图形相似全章总复习
图形的相似知识点总复习
图形的相似知识点总复习一、选择题1.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.35B.43C.53D.34【答案】C【解析】【分析】首先延长BC,做FN⊥BC,构造直角三角形,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,再利用相似比得出12.52NE CD==,运用正方形性质,得出△CNF是等腰直角三角形,从而求出CE.【详解】解:过F作BC的垂线,交BC延长线于N点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∵DE的中点G,EG绕E顺时针旋转90°得EF,∴两三角形相似比为1:2,∴可以得到CE=2NF,12.52NE CD==∵AC平分正方形直角,∴∠NFC=45°,∴△CNF是等腰直角三角形,∴CN=NF,∴2255.3323 CE NE==⨯=故选C.【点睛】此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.2.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则DF的长为()A.235B.233C.334D.435【答案】D【解析】【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.【详解】如图,在Rt△BDC中,BC=4,∠DBC=30°,∴3连接DE,∵∠BDC=90°,点D是BC中点,∴DE=BE=CE=12BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴DF DE BF AB=,在Rt△ABD中,∠ABD=30°,3,∴AB=3,∴23 DFBF=,∴25 DFBD=,∴DF=224323555BD =⨯=, 故选D .【点睛】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE ∥是解本题的关键.3.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C .2∶3D .3∶2【答案】B【解析】【分析】 根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S==. 【详解】 因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.4.如图,在△ABC 中,∠A =75°,AB =6,AC =8,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【答案】D【解析】【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A 、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.5.如图,在ABC 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC= B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC = 【答案】C【解析】【分析】 由//DE BC 可得到DEO ∽CBO ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵//DE BC , ∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE ∽ABC ,DEO ∽CBO ,DE AE BC AC ∴=,DE OD BC OC = . OD AE OC AC∴= ,故正确; D. ∵//DE BC ,∴AG AE AF AC= ,故不正确; 故选C .【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.6.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上.若正方形ABCD 的边长为2,则点F 坐标为( )A .(8,6)B .(9,6)C .19,62⎛⎫ ⎪⎝⎭D .(10,6)【答案】B【解析】【分析】 直接利用位似图形的性质结合相似比得出EF 的长,进而得出△OBC ∽△OEF ,进而得出EO 的长,即可得出答案.【详解】解:∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴13BC OB EF EO ==, ∵BC =2,∴EF =BE =6,∵BC ∥EF ,∴△OBC ∽△OEF ,∴136BO BO =+, 解得:OB =3,∴EO =9,∴F 点坐标为:(9,6),故选:B .【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB 的长是解题关键.7.如图,正方形ABCD 中,点E 在边BC 上,BE EC =,将DCE ∆沿DE 对折至DFE ∆,延长EF 交边AB 于点G ,连接DG ,BF .给出以下结论:①DAG DFG ∆≅∆;②2BG AG =;③EBFDEG ∆∆;④23BFC BEF S S ∆∆=.其中所有正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 根据正方形的性质和折叠的性质可得AD =DF ,∠A =∠GFD =90°,于是根据“HL”判定Rt △ADG ≌Rt △FDG ,可判断①的正误;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,根据勾股定理得到x =13a ,得到BG =2AG ,故②正确;根据已知条件得到△BEF 是等腰三角形,易知△GED 不是等腰三角形,于是得到△EBF 与△DEG 不相似,故③错误;连接CF ,根据三角形的面积公式得到S △BFC =2S △BEF .故④错误.【详解】解:如图,由折叠和正方形性质可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG⎧⎨⎩==, ∴Rt △ADG ≌Rt △FDG (HL ),故①正确;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,∵BE =EC ,∴EF =CE =BE =12a∴GE=12a+x由勾股定理得:EG2=BE2+BG2,即:(12a+x)2=(12a)2+(a-x)2解得:x=13∴BG=2AG,故②正确;∵BE=EF,∴△BEF是等腰三角形,易知△GED不是等腰三角形,∴△EBF与△DEG不相似,故③错误;连接CF,∵BE=CE,∴BE=12 BC,∴S△BFC=2S△BEF.故④错误,综上可知正确的结论的是2个.故选:B.【点睛】本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.8.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.5【答案】B【解析】【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.32B.92C33D.3【答案】A【解析】【分析】【详解】解:∵Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∴△ACD∽△ABC,∴AC:AB=AD:AC,∵AC=3,AB=6,∴AD=32.故选A.考点:相似三角形的判定与性质.10.如图,边长为4的等边ABC 中,D 、E 分别为AB ,AC 的中点,则ADE 的面积是( )A 3B 3C 33D .23【答案】A【解析】【分析】 由已知可得DE 是△ABC 的中位线,由此可得△ADE 和△ABC 相似,且相似比为1:2,再根据相似三角形的面积比等于相似比的平方,可求出△ABC 的面积.【详解】等边ABC 的边长为4,2ABC 3S 443∴== 点D ,E 分别是ABC 的边AB ,AC 的中点,DE ∴是ABC 的中位线,DE //BC ∴,1DE BC 2=,1AD AB 2=,1AE AC 2=, 即AD AE DE 1AB AC BC 2===, ADE ∴∽ABC ,相似比为12, 故ADE S:ABC S 1=:4, 即ADE ABC 11S S 43344==⨯= 故选A .【点睛】 本题考查了等边三角形的性质、相似三角形的判定与性质、三角形中位线定理,解题的关键是熟练掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.11.把Rt ABC ∆三边的长度都扩大为原来的3倍,则锐角A 的余弦值( )A .扩大为原来的3倍B .缩小为原来的13C .扩大为原来的9倍D .不变 【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A 的大小不变,∴锐角A 的余弦值不变,故选:D .【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH 中,222AH EH AE += ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM == 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.13.在平面直角坐标系中,把△ABC 的各顶点的横坐标都除以14,纵坐标都乘13,得到△DEF ,把△DEF 与△ABC 相比,下列说法中正确的是( )A .横向扩大为原来的4倍,纵向缩小为原来的13 B .横向缩小为原来的14,纵向扩大为原来的3倍 C .△DEF 的面积为△ABC 面积的12倍D .△DEF 的面积为△ABC 面积的112 【答案】A【解析】【分析】【详解】解:△DEF 与△ABC 相比,横向扩大为原来的4倍,纵向缩小为原来的13;△DEF 的面积为△ABC 面积的169, 故选A.14.如图,已知ABC ∆和ABD ∆都O 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】 考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.15.如图,将图形用放大镜放大,应该属于( ).A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B【解析】【分析】 根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B .【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.16.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A .4B .23C .33D .3【答案】D【解析】【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】 此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.17.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆,设PC x =,则5PD x =-,根据相似三角形的性质,得PC CE PD BD =,即253x x =-,解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.18.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB 和11A OB △的周长之比为1:2111112OA OB AB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++ 解得2k = 又点B 的坐标为(1,2)- ∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯=点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.19.平面直角坐标系xOy中,点P(a,b)经过某种变换后得到的对应点为P′(12a+1,12b﹣1).已知A,B,C是不共线的三个点,它们经过这种变换后,得到的对应点分别为A′,B′,C′.若△ABC的面积为S1,△A′B′C′的面积为S2,则用等式表示S1与S2的关系为()A.S112=S2B.S114=S2C.S1=2S2D.S1=4S2【答案】D【解析】【分析】先根据点P及其对应点判断出变换的类型,再依据其性质可得答案.【详解】由点P(a,b)经过变换后得到的对应点为P′(12a+1,12b﹣1)知,此变换是以点(2,﹣2)为中心、2:1的位似变换,则△ABC的面积与△A′B′C′的面积比为4:1,∴S1=4S2,故选:D.【点睛】本题主要考查几何变换类型,解题的关键是根据对应点的坐标判断出其几何变换类型.20.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40DE cm=,20EF cm=,测得边DF离地面的高度 1.5AC m=,8CD m=,则树高AB是()A.4米B.4.5米C.5米D.5.5米【答案】D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD-90°∠D=∠D ∴△ADEF∽△DCB∴BC DC EF DE=∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m∴80.20.4BC=解得:BC=4∴AB=AC+BC=1.5+4=5.5米故答案为:5.5.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
第三章《图形的相似》复习课(总复习1))(湘教版)
对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时,可以使 自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度 恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m, CE=0.8 m,CA=30 m(点A、E、C在同一直线上).
