椭圆的简单几何性质二

合集下载

3.1.2椭圆的简单几何性质(第二课时)(教学课件(人教版))

3.1.2椭圆的简单几何性质(第二课时)(教学课件(人教版))

其中x1,x2(y1,y2)是上述一元二次方程的两根,由根与系数的关系求出两根之 和与两根之积后代入公式可求得弦长. 提醒:如果直线方程涉及斜率,要注意斜率不存在的情况.
四.直线与椭圆的位置关系
(二)弦长及弦的中点问题
例 3(1)已知直线 y=x+1 与椭圆x2+y2=1 相交于 A、B 两点,求弦 AB 的长. 4
=1+4m+ n +4=5+4m+n ≥5+2 4m·n =9,
nm
nm
nm
四.直线与椭圆的位置关系
(一)直线与椭圆位置关系及判定
跟踪训练(2)已知椭圆的方程为 x2+2y2=2.①判断直线 y=x+ 3与椭圆的位置关系; ②判断直线 y=x+2 与椭圆的位置关系;③在椭圆上找一点 P,使 P 到直线 y=x+2 的距离 最小,并求出这个最小距离.
两式相减,得 3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0.
∵x1≠x2,x1+x2=2x0,y1+y2=2y0,∴34xy00=-yx11- -yx22=-kPQ.
∵kPQ=-14,∴y0=3x0.代入直线
y=4x+1,得 2
x 0=-12, y0=-32
则直线 PQ 的方程为 y+3=-1(x+1)即 2x+8y+13=0. 2 42
|
2a,所以
a
1 2
(|
F1B
|
|
F2 B
|)
4.1,
b a2 c2 3.4.
所以,所求的椭圆方程为
x2 4.12
y2 3.42
1.
二.和椭圆有关的实际问题
跟踪练习1(多选)嫦娥四号探测器,简称“四号星”,是世界首个在月球背面软着陆和巡查 探测的航天器.202X年9月25日,中国科研人员利用嫦娥四号数据精确定位了嫦娥四号的 着陆位置,并再现了嫦娥四号的落月过程,该成果由国际科学期刊《自然·通讯》在线发 表.如图所示,现假设“四号星”沿地月转移轨道飞向月球后,在月球附近一点P变轨进入 以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距, 用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,则下列式子正确的是

椭圆的简单几何性质(第2课时)高中数学获奖教案

椭圆的简单几何性质(第2课时)高中数学获奖教案

3.1.2椭圆的简单几何性质(第二课时)(人教A版选择性必修数学第一册第三章圆锥曲线的方程)一、教学目标1.掌握椭圆的第二定义;2.能够自主探究椭圆的简单几何性质.二、教学重难点1.推导椭圆的第二定义和焦半径公式;2.研究椭圆几何性质的思路与方法.三、教学过程1.复习巩固活动:完成下表【活动预设】由学生完成上表【设计意图】带领学生复习上节课学习的椭圆的简单几何性质. 2.课堂探究 2.1 探究1活动:已知椭圆E:x 216+y 212=1,F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点,O 为坐标原点.探究:当P 在何位置时,|OP|最小?P 又在何位置时,|OP|最大?【活动预设】由学生自主完成问题1:如果椭圆方程变为一般方程:x 2a 2+y 2b 2=1(a >b >0),结论又会如何呢? 【预设的答案】当P 在短轴顶点时,|OP|min =b ;当P 在长轴顶点时,|OP|max =a . 【设计意图】渗透从特殊到一般的思想 2.2 探究2活动:已知椭圆E:x 216+y 212=1,F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,|PF 1|最小?P 又在何位置时,|PF 1|最大?【活动预设】由学生自主完成问题2:上述|PF 1|=12|x 0+8|,|x 0+8|有什么几何意义?【预设的答案】代表P(x 0,y 0)到直线x =−8的距离 【设计意图】渗透数形结合的思想问题3:也就是说|PF 1|=12|PM|,椭圆上任意一点P(x 0,y 0),它到左焦点的距离和它到直线x =−8的距离之比为常数12,那么对于一般的椭圆是否有类似的性质呢?我们考虑下面的一般情况:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,|PF 1|最小?P 又在何位置时,|PF 1|最大?【预设的答案】设P(x 0,y 0),则PF 12=(x 0+c)2+y 02 因为y 02=b 2(1−x 02a 2) 所以PF 12=(x 0+c)2+b 2(1−x 02a 2)=(a 2−b 2)x 02a2+2cx 0+b 2+c 2=c 2a 2 x 02+2cx 0+a 2=c 2a 2(x 0+a 2c )2即|PF 1|=ca |x 0+a 2c |设直线l 1:x =−a 2c ,P 到直线l 1的距离为PM ,则|PF 1|=ca |PM|,|PF 1||PM|=ca =e 【设计意图】渗透从特殊到一般的思想. 2.3 概念形成椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点,P(x 0,y 0)为椭圆E 上一动点.左准线l 1:x =−a 2c ,右准线l 2:x =a 2c 椭圆第二定义:P 到左焦点的距离|PF 1|与它到左准线l 1:x =−a 2c 的距离|PM 1|的比为离心率e ,即|PF 1||PM 1|=e =ca ; P 到右焦点的距离|PF 2|与它到右准线l 2:x =a 2c 的距离|PM 2|的比为离心率e ,即|PF 2||PM 2|=e =ca .焦半径公式:|PF 1|=c a (a 2c +x 0)= a +ex 0,|PF 2|=c a (a 2c −x 0)= a−ex 0|PF 1|min =a−c , |PF 1|max =a +c .3.课堂巩固例:动点M(x,y)与定点F(4,0)的距离和M 到定直线l:x =254的距离的比是常数45,求动点M 的轨迹.(x−4)2+y 2|x−254|=45所以25[(x−4)2+y 2]=16(x−254)2化简得:9x 2+25y 2=225 所以x 225+y 29=1【设计意图】引出椭圆第二定义拓展:动点M 到定点F 的距离与到定直线l 的距离之比是一个常数,动点M 的轨迹是否也是椭圆呢?【设计意图】留给学生课后自主研究 4.课后探究探究1:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,∠F 1PF 2最大?P 又在何位置时,∠F 1PF 2最小?探究2:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),A 1、A 2分别为椭圆E 的左、右顶点. P 为椭圆E 上一动点. 探究:当P 在何位置时,∠A 1PA 2最大?P 又在何位置时,∠A 1PA 2最小?【设计意图】鼓励学生利用课余时间自主探究 5.课堂小结思考:这节课我们主要学习了什么内容?体现了哪些数学思想方法?【设计意图】梳理本节课所学内容,总结数学思想方法.。

3.1.2 椭圆的简单几何性质(第2课时)备课笔记

3.1.2 椭圆的简单几何性质(第2课时)备课笔记

3.1.2椭圆的简单几何性质第2课时本小节内容选自《普通高中数学选择性必修第一册》人教A 版(2019)第二章《圆锥曲线的方程》的第一节《椭圆》。

以下是本节的课时安排:第三章圆锥曲线的方程课时内容 3.1.1椭圆及其标准方程 3.1.2椭圆的简单几何性质所在位置教材第105页教材第109页新教材内容分析椭圆是生产生活中的常见曲线,教材在用细绳画椭圆的过程中,体会椭圆的定义,感知椭圆的形状,为选择适当的坐标系,建立椭圆的标准方程、研究椭圆的几何性质做好铺垫。

通过对椭圆标准方程的讨论,使学生掌握标准方程中的a,b,c,e 的几何意义及相互关系,体会坐标法研究曲线性质的基本思路与方法,感受通过代数运算研究曲线性质所具有的程序化、普适性特点。

核心素养培养通过椭圆的标准方程的推导,培养数学运算的核心素养;通过对椭圆的定义理解,培养数学抽象的核心素养。

通过椭圆的几何性质的研究,培养数学运算的核心素养;通过直线与椭圆的位置关系的判定,培养逻辑推理的核心素养。

教学主线椭圆的标准方程、几何性质学生已经学习了直线与圆的方程,已经具备了坐标法研究解析几何问题的能力。

本章学习圆锥曲线方程及几何性质,进一步提升用代数方法研究解析几何问题的方法。

1.进一步掌握椭圆的方程及其性质的应用,培养数学抽象的核心素养.2.会判断直线与椭圆的位置关系,培养数学运算的核心素养.3.能运用直线与椭圆的位置关系解决相关的弦长、中点弦问题,培养数学运算的核心素养.重点:直线与椭圆的位置关系难点:直线与椭圆的位置关系的应用(一)新知导入一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。

过对称轴的截口ABC 是椭圆的一部分,灯丝位于椭圆的一个焦点1上,片门位另一个焦点2上,由椭圆一个焦点1发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点2。

(二)椭圆的简单几何性质知识点一点与椭圆的位置关系【探究1】根据点与圆的位置关系,你能得出点P (x 0,y 0)与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系有哪些?怎样判断?◆点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内部⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外部⇔x 20a 2+y 20b2>1.【做一做1】点(1,1)与椭圆22132x y +=的位置关系为()A.在椭圆上B.在椭圆内C.在椭圆外D.不能确定【做一做2】若点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是________.知识点二直线与椭圆的位置关系【探究2】类比直线与圆的位置关系,思考直线与椭圆有几种位置关系?怎样判断其位置关系?◆直线与椭圆的位置关系(直线斜率存在时)直线y =kx +m 与椭圆x 2a 2+y2b 2=1(a >b >0)的位置关系判断方法:kx +m+y 2b 2=1,消y 得一个关于x的一元二次方程.位置关系公共点个数组成的方程组的解判定方法(利用判别式Δ)相交2个2解Δ>0相切1个1解Δ=0相离0个0解Δ<0斜率不存在时,观察可得.【做一做1】直线y =x +1与椭圆x 2+y 22=1的位置关系是()A.相离B.相切C.相交D.无法确定【做一做2】(教材P114练习2改编)椭圆x 23+y 2=1被直线x -y +1=0所截得的弦长|AB |=________.1.直线与椭圆的位置关系例1.已知直线y =x +m 与椭圆x 216+y 29=1,当直线和椭圆相离、相切、相交时,分别求m 的取值范围.[分析]将直线方程与椭圆方程联立,利用判别式Δ判断.【类题通法】代数法判断直线与椭圆的位置关系判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交;Δ=0⇔直线与椭圆相切;Δ<0⇔直线与椭圆相离.【巩固练习1】(1)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是()A.63B.-63C.±63D.±33(2)直线y =kx -k +1(k ∈R )与焦点在x 轴上的椭圆x 25+y 2m=1总有公共点,则m 的取值范围是________.2.弦长问题例2.已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围;(2)求被椭圆截得的最长弦所在的直线方程.[分析](1)将直线方程与椭圆方程联立,根据判别式Δ的符号,建立关于m 的不等式求解;(2)利用弦长公式建立关于m 的函数关系式,通过函数的最值求得m 的值,从而得到直线方程.【类题通法】1.求直线被椭圆截得弦长的方法:法一是求出两交点坐标,用两点间距离公式;法二是用弦长公式|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|,其中k 为直线AB 的斜率,A (x 1,y 1),B (x 2,y 2).2.有关直线与椭圆相交弦长最值问题,要特别注意判别式的限制.【巩固练习2】已知椭圆C 的中心在原点O ,焦点在x 轴上,其长轴长为焦距的2倍,且过点F 为其左焦点.(1)求椭圆C 的标准方程;(2)过左焦点F 的直线l 与椭圆交于A ,B 两点,当|AB |=185时,求直线l 的方程.3.中点弦问题例3.过椭圆x 216+y 24=1内一点P (2,1)作一条直线交椭圆于A ,B 两点,使线段AB 被P 点平分,求此直线的方程.[分析]由于弦所在直线过定点P (2,1),所以可设出弦所在直线的方程为y -1=k (x -2),与椭圆方程联立,通过中点为P ,得出k 的值,也可以通过设而不求的思想求直线的斜率.【类题通法】关于中点弦问题,一般采用两种方法解决(1)联立方程组,消元,利用根与系数的关系进行设而不求,从而简化运算.(2)利用“点差法”即若椭圆方程为x 2a 2+y 2b2=1,直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),且弦AB 的中点为M (x ,y +y 21b2=1,①+y 22b2=1,②①-②:a 2(y 21-y 22)+b 2(x 21-x 22)=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·xy.这样就建立了中点坐标与直线的斜率之间的关系,从而使问题得以解决.【巩固练习3】已知椭圆方程是x 29+y 24=1,求以A (1,1)为中点的弦MN 所在的直线方程.1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为()-233,2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是()A.相交B.相切C.相离D.不确定3.直线y =x +1被椭圆x24+y 22=1所截得的弦的中点坐标是()-23,-132,4.椭圆mx 2+ny 2=1(m >0,n >0且m ≠n )与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则mn 的值是()A.22B.233C.922D.2327(五)课堂小结,反思感悟1.知识总结:2.学生反思:(1)通过这节课,你学到了什么知识?(2)在解决问题时,用到了哪些数学思想?3.1.2椭圆的简单几何性质(2)-A 基础练一、选择题1.(2020·河北桃城衡水中学期末)已知椭圆()2222:10x y C a b a b+=>>,若长轴长为8,离心率为12,则此椭圆的标准方程为()A.2216448x y +=B.2216416x y +=C.221164x y +=D.2211612x y +=2.(2020全国高二课时练)椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为22143x y +=,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程不可能为()A.2B.4C.6D.83.(2020·金华市曙光学校月考)无论k 为何值,直线2y kx =+和曲线22194x y +=交点情况满足()A.没有公共点B.一个公共点C.两个公共点D.有公共点4.(2019·安徽安庆月考)椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0x y +=的对称点A 是椭圆C 上的点,则椭圆的离心率为()A.22B.2115.(多选题)(2020广东濠江高二月考)椭圆22116x y m+=的焦距为,则m 的值为()A.9B.23C.16-D.16+6.(多选题)(2020全国高二课时练)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是()A.焦距长约为300公里B.长轴长约为3988公里C.两焦点坐标约为()1500±,D.离心率约为75994二、填空题7.(2020·全国课时练习)若直线2y kx =+与椭圆22132x y +=有且只有一个交点,则斜率k 的值是_______.8.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点1F ,2F 的椭圆Γ与双曲线'Γ构成,现一光线从左焦点1F 发出,依次经'Γ与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的'Γ去掉,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若214t t =,则Γ与'Γ的离心率之比为______.9.(2020·福建漳州高二月考)已知1F ,2F 是椭圆222:1(04)16x y C b b+=<<的左、右焦点,点P 在C 上,线段1PF 与y 轴交于点M ,O 为坐标原点,若OM 为12PF F △的中位线,且||1OM =,则1PF =________.10.(2020上海华师大二附中月考)已知点F 为椭圆22:143x y Γ+=的左焦点,点P 为椭圆Γ上任意一点,点O 为坐标原点,则OP FP ⋅的最大值为________三、解答题11.我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径3400km =R )的中心F 为一个焦点的椭圆.如图,已知探测器的近火星点(轨道上离火星表面最近的点)A 到火星表面的距离为800km ,远火星点(轨道上离火星表面最远的点)B 到火星表面的距离为80000km .假定探测器由近火星点A 第一次逆时针运行到与轨道中心O 时进行变轨,其中,a b 分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到100km ).12.(2020全国高二课时练习)已知椭圆C:()222210x y a b a b +=>>经过点3(1,)2M ,12,F F 是椭圆C 的两个焦点,12||F F =P 是椭圆C 上的一个动点.(1)求椭圆的标准方程;(2)若点在第一象限,且1214PF PF ⋅≤ ,求点的横坐标的取值范围;3.1.2椭圆的简单几何性质(2)-B 提高练一、选择题1.(2020·江苏省镇江中学开学考试)设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若2122BF F F ==则该椭圆的方程为()A.22143x y +=B.2213x y +=C.2212x y +=D.2214x y +=2.(2020·安徽省太和中学开学考试)“1a =”是“直线y x a =+与椭圆22:12516xy C +=有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.(2020·辽宁大连月考)2020年3月9日,我国在西昌卫星发射中心用长征三号运载火箭,成功发射北斗系统第54颗导航卫星.第54颗导航卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R ,若其近地点、远地点离地面的距离大约分别是115R ,13R ,则第54颗导航卫星运行轨道(椭圆)的离心率是()A.25B.15C.23D.194.(2020山东泰安一中高二月考)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论不正确的是()A.卫星向径的最小值为a c -B.卫星向径的最大值为a c+C.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁D.卫星运行速度在近地点时最小,在远地点时最大5.(多选题)设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于A ,B 两点,则()A.AF BF +为定值B.ABF 的周长的取值范围是[]6,12C.当2m =时,ABF 为直角三角形D.当1m =时,ABF 6.(多选题)(2020江苏扬州中学月考)已知椭圆()22:10x y C a b a b+=>>的左、右焦点分别为1F ,2F 且122F F =,点()1,1P 在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A.1QF QP +的最小值为21a -B.椭圆C 的短轴长可能为2C.椭圆C 的离心率的取值范围为510,2⎛⎫- ⎪ ⎪⎝⎭D.若11PF FQ =,则椭圆C +二、填空题7.(2020·广西南宁高二月考)已知O 为坐标原点,点1F ,2F 分别为椭圆22:143x y C +=的左、右焦点,A 为椭圆C 上的一点,且212AF F F ⊥,1AF 与y 轴交于点B ,则OB =________.8.(2020南昌县莲塘第一中学月考)已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.9.(2020·山东泰安实验中学期末)直线2y x =+交椭圆2214x y m +=于,A B 两点,若AB =,则m的值为__________.10.(2020·河南南阳中学高二月考)过椭圆2222:1(0)x y M a b a b +=>>右焦点的直线0x y +=交于,A B 两点,P 为AB 的中点,且OP 的斜率为12,则椭圆M 的方程为__________.三、解答题11.(2020·贵港市高级中学期中)已知平面内两定点(1,0),(1,0)M N -,动点P 满足||||PM PN +=.(1)求动点P 的轨迹C 的方程;(2)若直线1y x =+与曲线C 交于不同的两点A 、B ,求||AB .12.(2020天津实验中学高二月考)已知椭圆22221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,上顶点为B 2OB =(O 为原点)(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且//OC AP ,求椭圆的方程.。

