双向循环链表的建立插入与删除
链表的插入操作总结
链表的插⼊操作总结链表是⼀种经常使⽤的数据结构,有单链表, 双向链表及其循环链表之分.
插⼊操作是链表的基本操作之中的⼀个.但⼤部分⼈在初学时,多少会感到有些迷惑.
以下时本⼈的⼀些⼩经验.
1 后向插⼊和前向插⼊
如果当前节点为P.
后向插⼊是指在p节点后插⼊新节点.
前向插⼊是指在p节点后插⼊新节点.
对于单链表⽽⾔,仅仅有后向插⼊.
2 基本规律
1) 先保存原链表结构不变,即先改动新节点的前后指针,然后再先远后近.
2) 先远后近是指先改动离p节点远的指针,在改动离它近的指针.
3 链表操作⽰意图
下图是可⾏的⼏种链表插⼊⽅法.都是依照上述的基本规律实现的.⾃⼰能够依据⾃⼰的喜好选择⼀种.。
考研《数据结构》复习知识点归纳
《数据结构》复习重点知识点归纳一.数据结构的章节结构及重点构成数据结构学科的章节划分基本上为:概论,线性表,栈和队列,串,多维数组和广义表,树和二叉树,图,查找,内排,外排,文件,动态存储分配。
对于绝大多数的学校而言,“外排,文件,动态存储分配”三章基本上是不考的,在大多数高校的计算机本科教学过程中,这三章也是基本上不作讲授的。
所以,大家在这三章上可以不必花费过多的精力,只要知道基本的概念即可。
但是,对于报考名校特别是该校又有在试卷中对这三章进行过考核的历史,那么这部分朋友就要留意这三章了。
按照以上我们给出的章节以及对后三章的介绍,数据结构的章节比重大致为:·概论:内容很少,概念简单,分数大多只有几分,有的学校甚至不考。
·线性表:基础章节,必考内容之一。
考题多数为基本概念题,名校考题中,鲜有大型算法设计题,如果有,也是与其它章节内容相结合。
·栈和队列:基础章节,容易出基本概念题,必考内容之一。
而栈常与其它章节配合考查,也常与递归等概念相联系进行考查。
·串:基础章节,概念较为简单。
专门针对于此章的大型算法设计题很少,较常见的是根据KMP进行算法分析。
·多维数组及广义表:基础章节,基于数组的算法题也是常见的,分数比例波动较大,是出题的“可选单元”或“侯补单元”。
一般如果要出题,多数不会作为大题出。
数组常与“查找,排序”等章节结合来作为大题考查。
·树和二叉树:重点难点章节,各校必考章节。
各校在此章出题的不同之处在于,是否在本章中出一到两道大的算法设计题。
通过对多所学校的试卷分析,绝大多数学校在本章都曾有过出大型算法设计题的历史。
·图:重点难点章节,名校尤爱考。
如果作为重点来考,则多出现于分析与设计题型当中,可与树一章共同构成算法设计大题的题型设计。
·查找:重点难点章节,概念较多,联系较为紧密,容易混淆。
出题时可以作为分析型题目给出,在基本概念型题目中也较为常见。
《数据结构、算法与应用(C++语言描述)》习题参考答案doc
第1章概论1.数据、数据元素、数据结构、数据类型的含义分别是什么?数据:对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并由计算机程序处理的符号的总称。
数据元素:数据的基本单位,在计算机程序中通常作为一个整体考虑。
数据结构:数据元素之间的关系+运算,是以数据为成员的结构,是带结构的数据元素的集合,数据元素之间存在着一种或多种特定的关系。
数据类型:数据类型是用来区分不同的数据;由于数据在存储时所需要的容量各不相同,不同的数据就必须要分配不同大小的内存空间来存储,所有就要将数据划分成不同的数据类型。
数据类型包含取值范围和基本运算等概念。
2.什么是数据的逻辑结构?什么是数据的物理结构?数据的逻辑结构与物理结构的区别和联系是什么?逻辑结构:数据的逻辑结构定义了数据结构中数据元素之间的相互逻辑关系。
数据的逻辑结构包含下面两个方面的信息:①数据元素的信息;②各数据元素之间的关系。
物理结构:也叫储存结构,是指逻辑结构的存储表示,即数据的逻辑结构在计算机存储空间中的存放形式,包括结点的数据和结点间关系的存储表示。
数据的逻辑结构和存储结构是密不可分的,一个操作算法的设计取决于所选定的逻辑结构,而算法的实现依赖于所采与的存储结构。
采用不同的存储结构,其数据处理的效率是不同的。
因此,在进行数据处理时,针对不同问题,选择合理的逻辑结构和存储结构非常重要。
3.数据结构的主要操作包括哪些?对于各种数据结构而言,他们在基本操作上是相似的,最常用的操作有:●创建:建立一个数据结构;●清除:清除一个数据结构;●插入:在数据结构中增加新的结点;●删除:把指定的结点从数据结构中删除;●访问:对数据结构中的结点进行访问;●更新:改变指定结点的值或改变指定的某些结点之间的关系;●查找:在数据结构中查找满足一定条件的结点;●排序:对数据结构中各个结点按指定数据项的值,以升序或降序重新排列。
4.什么是抽象数据类型?如何定义抽象数据类型?抽象数据类型(Abstract Data Type 简称ADT)是指一个数学模型以及定义在此数学模型上的一组操作。
双向链表
第8讲 双向链表● 循环单链表的出现,虽然能够实现从任一结点出发沿着链能找到其前趋结点,但时间耗费是O (n) 。
● 如果希望从表中快速确定某一个结点的前趋,另一个解决方法就是在单链表的每个结点里再增加一个指向其前趋的指针域prior 。
这样形成的链表中就有两条方向不同的链,我们称之为双向链表。
● 双向链表的结构定义如下:typedef struct DNode{ ElemType data ;struct DNode *prior ,*next ;}DNode, * DoubleList ;● 双向链表的结点结构如图所示。
图:双链表的结点结构注:● 双向链表也是由头指针唯一确定的,● 增加头结点能使双链表的某些运算变得方便● 由于在双向链表中既有前向链又有后向链,寻找任一个结点的直接前驱结点与直接后继结点变得非常方便。
● 设指针p 指向双链表中某一结点,则有下式成立:p->prior->next = p = p->next->prior●在双向链表中,那些只涉及后继指针的算法,如求表长度、取元素、元素定位等,与单链表中相应的算法相同,● 但对于前插和删除操作则涉及到前驱和后继两个方向的指针变化,因此与单链表中的算法不同。
1、 双向链表的前插操作【算法思想】欲在双向链表第i 个结点之前插入一个的新的结点,则指针的变化情况如图所示:… p …s->prior=p->prior; ①p->prior->next=s;②s->next=p; ③p->prior=s;④【算法描述】int DlinkIns(DoubleList L,int i,ElemType e){DNode *s,*p;… /*先检查待插入的位置i是否合法(实现方法同单链表的前插操作)*/… /*若位置i合法,则找到第i个结点并让指针p指向它*/s=(DNode*)malloc(sizeof(DNode));if (s){ s->data=e;s->prior=p->prior; ①p->prior->next=s; ②s->next=p; ③p->prior=s; ④r eturn TRUE;}else return FALSE;}2、双向链表的删除操作【算法思想】欲删除双向链表中的第i个结点,则指针的变化情况如图所示:p->prior->next=p->next; ①p->next->prior=p->prior; ②free(p);【算法描述】int DlinkDel(DoubleList L,int i,ElemType *e){DNode *p;… /*先检查待插入的位置i 是否合法(实现方法同单链表的删除操作)*/… /*若位置i 合法,则找到第i 个结点并让指针p 指向它*/*e=p->data;p->prior->next=p->next; ①p->next->prior=p->prior; ②free(p);return TRUE;}3、 双向循环链表双向链表可以有循环表,称为双向循环链表。
《数据结构》教案
审批:教研室主任(签字)年月日抽查:系部主任(签字)年月日教师授课教案|审批:教研室主任(签字)年月日抽查:系部主任(签字)年月日第一章:绪论算法描述1.2.1算法特性(1)有穷性(2)确定性(3)可行性(4)输入(5)输出—好的算法的特点(1)正确(2) 可读(3) 健壮(4) 高效数据结构的基本操作:(1)查找(2)读取(3)插入(4)删除(5)修改1.2.2 算法描述:算法描述的种类:(1)框图/流程图算法(2)非形式算法(3)伪语言算法(4)高级语言算法%算法分析时间复杂度:解决某问题所花费的时间大小,即程序运行从开始到结束所需要的时间,记为T (n)空间复杂度:解决某问题的程序完全运行时所占用的存储空间大小,记为S (n)[【例】算法MatrixMultidy的时间复杂度T(n)如式所示,当n趋向无穷大时,显然有教师授课教案审批:教研室主任(签字)年月日抽查:系部主任(签字)年月日教师授课教案审批:教研室主任(签字)年月日~抽查:系部主任(签字)年月日教师授课教案审批:教研室主任(签字)年月日抽查:系部主任(签字)年月日教师授课教案审批:教研室主任(签字)年月日抽查:系部主任(签字)年月日第十一章:结构体与共用体概述定义结构体类型变量的方法1. 先定义结构体类型,再用类型标识去定义变量2. 定义类型的同时定义变量3. 直接定义结构体类型变量结构体变量的引用1. 结构体变量各成员的引用!引用形式:结构体变量名. 成员名2. 结构体变量各成员的输入、输出结构体变量的初始化结构体数组1.结构体数组的定义2.结构体数组的初始化3.结构体数组stu的存储结构4.结构体数组的引用指针与结构体1. 指向结构体变量的指针2. 指向结构体变量的指针与结构体变量的等价关系用指针处理链表:处理动态链表所需的函数内存分配函数原型:void *malloc(unsigned size);内存分配函数原型:void *calloc(unsigned size);内存释放函数原形:void free(void *p);用typedef定义类型1、使用的一般形式:typedef 原类型名新类型名;2.用typedef定义类型的方法(举例)①先按定义数组变量形式书写:int n[100];②将变量名换成新类型名:int NUM[100];》③在最前面加上typedef: typedef int NUM[100];④用新类型名来定义变量:NUMn;3.用typedef定义类型的说明:(1) 用typedef可以声明各种类型名,但不能用来定义变量。