已知小明的身高EF是1.7 m,请你帮小明求出楼高AB(结果
点,若AD=3,BC=9,则GO∶BG=(
(A)1∶2 (C)2∶3 (B)1∶3
)
(D)11∶20
【解析】选A.∵四边形ABCD是梯形,AD∥BC, ∴∠OAD=∠OCB,∠ODA=∠OBC, ∴△AOD∽△COB.
4 OD AD 3 1 , OB BC 9 3
即 OD 1 BD. 又G是BD的中点,
精确到0.1 m). 【思路点拨】
【解析】过点D作DG⊥AB,分别交AB、EF于点G、H, 则EH=AG=CD=1.2 m,
DH=CE=0.8 m,DG=CA=30 m.
因为EF和AB都垂直于地面,所以EF∥AB, 所以∠BGD=∠FHD=90°,∠GBD=∠HFD, 所以△BDG∽△FDH.
FH DH . BG DG
32 (A) 3 16 (B) 3
)
10 (C) 3 8 (D) 3
【解析】选B.由AB∥DE,可得△CDE∽△CAB. 所以 CD DE ,
CA AB 所以 AB DECA 4 3 5 32 , CD 3 3
又CF为AB边上的中线,
2 2 3
所以 BF 1 AB 1 32 16 .
【解析】选A.∵∠ACB=90°,∠BDC=90°,∠B=∠B.
∴△ACB∽△CDB.
九年级数学《图形的相似》总复习课件-PPT
6或2/3或1.5
6
2.比例中项:
当两个比例内项相等时,即
a b=
cb(,或 a:b=b:c),
那么线段 b 叫做a 和 c 的比例中项.
即: b2 ac
数2与8的比例中项是 ___4_ .线段2cm与8cm的
比例中项是 _4__c_m.
7
3.黄金分割: A
C
B
把一条线段(AB)分成两条线段,使其中较长线段(AC)是 原线段(AB)与较短线段(BC)的比例中项,就叫做把这条 线段黄金分割。
y
·P
O B· C·
x
·A
28
9、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2,
在AC上取一点F,使以A、E、F为顶点的三角形与
△ABC相似,那么AF=___85_或___52_
A
.E
F1
F2
DC
B
C
A
B
10、 如图, 在直角梯形中, ∠BAD=∠D=∠ACB=90。,
CD= 4, AB= 9, 则 AC=__6____
P
A
C
D
B
33
15、 如图D,E分别AB,AC是上的点, ∠AED=72o, ∠A=58o,∠B=50o, 那么△ADE和△ABC相似吗?
若AE=2,AC=4,则BC是DE的
倍.
A
E D
C B
34
16、若△ ACP∽△ABC,AP=4,BP=5,则AC=___6____,△
ACP与△ABC的相似比是_____2__:,3周长之比是_______,
1
1. 成比例的数(线段):
若 a c 或a : b c : d , 那么 a ,b, c , d 叫做四个数成比例。
相似三角形经典总复习(含知识点习题)
第23章:相似三角形 第一节:比例线段 知识点:1、相似多边形:从几何直观上来说,两个图形如果形状一致,而大小不同,则称这两个图形相似,具体到多边形,称之为相似多边形。
从严谨定义上来说,如果两个多边形各边成比例,各角相等,则称这两个多边形为相似多边形。
2、比例线段:一、线段的比:如果用同一长度单位量得两条线段a 、b 的长度分别为m ,n ,则m ∶n 就是线段a ,b 的比,记作a ∶b =m ∶n 或a mb n=,其中a 叫做比例前项,b 叫做比例后项。
二、比例线段:四条线段,如果其中两条线段的比与另外两条线段的比相同,则称这四条线段成比例线段,简称比例线段。
例如线段a 、b 、c 、d ,如果a cb d=或者(::a b c d =)a 、b 、c 、d 成比例线段,这里要注意,a 、b 、c 、d 必须按顺序写出,不能写成b c a d =或a d b c=。
三、比例外项、比例内项、第四比例项、比例中项:若a cb d=,则称a 、d 为比例外项,b 、c 、为比例内项,d 为第四比例项,如果b =c ,则称b 为a 、c 的比例中项,可记做(2b ac =)3、比例性质: 1、基本性质:如果a cb d=,则根据等式的基本性质,两边同时乘以bd 得ad bc =。
2、合比性质:如果a cb d=,则根据等式的基本性质,两边同时加上1或-1得a b c d b d ±±=。
在此处键入公式。
a b c db d±±=3、等比性质:如果a c mb d n===(0b d n +++≠),则a c m a c mb d n b d n+++====+++,运用这个性质时,一定要注意0b d n +++≠的条件。
4、黄金分割:把线段AB 分成两条线段AP 、PB (AP >PB ),如果AP 是线段PB 和AB 的比例中项,则线段AP 把线段AB 黄金分割,点P 叫做线段AB 的黄金分割点。
九年级数学《相似-复习课》教案
《第27章相似》复习课教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级下册第27章相似的全章复习。
2.知识背景分析本章隶属于“空间与图形”领域,本章共有三节内容第1节图形的相似主要介绍相似图形,相似多边形的概念,并探索相似多边形的性质;第2节相似三角形主要研究相似三角形的判定方法、相似三角形在测量中的应用及相似三角形的周长和面积;第3节位似研究了一种特殊的相似-位似,研究了位似图形的画法及平面直角坐标系中的位似变化。
本节课是在学习前三节的基础上进行的,通过对一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。
3.学情背景分析教学对象是九年级学生,学生的逻辑思维能力得到了一定的发展。
本章正处于学生对于掌握的推理论证方法的进一步巩固和提高阶段,要求学生能熟练运用综合法证明命题,熟悉探索法德推理过程,因此在教学中要注意多帮助学生复习已有的知识,做到以新带旧,新旧结合。
要加强解题思路的分析,帮助学生树立已知与未知,简单与复杂,特殊与一般在一定的条件下可以转换的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。
通过小结对于学生推理证明的训练,进一步提高学生的逻辑思维能力和分析解决问题的能力。
4.学习目标4.1知识与技能目标(1)通过复习,梳理本章知识,构建知识网络.(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边的比的平方。
(3)了解两个三角形相似的概念,探索两个三角形相似的条件。
(4)了解图形的位似,能够利用位似将一个图形放大或缩小。
(5)通过典型实例观察和认识现实生活中物体的相似,使学生综合运用图形的相似解决一些实际问题。
(5)在同一直角坐标系中,感受图形变换后点的坐标的变化特点。
4.2过程与方法目标经历小结的过程,使学生学会建立本章的知识结构图。
图形的相似单元复习
图形的相似单元复习知识点回顾:知识点1..相似图形的含义把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点3.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点4.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点5.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.知识点6.相似三角形的基本类型两个三角形相似,一般说来必须具备下列六种图形之一:注意分清相似三角形中对应角和对应边。
中考数学 第34课 图形的相似复习课件
助学微博
(3)由于运用三点定形法时常会碰到三点共线或四点中 没有相同点的情况,此时可考虑运用等线、等比或等积进行 变换后,再考虑运用三点定形法寻找相似三角形,这种方法 就是等量代换法.在证明比例式时,常常要用到中间比.