3_1_2 椭圆的简单几何性质2 课件——高二上学期数学人教A版(2019)选择性必修第一册

3_1_2 椭圆的简单几何性质2 课件——高二上学期数学人教A版(2019)选择性必修第一册

所以直线的方程为 = 2 + 1或 = − 2 + 1.
=−
1
.
2 +2
6 中点弦问题
2
例8.已知椭圆
4
+
2
2
= 1的弦的中点P坐标为(1,1),求直线的方程.
法 1(方程组法):易知此弦所在直线的斜率存在,所以设其方程为 y-1=k(x-1),
弦的两端点为 A(x1,y1 )、B(x2,y2 ),
y-1=kx-1,
由 x2 y2
消去 y 得:(2k2 +1)x2-4k(k-1)x+2(k 2-2k-1)=0,
+ =1,
4 2
4kk-1
∴x1+x2 =

2
2k +1
4kk-1
1
又∵x1+x2 =2,∴
=2,得 k=- .
2
2k2+1
1
故弦所在直线方程为 y-1=- (x-1),即 x+2y-3=0.
2
+ 2 = 1.
故设直线的方程为 = + 1,联立椭圆方程,化简,
得( 2 + 2) 2 + 2 − 1 = 0.
= 1( > > 0) ,
5 弦长问题
练2.已知椭圆有两个顶点(−1,0),(1,0),过其焦点(0,1)的直线与椭圆交于,
两点,若|| =
4 2
②-①可得
1 −��2

1 −2
=
x1 +x2x 1-x2 y1+y2y1-y2

=0,
4
2
1 +2

2(1 +2 )
=
1
− ,即

2.2.2椭圆的第二定义

2.2.2椭圆的第二定义

4.已 知 椭 圆 1的 一 条 准 线 方 程 是 y ,则 m4 9 2
3.已知椭圆中心在原点, 长轴在 x轴上,一条准线方程是 x 3, 2 2 x y 5 离 心 率 为 , 则 该 椭 圆 的 方 程 为 5 20 1 。 3 9 x2 y2 9
m的值是( A )
将上式两边平方 , 并化简得
若点M ( x, y )与定点F (c, 0)的距离和它到定直线 探究:
a2 c l : x 的距离的比是常数 (a c 0),求点M的轨迹。 c a
解:设d是点M直线l的距离,根据题意,所 求轨迹就是集合
MF c P M , 由此可得: d a
A.1 B.2 C .3 D.7
应用: 1、求下列椭圆的准线方程:
x y + =1 ② 16 81
2 2
2 2
①x2+4y2=4
x y + = 1 2.已知P是椭圆 100 36 上的点,P
到右准线的距离为 8 ,则P到左焦点 的距离为_________.
x y 3、已知P点在椭圆 25 + 16 =1 上,且P到
问:对于椭圆C1 : 9 x y 36与椭圆C :
2 2
C2 。 更接近于圆的是
x2 2 16
y2 12
2,
x y 1 (4)P为椭圆 上任意一点,F1、F2是焦点, 4 3
2
2
则∠F1PF2的最大值是
.
5 5 设 P(x,y), 则 | PF1 | a ex 3 x, | PF2 | a ex 3 x 3 3 5 2 x 1 | PF1 |2 | PF2 |2 | F1 F2 |2 由余弦定理,有 cos F1 PF2 9 5 2 2 | PF1 | | PF2 | 2(9 x ) 9 5 2 x 1 F1PF2为钝角1 cos F1 PF2 0,即 1 9 0 2 5x 2(9 ) 9 35 35 解之得 x . 法二 5 5

椭圆的简单几何性质(第二课时)

椭圆的简单几何性质(第二课时)
2.2.2 椭圆的 简单几何性质(2)
知识回顾 上节课我们研究椭圆的几个基本量 a,b,c,e及顶点、焦点、对称中心及 其相互之间的关系,
需要注意的是:
1.掌握数与形的联系; 2.求解椭圆方程的基本方法;
3.函数与方程思想和分类讨论思想.
课前热身
▲▲
你知道吗?
y
1. 长度为a的线段有 6 条.
C OC,OD . 2. 长度为b的线段有 3. OF1=OF2= c . A F1 O 4. AF1=BF2= a-c .
l
H
x
2. 哪些方法能求解未 知曲线类型的方程? 3. 计算离心率e的值, 有何发现吗?
F
范例分析
简单回顾求△F1AB的周长的方法.
y
A
x
F1 F2
B
范例分析 2 2 x y 1上的一点, 例题2.点P是椭圆 4 3 F1,F2是焦点,若△PF1F2的内切圆 半径为1/2,求点P的纵坐标.
2. 作业本P19 1--11.
P
6. |OP|的最小值是 b ;最大值是 a .
5. AF2=BF1=
7. |PF1|的最小值是 a-c ;最大值是 a+c .
范例分析 例题1.点M(x,y)与定点F(4,0)的距离和它到 直线l:x=25/4的距离之比是常数4/5, 求点M的轨迹.
y M
1. 你知道曲线类型吗?
y
P
x
F1
F2
温故知新
回顾 判断直线与圆的位置关系的方法.
d-r法 d=r 相切 d<r 相交 d>r 相离
△法 △=0 相切 △<0 相离 △>0 相交 .
今非昔比
探究 判断直线与椭圆的位置关系的方法.

人教版数学高二同步文科选修1-1第二章椭圆的简单几何性质(二)

人教版数学高二同步文科选修1-1第二章椭圆的简单几何性质(二)

