轴向拉压杆及受扭杆的内力计算

合集下载

模块5 构件内力计算及荷载效应组合(建筑力学与结构)

模块5 构件内力计算及荷载效应组合(建筑力学与结构)
图,假定该截面的剪力和弯矩的方向均为正方向,如图5.12c所示,建立 平衡方程,求解剪力和弯矩:
F x0 F A x0
Fy 0
FAy V112gkl0 0
解得:MV A1 00M M 11 V1 8 1 g k ll 00 2 2 1 8 18 g1 k3 l. 023 3 2 0 5 .1 2 4 3 .3 4 6 k N m
X 0
求得:N2 10kN,负值说明假设方向与实际方向相反,BC杆的轴力 为压力。
2.梁的内力计算
例5.2 图5.12a为案例一砖混结构楼层平面图中简支梁L2的计算简图,计算
跨度
,已知梁上均布永久荷载标准值
,计算梁
跨中及支座处截面的内力。
(a)
(b)
(c)
图5.12简支梁L2
解:(1)求支座反力 取整个梁为研究对象,画出梁的受力图,如图5.12b,建立平衡方程求 解支座反力:
正应力有拉应力与压应力之分,拉应力为正,压应力为负。
(a)
(b)
图5.4轴向压杆横截面上的应力分布
3.矩形截面梁平面弯曲时横截面上的应力 一般情况下,梁在竖向荷载作用下产生弯曲变形,本书只
涉及平面弯曲的梁。平面弯曲指梁上所有外力都作用在纵向 对称面内,梁变形后轴线形成的曲线也在该平面内弯曲,如 图5.5所示。
(4)根据脱离体受力图建立静力平衡方程,求解方程得 截面内力。
1.轴向受力杆件的轴力 , F杆1 件25受k,N力F如2 图355k.1,N1a求所F截3示面1,01k在N-1和力2-、2F 上1 的F、2 轴作F力3 用。下处于平衡。已知
图5.11 轴向受力杆件的内力
解:杆件承受多个轴向力作用时,外力将杆分为几段,各段杆的内力将 不相同,因此要分段求出杆的力。

第二章内力与内力图详解

第二章内力与内力图详解

例:如左图,求n-n面的内力。 左半部分
Fx 0
FN FP
右半部分:
Fx 0 FN FP
左右两部分的力方向相反,但是同一内力, 因此规定内力由变形确定正负号,是标量。
§2-1 横截面上内力与内力分量
P2
P1
m
P4
P1
P2
m
P3 P2
P3
m P5
(a)
P1
y FR
m
M
C x
zm
(c)
P3
m
(b)
第二章 内力与内力图
§2-1 横截面上内力与内力分量 §2-2 轴向拉压杆的内力与内力图 §2-3 扭转圆轴的内力与内力图 §2-4 平面弯曲梁的内力与内力图 §2-5 平面刚架和曲杆的内力图
横截面上内力计算--截面法
截面法求内力步骤
❖ 将杆件在欲求内力的截面处假想的截断,取其中任一部分; ❖ 画出其受力图。所有外力,并在断面上画出相应内力; ❖ 由静平衡条件确定内力大小。
传动轴的扭矩图。
解:1)计算外力偶
MA
9549
PA n
9549 36 300
1146N.m
M B MC 350N.m;M D 446N.m
2)由外力偶分段,用截面法分别求每段
轴的扭矩即为1-,由
Mx 0
M B M x1 0 M x1 350N.m
B
C
A
350
700
446 x
D
扭矩图例2
10kN 30kN.m 20kN.m
A
2m B
10kN.m
D C
M x (kN.m)
10
A
B
20
C

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)同学们学习下面内容后,一定要向老师回信(****************),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。

回信请注明班级和学号的后面三位数。

1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究轴向拉压和扭转的应力公式和变形公式。

........................... 2 3 1.1 轴向拉压杆的应力公式推导 ............................................................................................ 2 4 1.2 轴向拉压杆的变形公式推导 ............................................................................................ 4 5 1.3 轴向拉压杆应力公式和变形公式的简要推导 ................................................................ 4 6 1.4 轴向拉压杆的强度条件、刚度条件的建立 .................................................................... 4 7 2.1 扭转轴的应力公式推导 .................................................................................................... 5 8 2.2 扭转轴的变形公式推导 .................................................................................................... 7 9 2.3 扭转轴应力公式和变形公式的简要推导 ........................................................................ 7 10 2.4 扭转的强度条件、刚度条件的建立 ............................................................................ 8 11 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9)1* 问题的提出在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。

杆件的内力与内力图轴向拉压杆的内力轴力图轴向拉压杆的内力轴

杆件的内力与内力图轴向拉压杆的内力轴力图轴向拉压杆的内力轴

Fθθ34轴向拉压杆的内力轴向拉压杆的内力为轴力,用F N 表示轴力的大小:由平衡方程求解PN ,0F F F x ==∑轴力的正负:拉力为正;压力为负轴力的单位:N ;kN6轴向拉压杆的内力轴力图解:应用截面法,在F N1,由∑F x =0kN5.21P 1N ==F F kN5.13P 2P 1P 2N -=-=-=F F F F 在2-2截面截开,画出正向的F N2,由∑F x =089= 6 kN = -4 kN轴力图画在受力图正下方;10轴向拉压杆的内力轴力图例2 图示一砖柱,柱高3.5m ,截面尺寸370×370mm 2,柱顶承受轴向力F P =60 kN ,砖砌体容重ρ.g =18 kN/m 3。

