基础定轴轮系
机械设计基础第五章轮系

2. 根据周转轮系的组合方式,利用周转轮系传动比计算公式求
03
出周转轮系的传动比。
实例分析与计算
1
3. 将定轴轮系和周转轮系的传动比相乘,得到复 合轮系的传动比。
2
4. 根据输入转速和复合轮系的传动比,求出输出 转速。
3
计算结果:通过实例分析和计算,得到了复合轮 系的输出转速。
05 轮系应用与实例分析
仿真结果输出
将仿真结果以图形、数据等形式输出,以便 进行后续的分析和处理。
实验与仿真结果对比分析
01
数据对比
将实验数据和仿真数据进行对比 ,分析两者之间的差异和一致性 。
结果分析
02
03
优化设计
根据对比结果,分析轮系设计的 合理性和可行性,找出可能存在 的问题和改进方向。
针对分析结果,对轮系设计进行 优化和改进,提高轮系的性能和 稳定性。
04 复合轮系传动比计算
复合轮系构成及特点
构成
由定轴轮系和周转轮系(或几个周转轮系)组合而成,称为复合轮系。
特点
复合轮系的传动比较复杂,其传动比的计算需结合定轴轮系和周转轮系的传动比计算公式进行。
复合轮系传动比计算公式
对于由定轴轮系和周转轮系组成的复合轮系,其传动比计算 公式为:i=n1/nK=(Z2×Z4×…×Zk)/(Z1×Z3×…×Zk-1)×(1)m,其中n1为输入转速,nK为输出转速,Z为各齿轮齿数 ,m为从输入轴到输出轴外啮合齿轮的对数。
火车车轮与轨道
通过轮系保证火车在铁轨 上的平稳运行和导向作用 。
船舶推进器
利用轮系将主机的动力传 递给螺旋桨,推动船舶前 进。
军事装备中轮系应用举例
坦克传动系统
采用轮系实现坦克发动机的动力 输出与行走机构的连接,确保坦 克在各种地形条件下的机动性。
机械设计基础第7章 轮系

a,b齿轮选择原则
1. 2.
3.
4.
已知转速的齿轮 固定的齿轮(n=0) 需要求该齿轮转速的齿轮 轮系之间有关联的齿轮(复合轮系) a,b,H轴线平行(周转轮系)
17
例题 在图所示的差动轮系中,已知各轮的齿数为:z1 =30,z2 =25, z2’=20, z3=75。齿轮1的转速为210r/min(蓝箭头向上),齿轮3的转速为 54r/min(蓝箭头向下),求系杆转速 的大小和方向。 解:将系杆视为固定,画出转化轮系中各轮的转向,如图中红 线箭头所示(红线箭头不是齿轮真实转向,只表示假想的转 化轮系中的齿轮转向,二者不可混淆)。因1、3两轮红线箭 头相反,因此 应取符号“-”,根据公式得:
§7-3 周转轮系传动比计算 19
§7-4 复合轮系传动比计算
除了前面介绍的定轴轮系和周转轮系 以外,机械中还经常用到复合轮系。复合轮系常以两 种方式构成: ① 将定轴轮系与基本周转轮系组合; ② 由几个基本周转轮系经串联或并联而成。 由于整个复合轮系不可能转化成为一个 定轴轮系,所以不能只用一个公式来求解。计算复合 轮系时,首先必须将各个基本周转轮系和定轴轮系区 分开来,然后分别列出计算这些轮系的方程式,最后 联立解出所要求的传动比。 正确区分各个轮系的关键在于找出各个基本周转 轮系。找基本周转轮系的一般方法是:先找出行星轮, 即找出那些几何轴线绕另一齿轮的几何轴线转动的齿 轮;支持行星轮运动的那个构件就是行星架;几何轴 线与行星架的回转轴线相重合,且直接与行星轮相啮 合的定轴齿轮就是中心轮。这组行星轮、行星架、中 心轮构成一个基本周转轮系。
根据题意,齿轮1、3的转向相反,若假设n1为正,则应 将n3以负值带入上式,
解得nH =10r/min。因nH 为正号,可知nH 的转向和n1 相同。 在已知n1、nH或n3、nH的情况下,利用公式还可容易地算 出行星齿轮2的转速 。
机械设计基础轮系