四个解题技巧
判定两个三角形相似的常规思考过程是: (1)先找两对对应角相等,一般这个条件比较简单; (2)若只能找到一对对应角相等,则判断相等角的两夹 边是否对应成比例; (3)若找不到角相等,就判断三边是否对应成比例; (4)若题目出现平行线,则直接运用预备定理得出相似 的三角形.
五种基本思路 (1)条件中若有平行线,可采用相似三角形的基本定理; (2)条件中若有一对等角,可再找一对等角(用判定定理 1)
或再找夹边成比例(用判定定理 2); (3)条件中若有两边对应成比例,可找夹角相等; (4)条件中若有一对直角,可考虑再找一对等角或证明斜
边、直角边对应成比例; (5)条件中若有等腰三角形,可找顶角相等,或找一对底
解解 ((11))∵∵AADD∥∥BBCC,, ∴∴∠∠DDAACC==∠∠BBCCAA.. ((22))∵∵∠∠BB==∠∠AACCDD,,∠∠BBCCAA==∠∠DDAACC,, ∴∴△△BBCCAA∽∽△△CCAADD,,∴∴CBCBACAC==CACAADAD,, ∴∴AACC2=2=BBCC··AADD,,即即662=2=99··AADD,,AADD==44,, ∴∴梯梯形形AABBCCDD的的中中位位线线==1212((AADD++BBCC))==2121××((44++99))==66..55.. 答答::梯梯形形AABBCCDD的的中中位位线线的的长长度度是是66..55..
知能迁移 1 如图,在△ABC 中,DE∥BC,EF∥AB. 求证:△ADE∽△EFC.
《图形的相似》复习课(可编辑修改word版)
《图形的相似》复习课教学目标:(一)知识与技能1、归纳、总结本章知识,使知识成体系。
2、对成比例线段、相似三角形的知识进行巩固提升。
(二)过程与方法体现研究图形问题的多种方法,培养学生处理图形问题的思维发展水平,加强相关知识之间的联系和综合运用。
(三)情感与价值观要求培养学生对问题的观察、思考、交流、类比、归纳等过程,发展学生的探索精神,合作意识,增强应用数学意识,加深对数学的人文价值的理解和认识。
教学重点:1、归纳、总结本章知识,使知识成体系。
2、掌握相似三角形的知识,并能灵活运用。
教学难点:培养学生处理图形问题的思维发展水平,建立几何模型的解题思考过程。
教学内容:一、线段的比和比的基本性质AB m1、线段比的定义:AB∶CD=m∶n 或写成=,其中,线段AB、CD 分别叫做这两个线段比CD nm AB的前项和后项.如果把表示成比值k,则=k 或AB=kCD.n CDa c2、比例线段的定义:=,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段.b d3、比例的性质:(1)比例的基本性质:如果a∶b=c∶d,那么a d=bc;a c(2)如果ad=bc(a、b、c、d 都不等于 0),那么=.b d4、在求两条线段的比时,有哪些地方是需要特别留意的?(1)线段的比为正数;(2)单位要统一;(3)线段的比与所采用的长度单位无关.1.已知线段AB=2cm,线段CD=2m,则线段AB∶CD=.2.已知四条线段a、b、c、d 的长度,试判断它们是否成比例?(1)a=16cm,b=8cm,c=5cm,d=10cm;(2)a=8cm,b=5cm,c=6cm,d=10cm.3.已知直角三角形两条直角边长比a∶b=1∶2,斜边长为4 5cm,那么三角形面积是( )A.32cm2 B.16cm2 C.8cm2 D.4cm24.等边三角形的一边与这边上的高的比是( )3A. 3∶2B. 3∶1 C.2∶D.1∶3AE 5. 如图,已知矩形 ABCD (AB <BC ),AB =1.将矩形 ABCD 对折,得到小矩形 ABFE ,如果AB AB 的值恰好与 的值相等,求原矩形 ABCD 的边 AD 的长. AD 二、比例线段与比例的性质 1、比例的基本性质:如果 a ∶b =c ∶d ,那么 ad =bc .a c e m a +c +e +…+m a 2、等比性质:若 = = =…= ,且b +d +f +…+n ≠0,则 = .b d f ac n a ± bc ±d b +d +f +…+n b 3、合(分)比性质:若 = ,则 = .b d ac e 1 bd a +c +e a +2c +3e 1.若 = = = ,且 b +d +f ≠0,则 = ; b d f 3 b d f + + = .a +b a +c b +cb 2d 3f2. 已知 c = b = a=k ,则 k 的值是 2 或-1. a c e 1 3.若 = = = ,b +d +f =30,则 a +c +e =15. b d f 2 a +4 b +3 c +84.已知 a 、b 、c 是△ABC 的三边,满足 3 = 2(1)试求 a ,b ,c 的值;(2) 判断△ABC 的形状. 三、平行线分线段成比例= 4 , 且 a +b +c =12. 1. 平行线等分线段:如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等.2. 平分线分线段成比例:两条直线被一组平行线所截,所得的对应线段成比例.3. 推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.1. 如图,已知 l 1∥l 2∥l 3,如果 AB ∶BC =2∶3,DE =4,则 EF 的长是( )10A . 3B .6C .4D .25 2. 如图,在四边形 ABCD 中,AD ∥BC ,E 是 AB 上的一点,EF ∥BC ,交 CD 于 F ,若 AE =2,BE =3, CD =4,则 FC = ,DF =. 3.已知,如图,EG ∥BC ,GF ∥DC ,AE =3,EB =2,AF =6,求 AD 的值.四、相似多边形1. 相似多边形的定义:(1) 从图形上讲:一般而言,形状相同的图形称为相似图形;(2) 从边、角上讲:各角对应相等,各边对应成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比;(3) 相似多边形的记法:用“∽”符号表示相似,如四边形 ABCD 与四边形 A 1B 1C 1D 1 相似, 记为“四边形 ABCD ∽四边形 A 1B 1C 1D 1”.2. 相似多边形的性质:相似多边形的对应角相等,对应边成比例.1. 下列结论不正确的是( )A. 所有的矩形都相似 B .所有的正方形都相似+ +C. 2∶1C.所有的等腰直角三角形都相似D.所有的正八边形都相似2.如图,在下面的三个矩形中,相似的是( )A.甲、乙和丙B.甲和乙C.甲和丙D.乙和丙3.如果一个矩形对折后所得到的矩形与原矩形相似,则矩形的长边长与短边长的比是( )A.2∶1 B.4∶1 D.1∶五、探索三角形相似的条件(一)三角形相似的判定定理 11.相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,如△ABC与△DEF 相似,记作△ABC∽△DEF,其中对应顶点要写在相同位置上,如A 与D,B 与E,C 与F 相对应.AB∶DE 等于BC∶EF.2.三角形相似判定定理 1:两角对应相等的两个三角形相似.1.