试绘柱的轴力图。

11轴力图应用截面法,由平衡方程求得:kN46.260P y y A g F --=⋅⋅⋅-ρ,kN 6.68)5.3(,kN 60)0N -=-=F ㈠F N /kNy68.66012轴向拉压杆的内力轴力图等截面直杆在上端A 处固定,其受力如图试绘制杆件的轴力图。

kN,10kN,5P2=F l(a)Cl(b)机械传动轴杆件各相邻横截面产生绕杆轴的相对转动ϕ1720扭矩沿轴线的变化规律e21221. 外力偶矩的计算m N ⋅=1146AmN ⋅=3509549n PB m N ⋅=446n D23扭矩的计算m N 350e ⋅-=-=B M m N 700e e ⋅-=--B C M M mN 446e ⋅=D M 扭矩图问题:如将轮A 与轮C 互换,扭矩图如何?哪种布置受力更合理?mN 700max ⋅=轴力图剪力图和弯矩图组合变形杆件的内力与内力图25梁的外力和内力均可仅由静力平衡方程求解27纵向对称面内时,梁的轴线由位于纵向对称面内的直28单跨静定梁的三种基本形式由静力平衡方程无法全部确定梁所有外力和内力29平面弯曲梁的内力剪力图和弯矩图:剪力F S 和弯矩M 求内力的方法:截面法A F R =M MaF A R =30平面弯曲梁的内力剪力图和弯矩图单位;kNN ·m ;kN ·m31截面,并取右段研究221qa -33平面弯曲梁的内力剪力图和弯矩图剪力方程剪力沿梁轴线的变化规律,即F S =F S (x )弯矩方程弯矩沿梁轴线的变化规律,即M=M (x )按比例绘出F S (x )的图线按比例绘出M (x )的图线剪力图和弯矩图受力分析,画受力图,由平衡方程求支座约束力分段列出剪力方程和弯矩方程,标出变量x 的取值根据剪力方程,求各控制面的剪力值,按比例绘剪力图。

材料力学

材料力学

bh3 bh2 12 h 6 2
h
y
z
实心圆
空心圆
z y
z C y d
D
Iz
D 4
64
Iz
D 4 d 4
64 64
4
Wz
D 3
32
d Wz (1 ) D 32
D 3
41
箱形截面
y
Iz Wz ymax
BH bh 12 12 H 2
3 3
x y
y
y
min
xy
x
2 一点处有三个主应力,按代数 值大小排列分别记为 1,2, 3
2 0、(2 0 ) 0、( 0 )
x
max
1 2 3
极值剪应力
x y 2 2 max max min ( ) xy 2 2 min
P P P d Pbs t
挤压面
有效挤压面积 dt
双剪——有两个剪切面
Q=P/2
Q
P/2 P P P P/2 二个剪切面 P
Q
三、实用计算及强度条件
实用计算
1、假定剪切面上的应力分布规律;
2、确定破坏应力的试验,所用试件的形状及受力 情况与实际构件相似或相同。
强度条件 剪切强度条件 剪断条件
m=Q/Am [m]
1 2
max
1 3
2
3
2 1
12
2 2 3 23 2 1 3 13 2
五、 复杂应力状态下应力应变关系
1 x x y E
1 y y x E
y

建筑力学静定结构内力计算

建筑力学静定结构内力计算
工业建筑及大跨度民用建筑中的屋架、托 架、檩条等常常采用桁架结构。
上弦杆 斜杆 竖杆
节间距离
下弦杆 跨度
桁架的计算简图常常采用下列假定: (1) 联结杆件的各结点,是无任何摩擦的理想铰。 (2) 各杆件的轴线都是直线,都在同一平面内,并且 都通过铰的中心。 (3) 荷载和支座反力都作用在结点上,并位于桁架平 面内。
Nc=33.3 kN (拉力)
求Nb:取Na与Nc的交点O为矩心, 如图 (c)所示,并将Nb在1结点处分 解为Vb、Hb,则: ∑MO=0: ∑MO=VAx+Vb(x+4)-10x-
20(x+2)=0 根据相似三角形的比例关系有: x=6m 将x=6代入∑MO 40×6+Vb×10-60-20×(6+2)=0 Vb=-2 kN 根据力Nb与其竖向分量Vb的比
也就是说,当杆件变形达到一定限度,点之间出 现开裂现象。当截面上的内力都达到了极限,所有点 之间都出现了裂缝,则意味着杆件发生断裂破坏了。
具体的定量表达将在后面介绍的强度条件中描述。
2、截面法
确定杆件某一截面中的内力,假想将杆件沿需求内力的 截面截开,使杆件分为两部分,取其中任一部分作为研究对 象。用作用于截面上的内力,代替舍去部分对留下部分的作 用力。 再由静力平衡条件求出此内力的方法,称为截面法。 截面法可归纳为两个步骤:
在桁架中,有时会出现轴力为零的杆件,它 们被称为零杆。在计算之前先断定出哪些杆件为 零杆,哪些杆件内力相等,可以使后续的计算大 大简化。在判别时,可以依照下列规律进行。
(1) 对于两杆结点,当没有外力作 用于该结点上时,则两杆均为零杆, 如图 (a)所示;当外力沿其中一杆的 方向作用时,该杆内力与外力相等, 另一杆为零杆,如图 (b)所示。 (2) 对于三杆结点,若其中两杆共 线,当无外力作用时,则第三杆为零 杆,其余两杆内力相等,且内力性质 相同(均为拉力或压力)。如图 (c) 所示。 (3) 对于四杆结点,当杆件两两共 线,且无外力作用时,则共线的各杆 内力相等,且性质相同。如图 (d)所

