学习高等数学体会论文
高数学习感想(共五则范文)
高数学习感想(共五则范文)第一篇:高数学习感想高数学习感想经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。
我个人认为高数同以前学习的数学的主要差别在于对积分的难易掌握。
通过这学期的学习和上学习的积累我也充分体会到了高数的难点。
平时的学习积累加上老师对高数的重点说明,我对我个人学习积分部分进行了一段总结如下:微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
(⒈)极限:运用微积分法求极限中利用等价量代换求极限--等价量代换是我们求解极限问题常用的方法注意无穷小量的代换,熟悉常用的无穷小量代换,能便捷的求出极限注意几个几个常用的无穷小量的代换X~cosx~sinx~tanx~arcsinx~arctanx~arccosxX~ln(1+x)例题1:求极限limx→01+tanx-1-tanx.xe-1解limx→01+tanx-1-tanxex-1=limx→02tanx(e-1)(1+tanx+1-tanx)2x+ο(x)x=limx→0(x+ο(x))(1+tanx+1-tanx)2xx(1+tanx+1-tanx)=limx→0=1.--利用两个重要极限求极限两个重要极限是:sinx1=1(2)lim(1+)x=e.x→0x→∞xxsinxsin◊=1可理解为lim=1,而第二种极限其中第一种重要极限limx→0◊→0x◊(1)lim11lim(1+)x=e可以理解为lim(1+)◊=e或者lim(1+◊)◊=e.x→∞◊→∞◊→0x◊112例题2:求lim(cos)n.n→∞n解211lim[1+(cos-1)]n=lim[1+(cos-1)]n→∞n→∞nn11⋅n2(cos-1)1 ncos-1n1=lim[1+(cos-1)]n→∞n1111⋅n2⋅[-⋅2+ο(2)]12nncos-1n -12=e=1e--利用定积分求极限球极限--利用微分中值定理求极限等等多种方法(⒉)微分学:微分运算法则同积分法则基本相同。
高等数学学习心得体会(通用4篇)
高等数学学习心得体会(通用4篇)高等数学学习篇1在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。
自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。
大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。
尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。
高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。
每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。
高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。
在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。
经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。
我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。
而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。
在选课的时候,我发现还能选修高数,这次,我不想再错过。
我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。
高等数学学习心得(7篇)
高等数学学习心得(7篇)高等数学学习心得(精选7篇)从某件事情上得到收获以后,就十分有必须要写一篇心得体会,这样可以丰富我们自身,那我们该如何去编写心得呢以下是给大家收集的高等数学学习心得,希望能够帮到您。
高等数学学习心得篇1通过一年的高数学习,我学到了很多知识,也交到了很多新同学,对于这门学也有一些心得和体会。
很多人学数学没什么用,特别是高等数学,学那么多稀奇古怪的东西也用不上,只要会用基本的加减乘除就好了。
其实不然,高等数学在一些领域内的作用十分重要,作为一名计算机类专业学生,更是深以为然。
比如语音识别和目前大热的机器学习、人工智能就用到了相当多的高数知识。
同样的也用到了线性代数、组合数学和数论的重要知识。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦。
可能之前会听到家长或者老师会说,到了大学就可以好好玩了。
不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。
而且,大学其实并不比高中轻松在学习方面,我有几点建议:第一是课前预习和课后复习,在大学学习过程中,老师讲课十分的快,而且不像中学学习过程会给你翻来覆去的讲解一个知识点,也没有大量的练习给你去训练,所以就得依靠自己认真做好学习工作。
第二,要好好利用课堂时间,对于预习中不明白的问题一定不要积压,要及时向老师或同学请教解决,而且题目是老师出的,多问问就有可能得到老师的提醒,容易得到好的成绩。
第三,做题,对于学校的期末考试而言,只要我们把课本上的习题和老师上课讲的题目都弄会,那么考试就不是什么大问题。
其他的题目就没有必要去刷了,用不着像高中那刷大量的题,如果是想拿奖学金的同学可能就要多付出写努力,比别人多写些题目和练习册了。
第四,希望大家要把学习时间给足了,期末考试可不止高等数学一门学科,临阵磨枪是没办法面面俱到,复习好那么多的学科的。
强烈建议大家多去自习室,很多人说大学气氛不够,没有学习动力,那么自习室就是氛围,给你动力的好地方,也要遵守自习室规则,不要影响到他人的学习。
高数心得体会
高数心得体会【篇一:学习高数的心得体会】学习高数的心得体会转眼间,大一将要结束了,记得刚开始接触高数的时候,确实觉得力不从心,不知道该怎么学才能将公式运用自如,渐渐地发现,其实那些公式并不是死记硬背才行,只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路,就能把题目解出来。