数据结构中的双向链表实现和应用场景
数据结构中的双向链表实现和应用场景双向链表是一种常用的数据结构,它在许多实际应用中都发挥着重要的作用。
本文将介绍双向链表的实现原理以及一些常见的应用场景。
一、双向链表的实现原理双向链表由一系列节点组成,每个节点包含两个指针,一个指向前一个节点,一个指向后一个节点。
相比于单向链表,双向链表可以实现双向遍历,提高了一些操作的效率。
1.1 节点定义双向链表的节点通常由数据域和两个指针域组成,例如:```struct Node {int data; // 节点数据Node* prev; // 前一个节点指针Node* next; // 后一个节点指针};```1.2 插入操作在双向链表中插入一个节点可以分为两种情况:在表头插入和在表尾插入。
在表头插入时,只需修改原来头节点的prev指针为新节点的地址,并将新节点的next指针指向原头节点即可。
在表尾插入时,需要先找到原来的尾节点,然后将尾节点的next指针指向新节点的地址,并将新节点的prev指针指向尾节点的地址。
1.3 删除操作删除操作与插入操作类似,同样分为在表头和表尾删除节点。
在表头删除时,只需将头节点的next指针指向新的头节点,同时将新头节点的prev指针置为空。
在表尾删除时,需要先找到尾节点的前一个节点,然后将该节点的next指针置为空。
1.4 查找操作双向链表支持从前向后和从后向前两种遍历方式。
从前向后遍历时,我们可以利用节点的next指针不断向后遍历得到所有节点。
同样,从后向前遍历时,可以利用节点的prev指针不断向前遍历得到所有节点。
二、双向链表的应用场景双向链表广泛应用于各种软件和系统中,下面列举了一些常见的应用场景。
2.1 浏览器的历史记录在浏览器中,经常需要记录用户浏览过的网页历史记录。
这时可以使用双向链表来实现。
每当用户访问一个新的网页,就在双向链表中插入一个新节点,同时将新节点的next指针指向前一个节点,prev指针指向后一个节点。
天大《数据结构》学习笔记三
{ p=(struct node *)malloc(sizeof(struct node)); scanf(&p->data); p->next=L->next; L->next=p;
} } 3.2按已知数组建立链表:/*正序*/
{ …… q=(struct node *)malloc(sizeof(struct node)); head=q;q->next=NULL; for(i=1;i<=n;i++) {p=(struct node *)malloc(sizeof(struct node));
}
3、课后练习: 国际象棋“马”的遍历算法。
四、链表:
1、引入指针型变量的原因:
1.1与其它类型的变量的不同; 1.2指针型变量为“地址”而设立;
2、指针型变量定义:
2.1定义
例如:
struct node
{int year;
int month;
int day;
}*p.*q;
或 structnode*p,*q;
‘=’:则退栈,(此时为‘(’‘)’匹配),扫描下一个。
数据结构—学习笔记三
‘>’:运算数栈退二个,运算符栈退一个,形成运算,结果进栈,返 回②。
3、实例运行:: 再运行:(3+4)*2#
4、程序: {initstack(OPTR);PUSH(OPTR,’#’); initstack(OPND);c=getchar(); while((c!=‘#’)||(GetTop(OPTR)!=‘#’))
{switch(tem) {case‘[’: case‘(’:{top++ s[top]=tem; break; } case‘]’:{if(s[top]==‘[’) {y=s[top]; top--; } else err=1; break; } case‘)’:{if(s[top]==‘(’) {y=s[top]; top--; } else err=1; break; } default:{err=1;break; } } if(err!=1)scanf(“%c”,&tem); }
数据结构--数组、单链表和双链表介绍以及双向链表
数据结构--数组、单链表和双链表介绍以及双向链表数组:数组有上界和下界,数组的元素在上下界内是连续的。
数组的特点是:数据是连续的;随机访问速度快。
数组中稍微复杂⼀点的是多维数组和动态数组。
对于C语⾔⽽⾔,多维数组本质上也是通过⼀维数组实现的。
⾄于动态数组,是指数组的容量能动态增长的数组;对于C语⾔⽽⾔,若要提供动态数组,需要⼿动实现;⽽对于C++⽽⾔,STL提供了Vector。
单向链表:单向链表(单链表)是链表的⼀种,它由节点组成,每个节点都包含下⼀个节点的指针。
表头为空,表头的后继节点是"节点10"(数据为10的节点),"节点10"的后继节点是"节点20"(数据为10的节点),"节点20"的后继节点是"节点30"(数据为20的节点),"节点30"的后继节点是"节点40"(数据为10的节点),......删除"节点30"删除之前:"节点20" 的后继节点为"节点30",⽽"节点30" 的后继节点为"节点40"。
删除之后:"节点20" 的后继节点为"节点40"。
在"节点10"与"节点20"之间添加"节点15"添加之前:"节点10" 的后继节点为"节点20"。
添加之后:"节点10" 的后继节点为"节点15",⽽"节点15" 的后继节点为"节点20"。
单链表的特点是:节点的链接⽅向是单向的;相对于数组来说,单链表的的随机访问速度较慢,但是单链表删除/添加数据的效率很⾼。
链表(单链表 双向循环)实验报告讲解
数据结构实验报告T1223-3-21余帅实验一实验题目:仅仅做链表部分难度从上到下1.双向链表,带表头,线性表常规操作。
2.循环表,带表头,线性表常规操作。
3.单链表,带表头,线性表常规操作。
实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。
实验要求:常规操作至少有:1.数据输入或建立2.遍历3.插入4.删除必须能多次反复运行实验主要步骤:1、分析、理解给出的示例程序。
2、调试程序,并设计输入数据,测试程序的如下功能:1.数据输入或建立2.遍历3.插入4.删除单链表示意图:headhead head 创建删除双向循环链表示意图:创建程序代码://单链表#include<iostream.h>#include<windows.h>const MAX=5;enum returninfo{success,fail,overflow,underflow,range_error}; int defaultdata[MAX]={11,22,33,44,55};class node{public:int data;node *next;};class linklist{private:node *headp;protected:int count;public:linklist();~linklist();bool empty();void clearlist();returninfo create(void);returninfo insert(int position,const int &item);returninfo remove(int position) ;returninfo traverse(void);};linklist::linklist(){headp = new node;headp->next = NULL;count=0;}linklist::~linklist(){clearlist();delete headp;}bool linklist::empty(){if(headp->next==NULL)return true;elsereturn false;}void linklist::clearlist(){node *searchp=headp->next,*followp=headp;while(searchp->next!