第五章 静定结构的内力分析

第五章 静定结构的内力分析
1 a) A 1 B
MB
2 2
MC
C
解:1.计算外力偶矩
M A 9549
m T 1592N· 637N· m
b) T c)
M B 9549
x
637N· m
x
2.求各段扭矩 AB段:T1= MA=1592N· m BC段:T2= MA- MB=1592-955=637N· m
30 955N m 300 20 M C 9549 637N m 300
压缩与弯曲的组合
弯曲与扭转的组合
在进行结构设计时,为保证结构安全正常工
作,要求各构件必须具有足够的强度和刚度。解
决构件的强度和刚度问题,首先需要确定危险截
面的内力,内力计算是结构设计的基础。
5—1 轴向拉压杆
沿杆件轴线作用一对相反的外力,杆件将发生沿轴线方向
的伸长或缩短,这种变形称为轴向拉伸或压缩。
建筑力学
第5章 静定结构的内力分析
杆件结构——由杆件组成的结构。
杆件——长度远大于其横截面的宽度和高度的构件。
几何特点:横截面是与杆件长度方向垂直的截面,而轴线 是各横截面形心的连线。细而长,即l>>h,l>>b。
杆件结构
杆又可分为直杆和曲杆。
受外力作用后,其几何形状和尺寸一般都要发生改 变,这种改变称为变形。作用在构件上的荷载是各种 各样的,因此,杆件的变形形式就呈现出多样性,并 且有时比较复杂,但分解来看,变形的基本形式却只 有四种:
3.求截面2-2的内力
Fy 0 : FAy F FQ 2 0, 5 1 得FQ 2 FAy F F F F 4 4 M 2 0 : 2Fl M 2 0,

第六章轴向拉(压)杆及受扭杆的内力计算

第六章轴向拉(压)杆及受扭杆的内力计算

轴向拉伸和压缩
构件中的内力随着变形的增加而增加大,但对于确定
的材料,内力的增加有一定的限度,超过这一限度,构件
将发生破坏。 因此,内力与构件的强度和刚度都有密切的联系。在 研究构件的强度、刚度等问题时,必须知道构件在外力作 用下某截面上的内力值。
轴向拉伸和压缩
二、求内力的基本方法——截面法
内力的计算是分析构件强度、刚度、稳定性等问题的 基础。求内力的一般方法是截面法。 截面法的基本步骤: (1)截开:在所求内力的截面处,假想地用截面将杆件 一分为二。 (2)代替:任取一部分,其弃去部分对留下部分的作用, 用作用在截开面上相应的内力(力或力偶)代替。 (3)平衡:对留下的部分建立平衡方程,根据其上的已 知外力来计算杆在截开面上的未知内力。
轴向拉伸和压缩
例1
3 A 3
试求等直杆指定截面的轴力。
30kN
B 2 20kN 2 C FN 1 1 1 D 于1-1截面处 将杆截开,取右 段为分离体,设 轴力 为正值。 则 20kN
20kN
D
∑Fx= 0 FN1 + 20 = 0 FN1= -20kN
轴向拉伸和压缩
3 30kN A 3 B FN 2


-
泊松比μ是一个无单位的量。它的值与材料有关,可由 实验测出。
轴向拉伸和压缩
三、胡克定律
当杆内应力不超过材料的某一极限值(“比例极限”)

FN l l A
引进比例常数E
FN l l EA
——胡克定律。
E称为材料的弹性模量,可由实验测出。量纲与应力相同。 从式可推断出:对于长度相同,轴力相同的杆件,分母 EA越大,杆的纵向变形△l就越小,可见EA反映了杆件抵抗 拉(压)变形的能力,称为杆件的抗拉(压)刚度。

2章-杆件的内力与内力图-拉压、扭转

2章-杆件的内力与内力图-拉压、扭转

§ 2.1 基本概念
2.1.1 内力的概念
《物理学》:指微粒之间的相互作用力,由于这 个作用力的不同,使物体呈现出不同的形态。
《静力学》中:物体之间的相互约束力,称为内约 束力。
此处讲解的内力:在物理学内力的基础上, 变形体在外因的作用下(荷载、温度变化……), 发生变形,体内各点发生相对位移,从而产生抵 抗变形的相互作用的附加内力,简称内力
4. 建立FN-x坐标系,画轴力图
FN-x坐标系中x坐标轴沿着杆件的轴线方 向,FN坐标轴垂直于x轴。
将所求得的各控制面上的轴力标在FN-x坐标 系中,得到a、和c四点。因为在A、之间以及 、C之间,没有其他外力作用,故这两段中的 轴力分别与A(或)截面以及C(或)截面相同 。这表明a点与点心”之间以及c点之间的轴力 图为平行于x轴的直线。于是,得到杆的轴力 图。
Mx
z Mz
FR M FNx FQy FQz Mx My Mz
FNx——轴力 FQy、 FQz——剪力 Mx——扭矩
My、MZ——弯矩
2.1.2 内力与外力的关系——截面法 1 弹性变形体的平衡原理 2 求内力的方法——截面法
应用平衡的概念,不仅可以确定 构件的支座反力,而且还可以确定构件 上任意横截面上的受力-内力及其沿构 件轴线方向的变化规律,以找出最危险 的截面。
面上的轴力均为正方向(拉力), 并考察截开后下面部分的平衡。
3. 应用截面法求控制面上的轴力
用 假 想 截面 分 别 从 控 制 面 A、 B'
、B"、 C处将杆截开,假设横截面
FA
FNA 上的轴力均为正方向(拉力),并考
察截开后下面部分的平衡,求得各截
A
A 面上的轴力:

