核反应堆物理分析总结-1
核反应堆物理分析公式整理
核反应堆物理分析公式整理核反应堆物理分析是指对核反应堆内的核素变化、能量释放、流量分布等物理过程进行分析和计算的过程。
通过分析,可以评估反应堆的安全性、经济性和可靠性,并优化反应堆设计及运行策略。
在核反应堆物理分析中,使用了一系列的公式来描述和计算相关物理量。
下面是一些核反应堆物理分析常用的公式。
1.反应速率方程:核反应堆中的核反应过程可以用速率方程来描述。
速率方程的一般形式为:R=RRRRR其中,R表示反应速率,R表示中子瞬时速度(即,每次碰撞转换成核反应的中子数),R表示中子通量密度,R表示反应截面,R表示燃料中的核素数密度,R表示物质密度。
2.中子产生与灭亡速率:核反应堆中的中子既有产生,又有灭亡。
中子产生与灭亡速率可以用如下方程描述:RR=RRRRRR−RRR其中,Rn表示中子产生与灭亡速率,R表示中子瞬时速度,R表示源项,R表示燃料中的核素数密度,R表示物质密度,R表示吸收截面,R表示催化剂的产生速率。
3.中子扩散方程:反应堆中的中子在空间上呈扩散运动,并服从扩散方程:∇.(-D∇R)+RR_R+RRR∇.−∇(R/R)=0其中,D表示扩散系数,RR_R表示吸收源项。
4.燃耗方程:核反应堆中燃料的核素数(或浓度)随时间的变化可以用如下方程描述:RR/RR=−∑(RRR)−∑(RRRR)其中,R表示中子瞬时速度,R表示中子通量密度,R表示截面,R表示燃料中的核素数密度,R表示衰变常数,R表示体积。
5.中子平衡方程:在反应堆内,中子产生与灭亡速率相等,则有中子平衡方程:RR=R/R(−∑(RRR)−∑(RRRRRR)+R∑(RRRRR))+RR=0其中,RR表示中子产生与灭亡速率,R表示燃料中的核素数密度,R表示体积,R表示中子瞬时速度,R表示中子通量密度,R表示截面,RR表示散源项。
这些公式只是核反应堆物理分析中的一部分,还有很多其他公式用于描述和计算其它物理量。
在实践中,还需要根据特定反应堆的设计和运行条件,结合适当的假设和参数来应用这些公式。
核反应堆物理分析(上)
核反应堆物理分析(上)核反应堆是一种利用核反应产生能量的设备。
核反应堆的原理是运用核反应的放能来加热液体或者气体,产生蒸汽,使蒸汽驱动轴类转子转动,从而使轴类转子带动发电机发电。
其中,核反应堆是由一系列核反应组成的,核反应会释放出大量的能量,能够加热冷却剂,从而驱动轴类转子转动,实现机械能转化为电能,供应给生活和工业用途。
核反应堆按照使用的核燃料分为热中子反应堆和快中子反应堆。
热中子反应堆是利用热中子与核燃料发生核反应来产生热能,因此核燃料应为小中子吸收截面大、熔点和密度适中的物质,如铀235和铀238。
快中子反应堆使用快中子来发生核反应来产生热能,核燃料应为小中子吸收截面小,熔点和密度大的物质,如氚。
核反应堆按照使用不同的冷却材料分为水冷反应堆和气冷反应堆。
水冷反应堆和气冷反应堆都是通过冷却剂将产生的高温热能带走,从而保证反应堆的稳定运行。
其中,水冷反应堆是使用水作为冷却剂,散热性好,但需要耗费大量水资源。
气冷反应堆使用气体作为冷却剂,无需消耗大量水资源,但由于气体散热性差,需要较大的排气系统。
核反应堆由反应堆堆芯和反应堆周边构成。
反应堆芯是核反应的核心部分,由燃料棒、控制杆、冷却剂以及结构材料等组成。
控制杆的作用是调节核反应的速率,保持反应堆稳定运行状态。
结构材料的作用是支持和固定反应堆芯的元件。
反应堆周边由反应堆罩、核反应堆容器、冷却剂循环系统等组成。
反应堆罩的作用是防止核辐射泄漏、防止反应堆失控。
核反应堆容器的作用是为反应堆芯提供密封保护,以避免辐射外泄。
冷却剂循环系统的作用是帮助反应堆芯和周边的结构材料散热。
核反应堆主要有两种核反应类型:裂变反应和聚变反应。
裂变反应是将重核分裂成两个轻核,同时释放出大量的能量。
核裂变产生的中子能够被稳定核吸收,产生新的能量,同时维持核反应的持续进行。
而聚变反应则是将轻核结合成重核,同样可以产生巨大的能量。
但是由于聚变反应需要极高的温度和压力,因此目前只有太阳和恒星能够维持聚变反应的进行。
核反应堆物理分析考试重点复习资料及公式整理
核反应堆物理分析考试重点复习资料及公式整理核反应堆物理复习分析资料整理中⼦核反应类型:势散射、直接相互作⽤、复合核的形成微观截⾯:⼀个粒⼦⼊射到单位⾯积内只含⼀个靶核的靶⼦上所发⽣的反应概率,或表⽰⼀个⼊射粒⼦同单位⾯积靶上⼀个靶核发⽣反应的概率。