=NULL){followp=searchp;searchp=searchp->next;delete followp;}headp->next = NULL;count = 0;}returninfo linklist::create(){node *searchp=headp,*newnodep;for(int i=0;i<MAX;i++){newnodep = new node;newnodep->data = defaultdata[i];newnodep->next = NULL;searchp->next = newnodep;searchp = searchp->next;count++;}searchp->next = NULL;traverse();return success;}returninfo linklist::insert(int position,const int &item) //插入一个结点{if(position<=0 || position>=count)return range_error;node *newnodep=new node,*searchp=headp->next,*followp=headp;for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}newnodep->data=item; //给数据赋值newnodep->next=followp->next; //注意此处的次序相关性followp->next=newnodep;count++; //计数器加一return success;}returninfo linklist::remove(int position) //删除一个结点{if(empty())return underflow;if(position<=0||position>=count+1)return range_error;node *searchp=headp->next,*followp=headp; //这里两个指针的初始值设计一前一后for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}followp->next=searchp->next; //删除结点的实际语句delete searchp; //释放该结点count--; //计数器减一return success;}returninfo linklist::traverse(void){node *searchp;if(empty())return underflow;searchp = headp->next;cout<<"连表中的数据为:"<<endl;while(searchp!=NULL){cout<<searchp->data<<" ";searchp = searchp->next;}cout<<endl;return success;}class interfacebase{public:linklist listface; //定义一个对象Cskillstudyonfacevoid clearscreen(void);void showmenu(void);void processmenu(void);};void interfacebase::clearscreen(void){system("cls");}void interfacebase::showmenu(void){cout<<"================================"<<endl;cout<<" 功能菜单 "<<endl;cout<<" 1.创建链表 "<<endl;cout<<" 2.增加结点 "<<endl;cout<<" 3.删除结点 "<<endl;cout<<" 4.遍历链表 "<<endl;cout<<" 0.结束程序 "<<endl;cout<<"======================================"<<endl;cout<<"请输入您的选择:";}void interfacebase::processmenu(void){int returnvalue,item,position;char menuchoice;cin >>menuchoice;switch(menuchoice) //根据用户的选择进行相应的操作{case '1':returnvalue=listface.create();if(returnvalue==success)cout<<"链表创建已完成"<<endl;break;case '2':cout<<"请输入插入位置:"<<endl;cin>>position;cout<<"请输入插入数据:"<<endl;cin>>item;returnvalue = listface.insert(position,item);if(returnvalue==range_error)cout<<"数据个数超出范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '3':cout<<"输入你要删除的位置:"<<endl;cin>>position;returnvalue = listface.remove(position);if(returnvalue==underflow)cout<<"链表已空"<<endl;else if(returnvalue==range_error)cout<<"删除的数据位置超区范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '4':listface.traverse();break;case '0':cout<<endl<<endl<<"您已经成功退出本系统,欢迎再次使用!!!"<<endl;system("pause");exit(1);default:cout<<"对不起,您输入的功能编号有错!请重新输入!!!"<<endl;break;}}void main(){interfacebase interfacenow;linklist listnow;system("color f0");interfacenow.clearscreen();while(1){interfacenow.showmenu();interfacenow.processmenu();system("pause");interfacenow.clearscreen();}}/* 功能:用双向循环链表存储数据1.创建链表2.增加结点3.删除结点4.遍历链表制作人:余帅内容:239行*/#include<iostream.h>#include<windows.h>const MAX=5;enum returninfo{success,fail,overflow,underflow,range_error}; int defaultdata[MAX]={11,22,33,44,55};class node{public:int data;node * next; //指向后续节点node * pre; //指向前面的节点};class linklist{private:node *headp;protected:int count;public:linklist();~linklist();bool empty();void clearlist();returninfo create(void);returninfo insert(int position,const int &item);returninfo remove(int position) ;returninfo traverse(void);};linklist::linklist(){headp = new node;headp->next = NULL;headp->pre = NULL;count=0;}linklist::~linklist(){clearlist();delete headp;}bool linklist::empty(){if(headp->next==NULL)return true;elsereturn false;}void linklist::clearlist(){node *searchp=headp->next,*followp=headp;while(searchp->next!