材料力学的基本计算公式-材料力学弯曲公式

材料力学的基本计算公式-材料力学弯曲公式

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*材料力学的基本计算公式外力偶矩计算公式(P功率,n转速)1.弯矩、剪力和荷载集度之间的关系式2.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)5.纵向线应变和横向线应变6.泊松比7.胡克定律8.受多个力作用的杆件纵向变形计算公式?9.承受轴向分布力或变截面的杆件,纵向变形计算公式10.轴向拉压杆的强度计算公式11.许用应力,脆性材料,塑性材料12.延伸率13.截面收缩率14.剪切胡克定律(切变模量G,切应变g )15.拉压弹性模量E、泊松比和切变模量G之间关系式16.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆17.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)18.圆截面周边各点处最大切应力计算公式19.扭转截面系数,(a)实心圆(b)空心圆20.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式22.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或23.等直圆轴强度条件24.塑性材料;脆性材料25.扭转圆轴的刚度条件? 或26.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,27.平面应力状态下斜截面应力的一般公式,28.平面应力状态的三个主应力,,29.主平面方位的计算公式30.面内最大切应力31.受扭圆轴表面某点的三个主应力,,32.三向应力状态最大与最小正应力 ,33.三向应力状态最大切应力34.广义胡克定律35.四种强度理论的相当应力36.一种常见的应力状态的强度条件,37.组合图形的形心坐标计算公式,38.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式39.截面图形对轴z和轴y的惯性半径? ,40.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)41.纯弯曲梁的正应力计算公式42.横力弯曲最大正应力计算公式43.矩形、圆形、空心圆形的弯曲截面系数?,,44.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)45.矩形截面梁最大弯曲切应力发生在中性轴处46.工字形截面梁腹板上的弯曲切应力近似公式47.轧制工字钢梁最大弯曲切应力计算公式48.圆形截面梁最大弯曲切应力发生在中性轴处49.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处50.弯曲正应力强度条件51.几种常见截面梁的弯曲切应力强度条件52.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,53.梁的挠曲线近似微分方程54.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*。

一杆件受拉压的内力、应力、变形

一杆件受拉压的内力、应力、变形

目录引言 (2)一杆件受拉压的内力、应力、变形 (2)1.1轴向拉压的内力、轴力图 (2)1.2 轴向拉压杆横截面上的应力 (5)1.3 轴向拉压杆横截面上的变形 (7)1.4 圣维南原理 (9)1.5 工程结构实例分析 (11)二圆轴扭转 (15)2.1、扭转的力学模型及ANSYS建模 (15)2.2、圆轴扭转时,横截面上的内力偶矩------扭矩 (15)2.3、圆轴扭转时,横截面上的应力、强度条件 (15)(1) 横截面上的切应力 (15)(2) 极惯性矩与抗扭截面系数 (15)三、梁弯曲的内力、变形、应力 (20)3.1 梁的弯曲内力、变形 (20)3.2 弯曲应力 (27)3.3 工程实例: (31)四、压杆稳定 (35)4.1、压杆稳定的概念 (35)4.2、临界压力 (35)4.3、三类压杆的临界载荷 (36)4.4、压杆稳定性计算 (36)4.5 工程实例4 (38)引 言《材料力学》是机械、土木类工科学生重要的技术基础课,其计算方法和思想在工程计算中应用非常广泛。

为了使学生对课内知识体系有一个比较清晰的感性认识,锻炼学生的求真精神和实践动手能力,进一步培养学生的综合创造力,兴趣小组的学生们在教师的指导下基于ANSYS 有限元分析软件对《材料力学》的某些知识点进行数值计算与模拟,得到相关的数据、云图或动画,从而对理论公式进行形象验证,更开阔了学生的视野,提高了学生的CAE 水平。

本研究内容包括三部分:(1)对《材料力学》课程中的基本内容,包括拉压、剪切、扭转、弯曲的内力、应力、变形、压杆稳定、动载荷、疲劳强度、圣维南原理等重要理论知识点情况通过ANSYS 进行分析,得到内力、变形、应力、应变相关的数据、云图或动画;(2)对重要知识点的典型例题通过ANSYS 进行计算,并与理论计算结果进行对比验证。

(3)对《材料力学》理论知识能够解决的典型工程实际问题进行建模、分析与计算。

一 杆件受拉压的内力、应力、变形1.1轴向拉压的内力、轴力图在工程结构和机械中,发生轴向拉伸或压缩的构件是很常见的。

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计

《杆件的四种基本变形及组合变形、直杆轴向拉、压横截面上的内力》教学设计课题 3.1杆件四种基本变形及组合变形教学时间2课时教学目标知识与技能认识杆件的基本变形和组合变形;过程与方法通过分析工程实例、生活实例中的受力及变形掌握杆件的基本变形的受力及变形特点;情感、态度、价值观通过分析工程结构中的受力及变形并口头描述,培养归纳、总结、语言表达的能力;教学重点1、杆件的基本变形受力特点、变形特点;教学难点1、杆件力学模型的理解2、杆件四种基本变形的区分教学内容及其过程学生活动教师导学一、引入手拉弹簧弹簧会发生什么变化?小朋友双臂吊在单杠上,人双手撑地倒立起来,胳膊都有什么样的感觉,胳膊的形状有改变吗?二、导学提纲3.1杆件四种基本变形及组合变形1.杆件是指其纵向长度远大于横向尺寸的构件,轴线是直线的杆件称为直杆。