宏观截⾯:表征⼀个中⼦与单位体积内原⼦核发⽣核反应的平均概率。
中⼦通量:表⽰单位体积内所有中⼦在单位时间内穿⾏距离的总和。
核反应率:每秒每单位体积内的中⼦与介质原⼦核发⽣作⽤的总次数(统计平均值)。
多普勒效应:由于靶核的热运动随温度的增加⽽增加,所以这时共振峰的宽度将随着温度的上升⽽增加,同时峰值也逐渐减⼩,这种现象称为多普勒效应或多普勒展宽。
截⾯随中⼦能量的变化规律:1)低能区(E<1eV),吸收截⾯随中⼦能量减⼩⽽增⼤,⼤致与中⼦的速度成反⽐,亦称吸收截⾯的1/v区。
2)中能区(1eV10keV),截⾯⼀般都很⼩,通常⼩于10靶,⽽且截⾯随能量变化也趋于平滑。
中⼦循环:快中⼦倍增系数ε:由⼀个初始裂变中⼦所得到的,慢化到U-238裂变阈能以下的平均中⼦数。
逃脱共振⼏率P:慢化过程中逃脱共振吸收的中⼦所占的份额。
热中⼦利⽤系数f:(燃料吸收的热中⼦数)/(被吸收的全部热中⼦数,包括被燃料,慢化剂,冷却剂,结构材料等所有物质吸收的热衷⼦数)。
有效裂变中⼦数η:燃料每吸收⼀个热中⼦所产⽣的平均裂变中⼦数。
快中⼦不泄漏⼏率Vs:快中⼦没有泄漏出堆芯的⼏率。
热中⼦不泄漏⼏率Vd:热中⼦在扩散过程中没有泄漏出堆芯的⼏率。
四因⼦公式:=εPfη六因⼦公式:K=εPfηVsVd直接相互作⽤:⼊射中⼦直接与靶核内的某个核⼦碰撞,使其从核⾥发射出来,⽽中⼦却留在了靶核内的核反应。
中⼦的散射:散射是使中于慢化(即使中⼦的动能减⼩)的主要核反应过程。
⾮弹性散射:中⼦⾸先被靶核吸收⽽形成处于激发态的复合核,然后靶核通过放出中⼦并发射γ射线⽽返回基态。
弹性散射:分为共振弹性散射和势散射。
核反应堆物理分析课后习题及答案
核反应堆物理分析答案第一章1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。
试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ=以c 5表示富集铀内U -235与U 的核子数之比,ε表示富集度,则有:555235235238(1)c c c ε=+-151(10.9874(1))0.0246c ε-=+-=255283222M(UO )235238(1)162269.91000()() 2.2310()M(UO )Ac c UO N N UO m ρ-=+-+⨯=⨯==⨯所以,26352(5)() 5.4910()N U c N UO m -==⨯ 28352(8)(1)() 2.1810()N U c N UO m -=-=⨯2832()2() 4.4610()N O N UO m -==⨯2112()(5)(5)(8)(8)()()0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0()a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=⨯+⨯+⨯=∑==⨯=1-2.某反应堆堆芯由U -235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。
解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ=由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U =33()19.0510/U kg m ρ=⨯可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ-==⨯则纯U -235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=⨯=⨯=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑=1-3、求热中子(0.025电子伏)在轻水、重水、和镉中运动时,被吸收前平均遭受的散射碰撞次数。
《核反应堆物理分析》公式整理
第1章—核反应堆物理分析中子按能量分为三类: 快中子(E﹥0、1MeV),中能中子(1eV﹤E﹤0.1 MeV),热中子(E﹤1eV)。
共振弹性散射AZX+ 01n →[A+1Z X]*→A ZX+ 01n势散射AZX+01n→A Z X +01n辐射俘获就是最常见得吸收反应。