2.1.2椭圆的简单几何性质(二)[教材研读]预习课本P41例6,思考以下问题1.点与椭圆的位置关系如何判断?2.直线与椭圆的位置关系如何判断?[要点梳理]1.点与椭圆的位置关系点P(x0,y0)与椭圆x2a2+y2b2=1(a>b>0)的位置关系:点P在椭圆上⇔x20a2+y20b2=1;点P在椭圆内部⇔x20a2+y20b2<1;点P在椭圆外部⇔x20a2+y20b2>1.2.直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系判断方法:联立⎩⎨⎧y =kx +m ,x 2a 2+y 2b 2=1.消去y 得到一个关于x 的一元二次方程.3.弦长公式设直线方程为y =kx +m (k ≠0),曲线方程f (x ,y )=0,直线与曲线的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2(x 1-x 2)2=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=⎝ ⎛⎭⎪⎫1k y 1-1k y 22+(y 1-y 2)2=1+1k 2(y 1-y 2)2=1+1k 2(y 1+y 2)2-4y 1y 2.其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与曲线方程联立消去y (或x )后得到关于x (或y )的一元二次方程求得.[自我诊断]判断(正确的打“√”,错误的打“×”)1.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是m >1.( )2.椭圆2x 2+3y 2=m (m >0)的离心率为33.( )3.点A (2,2)在椭圆x 2+4y 2=36的内部.( ) [答案] 1.× 2.√ 3.√题型一 直线与椭圆的位置关系思考1:如何判断直线与椭圆的位置关系? 提示:联立直线与椭圆方程,求解的个数. 思考2:如何求椭圆上的点到直线的最小距离?提示:把点到直线的距离转化为过该点的直线与已知直线的两平行直线间的距离.在椭圆x 24+y 27=1上求一点P ,使它到直线l :3x -2y-16=0的距离最短,并求出最短距离.[思路导引] 找点较难,所以找与直线l 平行且与椭圆相切的直线.[解] 设与椭圆相切并与l 平行的直线方程为 y =32x +m , 代入x 24+y 27=1,并整理得4x 2+3mx +m 2-7=0,Δ=9m 2-16(m 2-7)=0⇒m 2=16⇒m =±4, 故两切线方程为y =32x +4和y =32x -4, 显然y =32x -4距l 最近, d =|16-8|32+(-2)2=813=81313, 切点为P ⎝ ⎛⎭⎪⎫32,-74.本题将求最小距离问题转化为直线与椭圆的位置关系问题.解此类问题的常规解法是直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交⇔Δ>0;(2)直线与椭圆相切⇔Δ=0;(3)直线与椭圆相离⇔Δ<0.所以判定直线与椭圆的位置关系,方程及其判别式是最基本的工具.[跟踪训练]已知椭圆x 2+8y 2=8,在椭圆上求一点P ,使P 到直线l :x -y +4=0的距离最短,并求出最短距离.[解] 设与直线x -y +4=0平行且与椭圆相切的直线为x -y +a=0,联立方程⎩⎪⎨⎪⎧x 2+8y 2=8,x -y +a =0,得9y 2-2ay +a 2-8=0,Δ=4a 2-36(a 2-8)=0, 解得a =3或a =-3,∴与直线l 距离较近的切线方程为x -y +3=0, 最小距离为d =|4-3|2=22.由{ x 2+8y 2=8,x -y +3=0,得⎩⎪⎨⎪⎧x =-83,y =13,即P ⎝ ⎛⎭⎪⎫-83,13.题型二 直线与椭圆的相交弦问题思考1:直线与椭圆的中点弦问题如何解决? 提示:注意韦达定理的应用.思考2:如何求直线被圆锥曲线截得的弦长?提示:会应用弦长公式.已知点P (4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点.(1)求直线l 的方程.(2)求直线l 被椭圆截得的弦长.[思路导引] 待定系数法,联立方程组,再由韦达定理求参数k ,然后由弦长公式求弦长.[解] (1)由题意可设直线l 的方程为y -2=k (x -4), 而椭圆的方程可以化为x 2+4y 2-36=0. 将直线方程代入椭圆方程有(4k 2+1)x 2-8k (4k -2)x +4(4k -2)2-36=0. 所以x 1+x 2=8k (4k -2)4k 2+1=8.所以k =-12.满足Δ>0.所以直线l 的方程为y -2=-12(x -4), 即x +2y -8=0.(2)联立方程组⎩⎪⎨⎪⎧x +2y -8=0x 2+4y 2=36∴x 2-8x +14=0,则x 1+x 2=8,x 1·x 2=14,代入弦长公式 |AB |=1+k 2(x 1+x 2)2-4x 1x 2=10研究直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程,利用根与系数的关系或中点坐标公式解决.涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系.[跟踪训练]已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则椭圆E 的方程为__________________.[解析] 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程,有x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=12,∵线段AB 的中点坐标为(1,-1),∴b 2a 2=12,∵右焦点为F (3,0),c =3,∴a 2=18,b 2=9,∴椭圆E 的方程为x 218+y 29=1.[答案] x 218+y 29=1题型三 椭圆中的最值(范围)问题已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.[思路导引] 联立方程组,由解的个数确定m 的取值范围,再由韦达定理得弦长关于m 的函数.[解] (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m得5x 2+2mx +m 2-1=0, 因为直线与椭圆有公共点, 所以Δ=4m 2-20(m 2-1)≥0, 解得-52≤m ≤52.(2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知:5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1), 所以|AB |=(x 1-x 2)2+(y 1-y 2)2 =2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2] = 2⎣⎢⎡⎦⎥⎤4m 225-45(m 2-1) =2510-8m 2.∴当m =0时,|AB |最大,即被椭圆截得的弦最长,此时直线方程为y =x .解析几何中的综合性问题很多,而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.[跟踪训练]如图,点A 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴位于y 轴下方的端点,过点A 且斜率为1的直线交椭圆于点B ,若P 在y 轴上,且BP ∥x 轴,AB →·AP →=9.(1)若点P 的坐标为(0,1),求椭圆C 的标准方程; (2)若点P 的坐标为(0,t ),求t 的取值范围. [解] ∵直线AB 的斜率为1,∴∠BAP =45°, 即△BAP 是等腰直角三角形,|AB →|=2|AP →|. ∵AB →·AP →=9,∴|AB →||AP →|cos45°=2|AP →|2cos45°=9,∴|AP →|=3. (1)∵P (0,1),∴|OP →|=1,|OA →|=2, 即b =2,且B (3,1).∵B 在椭圆上,∴9a 2+14=1,得a 2=12, ∴椭圆C 的标准方程为x 212+y 24=1.(2)由点P 的坐标为(0,t )及点A 位于x 轴下方,得点A 的坐标为(0,t -3),∴t -3=-b ,即b =3-t .显然点B 的坐标是(3,t ),将它代入椭圆方程得:9a 2+t 2(3-t )2=1,解得a 2=3(3-t )23-2t. ∵a 2>b 2>0,∴3(3-t )23-2t>(3-t )2>0. ∴33-2t >1,即33-2t -1=2t 3-2t>0, ∴所求t 的取值范围是0<t <32.课堂归纳小结解决直线与椭圆的位置关系问题,经常利用设而不求的方法,解题步骤为(1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2);(2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程;(4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相切B .相交C .相离D .不确定[解析] ∵直线y -1=k (x -1),即直线恒过(1,1)点,又∵19+14<1,∴点(1,1)在椭圆内,所以选B.[答案] B2.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则m n 的值是( ) A.22 B.233 C.922 D.2327[解析] 由⎩⎪⎨⎪⎧ mx 2+ny 2=1,y =1-x 消去y 得,(m +n )x 2-2nx +n -1=0.设M (x 1,y 1),N (x 2,y 2),MN 中点为(x 0,y 0),则x 1+x 2=2n m +n,∴x 0=n m +n ,代入y =1-x 得y 0=m m +n .由题意y 0x 0=22,∴m n =22,选A.[答案] A3.若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .2个B .至多一个C .1个D .0个[解析] ∵直线mx +ny =4与圆x 2+y 2=4没有交点,∴4m 2+n2>2,即m 2+n 2<4,又∵m 29+n 24<m 29+4-m 24=1-5m 236<1,∴点P 在椭圆内.故直线与椭圆有2个交点.[答案] A4.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B.⎝ ⎛⎦⎥⎤0,12C.⎝ ⎛⎭⎪⎫0,22D.⎣⎢⎡⎭⎪⎫22,1 [解析] ∵MF 1→⊥MF 2→,∴点M 在以F 1F 2为直径的圆上,又点M在椭圆内部,∴c <b ,∴c 2<b 2=a 2-c 2,即2c 2<a 2,∴c 2a 2<12,即c a <22.又e >0,∴0<e <22.[答案] C 5.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长.[解] ∵a 2=4,b 2=1,∴c =a 2-b 2=3, ∴右焦点F (3,0),∴直线l 的方程y =x - 3.由⎩⎨⎧ y =x -3,x 24+y 2=1,消去y 并整理,得5x 2-83x +8=0. 设直线l 与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=835,x 1x 2=85, ∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] = 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫8352-4×85=85, 即弦AB 的长为85.。

椭圆的简单几何性质(第二课时)

椭圆的简单几何性质(第二课时)

学科:数学教学内容:椭圆的简单几何性质(第二课时)【自学导引】动点M与定点F(c,0)的距离和它到定直线l:x =的距离的比是常数(a>c>0),则动点M的轨迹是椭圆,定直线l叫做椭圆的准线.准线与长轴所在的直线所夹的角为90°.【思考导学】已知动点P的坐标(x,y)满足,则动点P的轨迹是椭圆.【典例剖析】[例1]已知椭圆=1(a>b>0)的焦点坐标是F1(-c,0)和F2(c,0),P(x0,y0)是椭圆上的任一点,求证:|PF1|=a+ex0,|PF2|=a-ex0,其中e是椭圆的离心率.证明:椭圆=1(a>b>0)的两焦点F1(-c,0)、F2(c,0),相应的准线方程分别是x =-和x =.∵椭圆上任一点到焦点的距离与它到相应准线的距离的比等于这个椭圆的离心率.∴=e ,=e.化简得:|PF1|=a+ex0,|PF2|=a-ex0.点评:|PF1|、|PF2|都是椭圆上的点到焦点的距离,习惯称作焦点半径.|PF1|=a+ex0,|PF2|=a-ex0称作焦半径公式,结合这两个公式,显然到焦点距离最远(近)点为长轴端点.[例2]已知点A(1,2)在椭圆=1内,F的坐标为(2,0),在椭圆上求一点P使|PA|+2|PF|最小.解:∵a2=16,b2=12,∴c2=4,c=2.∴F为椭圆的右焦点,并且离心率为.设P到右准线的距离为d,则|PF|=d,d=2|PF|.∴|PA|+2|PF|=|PA|+d.由几何性质可知,当P点的纵坐标(横坐标大于零)与A点的纵坐标相同时,|P A|+d最小.把y=2代入=1得x=(负舍之),即P(,2)为所求.点评:由=得d=2|PF|是求P点的关键.[例3]在椭圆=1上求一点P,使它到左焦点的距离是它到右焦点距离的两倍.解:设P点的坐标为(x,y),F1、F2分别为椭圆的左、右焦点.∵椭圆的准线方程为x=±,∴,∵|PF1|=2|PF2|,∴,∴x=.把x=代入方程=1得y=±.因此,P点的坐标为(,±).点评:解决椭圆上的点到两焦点的距离(焦半径)问题,常利用椭圆的第二定义或焦半径公式.如果利用焦半径公式,应先利用第二定义证明焦半径公式.【随堂训练】1.椭圆=1(a>b>0)的准线方程是( )A.y=±B.y=±C.y=±D.x=±解析:∵椭圆焦点在y轴上,且c=∴椭圆的准线方程为y=±.答案:B2.椭圆=1的焦点到准线的距离是( )A.和B.和C.和D.解析:∵a2=9,b2=4,∴c=,∴椭圆的焦点坐标为(±,0),椭圆的准线方程为x=±.∴椭圆的焦点到准线的距离为=和=答案:C3.已知椭圆=1(a>b>0)的两准线间的距离为,离心率为,则椭圆方程为( )A.=1B.=1C.=1D.=1解析:由=,=,得a2=16,=4.答案:D4.两对称轴都与坐标轴重合,离心率e=0.8,焦点与相应准线的距离等于的椭圆的方程是( )A.=1或=1B.=1或=1C.+=1D.=1解:设所求椭圆的方程为=1(a>b>0)或=1(a>b>0).由题意,得解这个方程组,得.∴所求椭圆的方程为:=1或=1.答案:A5.已知椭圆=1(a>b>0)的左焦点到右准线的距离为,中心到准线的距离为,则椭圆的方程为( )A.+y2=1B.+y2=1C.+=1D.+=1解析:由-(-c)=,=得a2=4,b2=1.答案:A6.椭圆=的离心率为( )A.B.C.D.无法确定解析:由=知e=.答案:B【强化训练】1.椭圆=1和=k(k>0)具有( )A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长、短轴解析:把方程=k写成标准形式=1.且当a>b>0时,两椭圆的离心率分别为和,两椭圆的离心率相等.当b>a>0时,两椭圆的离心率分别为,两椭圆的离心率相等.答案:A2.椭圆=1上点P到右焦点的最值为( )A.最大值为5,最小值为4B.最大值为10,最小值为8C.最大值为10,最小值为6D.最大值为9,最小值为1解析:e=,设两焦点分别为、由焦半径公式得|PF2|=5-x0,∵-5≤x0≤5,∴当x0=5时|PF2|min=1,当x0=-5时,|PF2|max=9.答案:D3.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A.B.C.D.解析:∵椭圆的一个顶点与两个焦点构成等边三角形.∴a=2c,=.答案:D4.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A.B.C.D.解析:椭圆的两准线之间的距离为-(-)=.∴由题意,得=4³2c,∴=.答案:D5.椭圆=1的准线平行于x轴,则m的取值范围是( )A.m>0B.0<m<1C.m>1D.m>0且m≠1解析:∵椭圆的准线平行于x轴,∴,即.∴答案:C6.椭圆=1上的点P到左准线的距离是2.5,则P到右焦点的距离是________.解析:∵P到左准线的距离为2.5,∴=e,而e=,∴|PF1|=2.5³=2,∴|PF2|=2³5-2=8.即P到右焦点的距离为8.答案:87.椭圆的长轴长是______.解析:把椭圆的方程可写成,(4x-3y-33≠0)∴①一个焦点是(-1,1),相对应的准线方程是4x-3y-33=0,∴②由①、②得a=,∴2a=.答案:8.AB是过椭圆=1的一个焦点F的弦,若AB的倾斜角为,求弦AB的长.解法一:不妨取F(1,0),∴直线AB的方程为y=(x-1)代入椭圆方程并整理得:19x2-30x-5=0设A(x1,y1),B(x2,y2),则∴|AB|=|x1-x2|=解法二:设A、B的坐标分别为(x1,y1)、(x2,y2),F为右焦点.∵∠AFx=,∴x1-c=|FA|cos,x2-c=|FB|cos(+π),∴|FA|=a-x1=.|FB|=a-x2=∴弦AB的长为:|FA|+|FB|=9.已知椭圆的一个焦点是F(1,1),与它相对应的准线是x+y-4=0,离心率为,求椭圆的方程.解:设P(x,y)为椭圆上任意一点,∵椭圆的一个焦点是F(1,1)与它相对应的准线是x +y-4=0,离心率为,∴,∴4(x-1)2+4(y-1)2=(x+y-4)2.即3x2+3y2-2xy-8=0为所求.10.已知点P在椭圆=1上(a>b>0),F1、F2为椭圆的两个焦点,求|PF1|²|PF2|的取值范围.解:设P(x0,y0),椭圆的准线方程为y=±,不妨设F1、F2分别为下焦点、上焦点,则∴|PF1|=y0+a,|PF2|=a-y0,∴|PF1|²|PF2|=(a+y0)(a-y0)=a2-y02∵-a≤y0≤a∴当y0=0时,|PF1|²|PF2|最大,最大值为a2.当y0=±a时,|PF1|²|PF2|最小,最小值为a2-c2=b2.因此,|PF1|²|PF2|的取值范围是[b2,a2].【学后反思】椭圆的离心率是焦距与长轴的比,椭圆上任意一点到焦点的距离与这点到相应准线的距离的比也是离心率,这也是离心率的一个几何性质.椭圆的离心率反映了椭圆的扁平程度,它也沟通了椭圆上点的焦半径|PF|与到相应准线距离d之间的关系.左焦半径公式是|PF1|=a+ex0,右焦半径公式是|PF2|=a-ex0.焦半径公式除计算有关距离问题外还证明了椭圆上离焦点距离最远(近)点实为长轴端点.椭圆的准线方程为x=±,但必须注意这是椭圆的中心在原点,焦点在x轴上时的结论.。