=NULL){followp=searchp;searchp=searchp->next;delete followp;}headp->next = NULL;headp->pre = NULL;count = 0;}returninfo linklist::create(){node *searchp=headp,*newnodep;for(int i=0;i<MAX;i++){newnodep = new node;newnodep->data = defaultdata[i];newnodep->next = NULL;searchp->next = newnodep;newnodep->pre = searchp;searchp = searchp->next;count++;}searchp->next = headp;headp->pre = searchp;traverse();return success;}returninfo linklist::insert(int position,const int &item) //插入一个结点{if(position<=0 || position>count+1)return range_error;node *newnodep=new node;node *searchp=headp->next,*followp=headp;for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}newnodep->data=item; //给数据赋值newnodep->next = searchp;searchp->pre = newnodep;followp->next = newnodep;newnodep->pre = followp;count++; //计数器加一return success;}returninfo linklist::remove(int position) //删除一个结点{if(empty())return underflow;if(position<=0||position>=count+1)return range_error;node *searchp=headp->next,*followp=headp; //这里两个指针的初始值设计一前一后for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}followp->next=searchp->next; //删除结点的实际语句searchp->next->pre = followp;delete searchp; //释放该结点count--; //计数器减一return success;}returninfo linklist::traverse(void){node *searchp1,*searchp2;if(empty())return underflow;searchp1 = headp;searchp2 = headp;cout<<"连表中的数据为:"<<endl;cout<<"从左至右读取:";while (searchp1->next!=headp ) {searchp1 = searchp1 ->next;cout << searchp1->data<<" ";}cout<<endl;cout<<"从右至左读取:";while (searchp2->pre!=headp ) {searchp2 = searchp2 ->pre;cout << searchp2->data<<" ";}cout<<endl;return success;}class interfacebase{public:linklist listface; //定义一个对象Cskillstudyonface void clearscreen(void);void showmenu(void);void processmenu(void);};void interfacebase::clearscreen(void){system("cls");}void interfacebase::showmenu(void){cout<<"================================"<<endl;cout<<" 功能菜单 "<<endl;cout<<" 1.创建链表 "<<endl;cout<<" 2.增加结点 "<<endl;cout<<" 3.删除结点 "<<endl;cout<<" 4.遍历链表 "<<endl;cout<<" 0.结束程序 "<<endl;cout<<"======================================"<<endl;cout<<"请输入您的选择:";}void interfacebase::processmenu(void){int returnvalue,item,position;char menuchoice;cin >>menuchoice;switch(menuchoice) //根据用户的选择进行相应的操作{case '1':returnvalue=listface.create();if(returnvalue==success)cout<<"链表创建已完成"<<endl;break;case '2':cout<<"请输入插入位置:"<<endl;cin>>position;cout<<"请输入插入数据:"<<endl;cin>>item;returnvalue = listface.insert(position,item);if(returnvalue==range_error)cout<<"数据个数超出范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '3':cout<<"输入你要删除的位置:"<<endl;cin>>position;returnvalue = listface.remove(position);if(returnvalue==underflow)cout<<"链表已空"<<endl;else if(returnvalue==range_error)cout<<"删除的数据位置超区范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '4':listface.traverse();break;case '0':cout<<endl<<endl<<"您已经成功退出本系统,欢迎再次使用!!!"<<endl;system("pause");exit(1);default:cout<<"对不起,您输入的功能编号有错!请重新输入!!!"<<endl;break;}}void main(){interfacebase interfacenow;linklist listnow;system("color f0");interfacenow.clearscreen();while(1){interfacenow.showmenu();interfacenow.processmenu();system("pause");interfacenow.clearscreen();}}运行结果:1.创建链表:2.增加结点3.删除结点心得体会:本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。
02-链表的插入与删除 PPT
链表链表的主要操作:插入、删除插入新节点节点结构:typedef struct node{ int data;struct node *next;}NODE; 12next6 next 10 next 16 next 20 ^ h ps t 按照从小到大的顺序插入新的数据//在指针h指向的链表中根据大小顺序插入新数据NODE *insert_link(NODE *h,int x){ NODE *s, *t, *p;p=(NODE *)malloc(sizeof(NODE)); //申请空间p->data=x; p->next=NULL; //写入数据if(x<h->data) //比第一个节点数据小{ p->next=h; //插入到第一个节点之前h=p; } //改变链表第一个节点的指针else { s=h;while(s->data<=x&&s!=NULL) //查找位置{ t=s; s=s->next; } //移动指针if(s==NULL) t->next=p; //比最后一个节点的数据大,插入最后位置 else { p->next=s; t->next=p; } // 插入节点}return h; //返回链表指针12 next 24 next 16 next 20 nexth s删除节点查找链表中是否有数据x,如果有则删除节点结构:typedef struct node{ int data;struct node *next;}NODE; t free()函数释放malloc()函数给指针变量分配的内存空间//在指针h指向的链表中删除数据NODE *del_link(NODE *h,int x){ NODE *s, *t;if(x==h->data) //删除的是第一个节点{ s=h; h=h->next; //第一个节点指针移动free(s); } // 释放节点存储空间else { t=h;while(t->next!=NULL) //查找数据{ s=t->next;if(s->data==x) //找到数据{ t->next=s->next; //改变指针内容,从链表中删除s所指节点free(s); } // 释放s所指节点存储空间else t=t->next; // 没有找到,指针后移}}return h; //返回链表指针设计一个主程序调用这几个函数做测试:int main(){ NODE *h; //链表的指针int x;h=creat1_link( ); //创建链表print_link(h); // 输出链表printf("\n输入要插入的数据:") ; scanf("%d",&x);h=insert_link(h,x);//插入数据print_link(h); //输出链表 printf("\n输入要删除的数据:") ; scanf("%d",&x);h=del_link(h,x); //删除数据print_link(h); //输出链表}THANKYOU。
《数据结构》实验指导书(Java语言版).