所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。
每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。
还记得当时学习曲面积分的时候,怎么也学不会,看过就往,反反复复,搞得我真不知道怎样才好,不过现在还好能大体记住曲面积分的个知识点,各类解法,总结下,曲面积分:对面积的曲面积分:对坐标的曲面积分:????f(x,y,z)ds???dxyf[x,y,z(x,y)]?zx(x,y)?zy(x,y)dxdy22??p(x,y,z)dydzdxy?q(x,y,z)dzdx?r(x,y,z)dxdy,其中:号;号;号。
?qcos??rcos?)ds??r(x,y,z)dxdy?????r[x,y,z(x,y)]dxdy,取曲面的上侧时取正????p[x(y,z),y,z]dydz,取曲面的前侧时取正dyz??p(x,y,z)dydz???q(x,y,z)dzdx?????q[x,y(z,x),z]dzdx,取曲面的右侧时取正dzx两类曲面积分之间的关系:??pdydz?qdzdx?rdxdy????(pcos??????(?p?x??q?y??r?z)dv?pdydz??qdzdx?rdxdy?(pcos???qcos??rcos?)ds高斯公式的物理意义——通量与散度:?div??0,则为消失...??p?q?r散度:div????,即:单位体积内所产生的流体质量,若 ?x?y?z??通量:??a?nds???ands???(pcos??qcos??rcos?)ds, ??因此,高斯公式又可写?成:divadv???????ands在纠结曲面积分的时候我也注意到了,在理解的基础上对知识点进行总结,会让思路变得清晰而准确。
大一高等数学论文范文
大一高等数学论文范文高等数学是大学重要的基础课程,是理、工、农、医等高等教育中涉及学生最多、对学生的影响最远的课程之一.作为一门基础科学,高等数学具有高度的抽象性、严密的逻辑性和广泛的应用性等特点。
下面是小编为大家整理的大一高等数学论文,供大家参考。
大一高等数学论文范文一:高等数学学习心得通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。
首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。
一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。
所以希望大家无论如何,一定要把高数考好。
记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。
说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意)。
可能之前会听到家长或者老师会说,到了大学就可以好好玩了。
不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。
而且,大学其实并不比高中轻松(这句话大家一定注意)。
下面我来介绍一下,大学高数的一些学习方法:第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。
因为,大学课程的进程可不是一般的快。
希望大家能保持课时比老师快两节,练习比老师快一节。
最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。
第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。
有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。
大一第二学期高数论文
姓名:某某某学院:某某学院班级:某某***班当・**********【摘要】又经过一个学期的学习,我对高数的认识又有不同了,大一上学期的学习主要是对高数的基础进行认识,而大二的学习就是更深入延伸和拓展,在原有学习的基础上更深入的了解其精髓,重点学习了高数中的导数、微分和积分的扩充,对于我们更深刻的掌握高数这门学科有很大的好处。
这一学期里我们,即从对一元函数的求导到对多元函数的求导,求偏导和求全微分,从一重积分扩充到二重积分和三重积分,但是之前的一重积分主要是运算,但是重积分则更加注重在其运用上,积分也从之前的对某一个区域积分延伸到对曲线积分和曲面积分上。
另外,这学期也新引入了无穷级数和微分方程。
学习高数我们应该有严谨的态度,在努力的基础上加上认真,才能更好的学习。
【关键词】导数微分重积分级数一、对高数的认识已经经过两个学期的学习,我对高数的认识已然不同,高数是最最有用的课程之一,后面的好多课程都会用到高数的知识。
高数是公共基础课,对工科学生尤为重要,后续课程都会用到,比如,接下来的复变函数、积分变换是高数的延续,而大学物理、电路、电子技术等都需要高数的知识进行解题。
是进一步进修不可或缺的考研等都要考数学。
总之高数是理工科基础的基础。
就像你小学学的加减法是你继续学习的基础一样。
数学培养的是我的思维,是分析问题、解决问题的思维方式。
许多实际问题都需要建立数学模型来解决,而我建立模型地基础就是我怎样把实际问题转化为数学问题。
而很多时候数学的学习是有很多趣味的,像重积分,二重积分,哪怕是三重积分,那些变化,通过立体模型的解题过程是多么的好玩,多么的妙趣横生。
二、如何学习(1)课前预习从小到大,经过这么多年的学习,当然发现适当的预习是必要的,在上课前对所学知识的先行认识,相应地复习与之相关内容。
如果能够做到这些,那么学习就会变得比较主动、深入,会取得比较好的效果。
(3)课后复习复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再对照教材或笔记。
高数学习方法总结论文【精选4篇】
高数学习方法总结论文【精选4篇】高数学习方法总结论文【精选4篇】在日常学习、工作或生活中,需要学习的内容越来越多,想要高效的学习,就一定要掌握正确的学习方法!那么,大家知道要怎样正确高效的学习吗?以下是小编为大家整理的高数学习方法总结论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
高数学习方法总结论文1大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。