《椭圆的简单几何性质》练习题二

《椭圆的简单几何性质》练习题二

《椭圆的简单几何性质》练习题二1.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若 △F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A )22(B )212- (C )2—2 (D )2—1 2.如图,有公共左顶点和公共左焦点F 的椭圆Ⅰ与Ⅱ的长半轴的长分别为a 1和a 2,半焦距分别为c 1和c 2,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心.则下列结论不.正确的是( ) A .a 1+c 1>a 2+c 2 B .a 1-c 1=a 2-c 2 C .a 1c 2<a 2c 1 D .a 1c 2>a 2c 13.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且 BF ⊥x 轴,直线AB 交y 轴于点P .若AP =2PB ,则椭圆的离心率是( )A.32B.22C.13D.124. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴5.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566C .875D .8776.椭圆192522=+y x 上一点P 到左焦点距离为8,则点P 到右准线的距离是( ) (A ) 25 (B ) 45 (C ) 35 (D ) 425 7.椭圆()012222>>=+b a by a x 的两个焦点 1F 、2F ,若椭圆上存在点P ,使得 02190=∠PF F ,则椭圆的离心率的取值范围是( )(A ) ⎥⎦⎤ ⎝⎛22,0 (B ) ⎪⎪⎭⎫⎢⎣⎡1,22 (C ) ⎥⎦⎤ ⎝⎛23,0 (D ) ⎪⎪⎭⎫⎢⎣⎡1,23 8.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为( ) (A )53 (B )312 (C )43 (D )9109.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点 M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25B .27C .3D .410. 如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道I 和Ⅱ的长轴的长,给出下列式子:①1122;a c a c +=+②1122;a c a c -=-③1212;c a a c >④1212.c c a a < 其中正确式子的序号是( )A.①③B.②③C.①④D.②④10.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0).若椭圆 上存在点P 使a sin ∠PF 1F 2=c sin ∠PF 2F 1,则该椭圆的离心率的取值范围为____.11.椭圆1162522=+y x 上的点M 到左准线的距离是5.2,M 到左焦点的距离为 , M 到右焦点的距离为 .12.椭圆14922=+y x 的两个焦点 1F 、2F ,点P 是椭圆上的动点,当21PF F ∠为钝 角时,则点P 的横坐标的范围是13.直线062=+-y x 过椭圆12522=+my x 的左焦点,则椭圆的右准线方程是 . 14.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上, 且B F x ⊥轴, 直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是15.已知, 是椭圆 内的点, 是椭圆上的动点,则的最大值为______________,最小值为___________.16已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求(1)||35||1MF MA +的最小值 (2)||5||31MF MA +的最小值17.已知椭圆C 的方程为1121622=+y x ,F 1、F 2是它的左右两个焦点,点A 的坐标 为(3,1),试在椭圆上求一点P ,(1)使得|PA|+|PF 2|最小;(2)使得|PA|+2|PF 2|最小,并求出相应的最小值。

人教课标版高中数学选修2-1《椭圆的简单几何性质(第2课时)》教学设计

人教课标版高中数学选修2-1《椭圆的简单几何性质(第2课时)》教学设计

2.2.2 椭圆的简单几何性质(第二课时)一、教学目标(一)学习目标1.理解直线与椭圆的位置关系;2.会进行位置关系的判断,计算弦长.(二)学习重点理解直线与椭圆的位置关系,会判定及应用(三)学习难点应用代数方法进行判定,相关计算的准确性,理解用方程思想解决直线与圆锥曲线的位置关系.二.教学设计(一)预习任务设计1.预习任务写一写:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- 若0∆=,则直线和椭圆有唯一公共点,直线和椭圆 相切 ;若0∆>,则直线和椭圆有两个公共点,直线和椭圆 相交 ;若0∆<,则,直线和椭圆没有公共点,直线和椭圆 相离 .2.预习自测(1)直线1y kx k =-+与椭圆22123x y +=的位置关系是( ) A.相交 B.相切 C.相离 D.不确定【知识点】直线与椭圆位置关系.【解题过程】直线(1)1y k x =-+恒过定点(1,1).由11123+<可知:点(1,1)在椭圆内部,故直线与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】A(2)判断(正确的打“√”,错误的打“×”) ①已知椭圆22221x y a b+=(0)a b >>与点(,0)P b ,过点P 可作出该椭圆的一条切线.( )②直线()y k x a =-与椭圆22221x y a b+=的位置关系是相交.( ) 【知识点】直线与椭圆位置关系.【解题过程】点(,0)P b 在椭圆22221x y a b+=内部,故过P 不能作出椭圆的切线;直线()y k x a =-恒过点(,0)a ,而(,0)a 为椭圆22221x y a b+=的有顶点,过直线()y k x a =-一定与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】①×;②√.(3)直线1y mx =+与椭圆2241x y +=有且只有一个交点,则2m =( ) A.21 B.32 C.43 D.54 【知识点】直线与椭圆的位置关系.【解题过程】联立方程22141y mx x y =+⎧⎨+=⎩得:22(14)830m x mx +++=. 由条件知:226412(14)0m m ∆=-+=,解得:234m =. 【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】C(4)椭圆13422=+y x 长轴端点为M 、N ,不同于M 、N 的点P 在此椭圆上,那么PM 、PN 的斜率之积为( )A.34-B.43-C.43D.34 【知识点】直线与椭圆.【解题过程】设00(,)P x y ,则,则2200334x y =-,故00003224PM PN y y k k x x ⋅=⋅=-+- 【思路点拨】按照题意直接代入求解即可.【答案】A(二)课堂设计1. 知识回顾(1)椭圆的简单几何性质;(2)直线与圆的位置关系.2. 新知讲解探究一:探究直线与椭圆的位置关系●活动① 复习回顾,类比学习我们学习过直线与圆的位置关系及判定,请你回忆相关知识.(1)直线与圆有三种位置关系分别是相离(没有公共点)、相切(一个公共点)、相交(两个公共点).(2)判定方法有两种:代数法、几何法.那么直线与椭圆又有什么样的位置关系呢?又该如何来判定直线与椭圆的位置关系呢?【设计意图】由已有的知识类比迁移到新知识.●活动② 思考交流,结论形成通过画图我们看到,直线与椭圆的位置关系也可以归纳为相离,相切和相交,请你类比直线和圆的相离、相切、相交的定义来对直线和椭圆相离,相切和相交进行定义.学生交流,自由发言,教师适时引导,得出结论.直线与椭圆没有公共点⇔直线与椭圆相离;直线与椭圆有一个公共点⇔直线和椭圆相切;直线与椭圆有两个公共点⇔直线与椭圆相交.通过公共点的个数可以判断直线和椭圆的位置关系,如何确定公共点的个数呢?你有什么办法呢?例 1.判断直线123:1;:3;:3l y x l y x l y =+=-+=+与椭圆2214x y +=的位置关系.【知识点】直线与椭圆的位置关系.课堂活动:学生完成练习,根据学生的解题情况引入代数方法.在巡视过程中,大部分学生采用的是代数的方法,及个别的学生画出了图像,但第三条直线与椭圆的位置关系学生画图的很少,但利用代数方法研究的同学也没有得到结论.【解题过程】将直线与椭圆方程联立,根据判别式∆判断,123,,l l l 分别与椭圆的关系为:相交、相离和相切.【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】123,,l l l 分别与椭圆的关系为:相交、相离和相切请你说说如何利用代数方法来进行直线和椭圆的位置关系的判断?直线与椭圆的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为方程组解的个数与交点的个数是一样的.直线与椭圆的位置关系的判定方法:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- (1)0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;(2)0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;(3)0∆<,方程没有实数根⇔没有公共点⇔相离.【设计意图】以旧带新,学生易于理解.同类训练 已知椭圆2241x y +=及直线y x m =+,当m 为何值时,直线与椭圆相切?【知识点】直线与椭圆的位置关系【解题过程】解方程组2241x y y x m⎧+=⎨=+⎩,消去y ,整理得225210x mx m ++-=, 222420(1)2016m m m ∆=--=-,由0∆=得220160m -=,解得m =【思路点拨】用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法.探究二:计算椭圆的弦长●活动① 互动交流,形成结论例2. 已知斜率为2的直线经过椭圆22154x y +=的右焦点2F ,与椭圆交于,A B 两点,求AB 的长.【提出问题】本题的解决需要什么条件?如何由题目所给的条件去求得?前面的学习中遇到过类似的问题吗?当时是怎么解决的,方法能不能拿来一用?【知识点】直线与椭圆相交【解题过程】由条件知2(1,0)F ,故直线AB 方程为:22y x =-.设1122(,),(,)A x y B x y . 联立方程组2222154y x x y =-⎧⎪⎨+=⎪⎩,消去y 可得:2350x x -=. 法一:由2350x x -=得:1250,3x x ==,从而54(0,2),(,)33A B -. ||AB ∴== 法二:由2350x x -=得:12125,03x x x x +==. 2||=AB x ∴==-. 【思路点拨】初学者常想到求直线和椭圆的交点,然后利用两点间距离公式求弦长,此种方法仅当直线方程和椭圆方程简单时,易得交点坐标,一般情况不采用此法.弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .【设计意图】由特殊到一般,让学生体会韦达定理的应用及解析几何中“设而不求,整体代入”的解题思路.同类训练 已知椭圆2241x y +=及直线y x m =+,求直线被椭圆截得最长弦所在直线方程.【知识点】直线与椭圆相交弦长公式.【解题过程】由题意2241x y y x m⎧+=⎨=+⎩得225210x mx m ++-=, 由韦达定理得122122515m x x m x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, ∴弦长l === 当0m =时,l, 此时直线方程为y x =. 【思维点拨】当直线与椭圆相交时,求弦长时,联立直线方程和椭圆方程,利用韦达定理,就可以直接利用弦长公式求得弦长.●活动② 强化提升,灵活应用例3. 已知椭圆2212x y += (1)求斜率为2的平行弦的中点轨迹方程;(2)过(2,1)A 的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;【知识点】直线与椭圆相交,曲线的方程.【解题过程】解:(1)设斜率为2的直线方程为2y x b =+.由22212y x b x y =+⎧⎪⎨+=⎪⎩得2298220x bx b ++-=, 由22(8)36(22)0b b ∆=-->,得33b -<<.设该弦的端点坐标为1122(,),(,)A x y B x y ,则12429x x b +=-,444393b -<-<. 设弦的中点坐标为(,)M x y ,则1249,294x x b x b x +==-=-, 代入2y x b =+,得4440()33x y x +=-<<为所求轨迹方程. (2)设l 与椭圆的交点为1122(,),(,)x y x y ,弦的中点为(,)x y ,则221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减并整理得12121212()()2()()0x x x x y y y y -++-+=.又12122,2x x x y y y +=+=121212122()4()=0,()20()x x x y y y y y x y x x ∴-+--+⋅=-① 由题意知1212()1()2y y y x x x --=--,代入①得1202y x y x -+⋅=-. 化简得222220x y x y +--=.∴所求轨迹方程为222220x y x y +--=(夹在椭圆内的部分).【思路点拨】例3(2)解题方法叫做“点差法”,点差法充分体现了“设而不求”的数学思想.【答案】222220x y x y +--=.同类训练 已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点,若线段AB 中点的横坐标是12-,求直线AB 的方程. 【知识点】直线与椭圆的位置关系.【解题过程】依题意,直线AB 的斜率存在,设直线AB 的方程为(1)y k x =+, 将(1)y k x =+代入5322=+y x ,消去y 整理得2222(31)6350.k x k x k +++-=设1122() () A x y B x y ,,,, 则4222122364(31)(35)0 (1) 6. (2)31k k k k x x k ⎧∆=-+->⎪⎨+=-⎪+⎩, 由线段AB 中点的横坐标是12-, 得2122312312x x k k +=-=-+,解得k =,适合(1). 所以直线AB 的方程为10x +=,或10x ++=.【思维点拨】解决直线和圆锥曲线的相关问题时,韦达定理得应用十分广泛,此题干中涉及中点问题,自然联想到12x x +韦达定理结构.【答案】10x -+=,或10x +=.3.课堂总结知识梳理(1)直线与椭圆的位置关系0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;0∆<,方程没有实数根⇔没有公共点⇔相离.(2)弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .重难点归纳(1)用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法;(2)涉及弦中点的问题,常用点差法处理.(三)课后作业基础型 自主突破1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为( )A.(-233,233)B.(233,+∞)∪(-∞,-233)C.(43,+∞)D.(-∞,-43)【知识点】椭圆的几何性质.【解题过程】因为点P 在椭圆x 22+y 23=1的外部,所以a 22+123>1,解得a >233或a <-233,故选B.【思路点拨】根据点与椭圆的位置关系建立不等式求解.【答案】B 2.点P 为椭圆x 25+y 24=1上一点,以点P 及焦点F 1、F 2为顶点的三角形的面积为1,则P 点的坐标为( )A.(±152,1)B.(152,±1)C.(152,1)D.(±152,±1)【知识点】椭圆的几何性质.【解题过程】设P (x 0,y 0),∵a 2=5,b 2=4,∴c =1,∴12PF F S ∆=12|F 1F 2|·|y 0|=|y 0|=1,∴y 0=±1,∵x 205+y 204=1,∴x 0=±152.故选D.【思路点拨】焦点三角形面积计算以12||F F 为底边.【答案】D3.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13【知识点】椭圆的几何性质.【解题过程】把x =-c 代入椭圆方程可得y c =±b 2a , ∴|PF 1|=b 2a ,∴|PF 2|=2b 2a ,故|PF 1|+|PF 2|=3b 2a =2a ,即3b 2=2a 2. 又∵a 2=b 2+c 2,∴3(a 2-c 2)=2a 2,∴(c a )2=13,即e =33.【思路点拨】利用椭圆定义和几何关系解题.【答案】B4.如图F 1、F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该左半椭圆的两个交点,且△F 2AB 是等边三角形,则椭圆的离心率为( )A.32B.12C.22D.3-1【知识点】椭圆的几何性质.【解题过程】连接AF 1,由圆的性质知,∠F 1AF 2=90°,又∵△F 2AB 是等边三角形,∴∠AF 2F 1=30°,∴AF 1=c ,AF 2=3c ,∴e =c a =2c 2a =2c c +3c=3-1.故选D.【思路点拨】利用圆的几何性质和椭圆离心率的定义. 【答案】D5.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是_____________.【知识点】椭圆的几何性质.【解题过程】设弦两端点A (x 1,y 1),B (x 2,y 2),则x 2116+y 214=1,x 2216+y 224=1,两式相减并把x 1+x 2=4,y 1+y 2=2代入得,y 1-y 2x 1-x 2=-12, ∴所求直线方程为y -1=-12(x -2),即x +2y -4=0. 【思路点拨】中点弦问题灵活利用点差法. 【答案】x +2y -4=0.6.设F 1、F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆C 上的点A (1,32)到F 1、F 2两点的距离之和为4,则椭圆C 的方程是________,焦点坐标是________.【知识点】椭圆的几何性质.【解题过程】由|AF 1|+|AF 2|=2a =4得a =2. ∴原方程化为:x 24+y 2b 2=1, 将A (1,32)代入方程得b 2=3.∴椭圆方程为:x 24+y 23=1,焦点坐标为(±1,0). 【思路点拨】把握椭圆的定义解题. 【答案】x 24+y 23=1;(±1,0). 能力型 师生共研7.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c=0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A.必在圆x 2+y 2=2上 B.必在圆x 2+y 2=2外 C.必在圆x 2+y 2=2内 D.以上三种情形都有可能 【知识点】椭圆的几何性质. 【解题过程】e =12⇒c a =12⇒c =a2, a 2-b 2a 2=14⇒b 2a 2=34 ⇒b a =32⇒b =32a .∴ax 2+bx -c =0⇒ax 2+32ax -a2=0⇒x 2+32x -12=0,x 1+x 2=-32,x 1x 2=-12, ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=34+1=74<2. ∴在圆x 2+y 2=2内,故选C.【思路点拨】简化,,a b c 关系将方程具体化. 【答案】C8.如图,在椭圆中,若AB ⊥BF ,其中F 为焦点,A 、B 分别为长轴与短轴的一个端点,则椭圆的离心率e =________.【知识点】椭圆的几何性质.【解题过程】设椭圆方程为x 2a 2+y 2b 2=1,则有A (-a,0),B (0,b ),F (c,0),由AB ⊥BF ,得k AB ·k BF =-1,而k AB =b a ,k BF =-b c 代入上式得()1b b a c -=-,利用b 2=a 2-c 2消去b 2,得a c -c a =1,即1e -e =1,解得e =-1±52,∵e>0,∴e =5-12.【思路点拨】利用椭圆几何性质解题. 【答案】e =5-12.探究型 多维突破9.已知过点A (-1,1)的直线l 与椭圆x 28+y 24=1交于点B ,C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程. 【知识点】椭圆的几何性质.【解题过程】设直线l 与椭圆的交点B (x 1,y 1),C (x 2,y 2),弦BC 的中点M (x ,y ),则⎩⎪⎨⎪⎧x 218+y 214=1,①x 228+y 224=1,②①-②,得(x 218-x 228)+(y 214-y 224)=0,∴(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0.③当x 1≠x 2时,③式可化为(x 1+x 2)+2(y 1+y 2)·y 2-y 1x 2-x 1=0.∵x 1+x 22=x ,y 1+y 22=y ,y 2-y 1x 2-x 1=y -1x +1,∴2x +2·2y ·y -1x +1=0,化简得x 2+2y 2+x -2y =0.当x 1=x 2时,∵点M (x ,y )是线段BC 中点, ∴x =-1,y =0,显然适合上式.综上所述,所求弦中点M 的轨迹方程是x 2+2y 2+x -2y =0. 【思路点拨】弦中点问题灵活利用点差法解题. 【答案】x 2+2y 2+x -2y =0.10.已知椭圆方程22123x y +=,试确定m 的范围,使椭圆上存在两个不同点关于直线4y x m =+对称.【知识点】椭圆的几何性质.【解题过程】设点1122(,),(,)A x y B x y 为椭圆上点,且关于直线4y x m =+对称,另设AB 中点坐标为00(,)M x y则22112222123123x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩作差得1212121211023y y y y x x x x -++⋅=-+ 01212121203322AB y y y y y k x x x x x -+⇒⋅=-⇒⋅=--+ ① 1122(,),(,)A x y B x y 关于直线4y x m =+对称,14AB k ∴=-,代入①式得006y x = ②易知点00(,)M x y 必在直线4y x m =+上,004y x m ∴=+ ③ 联立②③解得(,3)2mM m AB 为椭圆的弦,∴中点M 必在椭圆内, 22()(3)2123m m ∴+<,m <<【思路点拨】注意利用弦的中点在椭圆内部建立不等关系解题.【答案】m <<自助餐1.已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为( )A.12B.33C.22D.32【知识点】椭圆的几何性质.【解题过程】由已知得⎩⎨⎧2n =m +m +n ,n 2=m 2n .解得⎩⎨⎧m =2,n =4.∴e =n -m n =22,故选C.【思路点拨】利用离心率的定义. 【答案】C2.AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的左焦点,则△AFB 的面积最大值是( )A.b 2B.bcC.abD.ac 【知识点】椭圆的几何性质.【解题过程】S △ABF =S △AOF +S △BOF =12|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b . ∴△ABF 面积的最大值为bc .【思路点拨】椭圆几何性质把握图形中的几何关系. 【答案】B3.在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e =( )A.34B.37C.38D.318 【知识点】椭圆的几何性质.【解题过程】设|AB |=x >0,则|BC |=x , AC 2=AB 2+BC 2-2AB ·BC ·cos B=x 2+x 2-2x 2·(-718)=259x 2,∴|AC |=53x , 由条件知,|CA |+|CB |=2a ,AB =2c , ∴53x +x =2a ,x =2c ,∴e =c a =2c 2a =x 83x =38.【思路点拨】注意转化为椭圆的定义. 【答案】C4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A.2B.3C.6D.8 【知识点】椭圆的几何性质.【解题过程】由题意可知O (0,0),F (-1,0),设点P 为(x ,y ),则OP →=(x ,y ), FP →=(x +1,y ),∴OP →·FP→=x (x +1)+y 2=x 2+x +y 2=x 2+x +3-34x 2 =14x 2+x +3=14(x +2)2+2. ∵x ∈[-2,2],∴当x =2时,OP →·FP →取最大值.(OP →·FP →)max=14(2+2)2+2=6,故选C. 【思路点拨】数量积问题坐标化处理. 【答案】C5.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35. (1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 【知识点】椭圆的几何性质.【解题过程】(1)将点(0,4)代入椭圆C 的方程,得16b 2=1,∴b =4, 又e =c a =35,则a 2-b 2a 2=925,∴1-16a 2=925,∴a =5, ∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入椭圆方程得22(3)12525x x -+=,即x 2-3x -8=0,由韦达定理得x 1+x 2=3,所以线段AB 中点的横坐标为x 1+x 22=32,纵坐标为45(32-3)=-65,即所截线段的中点坐标为(32,-65).【思路点拨】直线与椭圆相交注意利用韦达定理解题. 【答案】见上6.设12F F 、是椭圆:E 2221(01)y x b b+=<<的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且22||,||,||AF AB BF 成等差数列. (1)求||AB ;(2)若直线l 的斜率为1,求b 得值. 【知识点】椭圆的几何性质.【解题过程】(1)由椭圆定义知:22||||||4AF AB BF ++=, 又222||||||AB AF BF =+,得4||3AB =. (2)l 的方程为y x c =+,其中c =设1122(,),(,)A x y B x y ,则2221y x c y x b =+⎧⎪⎨+=⎪⎩化简得222(1)2120b x cx b +++-=,则2121222212,11c b x x x x b b--+==++ 因为直线AB 的斜率为1,所以21|||AB x x =-,即214||3x x -.则224212122222284(1)4(12)8()49(1)(1)(1)b b b x x x x b b b --=+-=-=+++,解得b =【思路点拨】将弦长||AB 从两个不同角度考虑,建立等式解题. 【答案】见上。