机械设计基础轮系在机械设计中,轮系的设计和布局是至关重要的。
轮系,或者称为齿轮系,是由一系列齿轮和轴组成的,它们通过精确的配合和排列,将动力从一个轴传递到另一个轴,或者改变轴的转速。
这种设计广泛应用于各种机械设备中,如汽车、飞机、机床等。
一、轮系的基本类型根据轮系中齿轮的排列和组合方式,我们可以将其分为以下几种基本类型:1、定轴轮系:在这种轮系中,齿轮是固定在轴上的,因此轴的旋转速度是恒定的。
这种轮系主要用于改变动力的大小和方向。
2、行星轮系:在这种轮系中,有一个或多个齿轮是浮动的,它们可以随着轴一起旋转,也可以绕着轴旋转。
这种轮系主要用于平衡轴的转速和改变动力的方向。
3、差动轮系:在这种轮系中,有两个或多个齿轮的旋转速度是不一样的,它们之间存在一定的速度差。
这种轮系主要用于实现复杂的运动规律。
在设计轮系时,我们需要遵循以下原则:1、确定传递路径:根据机械设备的需要,确定动力从哪个轴输入,需要传递到哪个轴。
2、选择合适的齿轮类型:根据需要传递的动力大小、转速等因素,选择合适的齿轮类型(直齿、斜齿、锥齿等)。
3、确定齿轮的参数:根据需要传递的动力大小、转速等因素,确定齿轮的模数、齿数、压力角等参数。
4、确定齿轮的排列方式:根据需要实现的传动比、转速等因素,确定齿轮的排列方式(串联、并联等)。
5、确定轴的结构形式:根据需要传递的动力大小、转速等因素,确定轴的结构形式(实心轴、空心轴、悬臂轴等)。
6、确定支承形式:根据需要传递的动力大小、转速等因素,确定支承形式(滚动支承、滑动支承等)。
7、确定润滑方式:根据需要传递的动力大小、转速等因素,确定润滑方式(油润滑、脂润滑等)。
在满足设计要求的前提下,我们还可以通过优化设计来提高轮系的性能。
以下是一些常用的优化方法:1、优化齿轮参数:通过调整齿轮的模数、齿数、压力角等参数,来提高齿轮的承载能力和降低噪声。
2、优化齿轮排列:通过优化齿轮的排列方式,来提高传动效率、降低传动噪声和减少摩擦损失。
【机械设计基础】第五章 轮系

轮
系
三个运动件中,有两个构件为主动件 一个为从动 三个运动件中 有两个构件为主动件,一个为从动, 运动复合的差动轮系 有两个构件为主动件 一个为从动, 三个运动件中,有一件主动,两件从动, 三个运动件中,有一件主动,两件从动,运动分解的差动轮系 三个运动件中,两个中心轮之一固定, 三个运动件中,两个中心轮之一固定, 行星轮系 系杆H固定 演变为定轴轮系。 固定, 系杆 固定,演变为定轴轮系。
第五章
轮
系
重点学习内容
1.定轴轮系和周转轮系的传动比计算 2.轮系中从动轮转动方向的判定
机 械 设 计 基 础
第五章
轮
系
第一节 定轴轮系及其传动比计算 第二节 周转轮系及其传动比计算 第三节 轮系的功用
机 械 设 计 基 础
第五章
轮
系
现代机械中, 现代机械中,为了满足不同的工作要求只用一对齿轮传 动往往是不够的,通常用一系列齿轮共同传动。 动往往是不够的,通常用一系列齿轮共同传动。这种由一系列 齿轮(包括蜗杆蜗轮)组成的传动系统称为齿轮系(简称轮系)。 齿轮(包括蜗杆蜗轮)组成的传动系统称为齿轮系(简称轮系)。 齿轮系
机 械 设 计 基 础
周转轮系的分类: 周转轮系的分类:
第五章
轮
系
1、行星轮系:自由度为1的周转轮系,需要两个原动 、行星轮系:自由度为 的周转轮系 的周转轮系, 件才能有确定的运动。 件才能有确定的运动。 2、差动轮系:自由度为2的周转轮系,需要一个原动 、差动轮系:自由度为 的周转轮系 的周转轮系, 件才能有确定的运动。 件才能有确定的运动。
第五章
转化后的定轴轮系 的传动比为: 的传动比为:
H 13
n1 n1 − nH i = H = n3 n3 − nH
机械基础第七章 轮系