高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。
首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。
极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。
(一)做题的方法和技巧学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。
2024年高等数学学习心得模版(2篇)
2024年高等数学学习心得模版高等数学是大学工科课程里的一门重要基础课。
它的重要性,我相信大家都了解。
高等数学是许多课程的基础,特别是与以后的许多专业课都紧密相连。
因此,学好高等数学对于一名工科学生来说,至关重要。
然而,对于许多同学来说,高等数学是一门头疼的学科。
如何学好高等数学呢?下面是我个人在学习过程中的一些心得体会。
首先,我觉得高等数学与以前我们高中所学的数学有一点不同。
高等数学注重的是一种数学的思想,比如说微积分思想,极限的思想。
强调的数学的逻辑性与分析性。
不像高中数学那样注重技巧性。
因此,在学习的过程中,课本的知识至关重要。
对于课本上面每一个概念、定理、公式、例题,都要理解清楚。
特别是对于定理、公式的推导过程,不仅要弄懂每一步的推导过程如何来,而且还要学会自己推导。
因为学会自己推导,更有助于我们的记忆和应用。
我的经验是,在理解的基础上去记忆公式,而不是一味的死记硬背。
第二,学习数学是不能缺少训练的。
一定量的课后习题训练,不但可以让我们巩固我们学到的知识点,学会如何在实际中应用我们学到的公式定理,还有助于我们熟悉考试的各种题型。
还有,题目并不是越多越好,题海战术不仅浪费大量的时间与精力,而且效果也不好。
我的经验是,每做完一道题都要总结一下,特别是做错的题目,这道题的知识点是哪些?应用了哪些公式定理?错在哪里?为什么会做错?学会思考,学会总结,这样做题才能达到事半功倍的效果。
最后,学好数学是一个坚持的过程。
高等数学的内容环环相扣,哪一个环节脱节都会影响整个学习的进程。
所以,平时学习不应贪快,要一节一节,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
这样,对于后面的学习会造成很大的影响。
2024年高等数学学习心得模版(2)高等数学是大学阶段的一门重要课程,对于理工科学生来说尤为重要。
在学习这门课程的过程中,我积累了一些学习心得体会。
首先,我发现高等数学与中学数学不同之处很多,需要做出一些调整和适应。
对高等数学的认识和感悟
对高等数学的认识和感悟
高等数学是一门极具挑战性和抽象性的学科,它深入探究了数学的基本概念和理论,为其他学科如物理、工程、计算机等提供了重要的数学基础。
对于我来说,学习高等数学不仅仅是为了应付考试,更是一种思维方式和解决问题的工具。
通过学习高等数学,我认识到数学是一门严谨而精确的学科。
在数学中,每一个定义、定理都是有着明确的逻辑和推导过程的,不同的概念之间有着紧密的联系。
数学的严谨性教会我思考问题的方法和逻辑,训练了我的分析和综合能力。
同时,高等数学也让我感悟到数学的美妙和普适性。
数学不仅仅可以描述自然界的现象,还可以应用于各个领域,解决实际问题。
数学中的公式和方程让我惊叹于人类智慧的结晶。
另外,高等数学也教会了我坚持和不放弃的精神。
学习数学需要长时间的思考和运算,解题可能会遇到困难和挫折。
但是只要坚持下去,一道道问题迎刃而解,乐在其中的成就感是无法言表的。
总的来说,高等数学让我认识到数学的重要性和普遍性,培养了我的逻辑思维和解决问题的能力,更重要的是让我从中感受到了思考和坚持的力量。
[高等数学学习心得体会三篇]
《[高等数学学习心得体会三篇]》摘要:”很多学不爱学习数学认己学不但是数学对我们日常生活很重要涉及面也十分广泛我感觉只要掌握数学学习方法学起应该还是比较容易下面给分享下高数学习方法,所以想学数学首当其冲是培养对它兴趣把学数学当成种快乐事学们可以试着从简单题目开始学习每出道问题心里就会有种成就感提高对数学兴趣然逐步向难题目使学数学成种习惯,就高等数学课程而言是培养我们学生观察判断能力、逻辑思维能力、学能力以及动手题能力而这几种能力结合起就可以构成独立分析问题能力和问题能力高等数学学习心得体会我识里但凡数学成绩学定都是天聪颖;而对数学往情深学都绝非等闲辈从上了高数学对我说就成了软肋硬伤成了让我神伤科目突然变得对数学窍不通才猛然发觉己思维不知道被什么所禁锢变得呆板而僵硬做题犹如啃砖头候外地发现我们必须学习高数课我虽然很敬佩我们高数老师他和蔼可亲对我们关爱有加把高数讲得清楚易懂还告诉我们如何学高数以便更地发展医尽管如结局还是悲凉我终日以泪洗面甚至产生了轻生念头对我说是不堪重不忍回首年期末了还道题都不会做考完了才发现己是班上垫底高数让我开始怀疑己智商怀疑我以能否食其力每次上课我都像呆子钻进耳朵那些专业术语不知道该怎么消化而周围学也都还是能回答问题信满满这种强烈对比让我受挫我开始重新审视己高数带给我改变动力我感谢高数但仅仅因它是高“树”而我被挂了上面学习我再也不敢对专业课以轻心我开始觉得期末考试容其实也没有那么难那么高数呢?究竟是它太难还是我从心里对它产生畏惧以至我没有勇气相信己可以认识它?我怕怕有朝日终会再次遇到它因陌生所以恐惧历了年多成长我发现其实很多事情都没有想象那么难也没有想象那么简单关键你如何对待它我想起我可以了己做笔袋而动不动坐下午并且了出现不足而把数据计算遍又遍遍遍拆遍遍改探前进乐不疲而学习高数呢开始我怕遇到不懂了我更怕呢我只能逃课不听不想以这样就能躲切我才发现我是彻彻底底懦夫我只会做逃兵我并没有尽努力选课候我发现还能选修高数这次我不想再错我想起了《追风筝人》句话“那里有再次成人路”是我选择重新认识高数我要己罪行赎罪再次接触高数捧着年前让我头疼课我发现其实真可以懂老师讲比较简单思路也很清晰重新认识了牛顿莱布尼兹微积分惊叹他们天才般才智运用无限模糊理论可以许多医学上问题我才觉得高数真是充满了魅力和魔力它能让我们把简单问题先给复杂化再简单化培养我们思维更智慧巧妙地生活问题学了高数就像给你增添了双隐形翅膀你拥有了更开阔缜密思维许多问题突然变得迎刃而了当然学高数并非那么简单但探其奥确实非常有价值我想如能把己学到高数知识运用到己生活学习工作上才算是真正学了高数感谢高数这次不仅仅因它是高“树”而是我明白攀登上这棵高树我看见了前所有迷人风景高等数学学习心得体会二光阴似箭日月如梭眼学期便悄