32(2)可以安全通过该主门洞.理由:0.6÷2+3.7=4,当x=4时,y=-1×42+8=7.5.32∵7.5-0.6=6.9>6.6,16÷2=8>4,∴可以安全通过该主门洞.3.(1)由题意,得A(-4,0),B(4,0),C(0,8).可设抛物线的解析式为y=ax2+8,,把B(4,0)代入,得0=16a+8,∴a=-12x2+8.∴抛物线的解析式为y=-12易知当正方形的面积最大时,它有两个顶点在抛物线上,设此正方形为正方形EFGH,如图(1),则GH=FG=2OG.设H(t,-1t2+8)(t>0),2t2+8=2t,∴-12解得t1=-2+2√5,t2=-2-2√5(舍去),∴正方形EFGH的面积=FG2=(2t)2=4t2=4(-2+2√5)2=(96-32√5)(dm2).图(1)(2)易知当矩形的周长最大时,它有两个顶点在抛物线上. 如图(2),设矩形EFGH 的顶点H (k ,-12k 2+8)(k>0),图(2)则矩形EFGH 的周长=2FG+2HG=4k+2×(-12k 2+8)=-k 2+4k+16=-(k-2)2+20, ∴当k=2时,矩形EFGH 的周长最大,最大值是20 dm. 4.(1)由题意可知,P (0,6),D (3,15).设杯体CPD 所在抛物线的解析式为y=ax 2+6, 将D (3,15)代入,得15=9a+6, 解得a=1,故杯体CPD 所在抛物线的解析式为y=x 2+6.(2)杯子平移后,杯体CPD 所在抛物线的对称轴为直线x=2,抛物线的解析式为y=(x-2)2+6, ∴当x=0时,y=10, ∴E (0,10).易得D (5,15),点E 关于直线x=2的对称点E'的坐标为(4,10). 将D (5,15),E (0,10)代入y=kx+b ,得{5k +b =15,b =10,解得{k =1,b =10.将D (5,15),E'(4,10)代入y=kx+b ,得{5k +b =15,4k +b =10,解得{k =5,b =−10.分析可知,k 的取值范围为1<k<5. 5.(1)由题意得,A 点在图象上.当x=0时,y=-16×(0-5)2+6=-256+6=116, ∴OA=116m .(2)由题意得,D 点在图象上.令y=0,得-16(x-5)2+6=0, 解得x 1=11,x 2=-1,∴OD=11 m ,∴CD=2OD=22 m .(3)顶部F 不会碰到水柱.说明:当x=10时,y=-16×(10-5)2+6=-256+6=116>1.8, ∴顶部F 不会碰到水柱.6.(1)由题意得A (2,2)是上边缘抛物线的顶点, 故设上边缘抛物线的函数解析式为y=a (x-2)2+2.∵抛物线经过点(0,1.5), ∴1.5=4a+2, ∴a=-18, ∴上边缘抛物线的函数解析式为y=-18(x-2)2+2. 令-18(x-2)2+2=0, 解得x 1=6,x 2=-2,∴灌溉车喷出的水的最大射程OC 为6 m . (2)易知上边缘抛物线的对称轴为直线x=2.∵点(0,1.5)关于直线x=2的对称点的坐标为(4,1.5),∴下边缘抛物线是由上边缘抛物线向左平移4 m 得到的,即点B 是由点C 向左平移4 m 得到的,∴点B 的坐标为(2,0).(3)∵EF=0.5,∴点F 的纵坐标为0.5.令-18(x-2)2+2=0.5,解得x=2±2√3, ∴当上边缘抛物线恰好经过点F 时,点F 的横坐标为2+2√3.易知当下边缘抛物线经过点D 时,d=2,当上边缘抛物线经过点F时,d=2+2√3-3=2√3-1,故要使灌溉车行驶时喷出的水能浇灌到整个绿化带,d 的取值范围是2≤d ≤2√3-1.7.(1)由题意可知A (-6,2).