2. 轴向拉伸和压缩受力特点是直杆的两端沿杆轴线方向作用一对大小相等、方向相反的力;变形特点是在外力作用下产生杆轴线方向的伸长或缩短。

3. 产生轴向拉伸变形的杆件,其当作用力背离杆端时,作用力是拉力(图a);产生轴向压缩变形的杆件,其作用力指向杆端,作用力是压力,(图b)。

4. 剪切变形的受力特点是作用在构件上的横向外力大小相等、方向相反、作用线平行且距离很近。

5. 剪切变形的变形特点是介于两横向力之间的各截面沿外力作用方向发生相对错动。

6. 剪切面是指两横向力之间的横截面,破坏常在剪切面上发生。

7. 扭转变形的受力特点:在垂直于杆轴线的平面内,作用有大小相等、转向相反的一对力偶。

8. 扭转变形的变形特点:各横截面绕杆轴线发生让同学来回答弹簧、胳膊的受力和形状改变。

1、自主学习自学教材、自主完成导学提纲,记录疑点或无法解决的问题,为交流作准备。

2、组内交流在小组长的组织下,有序开展交流与探讨,共通过引导学生回答问题,引出物体在力的作用下变形是客观存在的,进入课题。

当有学生问到,或对有兴趣的学生可适当介绍如下关系:1、布置前置作业课前精心预设前置作业,(由导学提纲、探究与感悟组成)组织学生自主学习。

轴向拉压杆及受扭杆的内力计算

轴向拉压杆及受扭杆的内力计算

例 6- 2FLeabharlann FN1-1 FN2-2a)
b)
d)
c) FN3-3 图 6-8 e)
第三节 受扭杆的内力及扭矩图
同轴向拉压一样,研究圆轴扭转的强度和刚度问题,首先得讨论圆轴扭 转的内力,显然,扭转的内力与圆轴受到的外力偶有关。 一、外力偶的计算 在工程中的传动轴常常并不直接给出外力偶,而是给出轴的转速n和所传 递功率N。根据运动力学的知识可以导出功率、转速、力偶之间的关 系如下: P (6-1) T 9549
此处计算出的轴力是负的,说明图6-7b中 假设反了,即应该是压力。 (2)求2-2截面上的轴力。从2-2截面处假 想地将杆截开,取左段为研究对象,受力如 图6-7c所示。由平衡条件得 FN 22 10 16 0 ∑Fx=0
10kN A
FN 22 16 10 6kN(拉力)
用截面法,可求出任意截面的轴力。很容易得出:AB段内各 截面的轴与FN1-1相等,BC段内各截面的轴力同FN2-2相等。
二、截面法
研究内力的方法是截面法。内力是“隐藏”在物体内部的,如果假想地 用一个截面把物体“切开”,把物体分成两部分,“切开”处物体的 内力就暴露出来了。就可以取其中的某一部分来研究。 具体方法是:要计算某个横截面上的内力,就假想地从该截面处将杆件 切为两段。 任取一段为研究对象,在所有外力和切开截面上的内力共同作用下,该 段处于平衡状态,进而通过平衡方程求出杆件的内力。
解:(1)求1-1截面上的轴力。从1-1截面处 假想地将杆切开,取左段为研究对象,受 力如图6-7b所示。由平衡条件得 10 FN11 0 ∑Fx=0
例 6- 1
10kN A 10kN
16kN B FN1-1 16kN B 图 6-7 FN2-2 C

杆件的内力截面法

杆件的内力截面法

杆件的内力截面法一、基本要求1.了解轴向拉伸与压缩、扭转、弯曲的概念;2.掌握用截面法计算基本变形杆件截面上的内力;3.熟练掌握基本变形杆件内力图的绘制方法。

二、内容提要1.轴向拉伸和压缩FN 轴力的正负号规定:拉为正,压为负。

3)轴力图表示轴力沿杆件轴线变化规律的图线。

该图一般以平行于杆件轴线的横坐标x轴表示横截面位置,纵轴表示对应横截面上轴力的大小。

正的轴力画在x轴上方,负的轴力画在x轴下方.2.扭转1)扭转的概念受力特点:在杆件两端垂直于杆轴线的平面内作用一对大小相等,方向相反的外力偶.变形特点:横截面形状大小未变,只是绕轴线发生相对转动。

轴:2)外力偶矩当功率P 单位为千瓦(kW ),转速为(r/min)时,外力偶矩为m).(N 9549e nPM = 当功率P 单位为马力(PS),转速为n (r/min )时,外力偶矩为m).(N 7024e nPM = 3)扭矩、扭矩图扭矩的正负号规定:法线方向一致为正,反之为负).在x 轴上方,负的扭矩画在x 轴下方。

3.弯曲内力 1)基本概念弯曲变形:线变为曲线的变形称为弯曲变形。

以弯曲变形为主要变形的杆件称为对称弯曲平面内的一条曲线,这种弯曲形式称为所示。

2)梁的计算简图 静定梁:所有支座反力均可由静力平衡方程确定的梁。

静定梁的基本形式有简支梁、悬臂梁、外伸梁。

计算简图分别如图2-4(a)、(b)、(c)所示。

3)剪力和弯矩剪力:受弯构件任意横截面上与横截面相切的分布内力系的合力,称为剪力,用F S 表示。

弯矩:受弯构件任意横截面上与横截面垂直的分布内力系的合力偶矩,称为弯矩,用M 表示.则该力或力偶在截面上产生正的弯矩,反之为负的弯矩(上挑为正,下压为负)。

4)剪力方程和弯矩方程一般情况下,梁横截面上的剪力和弯矩随截面位置不同而变化。

若以坐标x 表示横截面在梁轴线上的位置,则横截面上的剪力和弯矩可以表示为x 的函数,即)()(S S x M M x F F ==上述函数表达式称为梁的剪力方程和弯矩方程。

第二章 杆件的内力与内力图

第二章  杆件的内力与内力图

第二章 杆件的内力与内力图§2-1 杆件内力的概念与杆件变形的基本形式一、杆件的内力与内力分量内力是工程力学中一个非常重要的概念。

内力从广义上讲,是指杆件内部各粒子之间的相互作用力。

显然,无荷载作用时,这种相互作用力也是存在的。

在荷载作用下,杆件内部粒子的排列发生了改变,这时粒子间相互的作用力也发生了改变。

这种由于荷载作用而产生的粒子间相互作用力的改变量,称为附加内力,简称内力。

需要指出的是:受力杆件某横截面上的内力实际上是分布在截面上的各点的分布力系,而工程力学分析杆件某截面上的内力时,一般将分布内力先表示成分布内力向截面的形心简化所得的主矢分量和主矩分量进行求解,而内力的具体分布规律放在下一步(属于本书第二篇中的内容)考虑。