这种由一系 列相互啮合的齿 轮组成的传动系 统称为轮系。 称为轮系。 称为轮系
第七章 轮系
第一节 轮系分类及应用
1.了解轮系的分类。 2.了解轮系的特点及应用。
第七章 轮系
如图所示的铣床滑移齿轮变速箱、汽车 变速器是如何实现变速和变向的?它们属于 哪种轮系呢?有何特点?
铣床滑移齿轮变速箱
∴nⅣ=n1 × Z1/ Z2 × Z3/ Z4× Z5/ Z6 nⅣ= 1000×1/40×18/54×24/32=6.25(转/分)
第七章 轮系
【例2】在图示定轴轮系,主动轴Ⅰ上采用一个三联滑移齿轮,若已知轴Ⅰ的转速n1 例 =1000转/分,Z1=28,Z2=56,Z3=48,Z4=56,Z5=20,Z6=30,Z7=60,Z8=20,求从动轴 Ⅲ有几种转速?最快转速、最慢转速各是多少?图示情况下轴Ⅱ的转速是多少? 【解】轮系的传动路线:
Z2 Z4
56×57
当n1=50r/min时,砂轮架移动速度为: V=n1 Z1Z3 Ph=50× 28×38×3=50(mm/min)
Z2 Z4
56×57
因丝杠为右旋,砂轮架向右移动(如图所示)。
第七章 轮系
2.末端是齿轮齿条传动的计算 .
L=N末·π·m·Z末=N1 · 所有主动轮齿轮连乘积 ·π·m·Z末 (mm) 所有从动轮齿轮连乘积 所有主动轮齿轮连乘积 ·π·m·Z末 (mm/min) 所有从动轮齿轮连乘积
40 × 100 × 20 × 30 = −10 20 × 20 × 30 × 20
= (−1) 3
“-”号表示首、末两轮转向相反。
第七章 轮系
【例2】如图所示空间定轴轮系,已 】 知主动轮的转速n1=1000r/min,各齿 轮的齿数Z1=1, Z2=40, Z3=20, Z4=80, Z5=20,Z6=60,求总的传动 比i16?
轮系1

机械基础部分
3
61
3 2 O2 H OH 1
2
H
3
O2
H
OH O3 O1
H
1
2 O1
1
O3
3
2H
O2 2 O1 1 O1 O3
3
2 O2 H
3H
O3
1H
1
机械基础部分
周转轮系转化机构中各构件的角速度
构件代号 1 2 3 H 原角速度 在转化机构中的角速度 (相对于系杆的角速度)
z z H i 1 2 3 H z 1 z 2
68 机械基础部分 例2 图示轮系, 已 知 z115 , z225 , z220 , z360 , n1200rmin , n350rmin ,试求系杆 H 的转速 nH 的大小和方 向,⑴ n1、n3转向相同时;⑵ n1、n3转向相反时。
机械基础部分
27
推广:
设首轮A的转速为n1,末轮K的转速为nK,m为圆柱齿轮外啮合 的对数,则平面定轴轮系的传动比可写为:
1 n1 m 所有从动轮齿数的乘积 i1k ( 1) k nk 所有主动轮齿数的乘积
机械基础部分
28
推广:
设首轮A的转速为n1,末轮K的转速为nK,m为圆柱齿轮外啮合 的对数,则平面定轴轮系的传动比可写为:
62
1 2 3
1H1H 2H2H 3H3H
H
HHHH =0
周转轮系中所有基本构件的回转轴共线,可以根据周 转轮系的转化机构写出三个基本构件的角速度与其齿数之 间的比值关系式。已知两个基本构件的角速度向量的大小 和方向时,可以计算出第三个基本构件角速度的大小和方 向。
1 n1 i1k k nk
机械设计基础(第10章: 轮系)

