圆曲线上任意点坐标计算
缓和曲线圆曲线计算公式
缓和曲线、竖曲线、圆曲线、匝道(计算公式)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”) 求:①线路匝道上点的坐标:xy②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x0时sgn(x)=1,当x=0时sgn(x)=0。
圆曲线坐标计算公式带例题精编版
圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α ±β/2)×CY=Y1+sin (α ±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。
β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。
X、Y代表准备求的坐标。
X1、Y1代表起算点坐标值。
α代表起算点的方位角。
R 代表曲线半径缓和曲线坐标计算公式β= L2/2RL S ×180°/πC= L - L5/90R2L S2X=X1+cos (α ±β/3)×CY=Y1+sin (α ±β/3)×CL代表起算点到准备算的距离。
LS代表缓和曲线总长。
X1、Y1代表起算点坐标值。
直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。
L代表起算点到准备算的距离。
左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。
如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。
例题:直线坐标计算方法α(方位角)=18°21′47″X1=84817.831 Y1=352.177 起始里程DK184+714.029求DK186+421.02里程坐标解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″X1=86552.086 Y1=926.832曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=87290.023Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955。
圆曲线坐标计算公式带例题
圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α ±β/2)×CY=Y1+sin (α ±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。
β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。
X、Y代表准备求的坐标。
X1、Y1代表起算点坐标值。
α代表起算点的方位角。
R 代表曲线半径缓和曲线坐标计算公式β= L2/2RL S ×180°/πC= L - L5/90R2L S2X=X1+cos (α ±β/3)×CY=Y1+sin (α ±β/3)×CL代表起算点到准备算的距离。
LS代表缓和曲线总长。
X1、Y1代表起算点坐标值。
直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。
L代表起算点到准备算的距离。
左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。
如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。
例题:直线坐标计算方法α(方位角)=18°21′47″X1= Y1= 起始里程DK184+求DK186+里程坐标解:根据公式X=X1+cosα×LX=+COS18°21′47″×—=Y=Y1+sinα×LY=+sin18°21′47″×—=求DK186+里程左右边桩,左侧,右侧.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=+cos(18°21′47″- 90°)×=Y边=Y中+sin(α±90°)×LY边=+sin(18°21′47″- 90°)×=线路右侧计算:X边=X中+cos(α±90°)×LX边=+cos(18°21′47″+ 90°)×=Y边=Y中+sin(α±90°)×LY边=+sin(18°21′47″+90°)×=例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1= Y1= 起始里程DK186+曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=X=X1+cos(α±β/3)×CX=+cos(18°21′47″-1°22′″/3)×=Y=Y1+sin(α±β/3)×CY=+sin(18°21′47″-1°22′″/3)×=求DK186+里程左右边桩,左侧,右侧.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=+cos{(18°21′47″-1°22′″)- 90°}×=Y边=Y中+sin(α±90°)×LY边=+sin{(18°21′47″-1°22′″)- 90°}×=线路右侧计算:X边=X中+cos(α±90°)×LX边=+cos{(18°21′47″-1°22′″)+ 90°}×=Y边=Y中+sin(α±90°)×LY边=+sin{(18°21′47″-1°22′″)+ 90°}×=缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′″=16°59′″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH 点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′″X1= Y1=曲线半径2500 曲线长起始里程DK186+求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×2500=17°09′″△X=sinβ×R△X=sin17°09′″×2500=△Y=(1-cosβ)×R△Y=(1-cos17°09′″)×2500=C= 弦长C=X=X1+cos(α±β/2)×CX= +cos(16°59′″+360°-17°09′″/2) ×=Y=Y1+sin(α±β/2)×CY=+ sin(16°59′″+360°-17°09′″/2) ×=圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′″+360°-17°09′″=359°49′″求DK187+里程左右边桩,左侧,右侧.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=+cos(359°49′″-90°)×=Y边=Y中+sin(α±90°)×LY边=+sin(359°49′″-90°)×=线路右侧计算:X边=X中+cos(α±90°)×LX边=+cos(359°49′″+90°)×=Y边=Y中+sin(α±90°)×LY边=+sin(359°49′″+90°)×=。