反应式为A ZX+01n →[A+1ZX]*→A+1Z X+γ235U裂变反应得反应式23592U + 01n→[23692U]*→A1Z1X+ A2Z2X +ν01n微观截面ΔI=-σINΔx宏观截面Σ= σN单位体积内得原子核数中子穿过x长得路程未发生核反应,而在x与x+dx之间发生首次核反应得概率P(x)dx= e—ΣxΣdx核反应率定义为单位就是中子∕m3 s中子通量密度总得中子通量密度Φ平均宏观截面或平均截面为辐射俘获截面与裂变截面之比称为俘获-—裂变之比用α表示有效裂变中子数有效增殖因数四因子公式中子得不泄露概率热中子利用系数第2章-中子慢化与慢化能谱在L系中,散射中子能量分布函数能量分布函数与散射角分布函数一一对应在C 系内碰撞后中子散射角在θc 附近d θc 内得概率:能量均布定律 平均对数能降当A 〉10时可采用以下近似 L 系内得平均散射角余弦慢化剂得慢化能力 ξ∑s慢化比 ξ∑s /∑a 由E 0慢化到E t h所需得慢化时间tS热中子平均寿命为 (吸收截面满足1/v 律得介质)中子得平均寿命 慢化密度(,)(,)(,)(,)(,)(1)(1)EE Eas s EE E r E r E dE E E q r E dE r E r E dE E E ααϕαϕαα''''∑-''''==∑''--⎰⎰⎰ 稳态无限介质内得中子慢化方程为无吸收单核素无限介质情况 无限介质弱吸收情况dE 内被吸收得中子数 逃脱共振俘获概率第j 个共振峰得有效共振积分 逃脱共振俘获概率等于整个共振区得有效共振积分 热中子能谱具有麦克斯韦谱得分布形式中子温度 核反应率守恒原则,热中子平均截面为若吸收截面a 服从“1/v"律若吸收截面不服从“1/v ”变化,须引入一个修正因子第3章—中子扩散理论菲克定律中子数守恒(中子数平衡)中子连续方程 如果斐克定律成立,得单能中子扩散方程设中子通量密度不随时间变化,得稳态单能中子扩散方程直线外推距离 扩散长度慢化长度L1 2221111112110100ln 3th a tr E D D L L E ϕϕϕϕξ∇-∑=∇-=→==∑∑∑L 21 称为中子年龄,用τth 表示, 即为慢化长度。
核反应堆物理分析公式整理
第1章—核反应堆物理分析中子按能量分为三类: 快中子(E ﹥0.1 MeV),中能中子(1eV ﹤E ﹤0.1 MeV),热中子(E ﹤1eV).共振弹性散射 A Z X + 01n → [A+1Z X]* → A Z X + 01n 势散射 A Z X + 01n → A Z X + 01n 辐射俘获是最常见的吸收反应.反应式为 A Z X + 01n → [A+1Z X]* → A+1Z X + γ235U裂变反应的反应式 23592U + 01n → [23692U]* → A1Z1X + A2Z2X +ν01n微观截面 ΔI=-σIN Δx /I I IIN x N xσ-∆-∆==∆∆ 宏观截面 Σ= σN 单位体积内的原子核数 0N N Aρ=中子穿过x 长的路程未发生核反应,而在x 和 x+dx 之间发生首次核反应的概率P(x)dx= e -Σx Σdx核反应率定义为 R nv =∑ 单位是 中子∕m 3?s 中子通量密度nv ϕ=总的中子通量密度Φ 0()()()n E v E dE E dE ϕ∞∞Φ==⎰⎰平均宏观截面或平均截面为 ()()()EEE E dERE dEϕϕ∆∆∑∑==Φ⎰⎰辐射俘获截面和裂变截面之比称为俘获--裂变之比用α表示 fγσασ=有效裂变中子数 1f f a f γνσνσνησσσα===++ 有效增殖因数 eff k =+系统内中子的产生率系统内中子的总消失(吸收泄漏)率四因子公式 s deff n pf k k nεη∞ΛΛ==Λ k pf εη∞=中子的不泄露概率 Λ=+系统内中子的吸收率系统内中子的吸收率系统内中子的泄露率热中子利用系数 f =燃料吸收的热中子被吸收的热中子总数第2章-中子慢化和慢化能谱211A A α-⎛⎫= ⎪+⎝⎭在L 系中,散射中子能量分布函数 []'1(1)(1)cos 2c E E ααθ=++- 能量分布函数与散射角分布函数一一对应 (')'()c cf E E dE f d θθ→=在C 系内碰撞后中子散射角在?c 附近d ?c 内的概率:2d 2(sin )sin d ()42c c r rd f d r θπθθθθθθπ===对应圆环面积球面积能量均布定律 ()(1)dE f E E dE Eα'''→=--平均对数能降 2(1)11ln 1ln 121A A A A αξαα-+⎛⎫=+=- ⎪--⎝⎭当A>10时可采用以下近似 223A ξ≈+L 系内的平均散射角余弦0μ001223c c d Aπμθθ==⎰慢化剂的慢化能力 ??s 慢化比 ??s /?a 由E 0慢化到E th 所需的慢化时间t S()thE s s E E dE t v E λλξ⎤=-=-⎰热中子平均寿命为 00()11()()a d a a E t E vE v v λ===∑∑(吸收截面满足1/v 律的介质)中子的平均寿命 s d l t t =+ 慢化密度 0(,)(,)()(,)s EEq r E dE r E f E E r E dE ϕ∞''''=∑→⎰⎰(,)(,)(,)(,)(,)(1)(1)EE Eas s EE E r E r E dE E E q r E dE r E r E dE E Eααϕαϕαα''''∑-''''==∑''--⎰⎰⎰ 稳态无限介质内的中子慢化方程为 ()()()()()()Et s E E E E f E E dE S E ϕϕ∞''''∑=∑→+⎰无吸收单核素无限介质情况 ()()()()(1)Es t EE E E E dE Eαϕϕα''∑'∑='-⎰无限介质弱吸收情况dE 内被吸收的中子数 ()()()a dq q E q E dE E dE ϕ=--=∑0()exp()E a Es dE q E S E ξ'∑=-'∑⎰逃脱共振俘获概率00()()()exp()E aE s E q E dE p E S E ξ'∑==-'∑⎰第j 个共振峰的有效共振积分 ,*() ()jj AE I E E dE γσφ≡⎰逃脱共振俘获概率i p 等于 1exp A iA i i s s N I N p I ξξ⎡⎤=-=-⎢⎥∑∑⎣⎦整个共振区的有效共振积分 ()()ia EiI I E E dE σϕ∆==∑⎰热中子能谱具有麦克斯韦谱的分布形式 /1/23/22()()n E kT n N E e E kT ππ-=中子温度 ()(1)a M n M SkT T T Cξ∑=+∑ 核反应率守恒原则,热中子平均截面为()()()(()(ccc c E E E E E N E vdEE N E N E vdEN E σσσ==⎰⎰⎰⎰若吸收截面?a 服从“1/v”律(a a E σσ=若吸收截面不服从“1/v ”变化,须引入一个修正因子n ga n σ=第3章-中子扩散理论菲克定律 J D φ=-∇ 3sD λ=01s tr λλμ=- 023Aμ= 001()46z s J z ϕϕ-∂=+∑∂ 001()46z s J z ϕϕ∂=∑∂+- 01()3z z z s J J J zφ+-∂=-=-∑∂ 33ssx y z J J i J j J k grad λλφφ=++=-=-∇中子数守恒(中子数平衡)(,)(S)(L)(A)Vdn r t dV dt =--⎰产生率泄漏率吸收率 中子连续方程 (,)(,)(,)(,)a n r t S r t r t divJ r t tϕ∂=-∑-∂如果斐克定律成立,得单能中子扩散方程 21(,)(,)(,)(,)a r t S r t D r t r t v tϕϕϕ∂=+∇-∑∂设中子通量密度不随时间变化,得稳态单能中子扩散方程 2()()()0a D r r S r ϕϕ∇-∑+=直线外推距离 trd 0.7104l = 扩散长度 220011363(1)3(1)a tr a s a a s D L r λλλλμμ=====∑-∑∑-慢化长度L1 2221111112110100ln 3th a tr E D D L L E ϕϕϕϕξ∇-∑=∇-=→==∑∑∑ L 21 称为中子年龄,用τth 表示, 即为慢化长度。
核反应堆物理-复习重点--答案
第一章核反应堆的核物理基础(6学时)1.什么是核能?包括哪两种类型?核能的优点和缺点是什么?核能:原子核结构发生变化时释放出的能量,主要包括裂变能和聚变能。
优点:1)污染小:2)需要燃料少;3)重量轻、体积小、不需要空气,装一炉料可运行很长时间。
缺点:1)次锕系核素具有几百万年的半衰期,且具有毒性,需要妥善保存;2)裂变产物带有强的放射性,但在300年之内可以衰变到和天然易裂变核素处于同一放射性水平上;3)需要考虑排除剩余发热。