《数据结构》课程实验指导《数据结构》实验教学大纲课程代码:0806523006 开课学期:3 开课专业:信息管理与信息系统总学时/实验学时:64/16 总学分/实验学分:3.5/0.5一、课程简介数据结构是计算机各专业的重要技术基础课。
在计算机科学中,数据结构不仅是一般程序设计的基础,而且是编译原理、操作系统、数据库系统及其它系统程序和大型应用程序开发的重要基础。
数据结构课程主要讨论各种主要数据结构的特点、计算机内的表示方法、处理数据的算法以及对算法性能的分析。
通过对本课程的系统学习使学生掌握各种数据结构的特点、存储表示、运算的原理和方法,学会从问题入手,分析研究计算机加工的数据结构的特性,以便为应用所涉及的数据选择适当的逻辑结构、存储机构及其相应的操作算法,并初步掌握时间和空间分析技术。
另一方面,本课程的学习过程也是进行复杂程序设计的训练过程,通过对本课程算法设计和上机实践的训练,还应培养学生的数据抽象能力和程序设计的能力。
二、实验的地位、作用和目的数据结构是一门实践性较强的基础课程,本课程实验主要是着眼于原理和应用的结合,通过实验,一方面能使学生学会把书上学到的知识用于解决实际问题,加强培养学生如何根据计算机所处理对象的特点来组织数据存储和编写性能好的操作算法的能力,为以后相关课程的学习和大型软件的开发打下扎实的基础。
另一方面使书上的知识变活,起到深化理解和灵活掌握教学内容的目的。
三、实验方式与基本要求实验方式是上机编写完成实验项目指定功能的程序,并调试、运行,最终得出正确结果。
具体实验要求如下:1.问题分析充分地分析和理解问题本身,弄清要求,包括功能要求、性能要求、设计要求和约束,以及基本数据特性、数据间联系等等。
2.数据结构设计针对要解决的问题,考虑各种可能的数据结构,并且力求从中选出最佳方案(必须连同算法实现一起考虑),确定主要的数据结构和全程变量。
对引入的每种数据结构和全程变量要详细说明其功用、初值和操作的特点。
双向链表上的插入和删除算法
编写程序,演示在双向链表上的插入和删除算法。
问题分析:1、在双向链表上操作首先要生成一个双向链表:1>节点定义struct DuLNode{ElemType data;DuLNode *prior;DuLNode *next;};2.> 创建双列表L=(DuLinkList)malloc(sizeof(DuLNode));L->next=L->prior=L;3>输入链表数据;2、3、对向链表进行插入操作算法:在节点p的前面加入一个新的节点q:q=(DuLinkList)malloc(sizeof(DuLNode));q->data=e;q->prior=p->prior;q->next=p;p->prior->next=q;p->prior=q;4、对双向链表进行删除操作算法删除给定节点p得到的代码如下:#include<iostream>#include<malloc.h>#define OK 1#define ERROR 0using namespace std;typedef int ElemType;typedef int status;struct DuLNode{ ElemType data;DuLNode *prior;DuLNode *next;};typedef DuLNode *DuLinkList;status DuListInsert_L(DuLinkList L,int i , ElemType e)//插入函数{DuLinkList p=L; //定义两个指向头节点的指针DuLinkList q=L;int j=0;while(p->next!=L&&j<i) //判断p是否到最后一个数据{p=p->next;j++;}if(p->next==L||j<i) //如果p是最后一个节点或者插入位置大于链表节点数{printf("无效的插入位置!\n");return ERROR;}//创建新节点q,数据为e,指针为nullq=(DuLinkList)malloc(sizeof(DuLNode));q->data=e;q->prior=p->prior;q->next=p;p->prior->next=q;p->prior=q;return OK;}status DuListDelete_L(DuLinkList L,int i , ElemType &e)//删除{DuLinkList p=L;int j=0;while(p->next!=L&&j<i){p=p->next;j++;}if(p->next==L||j<i){return ERROR;}p->prior->next=p->next;p->next->prior=p->prior;e=p->data;free(p);return OK;}int main(){ //初始化双向循环链表LDuLinkList L;L=(DuLinkList)malloc(sizeof(DuLNode)); //创建空双列表头结点L->next=L->prior=L;DuLNode *p,*q;ElemType e;//给L赋初始值p=L;q=L;while(cin>>e){p->next=(DuLNode*)malloc(sizeof(DuLNode));//分配新的节点q=p;p=p->next; //p指向新的节点p->data=e; //新结点的数据域为刚输入的ep->next=L; //新结点的指针域为头结点,表示这是单链表的最后一个结点p->prior=q;L->prior=p;}//p指向头指针,逐一输出链表的每个结点的值p=L;while(p->next!=L) //输出原列表{cout<<p->next->data<<' ';p=p->next;}cin.clear(); //清除上一个cin的错误信息cin.ignore(); //清空输入流int i;cout<<"输入待插入的元素e:";cin>>e;cout<<"输入待插入的位置i:";cin>>i;if(DuListInsert_L(L,i,e)){cout<<"插入后的双链为:";p=L;while(p->next!=L){cout<<p->next->data<<' ';p=p->next;}}printf("\n");p=L;while(p->next!=L) //输出列表{cout<<p->next->data<<' ';p=p->next;}int k;cin.clear(); //清除上一个cin的错误信息cin.ignore(); //清空输入流cout<<"要删除第几个节点k :";cin>>k;if(DuListDelete_L(L,k,e)){cout<<"被删除的元素为:"<<e<<endl;cout<<"删除后的元素为:";p=L;while(p->next!=L) //输出删除后的列表{cout<<p->next->data<<' ';p=p->next;}}elsecout<<"删除出错";return 0;}得到的结果如图罗达明电科一班学号2010301510028 2013、3、17。
带头结点的双向循环链表操作集