圆曲线元素计算和主点里程公式
一、概述圆曲线是道路、铁路等工程中常见的曲线形式,其设计和计算对工程建设具有重要意义。
在圆曲线中,曲线元素的计算是一项关键工作,而主点里程公式则是计算圆曲线主点里程的重要方法之一。
本文将对圆曲线元素计算和主点里程公式进行介绍和分析。
二、圆曲线元素计算圆曲线的设计和建设需要对其曲率、切线角等曲线元素进行精确的计算。
曲线元素的计算是通过复杂的数学方法和公式进行的,主要包括以下几个步骤:1. 曲率半径的计算圆曲线的曲率半径是曲线的一个重要参数,它反映了曲线的弯曲程度。
曲率半径的计算是通过测量曲线的实际弧长以及曲线的夹角来完成的,具体的计算方法是利用三角函数公式来求解。
2. 切线角的计算在圆曲线的设计中,切线角是一个重要的参量,它可以影响车辆或列车在曲线上行驶时的安全性和稳定性。
切线角的计算是通过测量曲线的实际弧长和曲线的曲率半径来完成的,具体的计算方法同样是利用三角函数公式来求解。
3. 圆曲线上任意点的坐标计算在实际的工程设计中,常常需要知道圆曲线上任意点的坐标,以便进行进一步的设计和施工。
圆曲线上任意点的坐标计算是通过数学方法和几何原理进行的,其中涉及到参数方程、极坐标等数学概念和公式。
三、主点里程公式主点里程是指在道路或铁路设计中,与特定主要参考点(如桥梁、隧道等)相对应的里程值。
在圆曲线设计中,计算主点里程是确保设计和施工准确性的重要步骤。
主点里程的计算可以通过主点里程公式来完成,其具体表达式如下:主点里程 = 基准点里程 + 曲线长度 * (1 + (曲线长度 / 2 * 曲线半径)) / 2在这个公式中,基准点里程是从起始点到基准点的里程值,曲线长度是圆弧的长度,曲线半径是圆曲线的曲率半径。
四、总结圆曲线元素计算和主点里程公式是圆曲线设计中两个重要的计算方法。
通过精确的曲线元素计算和主点里程计算,可以确保圆曲线设计的精准性和可靠性。
在实际工程中,工程师和设计人员需要注意这些计算方法的细节和技巧,以保证工程建设的高质量和安全性。
圆曲线坐标计算(坐标正算法)
2、计算方法 根据交点里程和圆曲线要素计算主点里程。
公路习惯推算方法:
曲线测设是指每隔一定距离测设一个曲线点以在地面上标志曲线平面位置。
现阶段曲线测设主要采用全站仪或GPS进行,而这两种方法所需测设资料是曲线点的坐标,故实施测设前必须计算曲线点的坐标。
四、单圆曲线测设资料计算
1、基本要求 中桩间距:即相邻两曲线点间的距离,一般为 20 米,地形复杂时为 10 米。施工时可按规范或标书要求进行。 桩号:即曲线点的里程,必须是中桩间距的整倍数。 例如:ZY点里程为18+197.36,中桩间距为20m,则第一点里程为________________________________。 第二点里程为______________________________。 依此类推。
18+200
18+220
2、曲线点坐标计算
已知条件:起点、终点及各交点的坐标。
JD1
起点
终点
ZY2
YZ2
ZY1
YZ1
QZ2
JD2
S1-2
T1
T2
X
Y
O
QZ2
1)计算ZY、YZ点坐标
JD1
起点
终点
ZY2
YZ2
ZY1
YZ1
QZ2
JD2
S1-2
T1
T2
X
Y
O
QZ2
通用公式:
JD1
起点
终点
ZY2
YZ2
ZY1
YZ1
QZ2
JD2
S1-2
T1
T2
X
Y
O
QZ2
ZY- i
ZY- JD
高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式
高速公正路路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式未知2021-12-27 21:40:34 本站高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,那么:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,那么:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度〔或缓曲上任意点到缓曲起点的长度〕l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算:①第一坡度:i1(上坡为“+〞,下坡为“-〞)②第二坡度:i2(上坡为“+〞,下坡为“-〞)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点〔过渡段终点〕的间隔:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-〞,右转为“+〞)⑦曲线终点处曲率:P1(左转为“-〞,右转为“+〞) 求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
圆曲线坐标计算公式带例题
精心整理圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×RSX=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×CL代表起算点到准备算的距离。
LS代表缓和曲线总长。
X1、Y1代表起算点坐标值。
直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值Y1=352.177 起始里程DK184+714.029求DK186+421.02里程坐标解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955。
圆曲线上任意点中、边桩坐标计算实例 -
曲线上任意一点中、边桩坐标计算实例一、 平面图JD1JD2二、 已知JD 1、X 1=50151,Y 1=52616;JD 2、X 2=50186,Y 2=52374;JD 3、X 3=50470,Y 3=52414;JD 2的半径R=95.78m,L 1=110, L 2=100,K JD2=K23+389.92,求圆曲线上K23+370的中桩坐标及左右各20米的边桩坐标。
步骤1、根据三个交点的坐标、求JD 2的转向角α。
○1、JD 1→JD 2的方位角:1-2α=tg 1-2α=2121--Y Y X X =52374-5261650186-50151=-24235=-6.9143= 278-13-46○2、JD 2→JD 3的方位角:2-3α=tg 2-3α=3232--Y Y X X =52414-5237450470-50186=40284= 8-01-01 ○3、JD 2的转向角α=(8-01-01.54)-(278-13-46.26)+360=89-47-15 步骤2、计算p 、m 、T 、 L 。