如图,在△ABC 中,∠ACB=90°,CD⊥AB 于点D,则图中相似三角形共有( )A.1对B.2 对C.3 对D.4 对2.如图,D 是直角三角形ABC 直角边AC 上的一点,若过D 点的直线交AB 于E,使得到的三角形与原三角形相似,则这样的直线有( )A.1 条B.2 条C.3 条D.4 条3.已知△ABC 中,AB=AC,∠A=36°,BD 是角平分线,求证:△ABC∽△BDC.(二)两边一夹角判定两个三角形相似三角形相似判定定理 2:两边成比例且夹角相等的两个三角形相似.1.下列条件不能判定△ABC 与△ADE 相似的是( )AE AC AE DEA.=B.∠B=∠ADE C. =D.∠C=∠AEDAD AB AC BC2.下列条件能判断△ABC 和△A′B′C′相似的是( )AB AC AB AC AB A′B′AB ACA. =B. =且∠A=∠C′C. =且∠B=∠A′D. =且∠B=∠B′A′B′A′C′A′B′A′C′BC A′C′A′B′A′C′3.如图,每个小正方形边长均为1,则下列图三角形(阴影部分)与右图△ABC 相似的是( ),A) ,B) ,C) ,D)4.已知:如图,在△ABC 中,CE⊥AB,BF⊥AC.求证:△AEF∽△ACB.(三)三边成比例的两个三角形相似三角形相似判定定理 3:三条边成比例的两个三角形相似.1.下列条件不能判定△ABC 与△ADE 相似的是( )25-1 2 5-1 2 AE AD AD AE DE DE AD A . = ,∠CAE =∠BAD B.∠B =∠ADE ,∠CAE =∠BAD C . = = D . = ,∠C =∠E AC AB AB AC BC BC AB2. 下列四个三角形,与右图中的三角形相似的是( )(四)黄金分割 ,A ) ,B ) ,C ) AC BC 黄金分割的意义:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC ,如果 = ,那么AB AC称线段 AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割点,AC 与 AB 的比叫做黄金比.5-1 黄金比=,近似数为 0.618. 21. 已知点 C 是线段 AB 的黄金分割点,且 AC >BC ,则下列等式成立的是( )A .AB 2=AC ·CB B .CB 2=AC ·AB C .AC 2=CB ·ABD .AC 2=2AB ·BC2. 已知 C 是线段 AB 的一个黄金分割点,则 AC ∶AB 为( )A. B . 3- 5 2 5+1 C. 2D. 或 3. 下列说法正确的是( )A. 每条线段有且仅有一个黄金分割点B .黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的 0.618 倍C .若点 C 把线段 AB 黄金分割,则 AC 2=AB ·BCD .以上说法都不对六、利用相似三角形测高测量旗杆高度的常见方法有:(1)利用“同一时刻的物高与影长成比例”构造相似三角形;(2) 利用“视线、标杆和物高”构造相似三角形;(3) 利用“平面镜中入射角与反射角相等”构造相似三角形.①利用阳光下的影子来测量旗杆的高度点拨:把太阳的光线看成是平行的.∵太阳的光线是平行的,∴AE ∥CB ,∴∠AEB =∠CBD ,AB BE AB·BD ∵人与旗杆是垂直于地面的,∴∠ABE =∠CDB ,∴△ABE ∽△CDB ,∴ = ,即 CD = ,CD DB BE代入测量数据即可求出旗杆 CD 的高度.②利用镜子的反射点拨:入射角=反射角.∵入射角=反射角,∴∠AEB =∠CED .∵人、旗杆都垂直于地面,AB BE AB·DE ∴∠B =∠D =90°,∴△AEB ∽△CED ,∴ = ,∴CD = .因此,测量出人与镜子的CD DE BE距离 BE ,旗杆与镜子的距离 DE ,再知道人的身高 AB ,就可以求出旗杆 CD 的高度. 1. 某校数学兴趣小组为测量学校旗杆 AC 的高度,在点 F 处竖立一根长为 1.5m 的标杆 DF ,如右图,量出 DF 的影子 EF 的长度为 1m ,同一时刻测量旗杆 AC 的影子 BC 的长度为6m ,那么旗杆 AC 的高度为( )A. 6mB .7mC .8.5mD .9m2. 如图,是小玲设计用手电来测量某古城墙高度的示意图.在点 P 处放一水平的平面镜,,D )3- 5 2光线从点A 出发经平面镜反射后,刚好射到古城墙CD 的顶端C 处.已知AB⊥BD,CD⊥B且D.测得AB=1.2m,BP=1.8m,PD=12m.那么该古城墙CD 的高度是( )A.6m B.8m C.18m D.21m3.小明想知道学校旗杆的高,在他与旗杆之间的地面上直立一根2 米的标竿EF,小明适当调整自己的位置使得旗杆的顶端C、标竿的顶端F 与眼睛D 恰好在一条直线上,量得小明高AD 为 1.6 米,小明脚到标杆底端的距离AE 为0.5 米,小明脚到旗杆底端的距离AB 为8 米.请你根据数据求旗杆BC 的高度.七、相似三角形的性质(一)相似三角形对应线段的比1.相似多边形对应边的比叫做相似比.2.相似三角形的对应角相等,对应边成比例.3.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比1.如果两个相似三角形对应角平分线之比为1∶2,那么它们对应中线之比为( )A.1∶2 B.1∶3 C.1∶4 D.1∶82.已知△ABC∽△A′B′C′,AD,A′D′是高,且AD=3cm,A′D′=5cm,AE,A′E′分别是BC 和B′C′边上的中线,AE=6cm,则A′E′=.3.如图,在△ABC 是一张锐角三角形硬纸片,AD 是边BC 上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG 是宽HE 的2 倍的矩形EFGH,使它的一边EF 在BC 上,顶点G,H 分别在AC,AB 上,AD 与HG 的交点为M.AM HG(1)求证:AD =BC;(2)求矩形EFGH 的周长.(二)相似三角形周长和面积的比相似三角形的周长比等于相似比,面积比等于相似比的平方.1.下列命题中错误的是( )A.相似三角形的周长比等于对应中线的比B.相似三角形对应高的比等于相似比C.相似三角形的面积比等于相似比D.相似三角形对应角平分线的比等于相似比2.若两个相似多边形的面积之比为1∶4,则它们的周长之比为( )A.1∶4 B.1∶2 C.2∶1 D.4∶13.若两个三角形相似,且它们的最大边分别为6cm 和8cm,它们的周长之和为35cm,则较小的三角形的周长为.4.在▱ABCD 中,BE=2AE,若S△AEF=6,求S CDF.八、图形的位似(一)位似变换1.位似多边形的定义:如果两个相似多边形任意一组对应顶点A、A′的连线(或延长线)都经过同一个点O,且有OA′=kOA(k≠0),那么这样的两个多边形叫做位似多边形,点O 叫做位似中心,这时的相似比k 又称为位似比.2.位似多边形的性质:(1)位似多边形一定相似,位似多边形具有相似多边形的一切性质;(2) 位似多边形上任意一对对应点连线(或延长线)都经过位似中心,并且到位似中心的距离之比等于相似比.3.