受力杆件横截面上可能存在的内力分量最多有四类六个:轴力N F 、剪力y Q F )(和z Q F )(、扭矩x M 、弯矩y M 和z M 。

轴力N F 是沿杆件轴线方向(与横截面垂直)的内力分量。

剪力y Q F )(和z Q F )(是垂直于杆件轴线方向(与横截面相切)的内力分量。

扭矩xM 是力矩矢量沿杆件轴线方向的内力矩分量。

弯矩y M 和z M 是力矩矢量与杆件轴线方向垂直的内力矩分量。

二、杆件变形的基本形式实际的构件受力后将发生形状、尺寸的改变,构件这种形状、尺寸的改变称为变形。

杆件受力变形的基本形式有四种:轴向拉伸和压缩、扭转、剪切、弯曲。

1、轴向拉伸和压缩变形轴向拉伸和压缩简称为轴向拉压。

其受力特点是:外力沿杆件的轴线方向。

其变形特点是:拉伸——沿轴线方向伸长而横向尺寸缩小,压缩——沿轴线方向缩短而横向尺寸增大,如图4-1所示。

轴向受拉的杆件称为拉杆,轴向受压的杆件压杆。

图2-1 图2-2 土木工程结构中的桁架,由大量的拉压杆组成,如图2-2所示。

内燃机中的连杆、压缩机中的活塞杆等均属此类。

它们都可以简化成图2-1所示的计算简图。

2、剪切变形工程中的拉压杆件有时是由几部分联接而成的。

轴向拉压杆内力和内力图

轴向拉压杆内力和内力图
2、挤压面——相互压紧的表面。其面积用Abs表示。 3、挤压力——挤压面上的力。用Fbs表示。 4、挤压应力——挤压面上的压强。用σbs表示。
11
第12页/共50页
五、挤压应力的确定:(实用的挤压应力,名义挤压应力) 假设:挤压面上只存在挤压应力,且挤压应力分布均匀。
bs
Fbs Abs
方向:垂直于挤压面。
max P
G →
G

G
d
dx
方向垂直于半径。
19
第20页/共50页
应力分布
(实心截面)
(空心截面)
20
第21页/共50页
二、圆轴扭转时的强度计算
1、强度条件:
max
Tm ax Wp
2、强度计算:
1)校核强度; 2)设计截面尺寸; 3)确定外荷载。
max
Tm a x Wp
[ ]
F
第8页/共50页
焊缝
F
7
F
F m
F
F
m
m
m
F
F
二、剪切的概念
受力特点:作用于构件两侧面上的外力合力大小相等,方向相反,且作用 线相距很近。
变形特点:两力之间相邻截面发生相对错动。
剪切面:相对错动的面。
8
第9页/共50页
三、 剪切与挤压的强度计算
1、外力:F。
F m
F
m
F
Fs
τ
2、内力:(截面法)剪力 Fs=F。 3、应力:实用切应力,名义切应力(剪应力) 假设——剪切面上只存在切应力,而且其分布是均匀的。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在 截面则扭矩规定为正值,反之为负值。

材料力学优质题库-知识归纳整理

材料力学优质题库-知识归纳整理

知识归纳整理材料力学基本知识复习要点1.材料力学的任务材料力学的主要任务算是在满足刚度、强度和稳定性的基础上,以最经济的代价,为构件确定合理的截面形状和尺寸,挑选合适的材料,为合理设计构件提供必要的理论基础和计算想法。

2.变形固体及其基本假设延续性假设:以为组成物体的物质密实地充满物体所在的空间,毫无空隙。

均匀性假设:以为物体内各处的力学性能彻底相同。

各向同性假设:以为组成物体的材料沿各方向的力学性质彻底相同。

小变形假设:以为构件在荷载作用下的变形与构件原始尺寸相比非常小。

3.外力与内力的概念外力:施加在结构上的外部荷载及支座反力。

内力:在外力作用下,构件内部各质点间相互作用力的改变量,即附加相互作用力。

内力成对闪现,等值、反向,分别作用在构件的两部分上。

4.应力、正应力与切应力应力:截面上任一点内力的集度。

正应力:垂直于截面的应力分量。

切应力:和截面相切的应力分量。

5.截面法分二留一,内力代替。

可概括为四个字:截、弃、代、平。

即:欲求某点处内力,假想用截面把构件截开为两部分,保留其中一部分,舍弃另一部分,用内力代替弃去部分对保留部分的作用力,并举行受力平衡分析,求出内力。

6.变形与线应变切应变变形:变形固体形状的改变。

线应变:单位长度的伸缩量。

练习题一.单选题1、工程构件要正常安全的工作,必须满足一定的条件。

下列除()项,其他各项是必须满足的条件。

A、强度条件B、刚度条件C、稳定性条件D、硬度条件求知若饥,虚心若愚。

2、各向同性假设以为,材料内部各点的()是相同的。

A.力学性质B.外力C.变形D.位移3、根据小变形条件,可以以为()A.构件不变形B.结构不变形C.构件仅发生弹性变形D.构件变形远小于其原始尺寸4、构件的强度、刚度和稳定性()A.只与材料的力学性质有关B.只与构件的形状尺寸有关C.与二者都有关D.与二者都无关5、在下列各工程材料中,()不可应用各向同性假设。

6、A.铸铁 B.玻璃 C.松木 D.铸铜物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称为()A.弹性B.塑性C.刚性D.稳定性7、结构的超静定次数等于()。