○1、1P =2124L R =21102495.78⨯=5.2642P =2224L R =21002495.78⨯=4.350○2、1m =31122240L L R -=32110110224095.78-⨯=54.395 ○3、1T =1m +(R +1P )2tg α-12sin p pα-=54.395+(95.78+5.264)×8947152tg---5.264 4.350sin894715---=154.151○4、L =(L 1+L 2)÷2+180n Rπ=(110+100)÷2+(894715) 3.1495.78180--⨯⨯=255.096步骤3、计算ZH 、HY 、YH 的里程。
○1、ZH= K JD2-T 1=K23+389.92-154.151=K23+235.769 ○2、HY=ZH+L 1=K23+235.769+110=K23+345.769 ○3、YH= ZH+L-L 2=K23+235.769+255.096-100=K23+390.865 步骤4、计算K23+370的中桩坐标及左右20米边桩坐标。
曲线计算公式
缓和曲线、竖曲线、圆曲线、匝道(计算公式)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”) 求:①线路匝道上点的坐标:xy②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x0。
圆曲线(偏角法,切线支距法,极坐标法
圆曲线(偏角法,切线支距法,极坐标法一、圆曲线测量方法(一)偏角法1. 原理- 偏角法是以曲线起点(或终点)至曲线上任一点的弦线与切线之间的弦切角(偏角)和弦长来确定待放点的位置。
- 设圆曲线半径为R,弧长为l,对应的圆心角为φ(弧度制),则φ=(l)/(R)。
偏角δ=(φ)/(2)(因为弦切角等于圆心角的一半)。
2. 计算步骤- 首先计算圆曲线的要素,如切线长T = Rtan(α)/(2)(α为圆曲线的转角),曲线长L = Rα(α为弧度制),外矢距E = R(sec(α)/(2)-1)。
- 然后将曲线按一定的弧长l进行分段(一般为等分段),计算每段弧长对应的偏角δ_i。
- 对于第i段弧长l_i,偏角δ_i=(l_i)/(2R)(弧度制),换算为度分秒形式方便测量。
- 根据起点(或终点)的切线方向,依次拨出偏角δ_i,并量取相应的弦长c_i = 2Rsinδ_i,从而确定曲线上各点的位置。
(二)切线支距法1. 原理- 切线支距法是以曲线起点(或终点)为坐标原点,以切线为x轴,过原点的半径为y轴,建立直角坐标系。
曲线上任一点P的位置用坐标(x,y)表示,根据圆曲线的方程来计算坐标值。
- 圆曲线的方程为y = R(1 - cosφ),x = Rsinφ,其中φ为圆心角(从起点到该点所对应的圆心角)。
2. 计算步骤- 同样先计算圆曲线的要素。
- 将曲线按一定的圆心角Δφ进行分段(一般为等分段)。
- 对于第i段圆心角φ_i = iΔφ,计算该点的坐标x_i = Rsinφ_i,y_i = R(1 - cosφ_i)。
- 根据计算出的坐标值,从原点沿切线方向量取x值,再垂直于切线方向量取y 值,从而确定曲线上各点的位置。
(三)极坐标法1. 原理- 极坐标法是在已知控制点的基础上,以控制点为极点,以某一方向为极轴,通过测量待定点相对于极点的极径ρ和极角θ来确定待定点的位置。
- 在圆曲线测量中,一般以曲线起点(或终点)附近的控制点为极点,以切线方向为极轴方向。
关于连接两圆曲线的缓和曲线任意点坐标计算方法
关于连接两圆曲线的缓和曲线任意点坐标计算方法朱志全(中国水利水电第七工程局勘测队,四川成都 611730)[摘 要] 本文主要阐述连接两圆曲线的缓和曲线任意点坐标计算方法及实例计算。
[关键词] 圆曲线; 缓和曲线; 回旋曲线; 基本特征; 坐标计算[中图分类号]T B22 [文献标识码] B [文章编号]1001-8379(2001)04-0181-02收稿日期:1999-07-07THE METHOD T O CA LCU LATE COORDINATES OFANY POINT ON CURVE LINE JOINTING TWOCIRC LE LINESZH U Zhi 2quan1 前言由直线—缓和曲线—圆曲线所构成的缓和曲线任意点坐标计算公式[1],仅提及当相邻两圆曲线半径差超过一定值时,两圆曲线必须通过缓和曲线连接的平面曲线。
而对于高等级公路,特别是高速公路为保证汽车在转弯时的安全、稳定、消除曲率突变以及增加线形美观,此种平面曲线的设计显得极其重要。
这也使得曲线的计算和测设更为复杂。
本文就此类缓和曲线任意点坐标计算公式进行推导。
2 缓和曲线的基本特征在直线与圆曲线间嵌入缓和曲线后,其曲率半径由无穷大(与直线连接处)逐渐变化到圆曲线半径R (与圆曲线连接处)。
缓和曲线上任一点的曲率半径R ′与该点至曲线起点曲线长l i 成反比,即:R ′=C/l i (C 为常数,称曲线半径变化率)。
当l i 等于所采用的缓和曲线长度L O 时,曲率半径R ′等于R ,故C =R ×L O 。
如图1所示,建立以直缓点ZH 为原点,过ZH 点的缓和曲线的切线为X 轴的直角坐标系。
文献[1]中推导了缓和曲线任意点坐标计算公式:x i =l i -l 5i /(40R 2L 2O )+……(1)y i =l 3i /(6R L O )-L 7i /(336R 3L 3O )+……(2)当曲线左旋时,x 为正、y 为负,如图1;曲线右旋时,x 、y 均为正,如图2。
曲线坐标计算(
曲线坐标计算一、圆曲线圆曲线要素:a -------------- 曲线转向角R -------------- 曲线半径根据a及R可以求出以下要素:T --------------- 切线长L -------------- 曲线长E -------------- 外矢距q -------------- 切曲差(两切线长与曲线全长之差)各要素的计算公式为:L R180(弧长)E RRsec 1)2(sec a =cos a 的倒数)圆曲线主点里程:ZY=J[> TQZ=ZY + L/2 或QZ=JD —q /2YZ=QZ + L/2 或YZ=JD + T—qJD=QZ + q/2 (校核用)1、基本知识里程:由线路起点算起,沿线路中线到该中线桩的距离。
表示方法:DK26+284.56 。
“+”号前为公里数,即26km,“ +”后为米数,即284.56m CK ——表示初测导线的里程。
DK ——表示定测中线的里程。
K ——表示竣工后的连续里程。
铁路和公路计算方法略有不同。
2、曲线点坐标计算(偏角法或弦切角法)已知条件:起点、终点及各交点的坐标。