第10章轮系前面我们己经讨论了一对齿轮传动及蜗杆传动的应用和设计问题,然而实际的现代机械传动,运动形式往往很复杂。
由于主动轴与从动轴的距离较远,或要求较大传动比,或要求在传动过程中实现变速和变向等原因,仅用一对齿轮传动或蜗杆传动往往是不够的, 而是需要采用一系列相互啮合的齿轮组成的传动系统将主动轴的运动传给从动轴。
这种由一系列相互啮合的齿轮(包括蜗杆、蜗轮)组成的传动系统称为齿轮系,简称轮系。
本章重点讨论各种类型齿轮系传动比的计算方法,并简要分析各齿轮系的功能和应用。
10.1 轮系的分类组成轮系的齿轮可以是圆柱齿轮、圆锥齿轮或蜗杆蜗轮。
如果全部齿轮的轴线都互相平行,这样的轮系称为平面轮系;如果轮系中各轮的轴线并不都是相互平行的,则称为空间轮系。
再者,通常根据轮系运动时各个齿轮的轴线在空间的位置是否都是固定的,而将轮系分为两大类:定轴轮系和周转轮系。
10.1.1定轴轮系在传动时所有齿轮的回转轴线固定不变的轮系,称为定轴轮系。
定轴轮系是最基本的轮系,应用很广。
由轴线互相平行的圆柱齿轮组成的定轴齿轮系,称为平面定轴轮系,如图10.1所示。
a)b)图10.1 平面定轴齿轮系包含有圆锥齿轮、螺旋齿轮、蜗杆蜗轮等空间齿轮的定轴轮系,称为空间定轴轮系,如图10.2所示。
图10.2 空间定轴轮系10.1.2 周转轮系轮系在运动过程中,若有一个或一个以上的齿轮除绕自身轴线自转外,其轴线又绕另一个齿轮的固定轴线转动,则称为周转轮系,也叫动轴轮系。
如图10.3所示。
a) 周转轮系结构图b)差动轮系c)行星轮系图10.3周转轮系其中齿轮2的轴线不固定,它一方面绕着自身的几何轴线O2旋转,同时O2轴线,又随构件H绕轴线O H公转。
分析周转轮系的结构组成,可知它由下列几种构件所组成:1.行星轮:当轮系运转时,一方面绕着自己的轴线回转(称自转),另一方面其轴线又绕着另一齿轮的固定轴线回转(称公转)的齿轮称行星轮,如图10.3中的齿轮2。
机械设计基础 第5章轮系

§5-2 定轴轮系及其传动比
轮系的传动比:轮系中输入轴与输出轴的角速度之比。iab。
n1 z2 i12 n2 z1 齿轮系:设输入轴角速度ω a,输出轴角速度ω b,按定义有: i 1 2 i12 2 ' 3 3 2 计算轮系传动比:1)确定iab数值;2)确定两轴的相对转动方向。 ' nn2 n3 z2 z2z1 1 i1 n12 2 z 一、传动比的计算 z z i12 i n2n31 3z4 2n i3' 2 ' 3 4 z n2、n2′n 转速。同一轴 图(a)轮系:z1、z2、z2′‥齿数;n1、n 2 ‥ n4 z2z3' 1 3 '
2)分析混合轮系内部联系。
(1)定轴轮系中内齿轮5与差动轮系中系杆H是同一构件,因而n5=nH; (2)定轴轮系中齿轮3′与差动轮系中心轮3是同一构件, 因而n3′=n3。
3
设实箭头朝上为正,则n1= 120r /min,n3=-120r /min , 代入上式得
120-nH -120-nH = (+)
40 60
解得:nH=600r /min。nH与n1转向同。
1)行星轮2-2′的轴线与齿轮1(或3)及行星架H的轴线不平行,不能用5-2 式计算n2。(转化轮系中两齿轮轴线不平行时,不能直接计算!) 2)实箭头—表示齿轮真实转向—对应n1、n3、…。虚箭头—表示虚拟转化 轮系中的齿轮转向—对应n1H、n2H、n3H。 3)运用(5-2)时, i13H的正负取决于n1H和n3H,即取决于虚线箭头。而代 入n1、n3数值时需根据实线箭头判定其正负。
二、周转轮系传动比的计算
周转轮系的行星轮不是绕固定轴线的简单运动,传动 比不能直接用求定轴轮系传动比的方法求解。
机械设计基础.第五章_轮系机构

z2 zn 1 H n H z1 z n 1
各轮齿数已知,就可以确定1、n、H之间的关系; 如果其 中两个转速已知,就可以计算出第三个,进而可以计算周转轮系 的传动比。
1、i1H 是转化机构中齿轮1为主动轮、齿轮n为从动轮时的传动 n
比,其大小和方向可以根据定轴轮系的方法来判断; 2、表达式中 1、n、H的正负号问题。若基本构件的实际 转速方向相反,则 的正负号应该不同。
1 z 2 z 3 z 4 z 5 i15 5 z1 z 2' z 3' z 4
1 2 3 4 1 i15 2 3 4 5 5
大小:
i1 k
1 m 从 动 轮 齿 数 连 乘 积 ( 1) k 主动轮齿数连乘积
m: 外 啮 合 的 次 数
3 要在 先计 学算 会传 分动 析比 传大 动小 路之 线前 Ⅱ 1 2 Ⅲ
动力输出
4
传动路线 动力输入
Ⅰ
两级齿轮传动装置
例1
如图所示轮系,分析该轮系传动路线。
Ⅴ Ⅰ
z1
z7 z8
Ⅲ
z9
Ⅵ
n1 z2
Ⅱ
z5 Ⅳ z6
z3
z4
n9
解
该轮系传动路线为:
Ⅰ
n1
z1 z2
Ⅱ
z3 z4
Ⅲ
z5 z6
Ⅳ
z7 z8
z 2 z3 z5 1 z 2 z 3 z 4 z 5 i15 5 z1 z 2' z 3' z 4 z1 z 2 ' z 3'
?
转向?
平面定轴轮系(各齿轮轴线相互平行)
例 1:
《机械设计基础》第5章 轮系