然结束了回首这学期学习情况给我记忆深莫上二位刘老师《高等数学》这门课程了课程即将结束但二位老师严谨认真责和富有人性化教学仍然我脑海不浮现《高等数学》是数学科学重要分支学这门学科不仅使人能了相关基础知识和重要容从而增强己问题实际能力更重要是它有助改进我们观察问题、思考问题和处理问题能力从而使我们逻辑思维和思辨能力进步提高这些无疑对工科研究生还是科研究生说都是至关重要所以上刘老师节课我就识到这门课程重要性每次都认真聆听老师上课遇到问题及请教二位老师虽然较年轻但由她们素质较高数学功底较深加她们富有情和体贴教学故学期这门课程上学到了许多原不知道知识和许多相关高等数学理论使我终生难忘终生受益例如我原根不知道什么是导数与微分更不用说它们实际生活具体应用了但通学习高等数学我不但知道了它们概念而且还懂得日常生活具体运用例如飞机平稳降落、天气乍寒乍冷、股市迅猛上扬、产值增幅下降、山路越越陡这些形容变化体情况我们竟然可以利用高等数学导数概念准确刻画这些变量某瞬变化快慢也就是确定其变化率这些都是我原先根不知道相关容当然跟二位老师学到知识又何止这呢这里我就不列举了跟老师学习知识固然重要但更重要是要学会老师人和待人处事品质及其风格然而二位老师这方面恰恰是我们楷模和效仿由我们是科学生出身原数学学习方面就没有很训练就更不用谈学高等数学了尤其像我这位年龄较、思维定势受限而且较愚钝人学习起肯定不如年轻人但二位老师学习方面从不歧视我对我所问每问题不论简单还是复杂她们都乐地回答使我程上满另外二位老师教学期从不缺课上课除了认真教课没有别任何私心杂念也从不计较人得失默默无闻地耕耘着春蚕到死丝方尽蜡炬成灰泪始干这正是二位老师深刻写照学生回报师恩方式是把学问做“天地立心生民立命”超出了我能力但“吾师继其学”是我能够做到我将以工作和学习生活当把高等数学和其他相关知识学已回报我们敬爱老师…高等数学学习心得体会三数学是门让很多学都头疼学科到了学除了法学等别社会科学专业学生都摆脱不了对它学习但因它相对复杂性使得数学成了门挂科率很高学科正像学校里常调侃“学里面都有颗树叫做“高数”很多人都挂上面”很多学不爱学习数学认己学不但是数学对我们日常生活很重要涉及面也十分广泛我感觉只要掌握数学学习方法学起应该还是比较容易下面给分享下高数学习方法每人学习习惯和理问题能力也有所不但般方法还是有规律想要学数学必不可少有以下几环节、培养兴趣都知道想要把件事做首先要对其有兴趣学习也是样很多学看见数学复杂多变和公式头就变了开始便对其产生了厌恶不爱学习导致成绩下滑成绩不就对其更加厌烦久而久成了循环怪圈所以想学数学首当其冲是培养对它兴趣把学数学当成种快乐事学们可以试着从简单题目开始学习每出道问题心里就会有种成就感提高对数学兴趣然逐步向难题目使学数学成种习惯二、课前预习这程很重要因只有课前预习才会听课做到心有数即老师所讲容哪些是属难以理什么是重等预习程也不要花太多般地次课容花三、四十分钟左右就可以了预习不必要把所有问题弄懂只要带着这些不懂问题听课就行三、认真听讲记笔记对上课要用心听讲都明白但要记课堂笔记重要性有学就不以然了认教材上都有可不必记其实这种认识是错误也是学里带种不良学习习惯老师对高等数学课程讲授绝对不是教材上容简单重复而是翻了量类参考而结合己教学验与体会所以毫不夸张地说教师授课教案既有以往成功验体会也有教训借鉴因学听课必须记课堂笔记这种学习习惯即勤动笔对己学习及工作能力培养也是有处四、跟随老师积极动上面说了上课要认真听讲记笔记与上课积极发言、踊跃与老师做动也非常重要上课积极回答老师提出问题老师讲课状态就会越从而可以多讲些有用知识这样课堂气氛也活跃了有了更学习氛围老师通学生反应与动更清楚了学生接受程以调整己讲课方式和速等以便学们更理学习是动程所以师生交流必不可少五、课复习整理笔记多做题课习不少人是赶快做作业这也是种不习惯其实下课应该进步认真钻研教材或教学参考完全弄懂次课容整理充实课堂笔记有些要理地方添上己心得与体会把上知识真正变成己掌握知识然再完成作业这要比下课就赶作业效要得多而且完成作业速也要快得多理科类东西重要还是多加练习多做习题才能更地运用和理公式培养出良题思路和逻辑思维六、善归纳人记忆力是有限要全面记住所有有用东西而不遗忘是很难办到怎么办呢?这就要对己学知识加以归纳总结出它们系和共质东西然使系统化条理化从而记住有代表性知识而其余部分只要基础上推理便可以了每学完己要作总结总结包括基概念核心容;了什么问题是怎样;依靠哪些重要理论和结论问题思路是什么?理出条理归纳出要与核心容以及己对问题理和体会是全课程总结考试前要作总结这总结将全容加以整理概括分析所学容掌握各系这总结很重要是对全课程核心容、重要理论与方法综合整理总结基础上己对全容要有更深层了要对些稍有难题加以分析以检验己对全部容掌握总学学习是人生系统学习程它不仅要传授给我们比较完整专业知识还要培养学生即将走向社会工作能力和社会知识就高等数学课程而言是培养我们学生观察判断能力、逻辑思维能力、学能力以及动手题能力而这几种能力结合起就可以构成独立分析问题能力和问题能力期望高重视高等数学学习到适合己学习方法相信会获得更收获。
大一下学期高数论文(1)
高数论文2013014402 郭云桥在还没有进入大学的时候,我就听很多的学长和学姐说,在大学时期,一定要学好高数这门课,因为基本上每一个专业都有高数这门课,这也足以说明了高数的重要性。
那么,怎样才能学好高等数学呢?我想就自己这将近一学年的学习经验与体会,谈几点肤浅的看法。
一、摒弃中学的学习方法从中学升入大学学习以后,在学习方法上将会遇到一个比较大的转折。
首先是对大学的教学方式和方法感到很不适应,这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性比较强的基础理论课程,而学生正是习惯于模仿性和单一性的学习方法,这是在从小学到中学的教育中长期养成的,一时还难以改变。
中学的教学方式和方法与大学有质的差别。
突出表现在:中学的学习,学生是在教师的直接指导下进行模仿和单一性的学习,大学则要求学生在教师的指导下进行创造性的学习。
例如:中学的数学课的教学是完全按照教材进行的,在课堂上只要求教师讲、学生听,不要求作笔记,教师教授慢、讲得细、计算方法举例也多,课后只要求学生能模仿课堂上教师讲的内容作些习题就可以了,根本没有必要去钻研教材和其他参考书(为了高考增强考生的解题能力而选择一些其他参考书仅是训练解题能力的需要),而大学的高等数学课程则恰好不一样,教材仅是作为一种主要的参考书。