2.核反应堆的定义。
核反应堆可按哪些进行分类,可划分为哪些类型?属于哪种类型的核反应堆?核反应堆:一种能以可控方式产生自持链式裂变反应的装置。
核反应堆分类:3.原子核基本性质。
核素:具有确定质子数Z和核子数A的原子核。
同位素:质子数Z相同而中子数N不同的核素。
同量素:质量数A相同,而质子数Z和中子数N各不相同的核素.同中子数:只有中子数N相同的核素。
原子核能级:最低能量状态叫做基态,比基态高的能量状态称激发态.激发态是不稳定的,会自发跃迁到基态,并以放出射线的形式释放出多余的能量.核力的基本特点:1)核力的短程性2)核力的饱和性3)核力与电荷无关4.原子核的衰变。
包括:放射性同位素、核衰变、衰变常数、半衰期、平均寿命的定义;理解衰变常数的物理意义;核衰变的主要类型、反应式、衰变过程,穿透能力和电离能力。
放射性同位素:不稳定的同位素,会自发进行衰变,称为放射性同位素。
核衰变:有些元素的原子核是不稳定的,它能自发而有规律地改变其结构转变为另一种原子核,这种现象称为核衰变,也称放射性衰变。
衰变常数:它是单位时间内衰变几率的一种量度;物理意义是单位时间内的衰变几率,标志着衰变的快慢。
半衰期:原子核衰变一半所需的平均时间。
平均寿命:任一时刻存在的所有核的预期寿命的平均值。
衰变类型细分前后变化射线性质ααZ减少2,A减少4 电离本领强,穿透本领小ββ—Z增加1,A不变电离本领较弱,穿透本领较强β+ Z减少1,A不变电子俘获Z减少1,A不变γγ激发态向基态跃迁电离本领几乎没有,穿透能力很强5.结合能与原子核的稳定性。
《核反应堆物理分析》基本概念总结
m 2 ,巴恩—1b=1028 m2 。
(P8)
6)宏观截面:一个中子与单位体积内所有原子核发生核反应的平均概率大小的一种度量。设 为材料密 度, A 为该元素的原子量,N 0 =6.0221367×1023 mol 1 , 则 N dI / I ,N N 0 单位: (P9) m 1
反应堆物理分析(修订本-谢仲生主编) 基本概念总结
西安交大出版社(原子能出版社)
有稳定的分布,称之为中子慢化能谱。 3) E '
(P36)
1 1 1 cosc E , ① c 00 时 E ' Emax E ,此时碰撞前后中子没有能量损失; 2
弹性散射。
(P5)
4)共振现象:当入射中子的能量具有某些特定值,恰好使形成的复合核激发态接近于某个量子能级时, 中子被靶核吸收而形成复合核的概率就显著地增加,这种现象就叫做共振现象。
INx N x
(P4)
I I / I ,单位 5)微观截面:表征一个入射中子与单位面积内一个靶核发生作用的几率大小; σ
(P30)
即 : k eff
第2章 中子慢化和慢化能谱
1)慢化过程:中子由于散射碰撞而降低速度的过程叫做慢化过程。 (P36)
2)中子慢化能谱:当反应堆处于稳定时,在慢化过程中,堆内中子密度(或中子通量密度)按能量具
£- 2 -£
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
技术类《核反应堆物理》第1部分-核反应堆物理基础
知识点
1)
了解原子质量单位的定义,了解原子的组成、中子和质子的特点。
2)
能够说出原子结构的基本特点:整个原子核是电中性的;原子的 质量主要集中在原子核上。
3)
能够说出核素和同位素的定义,同位素有什么特性。
4)
理解在原子核中存在核力,核力的特点。
物质的组成
原子核的组成
原子核的组成
1u= (1.6605655±0.00000 86)×10-27kg。因而以 kg为单位的 Mp=1.672648×1027kg, Mn=1.674954×1027kg。由此可见,中子 稍稍重于质子。
提供大量的能量以及新的核素。
反应堆是
一个强大的各种粒子(中子、α粒子、β粒子和γ粒子)辐照场。
反应堆堆芯中有燃料、慢化剂、结构材料和控制材料等。 反应堆一旦运行后,堆内中子要与这些材料的原子核发生 各种类型的相互作用,产生新核,发生一系列的放射性衰 变现象。
反应堆运行是建立在中子与堆内物质相互作用的基础上。
N0e1
该式表明,平均寿命是原子核数量降为 所需要的时间。
N0 /e
放射性活度
➢ 放射性同位素样品在单位时间内衰变的次数,即 为该同位素样品的活度(A)。
A(t) N(t)
➢单位:贝可勒尔,简称贝可(Bq) ➢(1居里)1Ci=3.7x1010/s=3.7x1010Bq ➢因此,半衰期也可以定义为某同位素活度(A)降为一半 所需要的时间。