1)计算ZY、YZ 点坐标通用公式:2)计算曲线点坐标①计算坐标方位角i 点为曲线上任意一点li为i点与ZY点里程之差当曲线左转时用“-”,右转时用“ +”② 计算弦长③ 计算曲线点坐标此时的已知数据为:ZY ( xZY , yZY 、?ZY- i 、C 。
根据坐标正算原理:切线支距法 这种方法是以曲线起点ZY 或终点YZ 为坐标原点,以切线为X 轴,以过原点的半径为丫轴,则圆曲线上任意一点的切线支距坐标可通过以下公式求得: 利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得: 式中:a 为ZY(YZ)点沿线路前进方向的切线方位角。
当起点为ZY 时“土”取“ + ”,XO=X(ZY),YO=Y(ZY),曲线为左偏时应以yi=-yi 代入;当起点为YZ 时,“土”取“ -”,XO=X(YZ), YO=Y(YZ), 曲线为左偏时应以yi 二yi 代入;弧长所对的圆心角弦切角弦的方位角注:1、同弧所对的圆周角等于圆心角的一半2、切线性质圆的切线与过切点的半径相垂直3、弦切角定理弦切角等于它所夹弧上的圆周角4、弧长公式由L/ n R=n /180 °得L=n°n R/ 180 °=n n R/180二、缓和曲线(回旋线)缓和曲线主要有以下几类:A:对称完整缓和曲线(基本形)------切线长、Is1与ls2都相等。
曲线坐标计算
曲线坐标计算一、 圆曲线圆曲线要素:α---------------曲线转向角 R---------------曲线半径根据α及R 可以求出以下要素: T----------------切线长 L----------------曲线长 E----------------外矢距q----------------切曲差两切线长与曲线全长之差 各要素的计算公式为:︒⋅=180παR L 弧长)12(sec -=αR E sec α=cos α的倒数圆曲线主点里程:ZY=JD -TQZ=ZY +L /2 或 QZ=JD -q /2 YZ=QZ +L /2 或 YZ=JD +T -q JD=QZ +q /2校核用 1、基本知识里程:由线路起点算起,沿线路中线到该中线桩的距离; 表示方法:DK26+;“+”号前为公里数,即26km,“+”后为米数,即284.56m;CK ——表示初测导线的里程;DK ——表示定测中线的里程;K——表示竣工后的连续里程;铁路和公路计算方法略有不同;2、曲线点坐标计算偏角法或弦切角法已知条件:起点、终点及各交点的坐标;1计算ZY、YZ点坐标通用公式:2计算曲线点坐标①计算坐标方位角i 点为曲线上任意一点;li 为i 点与ZY点里程之差;弧长所对的圆心角弦切角弦的方位角当曲线左转时用“-”,右转时用“+”;②计算弦长③计算曲线点坐标此时的已知数据为:ZY x ZY,y ZY、 ZY- i、 C;根据坐标正算原理:切线支距法这种方法是以曲线起点ZY或终点YZ为坐标原点,以切线为X 轴,以过原点的半径为Y轴,则圆曲线上任意一点的切线支距坐标可通过以下公式求得:利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得:式中:α为ZYYZ点沿线路前进方向的切线方位角;当起点为ZY时,“±”取“+”,X0=XZY, Y0=YZY, 曲线为左偏时应以yi=-yi代入;当起点为YZ时,“±”取“-”,X0=XYZ, Y0=YYZ, 曲线为左偏时应以yi=-yi 代入;注:1、同弧所对的圆周角等于圆心角的一半2、切线性质圆的切线与过切点的半径相垂直3、弦切角定理弦切角等于它所夹弧上的圆周角4、弧长公式由 L/πR=n°/180°得L=n°πR/ 180°=nπR/180二、缓和曲线回旋线缓和曲线主要有以下几类:A:对称完整缓和曲线基本形------切线长、ls1与ls2都相等;B: 非对称完整缓和曲线---------------切线长、ls1与ls2都不相等C: 非完整缓和曲线卵形曲线----连接两个同向、半径不等的圆的缓和段所组成的卵形曲线D: 回头曲线------------回头曲线是一种半径小、转弯急、线型标准低的曲线形式,其转角接近、等于或大于180度;1、基本形缓和曲线基本公式:ρ=A2/l A=√Rlsρ为缓和曲线上任意点的曲率半径 A为回旋线参数l为缓和曲线上任意点到起点ZH的距离弧长ls为缓和曲线的全长切线角公式:缓和曲线直角坐标任意一点 P 处取一微分弧段 ds ,其所对应的中心角为d β xdx=dscos β xdy=dssin β x缓和曲线常数主曲线的内移值 p 及切线增长值 q内移值: p=Y s-R1-cosβs=l s2/24R切线增长值: q=X s-Rsinβs=l s/2-ls3/240R2缓和曲线的总偏角及总弦长总偏角:βs=l s/2R 180/Π总弦长: C s=l s-l s3/90R2缓和曲线要素计算切线长外距曲线长圆曲线长切线差平曲线五个基本桩号:ZH —— HY —— QZ —— YH —— HZ缓和曲线主点里程:ZH=JD-T HY=ZH+Ls YH=HY+Ly HZ=YH+LsQZ=ZH+L总/2=HZ-L总/2 JD=QZ+q/2校核缓和曲线上任意点坐标计算切线支距法:以缓和曲线起点ZHHZ点为坐标原点,起点的切线为x轴,过原点的垂直于切线的垂线为y轴建立坐标系,则缓和曲线上任意一点的切线支距坐标可通过以下公式求得:利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得:式中:α为ZHHZ点沿线路前进方向的切线方位角;当起点为ZH时,“±”取“+”,X0=XZH, Y0=YZH, 曲线为左偏时应以yi=-yi代入;当起点为HZ时,“±”取“-”,X0=XHZ, Y0=YHZ, 曲线为左偏时应以yi=-yi 代入;曲线上任意点的方位角αi=αZH或HZ±ββ为切线角±为右转“﹢”左转“﹣”当点位于圆曲线上,有:其中, , 为点到坐标原点的曲线长;2、非对称完整缓和曲线由于受特殊地形和地物条件限制采用对称缓和曲线型平曲线难以与地形条件相结合,于是引入非对称缓和曲线型平曲线;非对称缓和曲线在计算时较困难,不能简单套用对称缓和曲线的公式;以下阐述非对称缓和曲线几何要素和任意点坐标及方位角的计算原理;1计算原理如图1所示,平曲线由非对称缓和曲线Ls1、Ls2及半径R的圆曲线组成,JD 为平曲线切线交点,转角α;由于平曲线两端的缓和曲线不等长,因此在计算平曲线各要素时就不能简单套用等长缓和曲线的计算公式;平曲线各要素计算:注:第一式最后一项应 +q1根据交点坐标和切线长计算缓和曲线起点ZH或HZ坐标:XZH=XJD+T1×COSαYZH=YJD+T1×Sinαα为JD~ZH方位角XHZ=XJD+ T2×COSαYZH=YJD+T2×Sinαα为JD~HZ方位角曲线上任意点坐标按基本型缓和曲线的切线支距法和坐标变换、旋转来计算求出;3、非完整缓和曲线卵形曲线卵形曲线是指在两个同向、半径不等的圆曲线间插入一段不完整的缓和曲线,即卵形曲线是缓和曲线的一段,在插入时去掉了靠近半径无穷大方向的一段;首先需要计算出实际并不存在只是在计算过程中起辅助作用的完整缓和曲线段的起点即ZH或HZ点桩号、坐标和切线方位角;这样卵形曲线段的计算就转化为完整缓和曲线段的计算;(1)卵形曲线参数式中:R大,R小为卵形曲线相连的两圆曲线半径,为非完整缓和曲线段即卵形曲线段长度;(2)与相对应的完整缓和曲线的长度为(3)卵形曲线的起点Q接大半径圆的点至假设存在的完整缓和曲线起点ZH或HZ点的弧长为或 =-(4)与对应的弦长为又因为βQ-------切线角ΔQ-------切点Q至假设起点ZHHZ的弦切角故可得,Q点至ZH点的方位角ZH点的切线方位角Q点至HZ点的方位角HZ点的切线方位角求得卵形曲线起点Q至ZHHZ的弦长和方位角后,则ZHHZ点的坐标为求出假设的ZHHZ点的坐标后,就可以根据基本形缓和曲线的计算方法来计算曲线上任意点的坐标;上面的公式3到11是以不完整缓和曲线的起点Q 接大圆点来计算假设的完整缓和曲线起点ZHHZ 的坐标;也可以以接小圆的缓和曲线终点YHHY 来计算起点ZHHZ 坐标;如下:① 与相对应的完整缓和曲线的长度为② 与对应的的弦长为总弦长: C s = l s -l s 5/90R 2 l s 2= l s -l s 3/90R 2③ 接小圆的YHHY 点的切线角总偏角: βs =l s /2R 180/Π④ 接小圆的YHHY 点到假设起点ZHHZ 的弦切角 ⑤ 设接小圆的YHHY 点为Z,则Z 点至ZH 点的方位角αZ-ZH=αZ +180±Rl b s3200==δ⑥ ZH 点的切线方位角 αZH=αZ ±βZ ⑦ Z 点至HZ 点的方位角αZ-HZ=αZ ±Rl b s3200==δ⑧ HZ 点的切线方位角αHZ=αZ ±βZ⑨ ZHHZ 点的坐标为 设接小圆的YHHY 点为ZXZH 或HZ=XZ+ C s cos αZ-ZHHZYZH 或HZ=YZ+ C s Sin αZ-ZHHZ C s 为弦长注:卵形曲线上大圆包含小圆,也就是说接小圆处的曲率半径为R 小,沿大圆方向曲率半径渐大;假设的完整缓和曲线的起点ZHHZ 在大圆那边; 4、 回头曲线什么是回头曲线回头曲线是一种半径小、转弯急、线型标准低的曲线形式,其转角接近、等于或大于180度;在实际中,我们确实经常在山区道路碰到回头曲线,基本的感觉就是一个急弯,并且转了一百八十度,跟掉头差不多,也就是前面描述的:转角接近、等于或大于180度;下图是湘西“公路奇观”的连续回头曲线;这里所讨论的回头曲线,主要是基于其平面坐标计算的特殊性而言的,它只有一个定义,就是:转角大于或等于180度,由于实际使用中很少有转角正好等于180度的情况,所以就是指转角大于180度这种情况了;为什么这么定义呢,因为一般情况下,交点与曲线的关系是:交点在曲线的外侧,即便是转角接近180度,它的交点也在曲线外侧,如下图:而当转角等于180度时,则成为两条平行线,没有交点,或者说无限远,其曲线位置不具有唯一性,这种情况实际中几乎不会采用;而当转角大于180度时,则交点的位置就比较特殊了,如下图:这个图中,JD1和JD3是普通情况下的交点,均在曲线的外侧,而JD2的转角大于180度,其位置在曲线的内侧,这种情况,才是本此讨论的回头曲线;回头曲线的计算1曲线要素的计算先看一个案例,邵怀高速公路溆浦连接线二级公路,有一个回头曲线,其曲线设计参数如下:JD5,交点坐标X=,Y=,转角224°08′″左转,半径60m,缓和曲线长35m,曲线ZH点桩号K49+,切线方位角359°23′″,平面图形如下所示:交点桩号:ZH点桩号K49+加上切线长T,结果为K49+;从这个计算结果来看,我们发现与一般曲线要素不同的地方是:1.切线长T和外距E为负值;2.交点桩号比ZH点桩号小;设计文件中的直曲表数据也表明了这一点:2中桩坐标的计算虽然回头曲线的曲线要素与普通曲线有一些特别的地方,但现在我们更关心的是,按照普通平曲线的中桩坐标计算公式,能否计算出准确的结果;答案肯定是不能的,否则我也不会写这篇文章,在这里白费神了;中间具体的计算过程我就不展示了,按照普通平曲线的中桩坐标计算公式,能够计算出各个桩号的坐标,只可惜是错误的结果;按照这个错误的结果,展示该回头曲线的图形如下:回头曲线的处理回头曲线按照普通曲线中桩坐标计算方法不能得到正确的结果,原因在于它的交点实际在曲线内侧,而程序则把它当作普通曲线来处理,从上面那个图形即可看出;处理的方法很简单,就是把回头曲线一分为二,分成两个普通曲线,如下图所示,将JD5对称地分为JD5a和JD5b;这样,只要把JD5 a和JD5b当作普通曲线交点进行计算就行了;首先需要确定JD5 a和JD5b的相关参数,先看JD5a;1计算终点;显然,JD5a的计算终点就是回头曲线的曲中点,从设计文件直曲表上可查得,是K49+;2本交点桩号;JD5a的桩号嘛,应该是回头曲线的ZH点加上JD5a曲线的第一切线长;回头曲线的ZH点在直曲表上有,K49+,而JD5a曲线的第一切线长,那就需要计算一下了;根据示意图,由于图形的对称性,JD5a和JD5b的切线长有两个:T1和T2, JD5a的曲线要素为:半径R=60m,第一缓和曲线Ls1=35m,第二缓和曲线Ls2=0m,交点转角是回头曲线转角的一半,即224°08′″/2=112°04′″,可计算得:T1=106.865m,T2=89.986m;则JD5a的桩号= +=3本交点X/Y坐标;根据坐标正算原理,按照几何关系,已知JD5的坐标为X=,Y=,JD5-JD5a的距离=+=239.493m,JD5-JD5a的坐标方位角359°23′″,容易得出JD5a的坐标为:X=,Y=;4交点之前直线方位角,就是JD5-JD5a的坐标方位角359°23′″也是JD5ZH点的方位角;5交点转角;交点转角是回头曲线转角的一半,即224°08′″/2=112°04′″,左转;6平曲线半径及缓和曲线长度;半径R=60m,第一缓和曲线Ls1=35m,第二缓和曲线Ls2=0m;7交点计算起终点桩号;就是曲线的起终点桩号,~到此,JD5a数据搞定;JD5b的数据,计算方法和前面基本一致,结果如下:计算终点:;交点桩号:;交点坐标:X=,Y=;交点之前直线方位角:247°19′07″;交点转角:112°04′″,左转;半径R=60m, Ls1=0m,第二缓和曲线Ls2=35m;交点计算起终点桩号:~;参数数据计算出来后,就可以按普通平曲线的计算方法来计算出回头曲线上任意点的坐标;案例当中回头曲线逐桩坐标表:。
圆曲线坐标计算公式带例题
解:根据公式线路左侧计算:
X边=X中+cos(α±90°)×L
X边=86552.086+cos{(18°21′47″-1°22′30.36″)-90°}×3.75=86553.182
Y边=Y中+sin(α±90°)×L
Y边=926.832+sin{(18°21′47″-1°22′30.36″)-90°}×3.75=923.246
曲线半径2500曲线长748.75起始里程DK186+541.02
求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.