要求学生以课堂上老师所讲的重点和难点为线索,通过大量地阅读教材和同类的参考书,以充分消化和掌握课堂上所讲授内容,然后做课后习题巩固所掌握知识,这就是进行反复地创造性的学习。
这是一种艰苦的脑力劳动,它不仅要求学生主动地、自觉地进行学习,同时还要在松散地环境下能约束自己,并且要掌握较好的学习方法,才能把所要学习的知识学得扎实,为专业课程的学习打下良好基础。
二、把握三个环节,提高学习效率什么是学习高等数学的最好方法呢?这根据每个人的学习时的习惯和理解问题的能力不同而异,但就一般说来,均应抓好以下三个环节。
其一是课前预习。
高等数学毕业论文范文
高等数学毕业论文范文随着社会的发展进步,高等数学在高等教育中占据着越来越重要的地位。
下面是店铺为大家整理的高等数学毕业论文,供大家参考。
高等数学毕业论文范文一:高等数学教学质量提升体会【摘要】本文根据笔者自身的教学经验,提出大学生在学习高等数学时存在认为学习高等数学没有用、学也学不会、学习思维定式三大误区,并针对三大误区提出端正学习态度、激发学生学习兴趣、提高教师自身素质、创新教师教学方法、建立良好的师生关系等方法,从而提高高等数学教学质量,改善教学效果。
【关键词】高等数学教学;教学质量;心得体会高等数学作为理工科大学生的一门必修的基础课,具有高度的抽象性、严密的逻辑性和广泛的应用性的特点,可以培养学生的抽象概括能力、逻辑思维能力、解决分析问题的能力,对科技进步也起着基础性推动作用。
随着国家高等教育从精英型转入大众型,学生素质呈下降趋势,大部分学生在学习高等数学时感到困难,从而提高高等数学教学质量、改革高等数学教育教学方法已成为一个亟需解决的问题。
1高等数学教学中学生存在的误区1.1误区一很多学生认为学数学没有用高中阶段学生已经接触到了高等数学中比较简单的极限、导数、定积分,但没有深入学习其概念、定义,高考也只是考了一点点,学生认为自己掌握了高等数学的知识,再学了也没有什么用,在将来实际工作中也用不到数学。
1.2误区二高等数学具有很高的抽象性,很多学生觉得学也学不会现在学生不愿意动脑、动笔,碰到题目就在想答案。
往往因为大学的高数题运算步骤比较多,想是想不出来的,不动笔又不画图,学生坐一会就有点困了,自然就认为高等数学非常难。
1.3误区三学生习惯于用中学的思维来解题很多学生学习数学的一些简单想法就是来解数学题,愿意用中学的方法去解决高等数学里的题目,只要能做出答案就行。
在这种思想的影响下,不愿意去掌握定义、定理,做题少步骤或只有答案,但是有的题目肯本做不出来。
随着学习的深入学生发现题目越来越不会做。
高数学习心得优秀3篇
高数学习心得优秀3篇高数学习心得篇1对于许多文科学生来说,数学也许是一个令人有些畏惧的名词,有些同学也许就是因为数学学不好或者不太喜欢数学,而选择了学文科的,高等数学学习方法与经验。
但是,对于任何一个文科生来说,数学都是非常重要的,有人把数学比做是文科生的生命线,有人说数学和英语在很大程度上决定了一名文科生的层次,这都是有一定道理的。
因此,一定要尽自己最大的努力来学好数学.在我看来,数学其实是一门非常奇妙而有趣的学问。
只要你有一双善于发现、敢于发现的眼睛,你就能够找到数学的魅力所在,就会对它产生兴趣。
而兴趣是最好的老师,如果你既对数学感兴趣,又下定决心努力学好数学,那又怎么会学不好呢?课本对于数学来说,是很重要的。
我们做的试题,有很多都是课本例题或其“变种”只要花上一点点时间把课本好好看看,要拿下这些题便易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题更不可能做得好。
数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维清晰明了,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。
以下是我个人觉得在数学学习过程中非常必要的几点:1、按部就班。
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解。
概念、定理、公式要在理解的基础上记忆。
我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练。
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。
4、标出重点。
平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.最后想谈谈数学这一科目的应试技巧。
概括说来,就是"先易后难"。
大学生学习高等数学的体会
大学生学习高等数学的体会作为一名大学生,高等数学是我们大学学习的不可或缺的一门学科。
在学习高等数学的过程中,我深深地体会到了其中蕴含的许多精神和价值。
下面,我将结合自己的学习经验,谈谈大学生学习高等数学的体会。
第一,学习高等数学需要渐进深入。
高等数学的知识体系庞大,必须从基础的微积分、线性代数、概率论等学科开始,逐步递进,呈现出更加深入的数学知识和技巧。
这就要求我们不仅要在掌握基础知识的基础上,不断巩固和加深自己的理解,而且还要持续不断地挑战自己,勇于涉猎更加复杂的数学问题,提高自己的数学素养和能力。
这样的渐进深入,正是高等数学学习的核心所在。
第二,高等数学注重思维的训练。
在高等数学的学习过程中,我们不仅仅需要学习各种数学公式和公式的应用,而且要在教材中找到数学问题的本质,并且设法通过分析有关数学问题之间的联系,来寻求解决方法。
在这个过程中,听课、做练习、参加家庭作业和讨论都是极为重要的。
这需要我们在学习中不断地思考和动脑筋,不断地运用所学的数学知识,去解决新的数学问题。
这种思维的训练在一定程度上可以锻炼我们的逻辑和抽象思维能力。
第三,高等数学体现了数学的优美和严谨性。
数学学科的特点是其优美和严谨性,这一点在高等数学中尤为突出。
许多数学公式和规律具有完美的对称性和和谐之美。
学习高等数学还可以帮助我们了解数学的严谨性和完备性,这在数学领域的研究和应用方面至关重要。
第四,高等数学对于我们的职业发展至关重要。
随着社会的发展,高等数学的知识渐渐成为了各种领域所必需的一部分。
比如,在物理、金融、计算机等行业中,无论是对数据的分析,还是对模仿计算机程序的数学算法的理解,都需要高等数学的知识储备。
因此,学习高等数学可以使我们的职业发展更加广泛和稳健。
综上所述,大学生学习高等数学需要渐进深入,注重思维的训练,体现数学的优美和严谨性,而且对于我们的职业发展也有一定的帮助。