同时满足下面三个条件的两个图形才叫做位似图形.三个条件缺一不可:①两图形相似;②每组对应点所在直线都经过同一点;③对应边互相平行(或在同一直线上).4.画位似图形的方法:①确定位似中心;②找对应点;③连线;④下结论.1.如图所示的每组图中的两个多边形,一定不是位似图形的是( ),A) ,B) ,C) ,D)2.下列说法错误的是( )A.位似多边形对应角相等,对应边成比例B.位似多边形对应点所连的直线一定经过位似中心C.位似多边形上任意一对对应点到位似中心的距离之比等于位似比D.两个位似多边形一定是全等图形1.若五边形ABCDE 3.如图,五边形A′B′C′D′E′与五边形ABCDE 是位似图形,且位似比为2的面积为16cm2,周长为20cm,那么五边形A′B′C′D′E′的面积为,周长为.4.如图,已知四边形ABCD 和点O,请以O 为位似中心,作出四边形ABCD 的位似图形,把四边形ABCD 放大为原来的2 倍.(二)位似变换中的坐标变化1.在平面直角坐标系中,一个多边形每一个顶点的横、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.2.我们学习过的图形变换包括:平移、轴对称、旋转和位似.其中经过平移、轴对称、旋转变换前后的两个图形一定是全等的;而经过位似变换前后的两个图形是相似的1.如图,在平面直角坐标系中,以原点O 为位似中心,将△ABO 扩大到原来的2 倍,得到△A′B′O.若点A 的坐标是(1,2),则点A′的坐标是( )A.(2,4) B.(-1,-2) C.(-2,-4) D.(-2,-1)2.在平面直角坐标系中,△ABC 的顶点坐标分别为A(-6,1),B(-3,1),C(-3,3).若将它们的横纵坐标都乘以-3,得到新三角形△A1B1C1,则△A1B1C1与△ABC 是位似关系,位似中心是,位似比等于.3.如图,已知△ABC 在直角坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中每个小正方形的边长是1 个单位长度)(1)画出△ABC 向下平移4 个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B 为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC 位似,且相似比为2∶1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.九、相似三角形的几种基本模型。
北师大版初中数学九年级上册知识讲解,巩固练习(教学资料):第18讲《图形的相似》全章复习与巩固(基础)
《图形的相似》全章复习与巩固--巩固练习(基础)【巩固练习】一、选择题1.如图,已知,那么下列结论正确的是( ).A.B. C.D.2. 在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( ).A.8,3 B.8,6 C.4,3 D.4,63.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是( ).4.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x 轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是,则点B的横坐标是().A.B. C.D.5.(2019•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A .1:2B .1:4C .1:5D .1:6 6. 如图,在正方形ABCD 中,E 是CD 的中点,P 是BC 边上的点,下列条件中不能推出△ABP 与以点E 、C 、P 为顶点的三角形相似的是( ).A .∠APB=∠EPCB .∠APE=90°C .P 是BC 的中点D .BP :BC=2:37. 如图,在△ABC 中,EF ∥BC ,,,S 四边形BCFE =8,则S △ABC =( ).A .9B .10C .12D .138.如图,六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,则下列结论正确的是( ).A .∠E=2∠KB .BC=2HIC .六边形ABCDEF 的周长=六边形GHIJKL 的周长D .S 六边形ABCDEF =2S 六边形GHIJKL二、填空题 9. 在□ABCD 中,在上,若,则___________.10. 如图,在△ABC 中,D 、E 分别是AB 和AC 中点,F 是BC 延长线上一点,DF 平分CE 于点G ,CF=1,则BC=_______,△ADE•与△ABC•的面积之比为_______,•△CFG 与△BFD 的面积之比为________.12AEEB11. 如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_______.12. 在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在面上的影长为40米,则古塔高为________.13.(2019•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.14.如图,在△ABC中,MN∥BC,若∠C=68°,AM:MB=1:2,则∠MNA=_______度,AN:NC=_____________.15.如图,点D,E分别在AB、AC上,且∠ABC=∠AED。
第三章《图形的相似》复习课(总复习3))(湘教版)
1.8
B
A
2.7 E D
8.7
C
4、如图,正方形ABCD中,AB=4,G为DC中 点,E在BC边上运动,(E点与点B、点C不重合) 设BE=x,过E作GA平行线交AB于F,设AFEG 面积为y,写出y与x的函数关系式,并指出自变 量x的取值范围。 A D G F B E C
例补2、如图,正方形ABCD的边长为4cm, 点P是BC边上不与点B、C重合的任意一点, 连结AP,过点P作PQ⊥AP交DC于点Q,设 BP的长为xcm,CQ的长为ycm. (1)求点P在BC上运动的过程中y的最大值; (2)当y =
(1)图中有全等三角形吗?找出来并证明. (2)图中有相似三角形吗?找出来并证明. (3)BD2=AD· DF吗?请说明理由.
二 .学以致用 5、如图,在△ABC中,∠BAC=90°,AB=6,BC=12, 点P从A点出发向B以1m/s的速度移动,点Q从B点出发向 C点以2m/s的速度移动,如果P、Q分别从A、B两地同 时出发,几秒后△ PBQ与原三角形相似?
2.△ABC中,AB>AC,过AB上一点D作直线DE 交另一边于E,使所得三角形与原三角形相似, 画出满足条件的图形. A A A A E
D
B CB
D
E CB
D
E CB
D
E C
一试身手
1.如图,阳光通过窗户照到室内,在地面上留 下2.7m宽的亮区,已知亮区一边到窗口下的 墙角距离EC=8.7m,窗口高AB=1.8m,那么窗 口底边离地面的高BC是多少呢?