带头结点的双向循环链表操作集带头结点的双向循环链表操作集1. 链表的定义链表是一种数据结构,它由一系列节点组成,每个节点存储数据和指向下一个节点的指针。
链表可以分为单向链表和双向链表。
在双向链表中,每个节点有两个指针,一个指向前一个节点,另一个指向后一个节点。
2. 链表的基本操作2.1 链表的创建创建一个带头结点的双向循环链表,可以按照以下步骤进行:1. 创建头结点2. 将头结点的前指针和后指针均指向自身,完成循环链接的闭合3. 将头结点作为链表的起始节点2.2 链表的遍历链表的遍历是指按照某种顺序遍历链表中的所有节点。
可以使用循环或递归的方法进行遍历,其具体步骤如下:1. 先将指针指向链表的起始节点2. 依次访问每个节点,并将指针指向下一个节点,直到指针指向空节点为止2.3 链表的插入链表的插入是指将一个新的节点插入到链表中的某个位置。
如果要在第i个位置插入一个新节点,需要进行以下操作:1. 新建一个节点,并将要插入的数据存储在其中2. 找到第i-1个节点,并将它的后指针指向新节点3. 将新节点的前指针指向第i-1个节点,后指针指向第i个节点4. 如果插入位置是链表的末尾,则需要将新节点的后指针指向头结点,完成循环链接的闭合2.4 链表的删除链表的删除是指将链表中某个节点删除。
如果要删除第i个节点,需要进行以下操作:1. 找到第i个节点2. 将第i-1个节点的后指针指向第i+1个节点3. 将第i+1个节点的前指针指向第i-1个节点4. 释放第i个节点所占用的内存空间3. 链表的应用链表常常被用于各种算法和数据结构中,如栈、队列、哈希表、图等。
链表具有无需预先分配内存空间,插入和删除操作效率高等优点,在某些场合可以取代数组进行操作。
4. 链表的优化在实际使用中,链表的优化也是非常重要的,可以采用以下方法进行优化:1. 在插入和删除操作频繁的场合,可以选用跳表、B树等数据结构进行优化2. 在查询操作频繁的场合,可以选用哈希表等数据结构进行优化3. 可以使用链表的迭代器进行遍历操作,比单纯使用指针更加方便和安全5. 总结带头结点的双向循环链表是一种常用的数据结构,具有插入和删除操作效率高、可以减少分配内存空间等优点。
双向循环链表中结点的交换
双向循环链表中结点的交换
双向循环链表是一种常见的数据结构,其中每个结点都有前驱和后继指针,可以实现快速的插入和删除操作。
在某些情况下,需要对双向循环链表中的结点进行交换操作,例如将两个相邻的结点位置互换。
下面介绍一种简单的方法来实现双向循环链表中结点的交换。
假设双向循环链表中有结点A、B、C、D,它们的前驱和后继指针分别为prev和next。
要将结点B和结点C进行交换操作,可以按照以下步骤进行:
1. 将结点B的前驱指针指向结点C的前驱结点A,将结点B的后继指针指向结点C的后继结点D,将结点C的前驱指针指向结点B,将结点C的后继指针指向结点B。
2. 将结点B的前驱结点A的后继指针指向结点C,将结点D的前驱指针指向结点B。
完成以上两个步骤后,双向循环链表中结点B和结点C的位置就会互换,同时它们的前驱和后继指针也会相应地更新。
这种方法比较简单,但需要注意一些细节,例如交换的结点不能是链表的头结点或尾结点,否则需要进行额外的处理。
- 1 -。
链表基本操作
链表基本操作链表作为一种重要的数据结构,在计算机程序设计中被广泛应用。
链表是一种元素之间通过指针相连接的线性结构,每个元素包含数据和指向下一个元素的指针。
链表能够灵活地增加和删除元素,适用于许多需要频繁插入和删除数据的场景。
在本文中,我们将介绍链表的基本操作,并按照类别进行介绍。
创建链表链表的创建是链表操作的第一步。
首先需要声明链表节点类型的结构体,并定义链表头指针。
然后通过动态内存分配函数malloc为链表节点动态分配内存,建立链表节点之间的关系,直到最后一个节点。
struct Node{int data;Node* next;};Node* createLinkedList(int n){Node* head = NULL;Node* tail = NULL;for(int i = 0; i < n; i++){Node* node = (Node*)malloc(sizeof(Node));node->data = 0;node->next = NULL;if(head == NULL){head = node;}else{tail->next = node;}tail = node;}return head;}插入数据链表的插入操作包括在链表头插入和在链表尾插入两种情况。
在链表头插入时,新节点的指针指向链表头,链表头指针指向新节点。
在链表尾插入时,先找到链表尾节点,然后将新节点插入在尾节点后面。
void insertAtFront(Node** head, int data){Node* node = (Node*)malloc(sizeof(Node));node->data = data;node->next = *head;*head = node;}void insertAtEnd(Node** head, int data){Node* node = (Node*)malloc(sizeof(Node)); node->data = data;node->next = NULL;if(*head == NULL){*head = node;}else{Node* tail = *head;while(tail->next != NULL){tail = tail->next;}tail->next = node;}}删除数据链表的删除操作包括在链表头删除和在链表尾删除两种情况。
链表的基本操作
链表的基本操作
链表是一种通用的数据结构,它利用指针对数据元素的每一个节点进行存储,当需要访问任何指定的节点时,受益于指针技术,可以较快的访问指定节点。
在一般的链表中,可以进行如下几种基本操作:
1.插入:链表可以在既有链表中的任何一个位置插入数据元素,通过改变相应指针指向,实现插入操作。
2.删除:链表也可以通过调整相应指针指向,实现删除操作。
3.搜索:在链表中搜索某个元素可以采用顺序搜索的方式,从链表的首元节点开始,逐个比较,直到找到所要查找节点。
4.遍历:链表可以从链表的首元节点开始,按照指针指向,依次访问每一个节点,从而实现对链表的元素的遍历。
5.修改:修改链表可以通过先将要修改的节点找出来,然后调整相应的数据值来实现。
链表的基本操作是一个非常常用的数据结构,可以有效的提高编程效率,更加方便的实现某些算法,广泛应用于很多的计算机程序。
所以在学习更多的数据结构的时候,了解链表的基本操作,也是一个不可忽视的组成部分。
循环双链表的判空条件
循环双链表的判空条件循环双链表(Circular Doubly Linked List)是双向链表(Doubly Linked List)的一种特殊形式,其最后一个结点的 next 指向头结点,头结点的 prev 指向最后一个结点,从而形成了闭环。
循环双链表具有双向遍历的特性,可以实现快速插入、删除等操作,因此被广泛应用于数据结构和算法中。
在使用循环双链表时,判空条件是非常重要的,它决定了程序是否能够正常运行。