在学习高等数学的过程中,我们要清楚地了解自己的目标和方向,持之以恒,充分利用各种学习资源,在不断提高自己的同时,将高等数学的精神和价值深深地融入到自己的学习生活当中。
高数论文(五篇)
高数论文(五篇)第一篇:高数论文高数论文短短一个学期的高数的学习就结束了,感觉过的好快有好慢,总得来说收获还是很大,收获了不仅是知识、还有学习知识的方法、研究问题的方法,还有学习的态度。
相比较上个学期,这个学期高数的学习我个人认为难度加大了不少。
在这个学期我们主要学习的是高等数学下册的知识,这本书的基础就是上学期学习的微积分。
学习了向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分,无穷级数。
在向量代数与空间解析几何这一章,我们学习了向量代数的基本知识,空间曲线,曲面及方程,空间平面与直线等,总得来说这一章需要一定的空间想象能力。
在多元函数微分学这一章,我觉得有些地方掌握的不好,隐函数的求导显得很生疏,对于多元函数的隐函数的求导感觉掌握不是很好。
另外,全微分,多元函数微分学也是这一章的重点。
在重积分这一章,不管是几重积分,这都是建立在一元函数的积分的基础之上的,在这一章,化归的思想体现的很是淋漓尽致,这一思想不仅在数学上体现的很明显,在很多领域都有体现。
在积分这一块都采用分割,近似,求和,取极限四个步骤。
此外三重积分的计算,主要从直角坐标系,柱面坐标系,球面坐标系三种坐标系下计算。
另外重积分也应用于物理方面,如运用重积分求物体的质心,转动惯量及引力。
在曲线积分与曲面积分这一章当中,化归的思想继续在体现。
这一章的逻辑性很强,在这一章我们学习了4种积分,对弧长的曲线积分,对坐标的曲线积分,对面积的曲面积分,对坐标的曲面积分。
学完这一章,加上之前学习的一元函数的积分,二重积分,三重积分,我们就学习了七种积分。
在这一章还有一个重要的结论,那就是在对曲面的积分时,偶倍奇零不再是什么时候都是用了,在这里用偶倍奇零需要认真考虑,因为有时是偶零奇倍。
最后一章的无穷级数,很大程度上和数列有很多类似的地方,而且这一章的定理很多,很多东西容易混淆,很多结论都有自己的前提,这是这一章的重点之处,定理成为这一章很重要的解题根据。
高等数学心得体会【大学数学心得体会】
高等数学心得体会【大学数学心得体会】篇一:《大学数学选讲学习心得》大学数学选讲学习心得大学数学选讲课是对高等数学课的提升和深化,老师针对重难知识点,结合考研真题和参考资料精题,细致向我们讲解。
在解题的过程中,老师向我们传授了解题的不同思路角度,教会我们要学会举一反三,将知识点融会贯通。
点拨启发式的教学激发着同学们学习的兴致,使我们受益匪浅。
大学数学选讲不仅对考研的同学有很大帮助,对像我这样不考研学习一般的学生也有益处。
刚上大学时,高等数学我一度跟不上,总是云里雾里,后来抓紧学了一阵才有了些头绪。
后来,我们学习的专业课如材料力学,结构力学等都用到了高等数学,才愈发感到它的重要性。
现在大学数学选讲课,再一次让我面对高等数学,我的态度更加端正谨严。
重温旧的知识点,在老师的点拨下,我能发现新的亮点,加深加固了我对知识点的理解和掌握。
一题多解的解题过程,启发了我的解题思路,更是帮助我把许多知识点串联起来,增强了记忆。
慢慢地,我从学习中找到了乐趣,对学习高等数学也有了信心,信心又激励着我不断探索,我发现学好一门课程树立信心很重要。
经过一学期的学习,我在高等数学的学习上也逐渐积累了一些经验体会。
我感受到大学数学的学习和中学数学的学习是不样的。
在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。
然后像背单词一样,把一堆公式与结论死记硬背下来。
哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。
而现在,我不再有那么多需要识记的结论。
唯一需要记住的只是数目不多的一些定义、定理和推论。
老师也不会给出固定的解题套路。
因为高等数学与中学数学不同,它更要求理解。
只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。
所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。
每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。
高等数学的体会与收获作文
高等数学的体会与收获作文说起高等数学,那可真是让我又爱又恨。
还记得刚上大学那会儿,对高等数学充满了好奇和期待,觉得这会是一门超级厉害、能让我变得超级聪明的课程。
大一刚开课,我兴冲冲地抱着崭新的教材走进教室,心里想着:“哼,高等数学,我来征服你啦!”可第一堂课下来,我就有点懵了。
那些密密麻麻的公式、符号,还有老师嘴里快速蹦出的各种概念,就像一群调皮的小精灵,在我眼前飞来飞去,就是不让我抓住它们的意思。
特别是极限的概念,什么“无限趋近但永远达不到”,听得我云里雾里。
老师在黑板上写的那些推导过程,我瞪大眼睛看了半天,感觉就像是在看天书。
我当时就在想,这玩意儿咋就这么难呢?有一次上课,老师讲了一道求极限的例题。
我看着黑板上的步骤,一步一步跟着思考,心里觉得好像有点明白了。
可当老师让我们自己做一道类似的题目时,我拿起笔,脑子却突然一片空白。
我盯着题目看了好久,愣是不知道从哪儿下手。
旁边的同学都在刷刷刷地写着,我心里那个着急啊,“哎呀,这可咋办呀?”最后没办法,只好厚着脸皮去问旁边的学霸,结果人家三言两语就给我讲明白了,我当时那个羞愧哟,觉得自己咋就这么笨呢。
为了学好高等数学,我可是下了不少功夫。
每天早早地就去图书馆占座,抱着教材和辅导书,一个知识点一个知识点地啃。
那些个定理、公式,我一遍遍地背,一遍遍地推导。
有时候背着背着就走神了,心里想着:“我这是何苦呢?”但又马上回过神来,告诉自己不能放弃。
记得有一次,为了搞懂一个多元函数求极值的问题,我在图书馆整整坐了一个下午。
从最基本的概念开始,一步一步地推导公式,做练习题。
那时候,图书馆里静悄悄的,只有我写字的沙沙声和偶尔的翻书声。
我一会儿皱着眉头思考,一会儿又兴奋地拍一下大腿,“哎呀,原来如此!”当我终于把那道难题做出来的时候,心里那种成就感,简直无法形容。
我抬头看了看窗外,天都快黑了,可我却一点都没觉得累,反而觉得特别充实。
还有一次考试前,我和宿舍的几个哥们儿一起熬夜复习。
大学三年高数学习的成果与体会