设此抛物线对应的函数表达式为y=ax 2+c ,将A (-6,2),E (0,8)分别代入,得{36a +c =2,c =8,解得{a =−16,c =8,故此抛物线对应的函数表达式为y=-16x 2+8. (2)(i )由题意得P 1(m ,0),将x=m 代入y=-16x 2+8,得y=-16m 2+8, ∴P 2(m ,-16m 2+8), ∴P 3(-m ,-16m 2+8),P 4(-m ,0), ∴P 2P 3=2m ,MN=P 3P 4=P 1P 2=-16m 2+8, ∴l=3(-16m 2+8)+2m=-12m 2+2m+24=-12(m-2)2+26. ∵-12<0,0<m ≤6, ∴当m=2时,l 的值最大,最大值为26.综上,栅栏总长l 与m 之间的函数表达式为l=-12m 2+2m+24,l 的最大值为26. (ii )方案一:设P 1P 2=MN=P 3P 4=t (0<t<6),则P 2P 3=18-3t ,∴S 矩形P 1P 2P 3P 4=t (18-3t )=-3(t-3)2+27.∵-3<0,∴当t=3时,S 矩形P 1P 2P 3P 4的值最大,最大值为27,将y=3代入y=-16x 2+8, 解得x 1=√30,x 2=-√30,∴P 4横坐标的最小值为-√30,P 1横坐标的最大值为√30.当t=3时,P 1P 4=P 2P 3=18-9=9,∴P 1横坐标的最小值为9-√30,∴P 1横坐标的取值范围为9-√30≤x P 1≤√30.方案二:设MN=P 2P 3=n (0<n<9),则P 3P 4=P 1P 2=9-n ,∴S 矩形P 1P 2P 3P 4=n (9-n )=-(n-92)2+814. ∵-1<0,∴当n=92时,S 矩形P 1P 2P 3P 4的值最大,最大值为814, 此时P 3P 4=P 1P 2=92. 把y=92代入y=-16x 2+8,解得x 1=-√21,x 2=√21, ∴P 4横坐标的最小值为-√21,P 1横坐标的最大值为√21.当n=92时,P 1P 4=P 2P 3=92, ∴P 1横坐标的最小值为92-√21, ∴P 1横坐标的取值范围是92-√21≤x P 1≤√21. (两种方案写一种即可)8. (1)易知CD=AB=12,∴AD=GH=BC=(21-12)÷3=3.设CG 长为a ,则DG=AH=12-a ,由题意得,AD ×DC-AE ×AH=32,即12×3-1×(12-a )=32,解得a=8,∴12-a=4.答:CG 的长为8 m ,DG 的长为4 m .(2)设两块矩形总种植面积为y ,BC 长为x ,则AD=HG=BC=x ,DC=21-3x ,由题意得,y=BC ×DC=x (21-3x )=-3x 2+21x=-3(x-72)2+1474. ∵0<21-3x ≤12,∴3≤x<7.又∵-3<0,∴当x=72时,y 取得最大值,y 最大=1474. 答:BC 应设计为72 m ,此时最大面积为1474m 2.9.(1)y=-23x+40. (2)根据题意得,S=x (-23x+40)=-23x 2+40x , 当S=546时,-23x 2+40x=546, 解得x 1=21,x 2=39.∵x ≤24,∴当S=546时,x=21.(3)小明计算的结果不对.理由:S=-23x 2+40x=-23(x-30)2+600. ∵-23<0,x ≤24, ∴当x=24时,S 最大,此时S=576<600,∴小明计算的结果不对.10.(1)设y=kx+b (k ≠0),将(20,360),(30,60)分别代入,得{20k +b =360,30k +b =60,解得{k =−30,b =960,故y=-30x+960.(2)设每月获得的利润为P 元,则P=(-30x+960)(x-10)=-30(x-21)2+3 630.∵-30<0,∴当x=21时,P 最大,最大值为3 630.答:当销售价格定为21元/件时,每月获得的利润最大,最大利润为3 630元. 11.(1)如图.设y=kx+b ,把(20,30)和(25,25)代入,得{20k +b =30,25k +b =25,解得{k =−1,b =50,∴y=-x+50.