解:差动轮系:1—2—3(H)
i13
H
=
n1 n3
nH nH
=
-
z2 z1
•
z3 z2
=
-
z3 z1
设轮1的转向为正(即n1=10 ) , 则轮3的转向为负(即n3= -10) 。故
n1 n3
10 nH = -90/30 =-3
10 nH
解得:nH = -5rpm(与轮1的转向相反) i1H = n1 / nH =10/-5= -2(轮1与行星架H的转向相反)
如图a:整个轮系加上 “-nH” ,周转轮
系部分
定轴轮系,但定
图a
轴轮系部分
周转轮系;
如图b:由于各个周转轮系有不同的nH, 无法加上一个公共角速度“-
nH1”或“-nH2”来将整个轮系转 化为定轴轮系。
图b
计算复合轮系传动比的正确方法是:(计算步骤) 1、首先分析轮系,正确区分各个基本轮系(即单一的定
而是绕其它齿轮的固定轴线回转;
2)再找行星架(1个) :支承行星轮的构件(注:其形 状不一定是简单的杆件,有时是箱体或齿 轮,同一行星架上可能有几个行星轮);
3)最后找太阳轮(1~2个):与行星轮啮合且几何轴线是 固定的、并与行星架的轴线重合。
则:每个行星架 + 此行星架上的行星轮 +与行星轮啮合的太阳轮 = 1个周转轮系。
2、5的转向相同)
∴
i17=
z2 z1
•
z3 z 2
•
z4 z3
•
z5 z4
•
z6 z5
•
z7 z6
上例中的轮4,其齿数多少不影响传动比的大小,只
起改变转向的作用,在轮系中的这种齿轮称为惰轮(过桥
机械设计基础-第8章-轮系

构件
太阳轮1 行星轮2 太阳轮3 行星架H
行星齿轮系中的 转化齿轮系中的
转速
转速
n1
n1H n1 nH
n2
n2H n2 nH
n3
n3H n3 nH
nH
nHH nH nH 0
转化机构中1、3两轮的传动比可以根据定轴齿轮系传动的计算方法得出
i1H3
n1H n3H
n1 nH n3 nH
[解]
该齿轮系为一平面定轴齿轮系,齿轮 2和4为惰轮,齿轮系中有两对外啮合齿 轮,根据公式可得
i 15
n1 n5
(1)2
z3z5 z1 z3'
因齿轮1、2、3的模数相等,故它们之间
的中心距关系为
m 2
( z1
z2
)
m 2
(z3
z2
)
因此: z1 z2 z3 z2
同理:
z3 z1 2z2 20 2 20 60 z5 z3' 2z4 20 2 20 60
在机床、计算机构和补偿装置等得到广泛应用。
滚齿机中的差动齿轮系(下图)
如图所示为滚齿机中的差动
齿轮系。滚切斜齿轮时,由齿轮4
传递来的运动传给中心轮1,转速
为n1;由蜗轮5传递来的运动传给 H,使其转速为nH。这两个运动 经齿轮系合成后变成齿轮3的转速
n3输出。
因 Z1 Z3
则
i1H3
n1 nH n3 nH
i 12
z 1 2
2
z1
z 3' i 3'4
4;3
'
2 3
3
Z
' 2
i 45
z 4 5
5
轮系 定轴轮系教案(2) (公开课 专用)