C
Q
B
P
A
二 .学以致用
一块直角三角形木板的一条直角边AB长1.5m, 面积为1.5m2。要把它加工成一个面积最大的 正方形桌面,甲、乙两人的加工方法分别如 图1和图2所示,你能用所学过的知识说明谁 的加工方法符合要求吗?(加工损耗忽略不 计,计算结果保留分数) B B
图形的相似知识点总结归纳
第十四章图形的相似 考点一、比例线段(3 分) 1、比例线段的相关概念a m 如果选用同一长度单位量得两条线段 a ,b 的长度分别为 m ,n ,那么就说这 b = n 两条线段的比是,或写成 a :b=m :n在两条线段的比 a :b 中,a 叫做比的前项, b 叫做比的后项。
在四条线段中, 如果其中两条线段的比等于另外两条线段的比, 那么这四条线段叫做成比例线段,简称比例线段a = cb d 若四条 a ,b ,c ,d 满足或 a :b=c :d ,那么 a ,b ,c ,d 叫做组成比例的项, 线段 a ,d 叫做比例外项,线段 b ,c 叫做比例内项,线段的 d 叫做 a ,b ,c 的第四比例项。
如果作为比例内项的是两条相同的线段,即a ,c 的比例中项。
2、比例的性质(1) 基本性质①a :b=c :d ⇔ a d=bc②a :b=b :c ⇔ b 2 = ac(2) 更比性质(交换比例的内项或外项)a =b (交换内项)cd a c dc a b b = c 或 a :b=b :c ,那么线段 b 叫做线段 b =d ⇒ b= a (交换外项)d b c = a(同时交换内项和外项) (3) 反比性质(交换比的前项、后项):a cb d b = d ⇒ a = c(4) 合比性质:a = c ⇒ a ±b =c ±d b d b d(5)等比性质:a =c=e ==m (b +d +f ++n ≠0)⇒a +c +e ++m=ab d f n b +d +f ++n b3、黄金分割把线段AB 分成两条线段AC,BC(AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC= 5 -1AB ≈0.618AB 2考点二、平行线分线段成比例定理(3~5 分)三条平行线截两条直线,所得的对应线段成比例。
图形的相似阶段复习ppt
有多个判定定理可以用于判断两个直角三角形相似,如AA定理、SAS定理等 。
相似直角三角形的应用
用于证明定理和性质
相似三角形是几何中常用的工具,可以用来证明定理和性质。
用于解决实际问题
相似三角形可以用于解决一些实际问题,如测量、工程技术和日常生活中的应用 。
04
等腰三角形判定方法
要点一
定义法
要点二
平行线法
根据相似三角形的定义,通过测量和 比较对应角和对应边的比值来判断两 个三角形是否相似。
通过构造平行线,将两个三角形分成 两个直角三角形,通过比较两个直角 三角形的对应边长来判断两个三角形 是否相似。
要点三
SAS(Side-AngleS…
通过比较两个三角形的对应边和对应 角来判断两个三角形是否相似。
利用相似三角形
如果两个三角形有两组对应边成比 例,且夹角相等,则它们相似。
利用平行线
如果两条平行线与另外两条平行线 分别相交,则对应三角形相似。
02
锐角三角形的相似
相似三角形的定义与性质
相似三角形的定义
两个三角形的对应角相等,则这两个三角形相似。
相似三角形的性质
相似三角形对应边成比例,对应角相等,对应中线、角平分线、高线也成比例。
相似三角形的应用
1 2 3
测量和计算
利用相似三角形的性质,可以测量和计算不能 直接测量和计算的距离、高度、角度等。
平面几何证明
在平面几何中,相似三角形是证明各种几何定 理的重要工具。例如,勾股定理、余弦定理等 。
解决实际问题
在实际问题中,可以通过相似三角形来测量不 可直接测量的高度、角度等,如建筑物的高度 、太阳的角度等。
图形的相似阶段复习ppt
上册第四章第13课图形的相似单元复习-北师大版九年级数学全一册课件
解:由题意可得,△DEF∽△DCA,
∵DE=0.5米,EF=0.25米,DG=1.5米, DC=20米,
解得AC=10. ∴AB=AC+BC=10+1.5=11.5(米). 答:旗杆的高度为11.5米.
15. 如图,花丛中一根灯杆AB上有一盏路灯A,灯 光下,小明在点D处的影长DE=3米,沿BD方向 走到点G,DG=5米,这时小明的影长GH=4米, 如果小明的身高为1.7米,求路灯A离地面的高 度.
cm/s,它们同时出发,当有一点到达所在线段的 (2,2) D.
如图,在△ABC中,DE∥BC,
DE=4,则BC的长是( )
第13课 图形的相似单元复习
端点时,就停止运动. 设运动时间为t s. 如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在点D处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长
10. 在平面直角坐标系中,已知点E(-4,2),F(-2,
-2),以原点O为位似中心,相似比为
,把
△EFO缩小,则点E的对应点E′的坐标是( D )
A. (-2,1)
B. (-8,4)
C. (-8,4)或(8,-4)
D. (-2,1)或(2,-1)
11. 在Rt△ABC中,AD是斜边BC上的高,BD=4,CD=9, 则AD= 6 .
CB向点B方向运动,如果点P的速度是4 cm/s,点Q的速度是2 cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.