(2)①w=(x-18)(-x+50)=-x 2+68x-900=-(x-34)2+256,∵-1<0,∴当x=34时,w 有最大值,即超市每天销售这种商品获得最大利润时,销售价格为34元/千克.②当w=240时,-(x-34)2+256=240,解得x 1=38,x 2=30,答:超市本着“尽量让顾客享受实惠”的销售原则,w=240(元)时的销售价格为30元/千克.12.(1)v=-12t+10,y=-14t 2+10t. (2)依题意,得-14t 2+10t=64, ∴t 2-40t+256=0,解得t 1=8,t 2=32.当t=8时,v=6;当t=32时,v=-6(舍去).答:黑球减速后运动距离为64 cm 时的速度为6 cm/s.(3)不会.理由:设黑、白两球的距离为w cm .依题意,得w=70+2t-y=14t 2-8t+70=14(t-16)2+6. ∵14>0,∴当t=16时,w 的值最小,为6, ∴黑、白两球的最小距离为6 cm ,故黑球在运动过程中不会碰到白球.另解1:当w=0时,14t 2-8t+70=0,判定方程无解. 另解2:当黑球的速度减小到2 cm/s 时,如果黑球没有碰到白球,此后,速度低于白球速度,就不会碰到白球.先确定黑球速度为2 cm/s 时,其运动时间为16 s ,再判断黑、白两球的运动距离之差小于70 cm.。
2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)
2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。
(沪科版)中考数学总复习课件【第14讲】二次函数的实际应用
第13讲┃二次函数的图象和性质
(3) 当 0<x≤2 时,w=10x2+40x+480=10(x+2)2+ 440,此时 x =2 时,w 最大=600. 当 2<x≤4 时,w=- 10x +80x +480=-10(x-4) + 640,此时 x =4 时,w 最大=640. 当 4< x<6 时,w=-5x +30x+600=-5(x- 3) +645,此时,w <640,∴x=4 时,w 最大=640. 答:该公司每年国内的销售量为 4 千件,国外的销售量为 2 千件 时,可使公司每年的总利润最大,最大利润为 64 万元.
2
第13讲┃二次函数的图象和性质
某小商场以每件 20 元的价格购进一种服装,先试销一周, 试销期间每天的销量 t(件)与每件的销售价格 x(元)如下表所示:
x(元) 38 36 34 32 30 28 26
t(件)
4
8
12
16
20
24
28
第14讲┃二次函数的实际应用
假定试销中每天的销售量 t( 件 ) 与每件的销售价格 x(元 )
= - 9t2 +
14400+(-9t2 +360t)=- 9t2+14400(30≤t≤ 40) .
第13讲┃二次函数的图象和性质
(3) 当 W=-9t2 +480t(0≤t≤30)时, 80 ∵a=-9<0,对称轴为直线 t= , 3 ∴当 t =27 时 W 有最大值 6399 , 当 W=-9t +14400(30≤t≤40)时, ∵a=-9<0,对称轴为 y 轴, ∴t= 30 时,W 最大值 =-9×302+ 14400=6300,∴第 27 天日销售利 润最大,为 6399 万元.
江西专版中考数学第14讲二次函数的应用精练本课件
下列说法正确的是( C ) A.水流运行轨迹满足函数 y=-410 x2-x+1 B.水流喷射的最远水平距离是 40 米 C.喷射出的水流与坡面 OA 之间的最大铅直 高度是 9.1 米 D.若将喷灌架向后移动 7 米,可以避开对这 棵石榴树的喷灌
4.(2021·沈阳)某超市购进一批单价为8元的 生活用品,如果按每件9元出售,那么每天可 销售20件.经调查发现,这种生活用品的销 售单价每提高1元,其销售量相应减少4件, 那么将销售价定为__1_1__元时,才能使每天所 获销售利润最大.