定轴轮系课程名称机械基础授课班级高二综合预科班授课地点教室(多媒体设备)课 时6课时学习单元定轴轮系课 题定轴轮系教学内容 1.定轴轮系的传动比的计算方法及各轮回转方向的判定;2.定轴轮系末端带移动件的传动计算;3.定轴轮系中齿轮受力分析。
教学目标【知识目标】1.掌握定轴轮系传动比的计算方法及各轮回转方向的判定;2.掌握定轴轮系末端带移动件的传动计算;3.掌握定轴轮系中齿轮受力分析。
【能力目标】1.知识的获取、消化和吸收;2.分析判断、解决问题的能力;3.利用分解组合法应用知识的能力。
【情感目标】1.语言表达能力;2.团队意识。
教学重点 1.定轴轮系的识读、传动路线的分析。
2.定轴轮系传动比的计算、各轮回转方向的判定、末端带移动件的传动计算分析。
教学难点定轴轮系各部分知识的综合运用。
行为能力分析【专业能力】熟练绘制定轴轮系,领会定轴轮系的识读,掌握定轴轮系传动比的轮回转方向的判定、末端带移动件的传动计算和齿轮受力分析。
【方法能力】知识的获取和消化吸收,分析判断、解决问题,分解组合应用,自学能力;【社会能力】语言表达、团队意识、展示技术。
教学方法任务式教学法、模块化教学法、多媒体演示法、分解组合教学法、分组测试教具多媒体课件、实物投影仪教学设计过程教学环节教 学 内 容【任务发布与分解】【定轴轮系部分任务单】(该类题目为高考必考题)现有一定轴轮系,已知各齿轮齿数Z1=20,Z2=40,Z3=15,Z4=60,Z5=18,Z6=18,Z7=1,Z8=40,Z9=20,齿轮9的模数m=3mm,齿轮1的转向如箭头所示,n1=100r/min,请完成一下任务:【任务一】用箭头法判别齿条10的移动方向?【任务二】计算出传动比i18?【任务三】确定蜗轮8的转速n8为多少?(r/min)【任务四】计算齿条10移动的速度v6为多少?(m/s)(注:了解其他几种末端形式,并分别掌握其移动速度计算。
)【任务一】用箭头法判别齿条10的移动方向?【复习回顾】1.一对齿轮传动类型:(1)另外包括齿条传动、螺旋传动、毂轮提升重物几种情况2.两对及以上情况:【任务一】3.轮系中惰轮的定义和作用轮系中,只改变齿轮副中从动轮回转方向,而不改变齿轮副传动比大小的齿轮称为惰轮。
机械设计基础第五章轮系

图5-4.b
(二)周转轮系传动比的计算 二 周转轮系传动比的计算
p.75
→不能直接用定轴轮系的计算方法 不能直接用定轴轮系的计算方法 轮系加上- 的公共转速→转臂静止 转化轮系(假想的 转臂静止→转化轮系 轮系加上-nH的公共转速 转臂静止 转化轮系 假想的 定轴轮系)(各构件相对运动不变 各构件相对运动不变) 定轴轮系 各构件相对运动不变
转臂 中心轮
注意事项: 注意事项
1.以中心轮和转臂 以中心轮和转臂 作输入和输出构件 →轴线重合 轴线重合 (否则不能传动 否则不能传动) 否则不能传动 2.基本周转轮系含 基本周转轮系含 一个转臂, 一个转臂 若干个 行星轮及中心轮(1~ 行星轮及中心轮 ~2) 3.找基本 单一 周转轮系的方法 找基本(单一 周转轮系的方法: 找基本 单一)周转轮系的方法 先找行星轮→ 先找行星轮 找其转臂(不一定是简单的杆件 不一定是简单的杆件)→ 找其转臂 不一定是简单的杆件 找与行星轮啮合的中心轮(其轴线与转臂的重合 其轴线与转臂的重合) 找与行星轮啮合的中心轮 其轴线与转臂的重合
3.求n2: 求
3 n2H n1H 2 1 n3H H
i12
H
n1 n1 nH Z2 = H = = n2 nH Z1 n2
H
6000 1840 17 = n2 1840 27
∴ n 2 ≈ 4767 r min
已知:n 已知 1,Z1,Z2,Z3;求:i1H,nH,n2 求
已知齿数Z 例3:已知齿数 1=15 , Z2 = 25 , Z 2' = 20 , Z3 = 60. . 解:
Z4 = = 4 Z 2'
补充方程: 补充方程 n 2'= n 2 ; n 4 =0
定轴轮系说课稿