向运动,动点Q从点C出发,沿线段CB向点B方向 第13课 图形的相似单元复习
已知△ABC∽△A′B′C′,且
则S△ABC:S△A′B′C′为( )
如图,在△ABC中,DE∥BC,
《相似图形》复习要点
《相似图形》复习要点福建 周奕生《图形的相似》是几何的重要内容之一,同平移、翻折、旋转这些全等变换一样,相似也是一种变换,主要研究图形的形状关系.一、知识结构二、复习目标1.认识物体和图形的相似,了解相似图形的概念;2.了解线段的比、成比例的线段概念和黄金分割;3.能够判定两个三角形相似,并能利用相似三角形的性质解决一些简单的实际问题; 4.了解位似图形的概念,能用位似变换将一个图形进行放缩;5.能够利用直角坐标系来描述图形的位置.三、知识要点本章的重点是相似三角形的性质和三角形相似的判定;运用图形相似的性质解决简单的实际问题是本章的难点,也是重点之一.主要知识点是:1.线段比:在同一长度单位下,两条线段长度的比叫做线段比.这里要特别注意两条线段的长度单位要统一.比如:线段AB =3c m,CD =20mm,那么应先把线段AB 与CD 的长度单位化为统一,如果以c m为单位,则32AB CD =,如果以mm为单位,则303202AB CD ==.可见,线段比与所采用的度量单位无关. 2.比例尺:在地图或图纸上,图上距离与它所表示的实际距离的比叫做比例尺,通常写成1∶m的形式.这里也要注意图上距离与实际距离的长度单位也是要统一的.事实上,比例尺是特殊的线段比.3.比例线段:如果四条线段,其中两条的比等于另外两条的比,那么称这四条线段成比例线段,简称比例线段.可见比例线段是线段之间的一种数量关系.例如:已知线段A =3,B =6,C =12,D =24,由12a b =,12c d =可得a c b d=,从而可知A ,B ,C ,D 是比例线段;另一方面,如果从14a c =,14b d =也可知这四条线段成比例.这里也特别注意:如果A 、B 、C 、D 成比例,那么比例式是a cb d =,不能随意更改比例式; 4.比例的性质: (1)基本性质:如果a cb d =,那么AD =BC ;反过来,如果AD =BC (A ,B ,C ,D 都不等于0),那么ac b d=.可见比例式与等积式可以相互转化. (2)合比性质:如果a c b d =,那么a b c d b d±±=.此性质可以记作:在一个比例式中,比的分子分别加上或减去各自比的分母,所得比例式仍然成立. (3)等比性质:如果nm d c b a === (B +D +…+n≠0),那么ba n db mc a =++++++ .这里要特别注意B +D +…+n≠0这个条件. (4)黄金分割:如果点C 把线段AB 分成AC 和BC ,且A C B C A B A C=(或2AC =AB ·BC ),那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比值为0.618)叫做黄金比.注意:一条线段有两个黄金点; 5.相似的图形:形状相同,大小不一定相同的两个图形称为相似的图形,简称相似形;6.相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形,其中对应边的比叫做相似比.全等多边形就是相似比为1的相似多边形;7.相似多边形的性质:对应角相等,对应边成比例.注意:各角对应相等的多边形不一定相似,比如两个矩形,它们的四个角对应相等,但不一定相似;8.相似三角形:相似多边形中最简单的特例.9.相似三角形的判定:(1)两角对应相等的两个三角形相似;(2)两边对应成比例,且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;注意:三角相似的判定与三角形全等的判定十分类似.10.相似三角形的性质:若两个三角形相似,则(1)对应角相等,对应边成比例;(2)对应高、中线和角平分线的比都等于相似比;(3)周长的比等于相似比;(4)面积的比等于相似比的平方;注意:运用相似三角形可以解决许多实际问题.11.位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这两个多边形叫做位似,该交点叫做位似中心.可见,位似是特殊的相似,其相似比又叫做位似比.位似图形上任意一对对应点到位似中心的距离之比等于位似比.利用位似变换可以轻易地将图形放大或缩小.四、典例剖析例1 如图,CD 为直角三角形ABC 斜边AB 上的高,则图中共有几个三角形?这些三角形相似吗?为什么?你能从中得出什么结论?分析:要判定三角形是否相似,先从最简单的“两角对应相等”入手,寻找是否存在两个角对应相等? 在△ABC 与△ACD 中,显然有∠ACB =∠ADC =90°,∠A 为公共角,故△ABC ∽△ACD ;同理,△ABC ∽△CBD ,因此,图中三个三角形都相似.由此可得这样的结论:直角三角形斜边上高分三角形所得两个直角三角形与原三角形都相似.例2 已知2A =3B =4C ≠0,求23234a b c a b c++++的值. 分析:先求出A ∶B ∶C 的值,再运用参数法,用k表示A 、B 、C . 已知的等式三边同时除以2、3、4的最小公倍数12,得643a b c ==, 设A =6k,B =4k,C =3k,则23234a b c a b c ++++=689121212k k k k k k ++++=2336. 例3 已知点C 是线段AB 上一点,AC=12,BC=32-,试判断点C 是不是线段AB 的黄金点?为什么?分析:欲知点C 是不是AB 的黄金点,只须判断AC 或BC 与AB 的比值是不是等于黄金比12?因此,应先求出AB 的长. 因为AB =AC +BC=12+32-=1, 所以AC AB,故点C 是AB 的黄金点. 例4 已知矩形OABC 顶点的坐标分别为O (0,0),A (-2,0),B (-2,1),C (0,1),现把各点的坐标乘以2,得到矩形OD EF,求证:矩形OABC ∽矩形OD EF.分析:欲证矩形OABC ∽矩形OD EF,只须证明四个角对应相等,四条边对应成比例.由于ABC 与OD EF都是矩形,所以四个角都是直角,从而对应角相等已满足.由已知,点D ,E,F的坐标分别是D(-4,0),E(-4,2),F(0,2),故有12OA AB BC CO OD DE EF FO ====,因此,矩形OABC ∽矩形OD EF. 例5 如图是学校的旗杆,小明带着一条卷尺和一面镜子,他想借助这两样工具测量旗杆的高,请你为他设计测量的方法.分析:由于旗杆的顶端不能到达,故可利用相似形对应边成比例来进行测量.首先把镜子放在一个与旗杆底部有一定距离,且在同一水平线上的点C 的位置;然后量一下旗杆底部B 到C 的距离BC 的长,记为A 米; 接下来沿着BC 这条射线从镜子C 往后退,退到点E,使站在点E处恰好能够从镜子里看到旗杆的顶端A ;然后量一下点E到C 的距离,记为B 米;最后再量一下眼部D 到地面上的高D E的长,记为C 米.此时在△ABC 和△D EC 中,它们除了都有一个直角∠E=∠B 外,根据光的反射原理,入射角等于反射角,又可知∠DC E=∠ACB ,从而△ABC ∽△D EC ;接下来根据相似三角形对应边成比例,得AB BC DE CE =,即AB a c b =,解得AB =ac b (米). 例6 一块直角三角形余料,直角边BC =80c m,AC=60c m,现要最大限度地利用这个余料把它加工为一个正方形,求这个正方形的边长. 分析:最大限度利用余料,说明加工出来的正方形的顶点应全部都在三角形的边上,其中有两个顶点在同一边上,此时的这两个顶点出现了两种情况:在直角边上和在斜边上,究竟在什么边上的面积最大?应加以讨论. 1)如果正方形的两个顶点在直角边上(如图1),设正方形的边长为x c m,则由△AD F∽△ABC ,得 DF AF BC AC =,即608060x x -=,解得x =2407; 2)如果正方形的两个顶点在斜边上(如图2),作△ABC 的高C H交EF于P.设正方形的边长为x c m,则由△C EF∽△CBA ,得B E 图1图2BEEF CPAB CH =,又AB C H=AC BC AB⋅=48,C P=48-x ,故4810048x x -=,解得x =120037. 因为2407>120037,故所求正方形的边长是2407c m.。
《图形的相似》总复习教案
本章复习【知识与技能】掌握本章知识,能熟练运用有关性质和判定解决具体问题.【过程与方法】通过回顾和梳理本章知识了解图形的相似有关知识.【情感态度】在应用本章知识解决具体问题过程中提高学生分析问题、解决问题的能力.【教学重点】相似图形的特征与识别,相似三角形的有关概念及相似的表示方法和相似比的概念.【教学难点】能熟练运用有关性质和判定解决实际问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构图,使学生系统地了解本章知识及其之间的关系.二、释疑解惑,加深理解1.比例的基本性质:线段的比;成比例线段;黄金分割.2.图形的相似:相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方.3.三角形相似:两个三角形相似的条件.4.图形的位似:能够利用位似将一个图形放大或缩小.5.利用相似解决实际问题(如:测量旗杆的高度).【教学说明】通过对重点知识的回顾为本节课的学习内容做好铺垫.三、典例精析,复习新知1.若2a b b c a c m c a b+++===-,则m=±1.解析:分a+b+c ≠0和a+b+c=0两种情况.2.如图,在△ABC 中,AB=AC=27,D 在AC 上,且BD=BC=18,DE ∥BC 交AB 于E ,则DE =10.解析:由△ABC ∽△BCD ,列出比例式,求出CD ,再用△ABC∽△AED 求DE.3.已知:如图,F 是四边形ABCD 的对角线AC 上一点,EF ∥BC ,FG ∥AD.求证:AE CG AB CD+=1.分析:利用AC=AF+FC.解:∵EF ∥BC ,FG ∥AD , ∴.AE AF CG CF AB AC CD CA==, 1.AE CG AF CF AC AB CD AC CA AC+=+== 4.