判空条件通常是根据链表的头结点来判断的,因为头结点是循环双链表的入口,它包含了链表的长度、头尾结点等信息。
不同的编程语言和应用场景可能会有不同的判空条件,下面给出几种常见的判空条件及其实现方式。
1. 头结点为空头结点为空是最常见的循环双链表判空条件,它表示整个链表为空。
在实现循环双链表时,通常会初始化一个头结点,并使其指向自己,也就是构成一个至少包含一个结点的循环双链表。
这样,在判空时只需要判断头结点的next 指针是否指向自己即可。
C++ 代码实现:``` template<typename T> class CircularDoublyLinkedList { private: struct Node { T data; Node *prev, *next;Node(const T& x = T(), Node* p = nullptr, Node* n = nullptr) : data(x), prev(p), next(n) {} };Node *head;public: CircularDoublyLinkedList() :head(new Node()) { head->prev = head->next = head; }bool empty() const { returnhead->next == head; } }; ```2. 结点数量为零结点数量为零是另一种常见的循环双链表判空条件,它表示链表中没有任何结点。
循环链表和双向链表
b.head->next = NULL; //此时,b中已只剩第一个结点(头), 为其置空表标志
return k; //返回结果链表中的元素个数
}
为了进一步说明上述程序,举一个程序运行的例子, 其各次循环的运行结果如图5-6所示
p
7 0 3 2 -9 3 1 5
^
(a)A(x)=p5(x)=7+3x2-9x3+x5,进入循环前
该程序不断比较A链和B链中的一对结点的指数值 (称其为当前结点)。开始时A链和B链中参加比较
的当前结点都是它们的第一个元素。
主循环while结束后,可能出现下列3种情况:①A
链和B链同时被处理完;②只有B链处理完;③只有A
链处理完。 对第一和第二种情况,不需要“善后”处理。对第 三种情况,B链中尚有未被处理完的结点,需将其挂 接在结果链的尾部。循环外的“if(q 不为空)将q
p = p->next; } // if (x==0) … else … q0 = q; q = q->next; delete q0; //将q所指结点从表中删除并释放,令q新指向原所 指的下一个 } // if (p->exp > q->exp ) … else … } //while if (q!=NULL) p0->next = q;
为处理方便,在具体存储多项式时,我们规定:
所存储的多项式已约简,即已合并同类项,不 保留0系数项,各项按指数的升序排列。 (二)多项式加法实现—直接操作链表 为操作方便,我采用带头结点的非循环链表,下面给 出一个例子说明多项式的这种表示法。
设有一个一元5次多项式: P5(x)=7+3x-9x3+x5
单、循环、双链表的特点
对比单链表双向链表循环链表的相同点,不同点及特点
访问方式:
顺序表SqList:随机选取表中元素。
寻找元素简单,但是插入删除时要移动表中的元素。
单链表LinkList:如果访问任意结点每次只能从头开始顺序向后访问。
插入删除简单,寻找元素麻烦。
单循环链表CirLinkList:可以从任何一个结点开始,顺序向后访问到达任意结点。
特点:最后一个结点的指针域指向头结点。
双向链表DuLinkList:可以从任何结点开始任意向前向后双向访问。
插入和删除操作(先查找元素,再进行插入或删除):
单链表和单循环链表:只能在当前结点后插入和删除。
双链表:可以在当前结点前面或者后面插入,可以删除前趋和后继(包括结点自己)。
存储:
单链表和单循环链表存储密度大于双链表。
其他总结
在顺序表中插入或删除一个数据元素,平均约需移动表中一般元素(在第i个元素之前插入或删除时,需将第i+1至第n个元素依次向后(向右)或向前(向左)移动一个位置);还要预先分配内存空间。
链表与顺序表相比,他增加了指针空间开销。
进行插入或删除操作时应考虑的方面:1、空间是否够用。
2、插入或删除的位置是否合法。
链表的插入式时应创建新的结点,删除时应释放被删除的结点的空间。
注意:链表的数据元素有两个域,所以每个结点至少有两个分量,数据类型不一致,所以要采用结构数据类型。
《数据结构》实验指导书(C语言版)(浦江学院)
实验1: 顺序表的操作实验一、实验名称和性质二、实验目的1.掌握线性表的顺序存储结构的表示和实现方法。
2.掌握顺序表基本操作的算法实现。
3.了解顺序表的应用。
三、实验内容1.建立顺序表。
2.在顺序表上实现插入、删除和查找操作(验证性内容)。
3.删除有序顺序表中的重复元素(设计性内容)。
四、实验的软硬件环境要求硬件环境要求:PC机(单机)使用的软件名称、版本号:Windows环境下的VC++6.0五、知识准备前期要求熟练掌握了C语言的编程规则、方法和顺序表的基本操作算法。
六、验证性实验1.实验要求编程实现如下功能:(1)根据输入顺序表的长度n和各个数据元素值建立一个顺序表,并输出顺序表中各元素值,观察输入的内容与输出的内容是否一致。
(2)在顺序表的第i个元素之前插入一个值为x的元素,并输出插入后的顺序表中各元素值。
(3)删除顺序表中第i个元素,并输出删除后的顺序表中各元素值。
(4)在顺序表中查找值为e的数据元素,如果查找成功,则显示“查找成功”和该元素在顺序表中的位置,否则显示“查找失败”。
2. 实验相关原理线性表的顺序存储结构称为顺序表,顺序表的存储结构描述为:#define MAXLEN 30 /*线性表的最大长度*/typedef struct{Elemtype elem[MAXLEN]; /*顺序表中存放元素的数组,其中elemtype为抽象数据类型,在程序具体实现时可以用任意类型代替*/int length; /*顺序表的长度,即元素个数*/}Sqlist; /*顺序表的类型*/【核心算法提示】(1)顺序表插入操作的基本步骤:要在顺序表中的第i个数据元素之前插入一个数据元素x,首先要判断插入位置i是否合法,假设线性表的表长为n,则i的合法值范围:1≤i ≤n+1,若是合法位置,就再判断顺序表是否满,如果满,则增加空间或结束操作,如果不满,则将第i个数据元素及其之后的所有数据元素都后移一个位置,此时第i个位置已经腾空,再将待插入的数据元素x插入到该位置上,最后将线性表的表长增加1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
for(i=1;i<=n;i++)
{
q=(DuLinkList)malloc(sizeof(DuLNode));
printf("您该输入第%d个元素的值了:",i);
scanf("%d",&q->data);
p->next =q;
q->prior=p;
q->next=L;
L->prior =q;
void Display( DuLinkList L)