第二章 杆件的内力分析

第二章 杆件的内力分析

第二章杆件的内力分析要想对杆件进行强度、刚度和稳定性方面的分析计算,首先必须知道杆件横截面上的内力,因此,本章主要对此作分析讨论。

首先引入了内力的基本概念和求内力的基本方法——截面法,然后讨论了各种变形情况下截面上的内力及求解和内力图的绘制,这是材料力学最基本的知识。

第一节内力与截面法杆件因受到外力的作用而变形,其内部各部分之间的相互作用力也发生改变。

这种由于外力作用而引起的杆件内部各部分之间的相互作用力的改变量,称为附加内力,简称内力。

内力的大小随外力的改变而变化,它的大小及其在杆件内部的分布方式与杆件的强度、刚度和稳定性密切相关。

为了研究杆件在外力作用下任一截面m-m上的内力,可用一平面假想地把杆件分成两部分,如图2-1a。

取其中任一部分为研究对象,弃去另一部分。

由于杆件原来处于平衡状态,截开后各部分仍应保持平衡,弃去部分必然有力作用于研究对象的m-m截面上。

由连续性假设,在m-m截面上各处都有内力,所以内力实际上是分布于截面上的一个分布力系(图2-1b)。

把该分布内力系向截面上某一点简化后得到内力的主矢和主矩,以后就称之为该截面上的内力。

但在工程实际中更有意义的是主矢和主矩在确定的坐标方向上的分量,如图2-1c,这六个内力分量分别对应着四种基本变形形式,依其所对应的基本变形,把这六个内力分量分别称为轴力、剪力、扭矩和弯矩。

(1)轴力。

沿杆件轴线方向(x轴方向)的内力分量FN,它垂直于杆件的横截面,使杆件产生轴向变形(伸长或缩短)。

(2)剪力。

与截面相切(沿y轴和z轴方向)的内力分量FQy、FQz ,使杆件产生剪切变形。

(3)扭矩。

绕x轴的主矩分量Mx,它是一个力偶,使杆件产生绕轴线转动的扭转变形。

(4)弯矩。

绕y轴和z轴的主矩分量My、Mz,它们也是力偶,使杆件产生弯曲变形。

为了求出这些内力分量,只需对所研究部分列出平衡方程就可。

这种计算截面上内力的方法通常称为截面法。

其步骤可归纳为:(1) 沿需要计算内力的截面假想地把构件分成两部分,取其中的任一部分作为研究对象, 弃去另一部分。

2016工程力学(高教版)教案:第五章杆件的内力分析

2016工程力学(高教版)教案:第五章杆件的内力分析

第五章杆件的内力分析在进行结构设计时,为保证结构安全正常工作,要求各构件必须具有足够的强度和刚度。

解决构件的强度和刚度问题,首先需要确定危险截面的内力。

内力计算是结构设计的基础。

本章研究杆件的内力计算问题。

第一节杆件的外力与变形特点进行结构的受力分析时,只考虑力的运动效应,可以将结构看做是刚体;但进行结构的内力分析时,要考虑力的变形效应,必须把结构作为变形固体处理。