第9课时椭圆的简单几何性质(2)

第9课时椭圆的简单几何性质(2)

2.2.2椭圆的简单几何性质(4)目的:1、了解椭圆的参数方程,了解参数方程中系数a,b 的含义。

2、通过学习椭圆的参数方程,进一步完善对椭圆的认识,同时使学生更熟悉和掌握坐标法。

重点:椭圆的参数方程。

过程:一、开门见山求曲线的方程:以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥Ox,垂足为N ,过点B 作BM ⊥AN,垂足为M 。

求当半径OA 绕点O 旋转时点M 的轨迹的参数方程。

分析:(1)动点A,B 是怎样运动的,关系如何?(2)动点M 是怎样产生的?(3)关系比较复杂,不易直接得出点之间的关系,所以采取怎样的方式可以使关系明朗化?(4)什么是参数方程,如何设处恰当的参数?(5)推导方程。

答:(1)A,B 运动的轨迹分别是大圆和小圆,但半径与X 轴的成角一样(2)M 是MB 与AN 的交点,则M 与B 由相同的纵坐标,M 与A 有相同的横坐标。

(3)间接的做法,即可采取参数法。

(4)设M(x,y),则x=ON,y=MN,当A 在大圆上运动时,找出改变和不变的关系,从而选出一个参数,∠AOX=θ作为参数。

(5)推导方程。

得到普通方程和参数方程。

二、总结和引申:1、圆的参数方程为:⎩⎨⎧==θθsin cos b y a x (θ为参数)其几何意义是圆的离心角。

今后设椭圆上的点的坐标可以用参数方程。

2、参数方程和普通方程的互化:(1)⎩⎨⎧==θθsin 5cos 3y x (2)⎩⎨⎧==θθsin 10cos 8y x (3)x 24 +y 29 =1 (4)x 2+y 216 =1 三、例题分析:1、椭圆x 2+8y 2=8上求一点P,使P 到直线L:x-y+4=0的距离最小。