解:根据公式β=180°/π×L/R
β=180°/π×748.75/2500=17°09′36.31″
△X=sinβ×R
△X=sin17°09′36.31″×2500=737.606
90°,线路右侧加90°,乘以准备算
的左右宽度。
例题:直线坐标计算方法
α(方位角)=18°21′47″X1=84817.831Y1=352.177起始里程DK184+714.029
求DK186+421.02里程坐标
解:根据公式X=X1+cosα×L
X=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901
Y=926.832+sin(16°59′16.64″+360°-17°09′36.31″/2)×745.954=1035.905
圆曲线方位角计算方法
α=(起始方位角±β偏角)=16°59′16.64″+360°-17°09′36.31″=359°49′40.33″
曲线坐标计算
曲线坐标计算一、 圆曲线圆曲线要素:α---------------曲线转向角R---------------曲线半径根据α及R 可以求出以下要素:T----------------切线长L----------------曲线长E----------------外矢距q----------------切曲差两切线长与曲线全长之差 各要素的计算公式为:︒⋅=180παR L 弧长)12(sec -=αR E sec α=cos α的倒数圆曲线主点里程:ZY=J D -TQZ=ZY +L /2 或 QZ=JD -q /2YZ=QZ +L /2 或 YZ=JD +T -qJD=QZ +q /2校核用1、基本知识◆ 里程:由线路起点算起,沿线路中线到该中线桩的距离; ◆ 表示方法:DK26+284.56;“+”号前为公里数,即26km,“+”后为米数,即284.56m;CK ——表示初测导线的里程;DK ——表示定测中线的里程;K——表示竣工后的连续里程;铁路和公路计算方法略有不同;2、曲线点坐标计算偏角法或弦切角法已知条件:起点、终点及各交点的坐标;1计算ZY、YZ点坐标通用公式:2计算曲线点坐标①计算坐标方位角i 点为曲线上任意一点;li 为i 点与ZY点里程之差;弧长所对的圆心角弦切角弦的方位角当曲线左转时用“-”,右转时用“+”;②计算弦长③计算曲线点坐标此时的已知数据为:ZY x ZY,y ZY、 ZY- i、C;根据坐标正算原理:切线支距法这种方法是以曲线起点ZY或终点YZ为坐标原点,以切线为X轴,以过原点的半径为Y轴,则圆曲线上任意一点的切线支距坐标可通过以下公式求得:利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得:式中:α为ZYYZ点沿线路前进方向的切线方位角;当起点为ZY时,“±”取“+”,X0=XZY, Y0=YZY, 曲线为左偏时应以y i=-y i 代入;当起点为YZ时,“±”取“-”,X0=XYZ, Y0=YYZ, 曲线为左偏时应以y i=-y i代入;注:1、同弧所对的圆周角等于圆心角的一半2、切线性质圆的切线与过切点的半径相垂直3、弦切角定理弦切角等于它所夹弧上的圆周角4、弧长公式由L/πR=n°/180°得L=n°πR/ 180°=nπR/180 二、缓和曲线回旋线缓和曲线主要有以下几类:A:对称完整缓和曲线基本形------切线长、ls1与ls2都相等;B: 非对称完整缓和曲线---------------切线长、ls1与ls2都不相等C: 非完整缓和曲线卵形曲线----连接两个同向、半径不等的圆的缓和段所组成的卵形曲线D: 回头曲线------------回头曲线是一种半径小、转弯急、线型标准低的曲线形式,其转角接近、等于或大于180度;1、基本形缓和曲线基本公式:ρ=A2/l A=√Rlsρ为缓和曲线上任意点的曲率半径A为回旋线参数l为缓和曲线上任意点到起点ZH的距离弧长ls为缓和曲线的全长切线角公式:缓和曲线直角坐标任意一点P 处取一微分弧段ds ,其所对应的中心角为d β x dx=dscos β xdy=dssin β x缓和曲线常数主曲线的内移值p 及切线增长值q内移值:p=Y s-R1-cosβs=l s2/24R切线增长值:q=X s-Rsinβs=l s/2-ls3/240R2缓和曲线的总偏角及总弦长总偏角:βs=l s/2R • 180/Π总弦长:C s=l s-l s3/90R2缓和曲线要素计算切线长外距曲线长圆曲线长切线差平曲线五个基本桩号:ZH ——HY ——QZ ——YH ——HZ缓和曲线主点里程:ZH=JD-T HY=ZH+Ls YH=HY+Ly HZ=YH+LsQZ=ZH+L总/2=HZ-L总/2 JD=QZ+q/2校核缓和曲线上任意点坐标计算切线支距法:以缓和曲线起点ZHHZ点为坐标原点,起点的切线为x 轴,过原点的垂直于切线的垂线为y轴建立坐标系,则缓和曲线上任意一点的切线支距坐标可通过以下公式求得:利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得:式中:α为ZHHZ点沿线路前进方向的切线方位角;当起点为ZH时,“±”取“+”,X0=XZH, Y0=YZH, 曲线为左偏时应以y i=-y i 代入;当起点为HZ时,“±”取“-”,X0=XHZ, Y0=YHZ, 曲线为左偏时应以y i=-y i代入;曲线上任意点的方位角αi=αZH或HZ±ββ为切线角±为右转“﹢”左转“﹣”当点位于圆曲线上,有:其中, , 