定轴轮系说课稿尊敬的各位领导、老师:大家上午好!我是来自数控专业科的卓伟灿老师。
今天,我说课的课题是《定轴轮系》 ,选自于《机械基础》学科。
今天我主要从教材分析,学情分析,教法分析,学法分析,教学过程,教学感悟这6大方面进行阐述。
首先从教材分析开始。
一、教材分析《定轴轮系》是高等教育出版社出版的《机械基础》第七章第三节的内容。
本章是关于齿轮传动的内容,大家知道齿轮传动是机械传动中主要的传动方式之一,在实际生活当中使用广泛,地位非常重要,本节内容主要阐述定轴轮系传动比的计算和旋转方向的判定,它是学习其他轮系的基础,对于数控专业的学生来说,为今后在机床操作维修,甚至机械设计等实际生产应用中打下坚实的理论基础。
二、学情分析根据上述地位和内容要求,结合大纲要求和学生现有的认知和理解特点,特制定如下教学目标,包括知识目标、能力目标、情感目标。
根据学生的知识水平和认知特点制定如下1) 知识目标:①掌握定轴轮系中各齿轮的方向判定②掌握定轴轮系传动比的大小的计算知识不等同于能力,但知识是能力发展的重要基础,要让学生学习知识的同时,加强各种能力的培养。
2) 能力目标:①培养自主学习的能力;②培养互助合作的能力;大家知道凡是比较成功的人士不仅智商高,而且情商也高。
3) 思想情感目标:培养学生严谨认真、勇于创新的学习态度,让学生个性得到体现,为学生发展创造空间。
3、教学重点、难点:因为学生刚刚接触轮系,没有形成良好的思维方式,加上这些内容比较抽象,是学习其他知识的基础,根据本节课的重要地位和教学目标所以确定以下重点:重点:定轴轮系传动比大小的计算难点:定轴轮系传动比方向的判定三、教法分析任务驱动教学法分组讨论教学法模型类比教学法采用分组教学,利用任务驱动及体验式自主探究教学法,辅助以模型实物、玩具,并创设情境,使课堂形式多样化,形象化,趣味化,使学生能够在愉快的学习环境中,通过探究及思考,学到新的知识。
四、学法分析小组合作 自主探究教学活动是教和学的双边互相促进的活动。
基础 定轴轮系