(1)直接解非常麻烦,但可以转化到相切的位置上,求平行线间的距离。

(2)可以用参数方程的方法,过程非常简单。

在今后的学习中,我们要选择适用。

椭圆的简单几何性质(二)精品教案

椭圆的简单几何性质(二)精品教案

2.1.2 椭圆的简单几何性质(二)学习目标 1.进一步巩固椭圆的简单几何性质.2.掌握直线与椭圆位置关系的相关知识.知识点一 点与椭圆的位置关系 思考 点与椭圆有几种位置关系?答案 三种位置关系:点在椭圆上,点在椭圆内,点在椭圆外. 设点P (x 0,y 0),椭圆x 2a 2+y 2b2=1(a >b >0).(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外⇔x 20a 2+y 20b2>1.知识点二 直线与椭圆的位置关系 思考1 直线与椭圆有哪几种位置关系? 答案 三种位置关系:相离、相切、相交.思考2 我们知道,可以用圆心到直线的距离d 与圆的半径r 的大小关系判断直线与圆的位置关系,这种方法称为几何法,能否用几何法判断直线与椭圆的位置关系? 答案 不能.思考3 用什么方法判断直线与椭圆的位置关系? 答案 代数法——判断直线与椭圆公共点个数来确定. 直线y =kx +m 与椭圆x 2a 2+y 2b2=1,联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消y 得一个一元二次方程.知识点三 直线与椭圆的相交弦思考 若直线与椭圆相交,如何求相交弦弦长?答案 弦长公式:(1)|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]; (2)|AB |=1+1k2|y 1-y 2|=(1+1k2)[(y 1+y 2)2-4y 1y 2](直线与椭圆的交点A (x 1,y 1),B (x 2,y 2),k 为直线的斜率).其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.类型一 直线与椭圆的位置关系例1 (1)直线y =kx -k +1与椭圆x 22+y 23=1的位置关系是( )A.相交B.相切C.相离D.不确定 答案 A解析 直线y =kx -k +1=k (x -1)+1过定点(1,1),且该点在椭圆内部,因此必与椭圆相交. (2)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .求k 的取值范围.解 由已知条件知直线l 的方程为y =kx +2,代入椭圆方程得x 22+(kx +2)2=1.整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0,解得k <-22或k >22. 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.反思与感悟 直线与椭圆的位置关系判别方法(代数法) 联立直线与椭圆的方程,消元得到一元二次方程 (1)Δ>0⇔直线与椭圆相交⇔有两个公共点. (2)Δ=0⇔直线与椭圆相切⇔有且只有一个公共点. (3)Δ<0⇔直线与椭圆相离⇔无公共点.跟踪训练1 (1)已知直线l 过点(3,-1),且椭圆C :x 225+y 236=1,则直线l 与椭圆C 的公共点的个数为( ) A.1 B.1或2 C.2 D.0(2)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( )A.63 B.-63 C.±63 D.±33答案 (1)C (2)C解析 (1)因为直线过定点(3,-1)且3225+(-1)236<1,所以点(3,-1)在椭圆的内部,故直线l 与椭圆有2个公共点.(2)把y =kx +2代入x 23+y 22=1得(2+3k 2)x 2+12kx +6=0,由于Δ=0,∴k 2=23,∴k =±63.类型二 直线与椭圆的相交弦问题例2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 解 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,消去y 可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2 =52×62=310.所以线段AB 的长度为310. (2)方法一 设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧y -2=k (x -4),x 236+y 29=1,消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=32k 2-16k1+4k 2,由于AB 的中点恰好为P (4,2),所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0. 这时直线的方程为y -2=-12(x -4),即x +2y -8=0.方法二 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1),由于P (4,2)是AB 的中点,∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即x +2y -8=0.反思与感悟 处理直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程.利用根与系数的关系或中点坐标公式解决,涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系. 跟踪训练2已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A 、B 两点,与以F 1F 2为直径的圆交于C 、D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧b =3,c a =12,a 2=b2+c 2,解得b =3,c =1,a =2,∴椭圆的方程为x 24+y 23=1.(2)由题意可得以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5,由d <1,可得|m |<52,(*) ∴|CD |=21-d 2=21-4m 25=255-4m 2.设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =-12x +m ,x 24+y23=1,化为x 2-mx +m 2-3=0,可得x 1+x 2=m ,x 1x 2=m 2-3, ∴|AB |= ⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得 4-m 25-4m2=1,解得m =±33满足(*). 因此直线l 的方程为y =-12x +33或y =-12x -33.类型三 椭圆中的最值(范围)问题例3 已知焦点在x 轴上的椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32).(1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值. 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1,又a 2=b 2+c 2,∴a 2=4,b 2=3, ∴椭圆标准方程为x 24+y 23=1.(2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2,1PF Q S ∆=3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程,整理,得(3+4k 2)y 2+6ky -9k 2=0, Δ>0,y 1+y 2=-6k 3+4k 2,y 1·y 2=-9k 23+4k 2.1PF Q S ∆=12·|F 1F 2|·|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34,∴1PF Q S ∆=3-3(1t +13)2+43,∵0<1t <13,∴1PF Q S ∆∈(0,3),∴当直线PQ 与x 轴垂直时1PF Q S ∆最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则1PF Q S ∆=12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3.即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大,∴PF 2→=F 2Q →,∴λ=1.反思与感悟 求最值问题的基本策略(1)求解形如|P A |+|PB |的最值问题,一般通过椭圆的定义把折线转化为直线,当且仅当三点共线时|P A |+|PB |取得最值.(2)求解形如|P A |的最值问题,一般通过二次函数的最值求解,此时一定要注意自变量的取值范围.(3)求解形如ax +by 的最值问题,一般通过数形结合的方法转化为直线问题解决. 跟踪训练3 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段|AB |长度的最小值.解 (1)椭圆C :x 2+2y 2=4化为标准方程为x 24+y 22=1,∴a =2,b =2,c =2, ∴椭圆C 的离心率e =c a =22.(2)设A (t,2),B (x 0,y 0),x 0≠0,∵OA ⊥OB , ∴OA →·OB →=0,∴tx 0+2y 0=0,∴t =-2y 0x 0,又∵x 20+2y 20=4,∴0<x 20≤4.∴|AB |2=(x 0-t )2+(y 0-2)2=x 202+8x 20+4≥4+4=8,当且仅当x 202=8x 20,即x 20=4时等号成立, ∴线段|AB |长度的最小值为2 2.1.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是( )A.-2<a < 2B.a <-2或a > 2C.-2<a <2D.-1<a <1答案 A解析 由题意知a 24+12<1,解得-2<a < 2.2.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是( )A.相交B.相切C.相离D.相切或相交 答案 C解析 把x +y -3=0代入x 24+y 2=1,得x 24+(3-x )2=1,即5x 2-24x +32=0. ∵Δ=(-24)2-4×5×32=-64<0, ∴直线与椭圆相离. 3.椭圆x 24+y 23=1的右焦点到直线y =3x 的距离是( )A.12B.32 C.1 D.3 答案 B解析 椭圆的右焦点为F (1,0),由点到直线的距离公式得d =33+1=32.选B. 4.椭圆x 216+y 24=1上的点到直线x +2y -2=0的最大距离是( )A.3B.11C.2 2D.10解析 设与直线x +2y -2=0平行的直线为x +2y +m =0与椭圆联立得,(-2y -m )2+4y 2-16=0,即4y 2+4my +4y 2-16+m 2=0得2y 2+my -4+m 24=0. Δ=m 2-8⎝⎛⎭⎫m 24-4=0,即-m 2+32=0, ∴m =±4 2.∴两直线间距离最大是当m =42时, d max =|-2-42|5=10. 5.若直线y =x +1与椭圆x 22+y 2=1相交于A ,B 两个不同的点,则|AB |=__________.答案423解析 由题意⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1, 解得A ,B 两个不同的点的坐标分别为(0,1),⎝⎛⎭⎫-43,-13, 故|AB |=169+169=423. 6.经过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为__________.答案 2b 2a解析 ∵垂直于椭圆长轴的弦所在直线为x =±c ,由c 2a 2+y 2b 2=1,得y 2=b 4a 2, ∴|y |=b 2a ,故弦长为2b 2a.解决直线与椭圆的位置关系问题经常利用设而不求的方法,解题步骤为: (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.1.已知AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的右焦点,则△AFB 面积的最大值为( ) A.b 2 B.ab C.ac D.bc答案 D解析 当直线AB 为y 轴时面积最大,|AB |=2b ,△AFB 的高为c ,∴此时S △AFB =12·2b ·c =bc .2.已知直线y =kx +1和椭圆x 2+2y 2=1有公共点,则k 的取值范围是( ) A.k <-22或k >22 B.-22<k <22 C.k ≤-22或k ≥22 D.-22≤k ≤22答案 C解析 由⎩⎪⎨⎪⎧y =kx +1x 2+2y 2=1,得(2k 2+1)x 2+4kx +1=0. ∵直线与椭圆有公共点. ∴Δ=16k 2-4(2k 2+1)≥0,则k ≥22或k ≤-22. 3.直线l 交椭圆x 216+y 212=1于A ,B 两点,AB 的中点为M (2,1),则l 的方程为( )A.2x -3y -1=0B.3x -2y -4=0C.2x +3y -7=0D.3x +2y -8=0答案 D解析 根据点差法求出k AB =-32,∴l 的方程为y -1=-32(x -2),∴化简得3x +2y -8=0.4.若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A.2个 B.至多一个 C.1个 D.0个答案 A解析 若直线与圆没有交点,则d =4m 2+n 2>2,∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1, ∴点(m ,n )在椭圆的内部,故直线与椭圆有2个交点.5.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) A.(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1答案 C解析 ∵MF 1→·MF 2→=0,∴点M 的轨迹是以F 1F 2为直径的圆,其方程为x 2+y 2=c 2.由题意知椭圆上的点在该圆的外部,设椭圆上任意一点P (x ,y ),则|OP |min =b , ∴c <b ,即c 2<a 2-c 2.解得e =c a <22.∵0<e <1,∴0<e <22. 6.过椭圆x 2+2y 2=4的左焦点F 作倾斜角为π3的弦AB ,则弦AB 的长为( )A.67B.167C.716D.76 答案 B解析 椭圆的方程可化为x 24+y 22=1,∴F (-2,0).又∵直线AB 的斜率为3, ∴直线AB 的方程为y =3x + 6.由⎩⎨⎧y =3x +6,x 2+2y 2=4,得7x 2+122x +8=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-1227,x 1x 2=87,∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=167.二、填空题7.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.答案 27解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)与直线方程联立消去x 得(a 2+3b 2)y 2+83b 2y +16b 2-a 2b 2=0,由Δ=0及c =2得a 2=7,∴2a =27.8.以等腰直角三角形ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为____________.答案 2-1或22解析 当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有b =c ,此时可求得离心率e =c a =c b 2+c2=c 2c =22;同理,当以一直角顶点和一锐角顶点为焦点时,设直角边长为m ,故有2c =m,2a =(1+2)m ,所以离心率e =c a =2c 2a =m (1+2)m =2-1. 9.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为原点,则△OAB 的面积为________.答案 53解析 直线方程为y =2x -2,与椭圆方程x 25+y 24=1联立,可以解得A (0,-2),B ⎝⎛⎭⎫53,43,∴S △=12|OF |·|y A -y B |=53(也可以用设而不求的方法求弦长|AB |,再求出点O 到AB 的距离,进而求出△AOB 的面积). 三、解答题10.如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解 由题意得|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =8,得a =2.又e =c a =12, ∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1. 11.已知椭圆的短轴长为23,焦点坐标分别是(-1,0)和(1,0).(1)求这个椭圆的标准方程;(2)如果直线y =x +m 与这个椭圆交于不同的两点,求m 的取值范围.解 (1)∵2b =23,c =1,∴b =3,a 2=b 2+c 2=4.故所求椭圆的标准方程为x 24+y 23=1. (2)联立方程组⎩⎪⎨⎪⎧y =x +m ,x 24+y 23=1, 消去y 并整理得7x 2+8mx +4m 2-12=0.若直线y =x +m 与椭圆x 24+y 23=1有两个不同的交点, 则有Δ=(8m )2-28(4m 2-12)>0,即m 2<7,解得-7<m <7.即m 的取值范围是(-7,7).12.椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程. 解 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0. 设A (x 1,y 1)、B (x 2,y 2),则|AB |=(k 2+1)(x 1-x 2)2=2·4b 2-4(a +b )(b -1)(a +b )2. ∵|AB |=22,∴a +b -ab a +b=1.① 设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =a a +b, ∵OC 的斜率为22,∴a b =22. 代入①,得a =13,b =23. ∴椭圆方程为x 23+23y 2=1. 13.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,求椭圆C 的方程.解 由题意知离心率e =c a =23,c =23a , 由b 2=a 2-c 2,得b =53a . ∴椭圆C 的方程为x 2a 2+9y 25a2=1.① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝⎛⎭⎫x -23a ,与①联立得 32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8. 由|AB |=1+3|x 1-x 2|=2|a 4-7a 8|=54a =154, 解得a =3,∴b =53a = 5. ∴椭圆C 的方程为x 29+y 25=1.。

《椭圆的几何性质》2

《椭圆的几何性质》2
1.
1.
16 9
2







2
x
y
4.
1.
45 36
x2 y 2
2.
1.
4
9
2
2
x
y
5.

1.
100 64
x2 y 2
3.
1.
34 25
x2 y 2
x2 y 2
6.
1或
1.
25 16
16 25
3
复习练习
2、下列方程所表示的曲线中,关于x轴和y 轴都对称的是( D )
y
就是椭圆的焦半径公式.
y
M
F1 O
2
椭圆 2

2
+ 2

M
F2
|MF1|=a+ex0 |MF2|=a-ex0







O
F1
x
= 1 > > 0 的焦半径公式是
F2
2
椭圆 2

2
+ 2

x
= 1 > > 0 的焦半径公式是
|MF1|=a+ey0
|MF2|=a-ey0
17
5、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心
1
率为

1
2
6、若椭圆的 的两个焦点把长轴分成三等分,则其离心率为
3。
7、以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同
的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,

椭圆的简单几何性质第二课时同步练习2022-2023学年高二上学期数学人教A版(2019)

椭圆的简单几何性质第二课时同步练习2022-2023学年高二上学期数学人教A版(2019)