大学三年高数学习的成果与体会在大学的三年时光里,高等数学犹如一位严苛而又充满智慧的导师,深刻地影响了我对数学的理解和思维方式。
回顾这段经历,高等数学不仅是一门学科,更是一种思想的磨练和视野的拓展。
通过这段学习历程,我获得了深刻的体会和丰富的成果。
高等数学的学习犹如一场深入的探险,它从基础的微积分入手,逐步引领我进入了数学的奇妙世界。
初始阶段,微积分的概念似乎如同迷雾中的迷宫,难以捉摸。
然而,随着对极限、导数和积分等核心概念的逐步掌握,这片迷雾开始逐渐散去。
微积分不仅让我理解了函数的变化率和面积计算,更重要的是,它培养了我分析和解决复杂问题的能力。
在这段学习过程中,我逐渐认识到高等数学的真正魅力在于其严谨的逻辑性和系统性。
线性代数作为这段旅程中的重要一章,揭示了向量空间、矩阵变换等概念的奥秘。
它不仅让我明白了如何用线性方程组解决实际问题,更重要的是,它培养了我解决问题时的系统思维能力。
通过对矩阵运算和特征值的深入研究,我学会了将复杂问题拆解成更为简单的子问题,从而找到解决问题的有效路径。
此外,高等数学的学习也让我接触到了更多的数学分支,如常微分方程和概率论等。
常微分方程的学习,使我能够描述和预测现实世界中的动态现象,例如物理运动和生物种群变化。
概率论则让我理解了不确定性和随机现象的数学原理,这对于处理实际问题中的风险和不确定性提供了科学的方法和工具。
高等数学不仅仅是理论的学习,更是一种实践能力的培养。
在这三年的学习过程中,我逐渐掌握了如何将理论知识应用于实际问题解决。
每一次解答复杂的数学题目,每一次用数学模型解释实际现象,都让我体会到数学的实用性和强大力量。
这种将理论与实践相结合的能力,不仅仅提升了我的数学水平,也增强了我在其他学科和实际工作中的问题解决能力。
总结这段高等数学的学习经历,我深刻体会到数学的魅力不仅在于它的逻辑和计算,更在于它的思维方式和解决问题的方法。
高等数学的学习培养了我严谨的思维习惯和系统的分析能力,使我在面对复杂问题时能够从容不迫地应用数学知识进行分析和解决。
高数心得体会
篇一:高数心得学习高数的心得体会有人戏称高数是一棵高树,很多人就挂在了上面。
但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。
很多人害怕高数,高数学习起来确实是不太轻松。
其实,只要有心,高数并不像想象中的那么难。
经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。
在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。
然后像背单词一样,把一堆公式与结论死记硬背下来。
哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。
而现在,我不再有那么多需要识记的结论。
唯一需要记住的只是数目不多的一些定义、定理和推论。
老师也不会给出固定的解题套路。
因为高等数学与中学数学不同,它更要求理解。
只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。
所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。
每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。
首先,不能有畏难情绪。
一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。
让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。
事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。
所以,我觉得要学好高数,一定不能有畏难的情绪。
当我们有信心去学好它时,就走好了第一步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hefei University大一高等数学论文院系:电子信息与电气自动化学生姓名:**学号: **********专业:自动化班级:一班年级:一年级****: ***完成时期: 十二月十三号摘要:高等数学是大学工科里的一门基础学科。
在我学的自动化专业中更显得格外重要。
经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。
Abstract:Higher mathematics is an important basic engineering inside the university. The more I learn in automation specialty in very important. Experienced higher mathematics almost a semester has certain understanding at the same time on the course, in the learning process encountered problems and confusion, so to every kind of, in the study of the difficulties and strive in the future how to better, continuously improve the ability of learning this course are summarized, in the hope that time can make progress.关键词:高等数学、总结方法、极限一:对高中数学的回顾高中学习数学我经历过两个数学老师。
先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。
对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。
这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟着老师教学的思路去学习,但是他要我们上课记下他在黑板上学习的板书,这样就导致我们光顾着去做笔记,却没有跟着他上课的思路去思考问题,不能去理解他讲的是什么,课下对着笔记我们又不记得他上课是怎么讲的。
所以高中前部分我的数学一直都不好。