为点到坐标原点的曲线长;2、非对称完整缓和曲线由于受特殊地形和地物条件限制采用对称缓和曲线型平曲线难以与地形条件相结合,于是引入非对称缓和曲线型平曲线;非对称缓和曲线在计算时较困难,不能简单套用对称缓和曲线的公式;以下阐述非对称缓和曲线几何要素和任意点坐标及方位角的计算原理;1计算原理如图1所示,平曲线由非对称缓和曲线Ls1、Ls2及半径R的圆曲线组成,JD为平曲线切线交点,转角α;由于平曲线两端的缓和曲线不等长,因此在计算平曲线各要素时就不能简单套用等长缓和曲线的计算公式;平曲线各要素计算:注:第一式最后一项应+q1根据交点坐标和切线长计算缓和曲线起点ZH或HZ坐标:XZH=XJD+T1×COSαYZH=YJD+T1×Sinαα为JD~ZH方位角XHZ=XJD+ T2×COSαYZH=YJD+T2×Sinαα为JD~HZ方位角曲线上任意点坐标按基本型缓和曲线的切线支距法和坐标变换、旋转来计算求出;3、非完整缓和曲线卵形曲线卵形曲线是指在两个同向、半径不等的圆曲线间插入一段不完整的缓和曲线,即卵形曲线是缓和曲线的一段,在插入时去掉了靠近半径无穷大方向的一段;首先需要计算出实际并不存在只是在计算过程中起辅助作用的完整缓和曲线段的起点即ZH或HZ点桩号、坐标和切线方位角;这样卵形曲线段的计算就转化为完整缓和曲线段的计算;(1)卵形曲线参数式中:R大,R小为卵形曲线相连的两圆曲线半径,为非完整缓和曲线段即卵形曲线段长度;(2)与相对应的完整缓和曲线的长度为(3)卵形曲线的起点Q接大半径圆的点至假设存在的完整缓和曲线起点ZH或HZ点的弧长为或=-(4)与对应的弦长为又因为βQ-------切线角ΔQ-------切点Q至假设起点ZHHZ的弦切角故可得,Q点至ZH点的方位角ZH点的切线方位角Q点至HZ点的方位角HZ点的切线方位角求得卵形曲线起点Q 至ZHHZ 的弦长和方位角后,则ZHHZ 点的坐标为 求出假设的ZHHZ 点的坐标后,就可以根据基本形缓和曲线的计算方法来计算曲线上任意点的坐标;上面的公式3到11是以不完整缓和曲线的起点Q 接大圆点来计算假设的完整缓和曲线起点ZHHZ 的坐标;也可以以接小圆的缓和曲线终点YHHY 来计算起点ZHHZ 坐标;如下:① 与相对应的完整缓和曲线的长度为 ② 与对应的的弦长为 总弦长: C s = l s -l s 5/90R 2 l s 2= l s -l s 3/90R 2③ 接小圆的YHHY 点的切线角总偏角: βs =l s /2R • 180/Π④ 接小圆的YHHY 点到假设起点ZHHZ 的弦切角⑤ 设接小圆的YHHY 点为Z,则Z 点至ZH 点的方位角 αZ-ZH=αZ +180±Rl b s 3200==δ ⑥ ZH 点的切线方位角αZH=αZ ±βZ⑦ Z 点至HZ 点的方位角αZ-HZ=αZ ±Rl b s 3200==δ ⑧ HZ 点的切线方位角αHZ=αZ ±βZ⑨ ZHHZ 点的坐标为 设接小圆的YHHY 点为ZXZH或HZ=XZ+ C s cosαZ-ZHHZYZH或HZ=YZ+ C s SinαZ-ZHHZ C s为弦长注:卵形曲线上大圆包含小圆,也就是说接小圆处的曲率半径为R小,沿大圆方向曲率半径渐大;假设的完整缓和曲线的起点ZHHZ在大圆那边;4、回头曲线什么是回头曲线回头曲线是一种半径小、转弯急、线型标准低的曲线形式,其转角接近、等于或大于180度;在实际中,我们确实经常在山区道路碰到回头曲线,基本的感觉就是一个急弯,并且转了一百八十度,跟掉头差不多,也就是前面描述的:转角接近、等于或大于180度;下图是湘西“公路奇观”的连续回头曲线;这里所讨论的回头曲线,主要是基于其平面坐标计算的特殊性而言的,它只有一个定义,就是:转角大于或等于180度,由于实际使用中很少有转角正好等于180度的情况,所以就是指转角大于180度这种情况了;为什么这么定义呢,因为一般情况下,交点与曲线的关系是:交点在曲线的外侧,即便是转角接近180度,它的交点也在曲线外侧,如下图:而当转角等于180度时,则成为两条平行线,没有交点,或者说无限远,其曲线位置不具有唯一性,这种情况实际中几乎不会采用;而当转角大于180度时,则交点的位置就比较特殊了,如下图:这个图中,JD1和JD3是普通情况下的交点,均在曲线的外侧,而JD2的转角大于180度,其位置在曲线的内侧,这种情况,才是本此讨论的回头曲线;回头曲线的计算1曲线要素的计算先看一个案例,邵怀高速公路溆浦连接线二级公路,有一个回头曲线,其曲线设计参数如下:JD5,交点坐标X=3046429.812,Y=450083.958,转角224°08′21.8″左转,半径60m,缓和曲线长35m,曲线ZH点桩号K49+302.600,切线方位角359°23′17.9″,平面图形如下所示:交点桩号:ZH点桩号K49+302.600加上切线长T,结果为K49+169.972;从这个计算结果来看,我们发现与一般曲线要素不同的地方是:1.切线长T和外距E为负值;2.