山西省朔州市怀仁县怀仁一中云东校区2019-2020学年高一数学下学期期中试题文[含答案]

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省朔州市怀仁县怀仁一中云东校区2019-2020学年高一数学下

学期期中试题 文

一 选择题(每小题5分,共60分)

1. 在△ABC 中,a =33,b =3,A =π

3

,则C 为( )

A.

2π3 B.π2 C.π4 D.π6

2. 在△ABC 中,tan A +tan B +3=3tan A ·tan B ,则C 等于( ) A.

π3 B.2π3 C.π6 D.π4

3.已知(,),(,)M N ---3251,且=u u u v

u u u

v MP MN

12,则点P 的坐标是( ) A .

-(,-)312 B .(,)-142 C .(-,)

312 D .(,)-81 4 . 在半径为15cm 的圆上,一扇形所对的圆心角为3π

,则此扇形的面积为( )

A. 5

B. 5π

C. 52

D. 752π

5 已知

51

cos sin =α+α,且π<α≤0,那么αtan 等于( )

A . 34

-

B . 43-

C .43

D .34

6 已知1sin()33πα-=,则cos()6πα+=

( )

A .13

B .23-

C .23

D . 1

3-

7 已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( ) A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝ ⎛⎭⎪⎫133,43 D.⎝ ⎛⎭⎪⎫-13

3,-43

8. 函数f (x )=A sin(ωx +φ)A >0,ω>0,|φ|<π

2

的部分图象如图所示,则将y =f (x )的图象向右平移

π

6

个单位后,得到的图象对应的函数解析式为

( ).

A .y =sin 2x

B .y =cos 2x

C .y =sin ⎝ ⎛⎭⎪⎫2x -π6 D.y =sin ⎝ ⎛⎭⎪⎫2x +2π3

9.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( )

A .150° B.90° C.60° D.30°

10 函数y=--sin(2x+π

6

)的图象可看成是把函数y=--sin2x 的图象做以下平移得到( )

A. 向左平移π6 B 向右平移π6 C.向左平移 π12 D. 向右平移 π

12

11 函数y=sin(π

4

-2x)的单调增区间是( )

A. [kπ-3π8 , kπ+3π8 ] (k ∈Z)

B. [kπ+3π8 , kπ+7π

8 ] (k ∈Z)

C [kπ-π8 , kπ+3π8 ] (k ∈Z) D. [kπ+π8 , kπ+5π

8

] (k ∈Z)

12. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2

+6,C =π3

,则△

ABC 的面积是( )

A .3 B.932 C.33

2 D .

3 3

二 填空题(每题5分,共20分。)

13 .已知向量a ,b 均为单位向量,若它们的夹角是60°,则|a -3b |等于________. 14 函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间[0,π2]上的值域为 15 函数y =

32

sin 2x +cos 2

x 的最小正周期为________. 16 已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 三、解答题(本大题共6道题,共70分。) 17(10分)求值: (1)若

sin α+cos αsin α-cos α=1

2

,求tan 2α 的值.

(2)求 2sin 2

35°-1

cos 10°-3sin 10°

的值.

18( 12分)已知函数f (x )=sin ⎝ ⎛⎭

⎪⎫π2-x sin x -3cos 2

x .

(1)求f (x )的最小正周期和最大值;

(2)求f (x )在⎣⎢⎡⎦⎥⎤π6

,2π3上的单调区间

19(2分)设△ABC 的内角A 、B 、C 所对的边分别为,,a b c ,已知.11,2,cos 4

===

a b C (1) 求△ABC 的周长; (2)求cos(A —C.)

20( 12分) 设两个非零向量a 与b 不共线,

(1)若AB →=a +b ,BC →=2a +8b ,CD →

=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.

21 ( 12分) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .

已知4sin

2

A -B

2

+4sin A sin B =2+ 2.

(1)求角C 的大小;

(2)已知b =4,△ABC 的面积为6,求边长c 的值.

22 ( 12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),

n =(cos B ,-sin B ),且m ·n =-35

.

(1)求sin A 的值;

(2)若a =42,b =5,求角B 的大小及向量BA →在BC →

方向上的投影.

数学文科答案

选做题(1—12) BAADA DDCDC BC

填空题 13. 7 , 14. ⎣⎢⎡⎦⎥⎤-32,3., 15. π , 16.2<x <2 2 17(10分)(1)由sin α+cos αsin α-cos α=1

2

,等式左边分子、分母同除cos α得,

tan α+1tan α-1=12, 解得tan α=-3, 则tan 2α=2tan α1-tan 2

α=3

4. 5分

相关文档
最新文档