热中子轰击235U,原子核分裂成两个碎片;而238U不能产生 裂变反应,它俘获中子后生成239U,经过两次β-衰变而转化为 239Pu; 235U和238U具有不同的核特性,但化学性质却很相似
质量数 铀234 铀235 铀238
核反应堆物理分析总结-1
第一章:核反应堆的核物理基础
核反应堆是一种能以可控方式产生自持链式裂变 反应的装置。 它由核燃料、冷却剂、慢化剂、结构材料和吸收 剂等材料组成。 链式核反应(nuclear chain reaction):核反 应产物之一能引起同类的反应,从而使该反应能链式 地进行的核反应。根据一次反应所直接引起的反应次 数平均小于、等于或大于1,链式反应可分为次临界的、 临界的或超临界的三种。
Fission fragment kinetic energy Neutrons
Prompt gamma rays Fission product gamma rays Beta particles Neutrinos Total
7 7 5 10 200
平均每次裂变的衰变功率
停堆余 热排出
(1)换算关系:
中子的分类
中子的能量不同,它与原子核相互作 用的方式、几率也就不同。 在反应堆物理分析中通常按中子能量把 它们分为: (i)快中子(0.1兆电子伏以上); (ii)超热中子(1电子伏到0.1兆电子伏); (iii)热中子(1电子伏以下)。
中子与原子核相互作用
中子与原子核的相互作用过程有三种:势散射、直接
E2 E1 E0
激发态
E=EB+EC
若E正好在复合核的 某一激发能级附近, 则复合核形成的几率 很大,称之为“共振 吸收”。
基态 复合核能量
复合核量子能级
温度升高时,增加了238U对中子的吸收几率,负效应。
核反应堆物理知识点总结
核反应堆物理知识点总结核反应堆的基本原理核反应堆是通过核裂变或核聚变反应释放能量,实现能量的控制和转换。
核反应堆中的燃料通常是放射性同位素,如铀、钚等。
在裂变反应中,这些放射性同位素被中子轰击后裂变成两个或更多的裂变产物,伴随着大量的能量释放;在聚变反应中,两个轻核子融合成一个重核子,同样伴随着释放大量的能量。
裂变反应的示意图如下所示,以铀-235为例:铀-235 + 中子→ 钒-141 + 锶-92 + 3中子 + 能量聚变反应的示意图如下所示,以氘与氚核聚变产生氦和中子为例:氘 + 氚→ 氦 + 中子 + 能量核反应堆的结构核反应堆通常由反应堆压力容器、燃料组件、控制棒、冷却剂、反应堆堆芯、反应堆容器等部件组成。
其中,反应堆压力容器是核反应堆的主要设备之一,用于容纳反应堆的燃料组件和控制棒,同时提供辐射屏蔽和冷却外壳。
燃料组件是反应堆的核心部件,包含了核燃料和结构材料,用于裂变或聚变反应产生能量。
控制棒是用来调节核反应堆功率的设备,通常由吸中子材料组成,可以调整中子通量,控制核裂变反应的速率。
冷却剂则是用来带走反应堆核心区的热量,防止核反应堆过热。
核反应堆的工作原理核反应堆的工作原理主要包括裂变链式反应、控制反应堆功率、调节中子通量、冷却反应堆核心等几个方面。
首先,核反应堆的工作是通过裂变链式反应来释放能量的。
在核反应堆中,加速中子被注入燃料组件,引发铀或钚等放射性同位素的核裂变,并释放更多的中子,在一连串的核裂变中,释放出巨大的能量。
其次,为了控制核反应堆的功率,需要调节中子通量。
一般情况下,核反应堆的功率是通过控制棒来调节的,控制棒的进出深度会影响中子的散射,从而调节核反应堆的功率。
最后,为了防止核反应堆过热,需要冷却反应堆核心。
核反应堆中通过冷却系统可以带走核反应堆核心的热量,防止核反应堆过热。
核反应堆的安全控制核反应堆的安全控制是核能工程的重要一环,主要包括核反应堆冷却系统设计、核反应堆辐射屏蔽设计、控制系统设计等。
清华大学核反应堆物理分析
1、热中子反应堆内,瞬发中子的平均寿期比自由中子的半衰期()。
A、短的多;B、长的多;C、一样大。
1、某压水堆采用二氧化铀作燃料,其复集度为2.43%(重量),密度为104公斤/米2,计算:当中子能量为0.025ev时,二氧化铀的宏观吸收截面和宏观裂变截面(复集度表示铀-235在铀中所占的重量百分比)。
2、某反应堆堆芯由铀-235、水和铝组成,各元素所占的体积比分别为0.002,0.600和0.398,计算堆芯的总吸收截面(0.025ev)。