后来因为一些原因我们换了一个数学老师,这是一个我估计快要退休的了老师,这个老师因为教书了很多年很有教书经验,也是他后来拯救了我的高中数学。
他给我们上课的第一天就要求我们一定要课前预习和课后复习。
其实之前很多老师也这么要求过我们,但是我都没有很好的去要求自己。
我的这个老师虽然年龄有点大,但是一点没有影响他上课的激情,他上课很有感染力,我每节课都跟着他的思路后面去分析问题,解决问题。
课上简单的记一下笔记,但是不能影响我跟着他的节奏去听课,也是后来在他的帮助下高中数学成绩有了突飞猛进。
对于高中的数学就做这么多的概述,接下来谈谈大学学习高等数学的心得体会。
二 :对高等数学的简单认识经过将近一年的学习,我对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。
三:学习高数的学习方法。
(1)课前预习适当的预习是必要的,了解老师即将要讲什么内容,相应地复习与之相关内容。
如果时间不多,你可以浏览一下教师将要讲的主要内容,获得一个大概的印象,这可以在一定程度上帮助你在课堂上跟上教师的思路,如果时间比较充裕,除了浏览之外,还可以进一步细致地阅读部分内容,并且准备好问题,看一下自己的理解与教师讲解的有什么区别,有哪些问题需要与教师讨论。
如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。
就拿我来说以前上高中时老师说上了大学你们就解脱了,所以上第一节高数课时我就带了一本高数书就去了,往那一坐听了两节课我就受不了了,根本听不懂,很多学高数的人都说高数难学不容易懂。
其实就是他们学高数第一个环节都没做到位。
后来的学习中我咨询了一些学长学姐他们都一再强调做好这个环节。
(2)认真上课注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,听课是一个全身心投入--听、记、思相结合的过程。
教师在有限的课堂教学时间中,只能讲思路,讲重点,讲难点。
不要指望教师对所有知识都讲透,要学会自学,在自学中培养学习能力和创造能力。
所以要努力摆脱对于教师和对于课堂的完全依赖心理。
当然也不是完全不要老师,不上课。
老师能在课堂教学把主要思路,重点与难点交代清楚,从而使你自学起来条理清楚,有的放矢。
对于教师在课堂上讲的知识,最重要的是获得整体的认识,而不拘泥于每个细节是否清楚。
学生在课堂上听课时,也应当把主要精力集中在教师的证明思路和对于难点的分析上。
如果有某些细节没有听明白,不要影响你继续听其它内容。
只要掌握了主要思路,即使某些细节没有听清楚,也没有关系。
你自己完全能够在这个思路的引导下将全部细节补足,最后推出结论。
应当在学习的各个环节培养自己的主动精神和自学能力,摆脱对教师与课堂的过分依赖。
这不仅是今天学习的需要,而且是培养创造能力的需要。
在认真听课这个环节,我身边很多同学都抱怨老师上课节奏太快听不懂。
其实正如我上面所说,大学是一个自学的过程你不可能把每一个知识点老师都能给你讲到,老师上课都是讲一些重点和难点。
(3)课后复习复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再对照教材或笔记。
另外,复习时的思路不应当教师讲课或者教科书的翻版,一个可供参考的方法是采用倒叙式。
从定理的结论倒推,为了得到定理的结论,是怎样进行推理的,定理的条件用在何处。
这样倒置思维方式,更加接近这个定理的发现的思路,是一种创造性的思维活动。
经过快一个学期的学习,我的现在大学高等数学老师刘老师是通过布置一些课后题目让我们去完成。
每节课后他布置的题目都不难,解题方法都是他上课讲过的。
我们做的题目他都认认真真的去批改,把我们错误的地方都标记出来,这样我就知道我哪里还不会,哪个知识点还没吃透。
但是光依靠老师布置的这点作业也是不够的。
每天晚自习的时候我会首先对着书看一遍老师讲的知识,因为并不是每个知识点老师都讲到了。
看完书上的知识后然后将课后的习题做一下通过这课前预习,认真听课,和课后复习三个环节学习起来高数也不是那么难。
四、数学分析解题方法首先,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。
上面已经提及,提高解题能力重要途径之一是掌握好基本概念和基本方法。
另一方面,因为数学分析题型变化多样,解题技巧丰富多彩,许多类型的题目并不是只要掌握好基本概念和基本方法就会作的。
需要看一些例题,或者需要教师的指点。
不要因为某些题目一时找不到思路而失去信心。
至于如何解题,很难总结出几个适用于所有题目的通用的方法。
怎样提高自己的解题能力?除了天生的智力因素之外,解题能力首先取决于基本概念和基本原理的理解与掌握程度。
所以,多下功夫掌握基本概念和基本原理,尽可能地多做题目,在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架,是提高解题能力的重要途径。
另外,做题要善于总结,特别是从不同的题目中提炼出一些有代表性的思想方法。
掌握一定量的题型,对于一些题目,直接知道用什么方法做。
有些题目没有头绪的时候,可先尝试找反例,然后想想为什么反例不成功,从中可以的得到不少的启发。
还有要充分了解函数的各种性质。
做题的时候脑子里要有函数图像。
另外,充分了解定义,特别是一致收敛。
了解为什么有时候一致收敛才有题目的结论,如果条件收敛,是不是也有这样的条件。
多想几次就有了深刻的了解。
遇到不清楚的地方赶快看书,多看几遍书对于理解题目是非常有用的。
再有,尽可能多地参考一些书籍会使你开阔眼界,增长知识,加深理解。
每个人有不同的风格。
不同的切入角度,会使你有时候读一些问题豁然开朗。
五、总结高等数学作为大学的一门课程,自然与其它课程有着共同之处,那就是讲课速度快。
刚开始,我非常不适应。
上一题还没有消化,老师已经讲完下一题了。
带着几分焦虑,我向学长请教学习经验,才明白大学学习的重点不仅仅是课堂,课下的预习与复习是学好高数的必要条件。
于是,每节课前我都认真预习,把不懂的地方作上记号。
课堂上有选择、有计划地听讲。
课后及时复习,归纳总结。
逐渐地,我便感到高数课变得轻松有趣。
只要肯努力,高等数学并不会太难。
虽然说高等数学在我们的实际生活中,并没有什么实际的用途,但是通过学习高等数学,我们的思想逐渐成熟,高等数学对我们以后的学习奠定了基础,特别是理科方面的学习,所以说,在今后的学习中,可以充分的运用数学知识,不断地完善自己。