动力输入 Ⅰ
4 2
2021/6/16
图5-1
16
例: 如图所示轮系,分析该轮系传动路线。
n1
Ⅵ
n1 Ⅰ
z1 z2
Ⅱ z3 z4
Ⅲ
z5 z6
Ⅵ
主动轮:1、3、5 从动轮:2、4、6
2021/6/16
17
2、传动比计算
即
i总
n首 n末
n1 n4
以图5-1为例,求该轮系的总传动比。
i总
n首 n末
传动路线;求传动比i17;若齿轮1转向已知,试判定齿轮7的
转向。
2
Ⅱ
Ⅰ
n1
3
Ⅲ5
1 4
Ⅳ
6 Ⅴ
n7
2021/6/16
20
分析 该轮系传动路线为:
n1 Ⅰ
z1 z2
Ⅱ z3 z4
Ⅲ
z5 z6
Ⅳ z6 z7
Ⅴ n7
解 根据公式
i17 (1)3
z2z4z6z7 z1z3z5z6
z2z4z72 8 6 0 2 8 4 .9
2021/6/16
13
2
4
1
3′
3
平行轴传动的定轴轮系 可用外啮合齿轮对数来判断
2021/6/16
14
非平行轴传动的定轴轮系
轮系中各轮回转方向只能用箭头标注在图上。
2021/6/16
15
二、定轴轮系传动比
1、传动路线
动力输出 Ⅲ
要在 先计 学算 会传 分动 析比 传大 动小 路之 线前
主动轮:1、3 从动轮:2、4 3
定轴轮系的 传动比
i总
n首 n末
惰轮的应用 (1)只改变方向, 不改变传动比 大小 (2)惰轮奇数转 向相同,偶数转 向相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习巩固
1、什么是轮系?轮系有哪两类?
由一系列相互啮合的齿轮组成的传动 系统称为轮系。
2.什么叫定轴轮系?
传动时轮系中各齿轮的几何轴线 位置都是固定的称为定轴轮系。
4
新课导入
定 轴 轮 系
5
提出问题
6
新课教学
传动比的计算
一、 定轴轮系的传动比 齿轮的转向判断 二、定轴轮系中各轮转向的判断
1、一对齿轮传动转向的表示
3′
3
5
平行轴传动的定轴轮系 可用外啮合齿轮对数来判断
14
非平行轴传动的定轴轮系
轮系中各轮回转方向只能用箭头标注在图上。
15
二、定轴轮系传动比
1、传动路线
动力输出 Ⅲ
要在 先计 学算
会传 分动 析比 传大 动小 路之
线前
主动轮:1、3 从动轮:2、4 3
Ⅱ 1
动力输入 Ⅰ
4 2
图5-1
16
例: 如图所示轮系,分析该轮系传动路线。
?n 2 ? n 3 ?
同轴齿轮
i总
?
i1k
?
n1 nk
?
所有从动轮齿数的连乘 所有主动轮齿数的连乘
积 积
(以1表示首轮,以k轮表示末轮)
18
平行定轴轮系总传动比为:
所有从动轮齿数的连乘 积 ? 所有主动轮齿数的连乘 积
若以1表示首轮,以k轮表示末轮,外啮合的对数为m。
i当 1k结果为正,表示首末两轮回转方向相同。 i当 1k结果为负,表示首末两轮回转方向相反。
21
三、惰轮
惰轮:既是主动轮,又是从动轮。
齿轮2和3——惰轮(仅改变转向,不改
变i 大小)
22
惰轮的应用
惰轮
加奇数个惰轮,首 末两轮转向相同。
加偶数个惰轮,首 末两轮转向相反。
23
练习
1、如图所示轮系,用箭头标出各齿轮的回转方向。
24
练习
2、已知各齿轮齿数及n1 转向,求i15 和判定n5 转向。
26
作业: P23 六、计算
1. 2. 3.
27
28
机械基础 第五章 轮系 第二节 定轴轮系
中国劳动出版社 三门峡机电职专 李莲
1
学 能力目标
习
能计算定轴轮系的传动比,并 会判断其转向。
目 知识目标
1.了解轮系的类型。
标
2.掌握定轴轮系传动比的计算
及转向判断。
复合轮系
2
学习重点及难点
重点:定轴轮系传动比的计算及转向。 难点:定轴轮系的转向判断。
3
19
例 如图6-9所示,已知z1=24,z2=28,z3=20,z4=60,
z5=20 ,z6=20 ,z7=28 ,齿轮1为主动件。分析该机构的
传动路线;求传动比i17 ;若齿轮1转向已知,试判定齿轮7的
转向。
2
Ⅱ
Ⅰ
n1
3
Ⅲ5
1 4
Ⅳ
6 Ⅴ
n7
20
ቤተ መጻሕፍቲ ባይዱ
分析 该轮系传动路线为:
n1 Ⅰ
z1 z2
Ⅱ
z3 z4
n1
Ⅵ
n1 Ⅰ
z1 z2
Ⅱ
z3 z4
Ⅲ
z5 z6
Ⅵ
主动轮:1、3、5 从动轮:2、4、6
17
2、传动比计算
即
i总
?
n首 n末
?
n1 n4
以图5-1为例,求该轮系的总传动比。
i总 ?
n首 n末
? n1 ? n4
n1 ?n3 n2 n4
?
i12 ?i34 ?
(?
z2 ) ?(? z1
z4 ) z3
轮系的传动比:
2 3'
4' 1 3
4
i15
?
(? 1)3 ?
z2 z3 z4 z5 z1z2 z3?z 4?
5
25
小结
各轮转向的判 断方法 (1) 平行轴 a. 标注箭头 b. 外啮合齿轮 的对数 (2) 非平行轴 a. 标注箭头
定轴轮系的 传动比
i总
?
n首 n末
惰轮的应用 (1) 只改变方向, 不改变传动比 大小 (2) 惰轮奇数转 向相同,偶数转 向相反。
用直箭头来表示齿轮转动方向
7
单个齿轮转向标注
可见侧齿轮转向
8
圆柱齿轮外啮合传动
1
2
两箭头指向相反 I12为负
? - i12=
n1 n2
z2 z1
9
圆柱齿轮内啮合传动
1 2
两箭头指向相同 I12为正
? ? i12=
n1 n2
z2 z1
10
锥齿轮传动
两箭头相对或相背 方向只能用箭头表示
? i12=
n1 n2
z2 z1
11
蜗轮蜗杆传动
用左右手法则判定方向,手伸直,四指握向蜗 杆的转动方向,拇指的反方向为蜗轮的转向。
只能用箭头表示方向
12
2、轮系末轮转向的表示
1)轴线平行时,用画箭头来表示或用外啮合 齿轮的对数来确定。
对数为偶数,首、末轮转向相同。 对数为奇数,首、末轮转向相反。
13
2
4
1
Ⅲ
z5 z6
Ⅳ z6 z7
Ⅴ n7
解 根据公式
i17
?
( ? 1) 3
z2 z4 z6 z7 z1z3 z5 z6
? ? z 2 z 4 z 7 ? ? 28 ? 60 ? 28
z1 z 3 z 5
24 ? 20 ? 20
? ? 4 .9
结果为负值,说明从动轮 7与主动轮1的转向相反。
各轮转向如图中箭头所示。