3.1.2椭椭椭椭椭椭椭椭椭椭2椭一、单选题1. 已知点(4,2)M 是直线l 被椭圆221369x y +=所截得的线段AB 的中点,则直线l 的斜率为( )A. 2-B.12 C. 12-D. 22. 过椭圆22221(0)x y a b a b+=>>中心的直线交椭圆于,A B 两点,右焦点为2(,0)F c ,则2ABF ∆的最大面积是( )A. abB. acC. bcD. 2b3. 已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x⊥轴,直线AB 交y 轴于点P ,若2AP PB =,则椭圆的离心率是( )A.B.C.13D.124. 过椭圆22143x y +=的右焦点F 作两条相互垂直的直线分别交椭圆于A ,B ,C ,D 四点,则11||||AB CD +的值为( ) A.18B.16C. 1D.712二、多选题5. 已知椭圆的左、右焦点为12,F F ,O为坐标原点,直线y x =-过2F 交C 于,A B 两点,若1AF B 的周长为8,则( )A. 椭圆焦距为3;B. 椭圆方程为2214x y +=;C. 弦长;D. 46=.5OABS6. 已知直线l :23y x =+被椭圆C :22221(0)x y a b a b+=>>截得的弦长为7,则下列直线中被椭圆C 截得的弦长一定为7的有( )A. 23y x =-B. 21y x =+C. 23y x =--D. 23y x =-+2222:1(0)x y C a b a b+=>>7. 画法几何的创始人-法国数学家加斯帕尔⋅蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆,我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,1F ,2F 分别为椭圆的左、右焦点,A ,B 为椭圆上两个动点.直线l 的方程为220.bx ay a b +--=下列说法正确的是( )A. C 的蒙日圆的方程为2223x y b +=B. 对直线l 上任意点P ,0PA PB ⋅>C. 记点A 到直线l 的距离为d ,则2||d AF -的最小值为3D. 若矩形MNGH 的四条边均与C 相切,则矩形MNGH 面积的最大值为26b三、填空题8. 已知点(2,0)A -,(0,1)B 在椭圆C :22221(0)x y a b a b+=>>上,则椭圆C 的方程为__________,若直线12y x =交椭圆C 于M ,N 两点,则||MN =__________. 9. 已知点(0,1)P ,椭圆22(1)4x y m m +=>上两点A ,B 满足AP 2PB =,则当m =___________时,点B 横坐标的绝对值最大.10. 过点(1,1)P 的直线l 与椭圆22143x y +=交于点A 和B ,且.AP PB λ=点Q 满足AQ QB λ=-,若O 为坐标原点,则||OQ 的最小值为__________.11. 已知椭圆22+=12x y ,若此椭圆上存在不同的两点A ,B 关于直线=2+y x m 对称,则实数m 的取值范围是__________. 四、解答题12. 已知双曲线C 和椭圆22141x y += ()Ⅰ求双曲线C 的方程.()Ⅱ经过点(2,1)M 作直线l 交双曲线C 于A ,B 两点,且M 为AB 的中点,求直线l 的方程并求弦长.13.设椭圆C :2212x y +=的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:.OMA OMB ∠=∠14. 已知椭圆C :22221(0)x y a b a b+=>>的短轴长为2(1)求椭圆C 的方程;(2)设过定点(0,2)T 的直线l 与(1)中的椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角,求直线l 的斜率k 的取值范围.15. 已知椭圆2222:1(0)x y C a b a b+=>>,1(,0)A a -,2(,0)A a ,(0,)B b ,12A BA 的面积为2.()Ⅰ求椭圆C 的方程;()Ⅱ设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P ,直线1A M与直线2A B 交于点.Q 求证:BPQ 为等腰三角形.16. 在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y a b a bΓ+=>>的长轴长为4.过左顶点A 且倾斜角为4π的直线1l 与椭圆的另一个交点为B ,与y 轴交于点C ,且2.AB BC = (1)求椭圆Γ的标准方程;(2)过点(1,0)H 且不与x 轴重合的直线2l 交椭圆Γ于点,M N ,连接NO 并延长交AM 于点.P 若AP AM λ=,求实数λ的取值范围.答案和解析1.【答案】C解:设直线l 与椭圆相交于两点11(,)A x y ,22(,).B x y代入椭圆方程可得22111369x y +=,22221369x y +=,两式相减得12121212()()()()0369x x x x y y y y +--++=,12248x x +=⨯=,12224y y +=⨯=,2121l y y k x x -=-,480369l k ∴+=,解得1.2l k =- 故选.C2.【答案】C解:设,则,2ABF ∆的面积是,当最大时,2ABF ∆的面积S 取最大值,所以直线AB 与x 轴垂直时,2ABF ∆的面积S 取最大值, 则2ABF ∆的面积的最大值为12.2b c bc ⨯⨯= 故选.C3.【答案】B解: 由题意,可设2(,)b B c a-,设(0,)P t ,(,0)A a ,,2(,)b PB c t a=--, 2AP PB =,2(,)2(,)b a t c t a∴-=--,2a c ∴=,c e a ∴==, 故选.B4.【答案】D解:由椭圆22143x y +=,得椭圆的右焦点为(1,0)F , 当直线AB 的斜率不存在时,AB :1x =, 则CD :0.y =此时||3AB =,||4CD =, 则11117||||3412AB CD +=+=; 同理易得当直线AB 的斜率为0时,11117||||4312AB CD +=+=; 当直线AB 的斜率存在且不为0时,设AB :(1)(0)y k x k =-≠,则 CD :1(1).y x k=-- 又设点11(,)A x y ,22(,).B x y 联立方程组22(1)3412y k x x y =-⎧⎨+=⎩, 消去y 并化简得2222(43)84120k x k x k +-+-=,221212228412,3434k k x x x x k k -∴+==++,||AB ∴==2212(1)34k k +=+, 由题知,直线CD 的斜率为1k-, 同理可得2212(1)||.43k CD k+=+ 22117(1)7||||12(1)12k AB CD k +∴+==+为定值. 故选.D5.【答案】BC解:直线3y x =-过2F ,得,即3c =,椭圆焦距为23,故A 错误;1AF B 的周长为8,根据椭圆定义得1AF B 的周长为4a ,所以48a =,得2a =,所以221b a c =-=,所以椭圆方程为2214x y +=,故B 正确; 联立得258380x x -+=,1212838,55x x x x +==, 所以,故C 正确;O 到直线3y x =-的距离3622d ==, 所以18626==.2525OABS⨯⨯故D 错误, 故选.BC6.【答案】ACD解:由于直线l :23y x =+被椭圆2222:1(0)x y C a b a b+=>>截得的弦长为7,根据对称性可得:23y x =-,23y x =--,2 3.y x =-+满足条件. 直线21y x =+被椭圆C 截得的弦长不为7.综上可得:下列直线中被椭圆C 截得的弦长一定为7的有.ACD 故选.ACD7.【答案】AD解:.A 当1l 与2l 一个斜率为0,另一个斜率不存在时,易知交点(,)P a b ±±, 当1l 与2l 的斜率均不为0时,可设000()(P x y x a ≠±且0)y b ≠±, 因为过P 点的切线方程为100:()(0)l y y k x x k -=-≠,所以联立2222001()x y a b y y k x x ⎧+=⎪⎨⎪-=-⎩得2222222220000()2()()0a k b x ka kx y x a kx y a b +--+--=,因为l 与椭圆相切,所以0=,整理得222222200000()20(0)x a k x y k y b x a --+-=-≠①,而PA k 与PB k 即为①式的两根,222200222200,,1,1PA PBPA PBy b y b k k PA PB k k x a x a --∴⋅=⊥∴⋅=-∴=---又,222222220000y b x a x y a b ∴-=-++=+即,所以蒙日圆的方程为2222x y a b +=+,22222122b e a b a =-=∴=,所以蒙日圆的方程为2223x y b +=,故A 正确;B .直线22:0l bx ay a b +--=过定点,而刚好在蒙日圆2222x y a b +=+上,过 M 做椭圆的两条切线,切点为 A , B ,由蒙日圆的定义知PA PB PA PB 0⊥∴⋅=,故 B 错误; C .点A 在椭圆上,,的最小值为到1F 到l 的距离,而1F 到l 的距离为,2222bc a b 43c b,3a b b++∴=∴=+, 的最小值为4323ba -,故 C 错误. D .因为矩形MNGH 的四条边均与C 相切,所以矩形MNGH 为C 的素日圆的内接矩形, 设长为m ,宽为n ,蒙日圆半径为R ,3Rb =,则,,当且仅当m n =时等号成立,故D 正确.故选.AD8.【答案】2214x y +=2||d AF -解:由题意可知:椭圆C :22221(0)x y a b a b+=>>上,由点(2,0)A -,(0,1)B ,焦点在x 轴上,则2a =,1b =,∴椭圆的标准方程:2214x y +=; ()Ⅱ设11(,)M x y ,22(,)N x y ,则221412x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,消去y ,整理得224x =,则1x =2x =12y =,22y =-,则||MN == 故答案为:2214x y +=9.【答案】5解:设11(,)A x y ,22(,)B x y , 由(0,1)P ,2AP PB =,可得122x x -=,1212(1)y y -=-, 即有122x x =-,1223y y +=, 又221144x y m +=,即为2221x y m +=,①又222244x y m +=,②①-②得1212(2)(2)3y y y y m -+=-, 可得122y y m -=-, 解得132m y -=,234my +=, 则2223()2m m x -=+, 即有2223()2m x m -=-22109(5)1644m m m -+---+==,即有5m =时,22x 有最大值4,即点B 横坐标的绝对值最大. 故答案为:5.10.【答案】125解:设1122(,),(,),(,)A x y B x y Q m n , 由,AP PB AQ QB λλ==-, 得则22212()(1)x x m λλ-=-,同理22212()(1)y y n λλ-=-,于是2222221122()()(1)().434343x y x y m n λλ+-+=-+ 又1λ≠±,则143m n +=,所以点Q 的轨迹是直线143x y+=, min ||OQ 即为原点到直线的距离,所以min 112||.511169OQ ==+ 故答案为12.511.【答案】解:设11(,)A x y ,22(,)B x y ,线段AB 的中点00(,).M x y 此椭圆上存在不同的两点A 、B 关于直线2y x m =+对称,∴直线AB 的方程可设为1.2y x t =-+ 联立,化为2234440.x tx t -+-=221612(44)0t t ∆=-->,解得23(*).2t < 1243x x t ∴+=, 023x t ∴=,012.33y t t t =-+= 22(,).33M t t ∴ 代入直线2y x m =+可得:2433t t m =+,解得3.2m t =- 代入(*)可得:233()22m -<,解得66.33m -<< m ∴的取值范围是66.33m -<< 故答案为12.【答案】解:()Ⅰ由题意得椭圆22141x y +=的焦点坐标分别为(和, 设双曲线方程为22221(0,0)x y a b a b-=>>, 则2223c a b =+=,c e a==,c ∴=,解得21a =,22b =,∴双曲线方程为221.2y x -= ()Ⅱ设11(,)A x y ,22(,)B x y ,分别代入双曲线可得2211112x y -=,2222112x y -=, 两式相减,得121212121()()()()02x x x x y y y y -+--+=, 点(2,1)M 为AB 的中点,可得124x x +=,122y y +=,则12124()()0x x y y ---=,12124AB y y k x x -∴==-,∴直线l 的方程为47y x =-,把47y x =-代入2212y x -=, 消去y 得21456510x x -+=,124x x ∴+=,125114x x =,4k =,||7AB ∴===13.【答案】解:(1)211c =-=,(1,0)F ∴, l 与x 轴垂直, ∴直线l 的方程为1x =,由,解得或,A ∴的坐标为2(1,)2或2(1,)2-, ∴直线AM 的方程为222y x =-+或222y x =-; (2)当l 与x 轴重合时,0OMA OMB ︒∠=∠=,当l 与x 轴垂直时,OM 为AB 的垂直平分线,OMA OMB ∴∠=∠,当l 与x 轴不重合也不垂直时,设l 的方程为(1)y k x =-,0k ≠,11(,)A x y ,22(,)B x y ,则12x <,22x <,则121222MA MB y y k k x x +=+--, 由11y kx k =-,22y kx k =-,得12121223()4(2)(2)MA MB kx x k x x kk k x x -+++=--, 将(1)y k x =-代入2212x y +=,整理可得2222(21)4220k x k x k +-+-=, 则0∆>,2122421k x x k ∴+=+,21222221k x x k -=+, 121223()4kx x k x x k ∴-++33321(441284)021k k k k k k =--++=+,从而0MA MB k k +=,故MA ,MB 的倾斜角互补,OMA OMB ∴∠=∠,综上,.OMA OMB ∠=∠14.【答案】解:(1)由已知得 22b =,c a = 又222a b c =+,解得a =1b = ∴椭圆C 的方程为22 1.3x y += (2)由题意知,直线l 斜率存在,可设直线l 方程为2y kx =+,将其代入2213x y +=, 得22(31)1290k x kx +++=,设11(,)A x y ,22(,)B x y ,22(12)36(13)0k k ∴=-+>,解得21k >, 由根与系数的关系,得1221213k x x k +=-+,122913x x k =+ AOB ∠为锐角,0OA OB ∴⋅>,12120x x y y ∴+>,1212(2)(2)0x x kx kx ∴+++>,21212(1)2()40k x x k x x ∴++++>, 代入1221213k x x k +=-+,122913x x k=+, 化简得22133013k k->+, 解得2133k <,由21k >且2133k <,解得(1)k ∈-⋃15.【答案】解:()Ⅰ由题2222,.c a ab a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,1.a b =⎧⎨=⎩ 所以椭圆C 的方程为22 1.4x y += ()Ⅱ证明:由(1)知1(2,0)A -,2(2,0)A ,设0000(,)(2,1)M x y x y ≠±≠±,则220014x y +=, 212000200012244A M A M y y y k k x x x ⋅=⋅==--+-, 设直线2A M 方程为1(2)(0)2y k x k k =-≠≠±且,直线1A B 方程为112y x =+, 由(2),1 1.2y k x y x =-⎧⎪⎨=+⎪⎩解得点424(,).2121k k P k k +-- 由于2114A M A M k k ⋅=-, 于是直线1A M 的方程为1(2)4y x k =-+,直线2A B 的方程为1 1.2y x =-+ 由1(2)4112y x k y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得点422(,).2121k Q k k +--- 于是P Q x x =,所以PQ x ⊥轴.设PQ 中点为N ,则N 点的纵坐标为422121 1.2k k k -+--= 故PQ 中点在定直线1y =上.从上边可以看出点B 在PQ 的垂直平分线上,所以||||BP BQ =, 所以BPQ 为等腰三角形.16.【答案】解:(1)由题意:2a =,(2,0)A -,所以直线1l 的方程为2y x =+,所以(0,2)C ,因为2.AB BC =所以,由B 在椭圆上可得:∴椭圆Γ的标准方程为:221.42x y += (2)设直线2l :1x my =+,点,点,所以 12222m y y m +=-+,12232y y m =-+, 所以直线AM :1122x x y y +=-,直线ON :22x x y y =, 设点, 所以 ,,令12y t y =,,所以11(,)M x y 22(,)N x y所以,∴实数λ的取值范围为。

高二数学椭圆的简单几何性质2(教学课件201909)

高二数学椭圆的简单几何性质2(教学课件201909)
动画演示
; 微信红包群 微信红包群

晋安平王故事 戎心一启 风凝化远 肇又赞杀彭城王勰 性温良 长河以西终非国有 冀富等入国 徙司空长史 得战士数千人以讨之 自司空主簿 为河东 葬于太上君墓左 灵太后临朝 罕执钧衡;奖其得士 李延实 建义初 翻上表请为西军死亡将士举哀 盖以训物有渐 晋永嘉中避乱入高丽 世宗初 历青 袁翻 语望比官 后以咸阳王禧无事构逆 叔义遂见执获 夺为己富 虽隆周 加以尚书清要 朝之良也 若纳而礼待 德龙议欲拔城 章武王融 尚书殿中郎 居阿那瑰于东偏 朝夕悲泣 非旧国之池林 休聪明强济 女为清河王亶妃 皆令朝臣王公已下各举所知 自云本渤海脩人 字宣明 是以吴楚间伺 将至 有可 称乎?扬烈将军 众至数万 时有五城郡山胡冯宜都 车骑将军 令七人出家;月逢霞而未皎 乘信明威将军 北海王详等奏 爱及后世 时大儒张吾贵有盛名于山东 别将有功 改授太傅 绵冬历夏 征肇兄弟等 克复宗社;以国珍为光禄大夫 平原郡太守 还来奉贡 贼众大溃 "冀卿必副此言 皆甚惶惧 而不记 其经始之制 谥曰顺 乃杀之 良以永法为难 陈刑政之宜 少孤贫 而言无明文 无竞于时 胡国珍 赫连屈丐给事黄门侍郎 左光禄大夫 永安中 伏愿天地成造 明习典礼 寻加征虏将军 盖处之以道 休在幽青州五六年 纪籍用为美谈 清河王怿 万里相属 都督宗正珍孙等赴援 后缘前世诸胡多在洛葬 咸取正 焉 高山之岑 或遇贪家恶子 父兄封赠虽久 休爱才好士 始休母房氏欲以休女妻其外孙邢氏 皇兴中 凉州刺史 子元直 虔常致谏 员外常侍 举觞谓群臣曰 今不早图 祖略 累世贵盛 明堂五室 出情妄作 举哀于太极东堂 列传第五十七·崔休 曾祖天明 无闻倾败 步从所建佛像 此等禄既不多 有才笔 才 非捍御 寻行并州事 皆不相视 日照水以成文 唯有通商聚敛之意 定鼎伊瀍 少有令名 莫如三代;假安西将军 太子洗马 肇出 诏庆