交点桩号比ZH点桩号小;设计文件中的直曲表数据也表明了这一点:2中桩坐标的计算虽然回头曲线的曲线要素与普通曲线有一些特别的地方,但现在我们更关心的是,按照普通平曲线的中桩坐标计算公式,能否计算出准确的结果;答案肯定是不能的,否则我也不会写这篇文章,在这里白费神了;中间具体的计算过程我就不展示了,按照普通平曲线的中桩坐标计算公式,能够计算出各个桩号的坐标,只可惜是错误的结果;按照这个错误的结果,展示该回头曲线的图形如下:回头曲线的处理回头曲线按照普通曲线中桩坐标计算方法不能得到正确的结果,原因在于它的交点实际在曲线内侧,而程序则把它当作普通曲线来处理,从上面那个图形即可看出;处理的方法很简单,就是把回头曲线一分为二,分成两个普通曲线,如下图所示,将JD5对称地分为JD5a和JD5b;这样,只要把JD5 a和JD5b当作普通曲线交点进行计算就行了;首先需要确定JD5 a和JD5b的相关参数,先看JD5a;1计算终点;显然,JD5a的计算终点就是回头曲线的曲中点,从设计文件直曲表上可查得,是K49+437.459;2本交点桩号;JD5a的桩号嘛,应该是回头曲线的ZH点加上JD5a曲线的第一切线长;回头曲线的ZH点在直曲表上有,K49+302.600,而JD5a曲线的第一切线长,那就需要计算一下了;根据示意图,由于图形的对称性,JD5a和JD5b的切线长有两个:T1和T2,JD5a的曲线要素为:半径R=60m,第一缓和曲线Ls1=35m,第二缓和曲线Ls2=0m,交点转角是回头曲线转角的一半,即224°08′21.8″/2=112°04′10.9″,可计算得:T1=106.865m,T2=89.986m;则JD5a的桩号= 49302.600+106.865=49409.4653本交点X/Y坐标;根据坐标正算原理,按照几何关系,已知JD5的坐标为X=3046429.812,Y=450083.958,JD5-JD5a的距离=106.865+132.628=239.493m,JD5-JD5a的坐标方位角359°23′17.9″,容易得出JD5a的坐标为:X=3046669.291,Y=450081.401;4交点之前直线方位角,就是JD5-JD5a的坐标方位角359°23′17.9″也是JD5ZH点的方位角;5交点转角;交点转角是回头曲线转角的一半,即224°08′21.8″/2=112°04′10.9″,左转;6平曲线半径及缓和曲线长度;半径R=60m,第一缓和曲线Ls1=35m,第二缓和曲线Ls2=0m;7交点计算起终点桩号;就是曲线的起终点桩号,49302.600~49437.459到此,JD5a数据搞定;JD5b的数据,计算方法和前面基本一致,结果如下:计算终点:49572.318;交点桩号:49527.445;交点坐标:X=3046599.893,Y=449915.348;交点之前直线方位角:247°19′07″;交点转角:112°04′10.9″,左转;半径R=60m, Ls1=0m,第二缓和曲线Ls2=35m;交点计算起终点桩号:49437.459~49572.318;参数数据计算出来后,就可以按普通平曲线的计算方法来计算出回头曲线上任意点的坐标;案例当中回头曲线逐桩坐标表:。
坐标计算公式总结
坐标计算公式总结交点坐标为JD (X J 、Y J ),交点相邻直线的方位角分别为A1,A2。
则:一、ZH (或ZY )点坐标:X ZH = X J +T ·cos (A 1+180)Y ZH = Y J +T ·sin (A 1+180)HZ (或YZ )点坐标:X HZ = X J +T ·cosA 2Y HZ = Y J +T ·sinA 2直线上加桩里程为L ,ZH 、HZ 表示曲线起点、终点里程,则前直线上任意点坐标(L ≤ZH ):)180cos()(1+⋅-++=A L ZH T X X J)180sin()(1+⋅-++=A L ZH T Y Y J 后直线上任意点坐标(L >ZH ):2cos )(A ZH L T X X J ⋅-++=2sin )(A ZH L T Y Y J ⋅-++= 二、ZH ~HY 段任意点坐标 )2/cos(cos 11π⋅+⋅+⋅+=i A y A x X X ZH)2/sin(sin 11π⋅+⋅+⋅+=i A y A x Y Y ZH任意点方位角(度):)218021'πR l l i A A s += 式中:待求点支距:)40225R l l l x s -=,)33663373R l l R l l y s s -=-l 计算点到缓和曲线起点(ZH )的曲线长;-s l 缓和曲线长度;-R 圆曲线半径;-i 曲线转向符号,右偏1=i ,左偏1-=i ;- A 待求点的切线方位角;三、圆曲线上任意点坐标计算:(1)、HY ~QZ 段任意点坐标())90cos(90sin 21R l l i A R l R X X s HY ππ+⋅+⋅⋅+= ())90sin(90sin 21R l l i A R l R Y Y s HY ππ+⋅+⋅⋅+=任意点方位角(度): ()πR l l iA A s ++=2901' -l 圆曲线上任意点到HY 点的曲线长;(2)、QZ ~YH 段任意点坐标())90180cos(90sin 22R l l i A R l R X X s YH ππ+⋅-+⋅⋅+= ())901802sin(90sin 2R l l i A R l R Y Y s YH ππ+⋅-+⋅⋅+=任意点方位角(度):()πR l l i A A s +-=2902' -l 圆曲线上任意点到YH 点的曲线长;四、 第二缓和曲线(YH ~HZ )上任意点坐标)2/cos()cos(22ππ⋅+++⋅+=i A y A x X X HZ )2/sin()sin(22ππ⋅+⋅++⋅+=i A y A x Y Y HZ 任意点方位角(度):πR l l i A A s 22'90-= 五、 边桩坐标计算X 左= X+D ·cos (A ‘-90)Y 左= Y+D ·sin (A ‘-90)X 右= X+D ·cos (A ‘+90)Y 右= Y+D ·sin (A ‘+90)D-边桩到中桩的距离;注意:1、本公式根据人民交通出版社2001年10版《路桥施工计算手册》(第7、12页)及1997年9月《道路勘测设计》(公路与城市道路工程专业); 2、 sin ()、cos ()括号内数值的单位为度,在excel 中单位应转换为弧度;。