3、求热中子(0.025ev)在轻水、重水和镉中运动时,被吸收前平均遭受的散射碰撞数。
4、试比较:将2.0M电子伏的中子束减弱到1/10所需的铝、钠和铝和铅的厚度。
5、一个中子运动两个平均自由程及1/2个平均自由程而不与介质发生作用的几率分别是多少?6、堆芯的宏观裂变截面为5米-1,功率密度为20×106瓦/m3,求堆芯内的平均中子通量密度。
7、有一座小型核电站,电功率为15万千瓦,设电站的效率为27%,试估算该电站反应堆额定功率运行一小时所消耗的铀-235数量。
8、某反应堆在额定功率500兆瓦下运行了31天后停堆,设每次裂变产生的裂变产生的裂变产物的放射性活度为1.08×10-16 t-1.2居里,此处t为裂变后的时间,单位为天,试估计停堆后24小时堆内裂变产物的居里数。
9、1)计算并画出中子能量为0.025电子伏时的复集铀的参数η与复集度的函数关系。
2)有一座热中子反应堆,无限增值系数为 1.10,快中子裂变因子,逃脱共振几率和热中子利用系数三者的乘积为0.65,试确定该堆所用核燃料铀的复集度。
10、某反应堆堆芯由铀-235、水和铝组成,各元素所占的体积比分别为0.002,0.600和0.398,求堆芯的中子温度、热中子平均宏观截面和热中子利用系数。
设堆芯是均匀的,介质温度为570开,(ξσs)H2O=0.4567×10-26米2,(ξσs)Al=0.1012×10-28米2,(ξσs)U=0.126×10-28米2,堆芯的热中子能谱为麦克斯韦谱。
核反应堆物理分析课后答案(更新版)(1)
核反应堆物理分析答案第一章1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。
试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ=以c 5表示富集铀内U-235与U 的核子数之比,ε表示富集度,则有:555235235238(1)c c c ε=+-151(10.9874(1))0.0246c ε-=+-=255283222M(UO )235238(1)162269.91000()() 2.2310()M(UO )Ac c UO N N UO m ρ-=+-+⨯=⨯==⨯所以,26352(5)() 5.4910()N U c N UO m -==⨯ 28352(8)(1)() 2.1810()N U c N UO m -=-=⨯2832()2() 4.4610()N O N UO m -==⨯2112()(5)(5)(8)(8)()()0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0()a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=⨯+⨯+⨯=∑==⨯=1-2.某反应堆堆芯由U-235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。
解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ=由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U =33()19.0510/U kg m ρ=⨯可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ-==⨯则纯U-235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=⨯=⨯=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑=1-6题1171721111PV V 3.210P 2101.2510m 3.2105 3.210φφ---=∑⨯⨯⨯===⨯∑⨯⨯⨯⨯1-7.有一座小型核电站,电功率为150MW ,设电站的效率为30%,试估算该电站反应堆额定功率运行一小时所消耗的铀-235数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2裂变产物与裂变中子的发射 4.2.1裂变产物
1.裂变碎片与产额关系曲线 2.裂变产物
(a) 裂变碎片和它的衰变产物
都叫裂变产物 (b) 毒素: 具有较大热中子吸收截面 的裂变产物.