{ DuLinkList p;
printf("双向循环链表中的结点的数据为:");
for(p=L->next ;p->next !=L;)
{
printf("%d",p->data);
printf("、");
p=p->next ;
}
printf("%d\n",p->data );
ListDelete(L,i);//结点的删除
Display(L);
printf("双向循环链表中结点的个数为:%d\n",L->Length);
}
int i;
for(i=1;i<=n;i++)
{
q=(DuLinkList)malloc(sizeof(DuLNode));
printf("其中第%d个元素的值为:",i);
scanf("%d",&q->data);
p->next =q;
q->prior=p;
q->next=L;
L->prior =q;
p=p->next ;
return p;
}
//结点的删除
status ListDelete(DuLinkList L,int i)
{
//删除带头结点的双链循环线性表L的第i个元素,i的合法值为1≤i≤表长
DuLinkList p;
if(i<1) /* i值不合法*/
return ERROR;
p=GetElemP(L,i);
if(!p)
return ERROR;
p->prior->next=p->next;
p->next->prior=p->prior;
L->Length --;
printf("删除了双线循环链表中第%d个结点,元素值为:%d\n",i,p->data);
free(p);
return OK;
}
//结点的输出
创建双向循环链表的源代码:
#include<stdio.h>
#include<stdlib.h>
#define RFLOW -2
#define ERROR 0
#define OK 1
typedef int status;
//双向循环链表的存储结构
typedef struct DuLNode
{
int data;
if(!q)
return OVERFLOW;
q->data=e;
q->prior=p->prior;
p->prior->next=q;
q->next=p;
p->prior=q;
m->Length++;
printf("您在双向循环链表第%d个位置之前插入了一结点元素:%d\n",i,e);
return OK;
{
//输入n个元素的值,建立带头结点的双线循环链表L
DuLinkList p=L,q;
int i;
for(i=1;i<=n;i++)
{
q=(DuLinkList)malloc(sizeof(DuLNode));
printf("您该输入第%d个元素的值了:",i);
scanf("%d",&q->data);
int Length;
struct DuLNode *prior;
struct DuLNode *next;
} DuLNode,*DuLinkList;
//构建一个空的双向循环链表
int InitList(DuLNode **p)
{
*p=(DuLNode *)malloc(sizeof(DuLNode));
}
//结点的输出
void Display( DuLinkList L)
{ DuLinkList p;
printf("双向循环链表中的结点的数据为:");
for(p=L->next ;p->next !=L;)
{
printf("%d",p->data);
printf("、");
p=p->next ;
}
{
*p=(DuLNode *)malloc(sizeof(DuLNode));
if(*p)
{
(*p)->next=(*p)->prior=*p;
(*p)->Length=0;
}
else
exit(OVERFLOW);
}
//双向循环链表的创建
void Create(DuLinkList &L,int n)
p=q;
L->Length ++;
}
}
//查找元素的位置
DuLinkList GetElemP(DuLinkList h,int i)
{
int j;
DuLinkList p=h;
for(j=1;j<=i;j++)
p=p->next ;
return p;
}
//结点的插入
status Listinsert(DuLNode *m,int i,int e)
p=q;
L->Length ++;
}
}
//结点的输出
void Display( DuLinkList L)
{ DuLinkList p;
printf("双向循环链表中的结点的数据为:");
for(p=L->next ;p->next !=L;)
{
printf("%d",p->data);
printf("、");
}
//主函数实现链表的创建,插入,删除等操作
int main()
{
DuLinkList L;
int n,i;
InitList(&L) ;
printf("你想创建几个循环节点就输入几就行啦,请输入:");
scanf("%d",&n);
Create(L,n);
printf("您想删除哪个结点呢?");
scanf("%d",&i);
p=p->next ;
}
printf("%d\n",p->data );
}
int main()
{
DuLinkList L;
int n,i;
InitList(&L) ;
printf("你想创建几个循环节点就输入几就行啦,请输入:");
scanf("%d",&n);
Create(L,n);
Display(L);
scanf("%d,%d",&l,&e);
Listinsert(L,l,e);
Display(L);
}
双向循环链表删除的源代码:
#include<stdio.h>
#include<stdlib.h>
#define OVERFLOW -2
#define ERROR 0
#define OK 1
typedef int status;
int Length;
struct DuLNode *prior;
struct DuLNode *next;
} DuLNode,*DuLinkList;
//构建一个空的双向循环链表
void InitList(DuLNode **p)
{
*p=(DuLNode *)malloc(sizeof(DuLNode));
if(*p)
{
(*p)->next=(*p)->prior=*p;
(*p)->Length=0;
}
else
exit(OVERFLOW);
}
//双向循环链表的创建
void Create(DuLinkList &L,int n)
{
//输入n个元素的值,建立带头结点的双线循环链表L
DuLinkList p=L,q;
//双向循环链表的存储结构
typedef struct DuLNode
{
int data;
int Length;
struct DuLNode *prior;
struct DuLNode *next;
} DuLNode,*DuLinkList;
//构建一个空的双向循环链表