②抛物线y=ax2+2ax-b的顶点坐标为(-1, -a-b),∵点(-1,-a-b)关于点(0,k+n2) 的对称点为(1,a+b+2k+2n2),∴抛物线yn 的顶点坐标An为(1,a+b+2k+2n2),同理: An+1(1,a+b+2k+2(n+1)2),∴AnAn+1=a +b+2k+2(n+1)2-(a+b+2k+2n2)=4n+2.
9.(2018·江西)小贤与小杰在探究某类二次函数 问题时,经历了如下过程: 求解体验: (1)已知抛物线y=-x2+bx-3经过点(-1,0), 则b=________,顶点坐标为________,该抛物 线关于点(0,1)成中心对称的抛物线表达式是 ______________.
抽象感悟: 我们定义:对于抛物线y=ax2+bx+c(a≠0), 以y轴上的点M(0,m)为中心,作该抛物线关 于点M中心对称的抛物线y′,则我们又称抛物线y′ 为抛物线y的“衍生抛物线”,点M为“衍生中心”. (2)已知抛物线y=-x2-2x+5关于点(0,m)的 衍生抛物线为y′,若这两条抛物线有交点,求 m的取值范围.
8.(2021·南充)超市购进某种苹果,如果进价 增加2元/千克要用300元;如果进价减少2元/千 克,同样数量的苹果只用200元. (1)求苹果的进价; (2)如果购进这种苹果不超过100千克,就按原 价购进;如果购进苹果超过100千克,超过部 分购进价格减少2元/千克,写出购进苹果的支 出y(元)与购进数量x(千克)之间的函数关系式;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三单元函数第十四课时二次函数的实际应用1. (8分)(xx眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件,若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?2. (8分)(xx济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?3. (8分)(xx成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y1关于x的函数表达式;(2)李华骑单车的时间y 2(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需要的时间最短?并求出最短时间.4. (8分)(xx 青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?5. (9分)(xx 河北)某厂按用户的月需求量x (件)完成一件产品的生产,其中x >0.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需要量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.6. (9分)(xx南雅中学一模)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天)1306090每天销售量p(件)1981408020(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.第6题图答案1. 解:(1)当每件蛋糕利润是14元时,提高了(14-10)÷2=2个档次,∵提高2个档次,∴此批次蛋糕属第3档次产品;(2)设烘焙店生产的是第x档次的产品,则每件的利润为10+2(x-1),每天的产量为76-4(x -1),由题意可得[10+2(x-1)][76-4(x-1)]=1080,整理得8x2-128x+440=0,解得x1=5,x2=11(∵11>6,不符合题意,舍去),答:该烘焙店生产的是第5档次的产品.2. 解:(1)w =(x -30)·y =(x -30)·(-x +60)=-x 2+90x -1800, ∴w 与x 的函数关系式为w =-x 2+90x -1800(30≤x ≤60); (2)w =-x 2+90x -1800=-(x -45)2+225, ∴当x =45时,w 有最大值,w 最大值为225,答:销售单价定为45元时,每天销售利润最大,最大销售利润225元; (3)当w =200时,可列方程-(x -45)2+225=200, 解得x 1=40,x 2=50, ∵50>48,∴x 2=50(不符合题意,应舍去),答:该商店销售这种双肩包每天想要获得200元的销售利润,销售单价应定为40元. 3. 解:(1)设一次函数为y 1=kx +b (k ≠0), 将x =8,y =18和x =9,y =20代入,得⎩⎨⎧8k +b =189k +b =20,解得⎩⎨⎧k =2b =2,∴y 1与x 的函数关系式为y 1=2x +2;(2)设李华从文化宫乘地铁和骑单车回家共需y 分钟,∵y 2=12x 2-11x +78,∴y =y 1+y 2=12x 2-9x +80=12(x -9)2+792,∵12>0, ∴当x =9时,y 最小=792(分钟),答:李华应选择在B 站出地铁,才能使他从文化宫回到家的时间最短,最短时间为792分钟.4. 