所研究杆件受到的其他构件的作用,统称为杆件的外力。

外力包括载荷(主动力)以及载荷引起的约束反力(被动力)。

广义地讲,对构件产生作用的外界因素除载荷以及载荷引起的约束反力之外,还有温度改变、支座移动、制造误差等。

杆件在外力的作用下的变形可分为四种基本变形及其组合变形。

一、轴向拉伸与压缩受力特点:杆件受到与杆件轴线重合的外力的作用。

变形特点:杆沿轴线方向的伸长或缩短。

产生轴向拉伸与压缩变形的杆件称为拉压杆。

图:5-1所示屋架中的弦杆、牵引桥的拉索和桥塔、阀门启闭机的螺杆等均为拉压杆。

图5-1二、剪切受力特点:杆件受到垂直杆件轴线方向的一组等值、反向、作用线相距极近的平行力的作用。

变形特点:二力之间的横截面产生相对的错动。

产生剪切变形的杆件通常为拉压杆的连接件。

如图5-2所示螺栓、销轴连接中的螺栓和销钉,均产生剪切变形。

图5-2三、扭转受力特点:杆件受到作用面垂直于杆轴线的力偶的作用。

变形特点:相邻横截面绕杆轴产生相对旋转变形。

产生扭转变形的杆件多为传动轴,房屋的雨蓬梁也有扭转变形,如图:5-3所示。

图5-3四、平面弯曲受力特点:杆件受到垂直于杆件轴线方向的外力或在杆轴线所在平面内作用的外力偶的作用。

变形特点:杆轴线由直变弯。

各种以弯曲为主要变形的杆件称为梁。

工程中常见梁的横截面多有一根对称轴(图5-4)各截面对称轴形成一个纵向对称面,梁的轴线也在该平面内弯成一条曲线,这样的弯曲称为平面弯曲。

如图5-4所示。

平面弯曲是最简单的弯曲变形,是一种基本变形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 轴向拉(压)杆的应力 问题提出:
FP
FP
FP
FP
1. 内力大小不能衡量构件强度的大小。 2. 强度 (1)内力在截面分布集度应力; (2)材料承受荷载的能力。
轴向拉伸和压缩
一、应力的概念
受力杆件截面上某一点处的内力集度称为该点的应力。 总应力:
2 20kN 2 C
1 1 D
20kN
20kN
C D
20kN
于2-2截面 处将杆截开, 取右段为分离 体,设轴力为 正值。则
∑Fx= 0 -FN2 +20- 20 = 0 FN2= 0
轴向拉伸和压缩
3 30kN A 3 BBiblioteka 2 20kN 2C
1 1 D
20kN
FN3
30kN
B
20kN
C
20kN
D
于3-3截面 处将杆截开, 取右段为分离 体,设轴力为 正值。则
1
轴向拉伸和压缩
四、轴力图
为了形象地表明杆的轴力随横截面位置变化的规律, 通常以平行于杆轴线的坐标(即x坐标)表示横截面的位置, 以垂直于杆轴线的坐标(即FN坐标)表示横截面上轴力的 数值,按适当比例将轴力随横截面位置变化的情况画成图
形,这种表明轴力随横截面位置变化规律的图称为轴力图。
轴向拉伸和压缩
第二篇 杆件的强度 刚度和稳定性
引 言
引 言
在建筑物中承受并传递荷载而起骨架作用的部分,结构。
组成结构的单个物 体称为构件例如梁、板、 墙、柱、基础等都是常 见的构件 。
引 言
设计构件时,必须做到: (1)足够的强度: 有足够的抵抗破坏的能力,使构 件在载荷作用下能安全工作。 (2)足够的刚度:
轴向拉伸和压缩
构件中的内力随着变形的增加而增加大,但对于确定
的材料,内力的增加有一定的限度,超过这一限度,构件
将发生破坏。 因此,内力与构件的强度和刚度都有密切的联系。在 研究构件的强度、刚度等问题时,必须知道构件在外力作 用下某截面上的内力值。
轴向拉伸和压缩
二、求内力的基本方法——截面法
内力的计算是分析构件强度、刚度、稳定性等问题的 基础。求内力的一般方法是截面法。 截面法的基本步骤: (1)截开:在所求内力的截面处,假想地用截面将杆件 一分为二。 (2)代替:任取一部分,其弃去部分对留下部分的作用, 用作用在截开面上相应的内力(力或力偶)代替。 (3)平衡:对留下的部分建立平衡方程,根据其上的已 知外力来计算杆在截开面上的未知内力。
符号FN表示。 轴力的正负规定: FN与外法线同向,为正轴力(拉力) FN FN FN FN
FN与外法线反向,为负轴力(压力)
轴向拉伸和压缩
注意: 在计算杆件内力时,将杆截开之前,不能 用合力来代替力系的作用,也不能使用力的可 传性原理以及力偶的可移性原理。因为使用这
些方法会改变杆件各部分的内力及变形。
轴向拉伸和压缩
例1
3 A 3
试求等直杆指定截面的轴力。
30kN
B 2 20kN 2 C FN 1 1 1 D 于1-1截面处 将杆截开,取右 段为分离体,设 轴力 为正值。 则 20kN
20kN
D
∑Fx= 0 FN1 + 20 = 0 FN1= -20kN
轴向拉伸和压缩
3 30kN A 3 B FN 2
强度:构件抵抗 破坏的能力
构件
有足够的抵抗变形的能力,使构 件在载荷作用下产生的变形在工程允 许范围内。
刚度:构件抵抗 变形的能力
引 言
(3)足够的稳定性: 构件在载荷作用下能保持原有 形状下的平衡 。
稳定性:构件保 持原有形状下平 衡的能力
引 言
学习本篇的任务是:通过研究构件在荷 载作用下所产生的内力、应力、变形等,建
意义:
(1)反映出轴力与截面位置变化关系,较直观; (2)确定出最大轴力的数值及其所在横截面的位置, 即确定危险截面位置,为强度计算提供依据。
轴向拉伸和压缩
例 杆受力如图所示。试画出杆的轴力图。
30kN 30kN 20kN
A
B
C
D
E
DE 段: FN
1
20 kN
40 + 10 +
BD段: FN 2 30 20 10kN AB段:
立强度、刚度、稳定性条件,为既安全又经
济地设计构件提供一定的原理和计算方法。
引 言
杆件变形的基本形式 轴向拉伸与压缩 剪切
引 言
扭转
平面弯曲
第五章
轴向拉伸和压缩
轴向拉伸和压缩
第一节
轴向拉伸和压缩的概念
工程中有很多构件,例如屋架中的杆,是等直杆, 作用于杆上的外力的合力的作用线与杆的轴线重合。在 这种受力情况下,杆的主要变形形式是轴向伸长或缩短。

20
FN 3 30 30 20 40 kN
FN图(kN)
注:内力的大小与杆截面的 大小无关,与材料无关。
轴向拉伸和压缩
轴力图要求: • • • • 正负号 数值 阴影线与轴线垂直 图名
直杆受力如图所示,试画出杆的轴力图。
5FP B C 2FP D E FP
练习
2FP A
轴向拉伸和压缩
屋架结构的简化
轴向拉伸和压缩
在杆的两端各受一集中力FP作用,两个FP力大小相 等,指向相反,且作用线与杆轴线重合
FP FP
两个FP力背离端截面,使杆发生纵向伸长,称为 轴向拉力。 FP FP
两个FP力指向端截面,使杆发生纵向收缩,称为 轴向压力。
轴向拉伸和压缩
第二节
轴向拉(压)杆的内力
所谓内力,从广义上讲,是指杆件内部各质点之间的相 互作用力。显然,在无荷载时,这种力是自然存在的,但一 旦有外部荷载存在,杆件内部质点之间的相对位置就要发生 改变,这种由于荷载作用而引起的受力构件内部之间相互作 用力的改变量称为附加内力。 建筑力学中研究的是这种附加内力,以后简称内力。
轴向拉伸和压缩

(1)截开
FP
m
Ⅱ FP
截开:
m
(2)代替
FP
Ⅰ m
m
FN Ⅱ
x
(3)列平衡方程
FN
m m
FP
由平衡方程 ∑Fx=0, FN-FP=0 得 FN=FP
轴向拉伸和压缩
三、轴向拉(压)杆的内力——轴力
轴向拉(压)杆的内力是一个作用线与杆件轴线重合 的力,习惯上把与杆件轴线相重合的内力称为轴力。并用
∑Fx= 0 -FN3+30+20- 20 = 0 FN3= 30kN
轴向拉伸和压缩
结论 任一截面上的轴力的数值等于对应截面一侧
所有外力的代数和,且当外力的方向使截面受拉 时为正,受压时为负。
FN=ΣF
3 30kN A 3 B 2 20kN 2 C 1 20kN D FN1= -20kN FN2= 0 FN1= -20kN
相关文档
最新文档