如图,△ABC 中,CD ⊥AB 于D ,E 为BC 的中点,延长AC 、DE 相交于点F ,求证:AC AF BC DF=.分析:过F 点作FG ∥CB ,只需再证GF=DF.解:如图(2),作FG ∥BC 交AB 延长线于点G .∵BC ∥GF , ∴AC AF BC GF=. 又∠BDC=90°,BE=EC ,∴BE=DE.∵BE ∥GF ,∴DF DE GF BE ==1. ∴DF=GF.∴AC AF BC DF=. 四、复习训练,巩固提高1.如图,AB ∥CD ,图中共有6对相似三角形.2.如图,已知AD ∥EF ∥BC ,且AE=2EB ,AD=8cm ,BC=14cm ,则S 梯形AEFD ︰S 梯形BCFE =2013. 解析:延长EA ,与CD 的延长线交于P 点,则△APD ∽△EPF ∽△BPC.3.如图,△ABC 中,AB=AC ,∠BAC=108°,在BC 边上取一点D ,使BD=BA ,连接AD.求证:(1)△ADC ∽△BAC ;(2)点D 是BC 的黄金分割点.证明:(1)∵AB=AC ,∠BAC=108°,∴∠B=∠C=36°,∵BD=BA ,∴∠BAD=72°,∴∠CAD=36°,∴∠CAD=∠B ,∵∠C=∠C ,∴△ADC ∽△BAC ;(2)∵△ADC ∽△BAC , ∴AC BC CD AC=, ∴AC 2=BC ·CD ,∵AC=AB=BD ,∴BD 2=BC ·CD ,∴点D 是BC 的黄金分割点.4.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A 点,沿OA 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?图(1) 图(2)分析:如图(2),由于AC ∥BD ∥OP ,故有△MAC ∽△MOP ,△NBD ∽△NOP ,即可由相似三角形的性质求解.解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP ,∴△MAC ∽△MOP.∴MA AC MO OP =,即20MA MA +=1.68,解得,MA=5米;同理,由△NBD ∽△NOP ,可求得NB=1.5米,∴小明的身影变短了5-1.5=3.5米.【教学说明】解此题的关键是找出相似的三角形,然后根据对应边成比例列出式子,即而得出结论.五、师生互动,课堂小结这节课知识方面你收获了什么?数学思想方法方面你收获了什么?学习习惯方面你又收获了什么?1、布置作业:教材P103~107“复习题”.2、完成创优作业中本课时部分.通过本节课的学习,使学生能够掌握用图形的相似的有关知识解决实际问题.经过不断地练习,使学生能够将本章的内容很好的融合的一起.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形相似全章总复习夯实基础1、了解比例的基本性质,线段的比、成比例线段;2、掌握黄金分割的定义、性质及应用;3、理解相似三角形、相似多边形、相似比的概念;熟练掌握三角形相似的判定方法以及相似三角形的性质,并能够运用性质与判定解决有关问题;4、了解位似的概念,做的位似是特殊的相似变换,会利用位似的方法,讲一个图形放大或缩小;5、了解平行投影和中心投影的基本概念与性质,能综合运用图形相似的知识解决一些简单的实际问题.要点一、比例线段及黄金分割1.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a:b=c:d,则ad=bc;(d也叫第四比例项)(2)若a:b=b:c,则b2=ac(b称为a、c的比例中项).2.黄金分割的定义:如图,将一条线段AB分割成大小两条线段AP、PB,若小段与大段的长度之比等于大段的长度与全长之比,即ABAPAPPB(此时线段AP叫作线段PB、AB的比例中项),则P点就是线段AB的黄金分割点(黄金点),这种分割就叫黄金分割.3. 黄金矩形与黄金三角形:黄金矩形:若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.要点二、相似图形1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等.2.相似多边形各角分别相等,各边成比例的两个多边形,它们的形状相同,称为相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.要点三、相似三角形1.相似三角形的判定:判定方法(一):平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.判定方法(二):两角分别相等的两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.判定方法(三):两边成比例夹角相等的两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形对应高,对应中线,对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.3.相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点四、图形的位似及投影1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.4.平行投影在平行光的照射下,物体所产生的影称为平行投影.(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.(3)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.5.中心投影在点光源的照射下,物体所产生的影称为中心投影.(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.一、典型例题类型一、黄金分割1.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.举一反三【变式】如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.类型二、相似三角形2. 已知:如图,∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a、b之间满足怎样的关系时,这两个三角形相似?举一反三【变式】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.类型三、相似三角形的综合应用3.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.4. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=42,AF=3,求FG的长.5. 如图,已知在梯形ABCD中,AD//BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形.(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式.举一反三【变式】如图所示,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A 为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE 的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值,最大值为多少?类型四、图形的位似6.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.类型五、用相似三角形解决问题7.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?二、巩固练习一、选择题1.如图所示,给出下列条件:①;②;③;④. 其中单独能够判定的个数为( )A.1 B.2 C.3 D.42.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)3.如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE•平分∠ABC,则下列关系式中成立的有( )①;②;③;④CE2=CD×BC;⑤BE2=AE×BC.A.2个B.3个 C.4个 D.5个4.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA∶OC = OB∶OD,则下列结论中一定正确的是 ( )A.①和②相似B.①和③相似 C.①和④相似D.②和④相似5.如图,在正方形网格上有6个斜三角形:①△ABC,②△BCD,③△BDE,④△BFG,•⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是( )A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥第4题第5题第6题6. 如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若P到BD的距离为32,则点P的个数为()A.1 B.2 C.3 D.47. 如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度( )A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米第7题第8题8. 已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.512-B.512+C. 3D. 2二、填空题9.顶角为36°的等腰三角形称为黄金三角形.如图,△ABC、△BDC、△DEC都是黄金三角形,已知AB=1,则DE=____________.第9题第10题10.如图,M是ABCD的边AB的中点,CM交BD于E,则图中阴影部分的面积与ABCD的面积之比为___ __.11.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。