解:(1)设该酒店有豪华间a 间,则:40000a =24000a -10(1+13), 解得a =50,经检验a =50是原方程的解,符合题意, ∴旺季每间=40000÷50=800(元),答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间上涨x 元,日总收入为w 元,则w =(x +800)(50-x 25)=-125x 2+18x +40000=-125(x -225)2+42025,∵-125<0,∴当x =225时,w 有最大值,此时w max =42025,答:当每间价格上涨225元时,日总收入最高,最高总收入为42025元.5. 解:(1)由题意,设y =a +bx,由表中数据,得⎩⎪⎨⎪⎧11=a +b12012=a +b 100,解得⎩⎨⎧a =6b =600,∴y =6+600x,由题意,若12=18-(6+600x), 则600x =0,∵x >0,∴600x>0, ∴一件产品的利润不可能是12万元;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,将n =2,x =100代入x =2n 2-2kn +9(k +3),得100=8-4k +9(k +3), 解得k =13,由题意,得18=6+600x,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵b 2-4ac =(-13)2-4×1×47<0, ∴方程无实根,∴不存在某个月既无盈利也不亏损;(3)∵第m 个月的利润为W m =x(18-y )=18x -x(6+600x)=12(x -50)=12(2m 2-26m +144-50)=24(m 2-13m +47),∴第(m +1)个月的利润为W m +1=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W m ≥W m +1,W m -W m +1=48(6-m ),m 取1时,W m -W m +1=240,利润相差最大; 若W m <W m +1,W m +1-W m =48(m -6),m +1≤12,m 取11时,W m +1-W m =240,利润相差最大, ∴m =1或m =11.6. 解:(1)当1≤x ≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b (k 、b 为常数且k ≠0),∵y =kx +b 经过点(0,40)、(50,90),代入得∴⎩⎨⎧b =4050k +b =90,解得⎩⎨⎧k =1b =40,∴售价y 与时间x 的函数关系式为y =x +40; 当50<x ≤90时,y =90, ∴售价y 与时间x 的函数关系式为y =⎩⎨⎧x +40(1≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数), 由数据可知每天的销售量p 与时间x 成一次函数关系,设每天的销售量p 与时间x 的函数关系式为p =mx +n (m 、n 为常数,且m ≠0), ∵p =mx +n 经过点(60,80)、(30,140),代入得,∴⎩⎨⎧60m +n =8030m +n =140,解得⎩⎨⎧m =-2n =200,∴p =-2x +200(1≤x ≤90,且x 为整数),当1≤x ≤50时,w =(y -30)·p=(x +40-30)(-2x +200)=-2x 2+180x +2000; 当50<x ≤90时,w =(90-30)(-2x +200)=-120x +12000, 综上所述,每天的销售利润w 与时间x 的函数关系式是w =⎩⎨⎧-2x2+180x +2000(1≤x≤50,且x 为整数)-120x +12000(50<x≤90,且x 为整数); (2)当1≤x ≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050, ∵a =-2<0且1≤x ≤50,∴当x =45时,w 取最大值,最大值为6050元,当50<x ≤90时,w =-120x +12000,∵k =-120<0,w 随x 增大而减小, ∴当x =50时,w 取最大值,最大值为6000元, ∵6050>6000,∴当x =45时,w 最大,最大值为6050元,答:销售第45天时,当天获得的销售利润最大,最大利润是6050元; (3)24天.【解法提示】当1≤x ≤50时,令w =-2x 2+180x +2000≥5600,即-2x 2+180x -3600≥0, 解得30≤x ≤60, ∵1≤x ≤50, ∴30≤x ≤50, ∴50-30+1=21(天),当50<x ≤90时,令w =-120x +12000≥5600,即-120x +6400≥0, 解得x ≤5313,∵50<x ≤90,x 为整数, ∴50<x ≤53,53-50=3(天), 综上可知:21+3=24(天),答:该商品在销售过程中,共有24天每天的销售利润不低于5600元.如有侵权请联系告知删除,感谢你们的配合!。