(c)反应性:
ρ=(K-1)/K PCM(10-5)
4.2.1裂变中子 瞬发中子 :
缓发中子 :
4.3.3停堆后裂变产物的活度
2. 反应堆物理(reactor physics) 研究反应堆内中子行为的科学。有时称neutronics。 或:研究、设计反应堆使得裂变反应所产生的中子与俘 获反应及泄露所损失的中子相平衡。
中子行为 扩散 慢化 中子与物质相互作用 六因子 公式 扩散 方程 慢化 方程 临界 方程 燃耗 方程 动力学 方程 裂变
定义:一个中子与一立方米内的原子核发生核反应的平均几率 大小。
dI I N dx
3
平均自由程 λ(mean free path):
如把中子在介质中运动时,与原子核连续两次相互作
用之间穿行的平均距离叫做平均自由程λ。
4 核反应率
5
中子通量密度
标准定义
基本规律 截面随中子能量的变化
Fission fragment kinetic energy Neutrons
Prompt gamma rays Fission product gamma rays Beta particles Neutrinos Total
7 7 5 10 200
平均每次裂变的衰变功率
停堆余 热排出
(1)换算关系:
中子的分类
中子的能量不同,它与原子核相互作 用的方式、几率也就不同。 在反应堆物理分析中通常按中子能量把 它们分为: (i)快中子(0.1兆电子伏以上); (ii)超热中子(1电子伏到0.1兆电子伏); (iii)热中子(1电子伏以下)。
中子与原子核相互作用
中子与原子核的相互作用过程有三种:势散射、直接
核反应堆是一种能以可控方式产生自持链式裂变 反应的装置。 它由核燃料、冷却剂、慢化剂、结构材料和吸收 剂等材料组成。 链式核反应(nuclear chain reaction):核反 应产物之一能引起同类的反应,从而使该反应能链式 地进行的核反应。根据一次反应所直接引起的反应次 数平均小于、等于或大于1,链式反应可分为次临界的、 临界的或超临界的三种。
相互作用和复合核的形成。 在反应堆内,中子与原子核的相互作用可分为两大 类:
基本概念
1 微观截面 (microscopic cross section)
微观截面是表示平均一个入射中子与一个靶核发生相互作 用的几率大小的一种度量,它的量纲是面积单位,平方米。
2 宏观截面( ∑:macroscopic cross section)
keff
npf Ps Pd n
k Pl
六因子公式
E2 E1 E0
激发态
E=EB+EC
若E正好在复合核的 某一激发能级附近, 则复合核形成的几率 很大,称之为“共振 吸收”。
基态 复合核能量
复合核量子能级
温度升高时,增加了238U对中子的吸收几率,负效应。
裂变能量的释放
Energy from one U-235 Fission
MeV 166 5
核反应堆物理分析
专业: 核工程与核技术 Yutao29@
目 录
第一章:核反应堆的核物理基础 第二章:单速中子扩散理论 第三章:中子慢化与慢化能谱 第四章:均匀反应堆的临界理论 第六章:反应性随时间的变化 第七章:温度效应与反应性控制 第八章:核反应堆动力学
第一章:核反应堆的核物理基础
在低能区:
中能区:
在高能区:
微 观 裂 变 截 面
微观裂变截面
阈能
两个问题:
(a) 辐射俘获截面与裂变截面之比:
f
(b)有效裂变中子数:(对于易裂变同位素,如铀v f
f
v 1
3.共振吸收
设入射中子与靶核AZ 在质心系的总动能为EC, 中子与靶核的结合能为 EB,则复合核A+1Z的激发 能为:
启堆
停堆
停堆后任一时刻
0
衰变热功率计算示意图
时间
4.停堆后裂变产物活度
红色为裂变次数
绿色每次裂变活度
热中子反应堆内的中子循环 1.反应堆内中子数目的增减与平衡浓度的决定过程 (1) 铀-238的快中子倍增;
(2) 燃料吸收热中子引起的裂变;
(3) 慢化剂以及结构材料等物质的辐射俘获; (4) 慢化过程中的共振吸收; I) 慢化过程中的泄漏 (5) 中子的泄漏。 (II) 热中子扩散过程中的泄漏