人教版高中数学选修一3.1.2 椭圆的简单几何性质(二)教案

人教版高中数学选修一3.1.2 椭圆的简单几何性质(二)教案

3.1.2椭圆的简单几何性质(2)本节课选自《2019人教A 版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习椭圆的简单几何性质教材的地位和作用地位:本节课是在椭圆的概念和标准方程的基础上,运用代数的方法,研究椭圆的简单几何性质及简单应用 . 本节课内容的掌握程度直接影响学习双曲线和抛物线几何性质。

作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。

因此,内容在解析几何中占有非常重要的地位。

重点:椭圆的方程及其性质的应用 难点:直线与椭圆的位置关系多媒体典例解析例7. 已知直线l:y=2x+时,直线l与椭圆C:法二:由已知可设2F B n =,则两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴ 所求椭圆方程为22132x y +=,故选B .5.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.35 [由⎩⎪⎨⎪⎧x 2+4y 2=16,y =12x +1,消去y 并化简得x 2+2x -6=0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=-2,x 1x 2=-6. ∴弦长|MN |=1+k 2 |x 1-x 2|=54[x 1+x 22-4x 1x 2]=544+24=35.]6.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点的坐标.[解] (1)将(0,4)代入C 的方程,得16b 2=1,∴b =4.由e =c a =35,得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3).设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),通过椭圆几何性质的应用,培养学生数学建模能力,并介绍椭圆的定义二定义,体会圆锥曲线的统一性。

高中数学_椭圆的简单几何性质(2)教学设计学情分析教材分析课后反思

高中数学_椭圆的简单几何性质(2)教学设计学情分析教材分析课后反思

(六)教学设计椭圆的简单几何性质(2)教学设计一、基本情况1.面向对象:高二学生2.学科:数学3.课题:椭圆的几何性质4.课时:2课时5.课前准备:(1)学生回顾本节内容,熟悉椭圆的范围、对称性和顶点,离心率等性质(2)教师准备课件。

二、教材分析《椭圆的几何性质》是人教版2-1的内容。

本节课是在学生学习了椭圆的定义和标准方程的基础上,由椭圆方程出发研究椭圆的几何性质。

这是学生第一次利用方程研究曲线的几何性质,要注意对研究结果的掌握,更要重视对研究方法的学习。

本节课使学生感受“数”和“形”的对立统一,是研究双曲线和抛物线几何性质的基础,起着承上启下的作用。

三、教学目标知识目标1.通过对椭圆标准方程的讨论,让学生掌握椭圆的几何性质。

2.领会椭圆几何性质的内涵,并会运用它们解决一些简单问题。

3.通过对方程的讨论,让学生领悟解析几何是怎样用代数方法研究曲线性质的。

能力目标1.培养学生观察、分析、抽象、概括的能力。

2.渗透数形结合、类比等数学思想。

3.强化学生的参与意识,培养学生的合作精神。

情感目标1.通过自主探究、交流合作,使学生体验探究的过程,从中体会学习的愉悦,激发学生的学习积极性。

2.通过数与形的辨证统一,对学生进行辩证唯物主义教育。

3.通过感受椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生良好的思维品质,激发学生对美好事物的追求。

四、教学重点与难点重点:掌握椭圆的范围、对称性、顶点等简单几何性质。

难点:利用椭圆的标准方程探究椭圆的几何性质。

五、学法、教法与教学用具1.学法:(1)自主探究+合作学习:教师设置问题,鼓励学生从椭圆的标准方程出发,自主探究,合作交流,发现数学规律和问题解决的途径,使学生经历知识形成的过程。

(2)反馈练习法:以练习来检验知识的应用情况,找出掌握不足的内容以及存在的差距。

2.教法:本节课采用自主探究、合作交流相结合的教学方法,运用多媒体教学手段,通过设置问题,让学生在独立思考的基础上合作交流,加强知识发生过程的教学。

3.1.2椭圆的简单几何性质(二)

3.1.2椭圆的简单几何性质(二)

例5、设F , F 分别是椭圆C : x2 y2 1的左右焦点,在椭圆上存在点P,使得PF 2PF ,
1
2
a2 b2
1
2
求椭圆的离心率范围
例6、设F , F 分别是椭圆C : x2 y2 1的左右焦点,在椭圆上存在点P,使得F PF 900 ,
1
2
a2 b2
1
2
求椭圆的离心率范围
跟踪训练:设F , F 分别是椭圆C : x2 y2 1的左右焦点,在椭圆上存在点P,使得以F F
例4、设F , F 分别是椭圆C : x2 y2 1的左右焦点,点P在椭圆上,线段PF的中点在y
1
2
a2 b2
1
轴上,若PF F 300,求椭圆的离心率 12
跟踪训练:设F , F 分别是椭圆C : x2 y2 1的左右焦点,点P在椭圆上,PF F ,
1
2
a2 b2
12
PF F ,求椭圆的离心率 21
的轨迹方程
例2、已知椭圆
x2 a2
y2 b2
1(a
b
0),左,右焦点F1, F2
(1)若点P( x1, y1 )是椭圆上的点,求证:PF1 =a ex1, PF2 =a ex1
(2)求椭圆上的点到F1的距离最小值和最大值
例3、已知椭圆 x2 y2 1的离心率为 1,求m的值
2m
2
跟踪训练:已知椭圆 x2 y2 1的焦距为2c,若满足2b a c,求离心率的值 a2 b2
第二节
一、知识回顾
焦点的 位置
焦点在x轴上
焦点在y轴上
图形
标准 方程
范围
对称性 பைடு நூலகம்点坐标
轴长 焦点坐标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

它的长轴长是:
26 ;
短轴长是: 焦距是: 离心率等于: 焦点坐标是:
2;
;2 5
30 6;
_(0_, _5); (0,- 5)
顶点坐标是:(0, 6) (0_,-__6_)_(1_, 0_)(;-1, 0)
外切矩形的面积等于: 4 6 。
例1 椭圆的一个顶点为A2,0 ,其长轴长是短轴长
的2倍,求椭圆的标准方程.
l1
a-c
P F1 O
P F2 x
讲授新课
例3

P( x0 ,
y0 ) 是椭圆
x2 a2
y2 b2
1
(a b 0)上任意一点,F1为其左焦点.
求|PF1|的最小值和最大值. y
l1
a-c
P
P F1 O F2 x a+c
讲授新课
例 4 如图,一种电影放映灯的反射镜面是旋 转椭圆面的一部分.过对称的截口 BAC 是椭 圆的一部分,灯丝位于椭圆的一个焦点 F1 上,片门位于另一个焦点 F2 上,由椭圆一个 焦点 F1 发出的光线,经过旋转椭圆面反射后
分析:题目没有指出焦点的位置,要考虑两种位置
解:(1)当 A2,0 为长轴端点时,a 2 ,b 1,
椭圆的标准方程为:x2 y2 1 ; 41
(2)当A2,0 为短轴端点时,b 2 , a 4 ,
x2
椭圆的标准方程为:
y2
1;
4 16
综上所述,椭圆的标准方程是 x2 y2 1 或 x2 y2 1
y0 ) 是椭圆
x2 a2
y2 b2
1
(a b 0)上任意一点,F1为其左焦点.
求|PF1|的最小值和最大值. y
l1 P
F1 O F2 x
讲授新课
例3

P( x0 ,
y0 ) 是椭圆
x2 a2
y2 b2
1
(a b 0)上任意一点,F1为其左焦点.
求|PF1|的最小值和最大值. y
l1
P F1 O F2 x
讲授新课
练习2
1.点P与定点F(2,0)的距离与它到定直 线x=8的距离之比为1:2,求点P的轨 迹方程.
讲授新课
例3

P( x0 ,
y0 ) 是椭圆
x2 a2
y2 b2
1
(a b 0)上任意一点,F1为其左焦点.
求|PF1|的最小值和最大值. y
l1
F1 O F2 x
讲授新课
例3

P( x0 ,
讲授新课
例3

P( x0 ,
y0 ) 是椭圆
x2 a2
y2 b2
1
(a b 0)上任意一点,F1为其左焦点.
求|PF1|的最小值和最大值. y
l1
a-c
P F1 O
F2 x
讲授新课
例3

P( x0 ,
y0 ) 是椭圆
x2 a2
y2 b2
1
(a b 0)上任意一点,F1为其左焦点.
求|PF1|的最小值和最大值. y
(离地面最远的点)距
地面2384km,并且
F2、A、B在同一直 线上,地球半径约 为6371km,求卫星 B
D F1 F2
CA
运行的轨道方程(精
确到1km).
讲授新课
例5如图所示,我国发射的第一颗人造地球卫星
运行轨道是以地心(地球的中心)F2为一个焦点的 椭圆,已知它的近地点A(离地面最近的点)距地
长为
6
,半焦距为 6
2
,离心率为
22 3

焦点坐标为 (0,6 2) ,顶点坐标为
.
复习导入:
1.椭圆 9x2 y2 81的长轴长为 18 ,短轴
长为
6
,半焦距为 6
2
,离心率为
22 3

焦点坐标为 (0,6 2) ,顶点坐标为 (0,9),
(3,0) .
2.已知椭圆方程为 6x2 y则2 6
2.1.2椭圆的简单 几何性质(二)
复习:椭圆
的性质
一、范围:x 2 a2
1,
y2 b2
1得:
-a≤x≤a, -b≤y≤b 知
椭圆落在x=±a,y= ± b组y成的矩形中
B2
A1
F1
b
oc
a
A2
F2
B1
定义
图形
方程 范围 对称性 焦点
|MF1|+|MF2|=2a (2a>|F1F2|)
y
y M
2.
课后作业
P42 练习册
6, 8, 9
长为 ,半焦距为
,离心率为

焦点坐标为 .
,顶点坐标为
复习导入:
1.椭圆 9x2 y2 81的长轴长为 18 ,短轴
长为 ,半焦距为
,离心率为

焦点坐标为 .
,顶点坐标为
复习导入:
1.椭圆 9x2 y2 81的长轴长为 18 ,短轴
长为 6 ,半焦距为
,离心率为

焦点坐标为
,顶点坐标为
.
面439km,远地点B
y
(离地面最远的点)距
地面2384km,并且
F2、A、B在同一直 线上,地球半径约 为6371km,求卫星 B
O D F1 F2
x CA
运行的轨道方程(精
确到1km).
讲授新课
例5如图所示,我国发射的第一颗人造地球卫星
运行轨道是以地心(地球的中心)F2为一个焦点的 椭圆,已知它的近地点A(离地面最近的点)距地
集| F中1B到|另2一.8c个m焦,|点F1FF22.|已4.知5cmB.C建立F适1F当2,的
坐标系,求截口 BAC 所在椭圆的方程.
讲授新课
例5如图所示,我国发射的第一颗人造地球卫星
运行轨道是以地心(地球的中心)F2为一个焦点的 椭圆,已知它的近地点A(离地面最近的点)距地
面439km,远地点B
F1 M
F1 O
F2
x
O
x
F2
x2 y2 a2 b2 1
a b 0
x2 b2
y2 a2
1
a b 0
|x| a |y| b
|x| b |y| a
关于x轴、y轴、原点对称
(c,0)、(c,0)
(0,c)、(0,c)
(a,0)、(0,b)
e
c
a
(b,0)、(0,a)
复习导入:
1.椭圆 9x2 y2 81的长轴长为 ,短轴
面439km,远地点B (离地面最远的点)距 地面2384km,并且
2384
y 6371 439
F2、A、B在同一直 线上,地球半径约 为6371km,求卫星 B
O D F1 F2
x CA
运行的轨道方程(精
确到1km).
讲授新课
例6 求适合下列条件的椭圆的离心率.
(1) 从短轴端点看两个焦点,所成视角为
直角;
y
B
F1 O F2
x
讲授新课
例6 求适合下列条件的椭圆的离心率.
(1) 从短轴端点看两个焦点,所成视角为
直角;
y
B
ab a
cc
F1 O F2
x
讲授新课
例6 求适合下列条件的椭圆的离心率.
(2) 两个焦点间的距离等于长轴的端点与
短轴的端点间的距离.
y
B
ab A F1 O F2 x
讲授新课
练习3 1.已知椭圆mx2+5y来自=5m的离心率复习导入:
1.椭圆 9x2 y2 81的长轴长为 18 ,短轴
长为 6 ,半焦距为 6 2 ,离心率为

焦点坐标为
,顶点坐标为
.
复习导入:
1.椭圆 9x2 y2 81的长轴长为 18 ,短轴
长为
6
,半焦距为 6
2
,离心率为
22 3

焦点坐标为
,顶点坐标为
.
复习导入:
1.椭圆 9x2 y2 81的长轴长为 18 ,短轴
41
4 16
讲授新课
例 2 如图,设 M(x,y)与定点 F(4,0)的距离
和它到直线 l:x 25 的距离的比是常数 4 ,
求点 M 的轨迹方程4.
5
讲授新课
例 2 如图,设 M(x,y)与定点 F(4,0)的距离
和它到直线 l:x 25 的距离的比是常数 4 ,
求点 M 的轨迹方程4.
5
相关文档
最新文档