教你Multisim仿真

合集下载

Multisim仿真教程(wxy)

Multisim仿真教程(wxy)

② 时基控制(Time base)
● X轴刻度(s/div):控制示波屏上的横轴,即X轴刻度 (时间/每格) ● X轴偏移(X position):控制信号在X轴的偏移位置 ● 显示方式: Y /T :幅度 / 时间 ,横坐标轴为时间轴,纵坐标轴 为信号幅度 Add:A、B通道幅值相加 B /A :B电压(纵坐标) / A电压 (横坐标) A /B :A 电压 / B电压
晶体管库(Transistors Components) 模拟元件库(Analog Components) TTL元件库(TTL) CMOS元件库(CMOS) 其他数字元件库(Misc Digital Components) 混合芯片库(Mixed Components) 指示器件库(Indicators Components) 其他器件库(Misc Components) 控制器件库(Control Components) 射频器件库(RF Components)
二、基本元件库
● 电阻 ● 电容 ● 电解电容 ● 电感 ● 电位器 ● 可变电容 ● 可变电感 ● 开关 ● 变压器 ● 磁芯 ● 连接器 ● 半导体电阻 ● 封装电阻 ● SMT电容 ● SMT电感 ● 虚拟电阻 ● 虚拟电容 ● 上拉电容 ● 虚拟电感 ● 虚拟电位器 ● 虚拟可变电容 ● 虚拟可变电感 ● 继电器 ● 非线性变压器 ● 无芯线圈 ● 插座 ● 半导体电容 ● SMT电阻 ● SMT电解电容
元件工具栏
电源库 基本元件库 二极管库 晶体管库 模拟元件库 TTL元件库 其他数字元件库 混合芯片库 指示部件库 其他部件库 控制部件库 射频器件库 机电类元件库
COMS元件库
仪器仪表工具栏
从左到右分别是:数字万用表、函数发生器、示 波器、波特图仪、字信号发生器、逻辑分析仪、 瓦特表、逻辑转换仪、失真分析仪、网络分析 仪、频谱分析仪 注:电压表和电流表在指示器件库,而不是仪器 库中选择

Multisim仿真教程3天全会

Multisim仿真教程3天全会

二、基本元件库
● 电阻 ● 电容 ● 电解电容 ● 电感 ● 电位器 ● 可变电容 ● 可变电感 ● 开关 ● 变压器 ● 磁芯 ● 连接器 ● 半导体电阻 ● 封装电阻 ● SMT电容 ● SMT电感 ● 虚拟电阻 ● 虚拟电容 ● 上拉电容 ● 虚拟电感 ● 虚拟电位器 ● 虚拟可变电容 ● 虚拟可变电感 ● 继电器 ● 非线性变压器 ● 无芯线圈 ● 插座 ● 半导体电容 ● SMT电阻 ● SMT电解电容
1、接地端
利用Multisim创建电路时必须接“地”
设置分析类型
设置显示状态 设置标号 设置电压幅值
设置故障
2、直流电压源
3、交流电压源
设置最大值
设置有效值
设置频率
设置初相位
4、时钟电压源
实质上是一个频率、占空比及幅度皆可调的方波发生器
5、受控源
1)VCVS
2)VCCS
3)CCVS
4)CCCS
② 时基控制(Time base)
● X轴刻度(s/div):控制示波屏上的横轴,即X轴刻度 (时间/每格) ● X轴偏移(X position):控制信号在X轴的偏移位置 ● 显示方式: Y /T :幅度 / 时间 ,横坐标轴为时间轴,纵坐标轴 为信号幅度 Add:A、B通道幅值相加 B /A :B电压(纵坐标) / A电压 (横坐标) A /B :A 电压 / B电压
设置显示窗口 图纸格式
设置窗口图纸的大小
选择窗口图纸的 缩放比例
设置导线的宽度
设置导线的自动 连接方式
选择文件自动保存功能 并设定保存时间间隔
设置存取文件路径 设置数字电路的 仿真方式
选择PCB的接地方式
电源库(Sources) 基本元件库(Basic)

3 Multisim 电路仿真仿真分析(二)

3 Multisim 电路仿真仿真分析(二)

Multisim 电路仿真Multisim 12.0提供了多种电路仿真引擎,包含Xspice、VHDL和Verilog等。

电路仿真分析的一般流程为:(1)设计仿真电路图;(2)设置分析参数;(3)设置输出变量的处理方式;(4)设置分析项目;(5)自定义分析选项开始/终止仿真分析,可以单击仿真运行开关按钮,或者执行主菜单的Simulate|Run命令。

暂停/继续仿真分析,可以单击仿真运行开关按钮,或者执行主菜单的Simulate|Pause命令。

1. Multisim 12.0的仿真参数设置在使用Multisim12.0进行仿真分析时,需要对各类仿真参数进行设置,包含仿真基本参数(仿真计算步长、时间、初始条件等)的设置;仿真分析参数(分析条件、分析范围、输出结点等)设置;仿真输出显示参数(数据格式、显示栅格、读数标尺等)设置。

1)仿真基本参数的设置仿真基本参数的设置,可以通过执行Simulate|Interactive Simulation Settings 命令,打开交互式仿真设置对话框,如图2-1所示,通过修改或者重设其中的参数,可以完成仿真基本参数的设置。

图3-1 仿真基本参数设置对话框2)仿真输出显示参数的设置仿真输出参数的设置,是通过执行View|Grapher命令,打开Grapher View 仿真图形记录器,对话框如图3-2所示。

图3-2 Grapher View仿真图形记录器2. Multisim 12.0的仿真分析Multisim12.0提供了多种仿真分析方法,如图3-3所示,主要包含:直流工作点分析(DC Operation Point Analysis),交流分析(AC Analysis),单频交流分析( Single Frequency AC Analysis),瞬态分析( Transient Analysis),傅立叶分析( Fourier Analysis),噪声分析(Noise Analysis),噪声系数分析( Noise Figure Analysis),失真分析( Distortion Analysis),直流扫描分析( DC Sweep Analysis),灵敏度分析( Sensitivity Analysis),参数扫描分析( Parameter Sweep Analysis),温度扫描分析(Temperature Sweep Analysis),极点-零点分析( Pole-Zero Analysis)),传递函数分析(Transfer Function Analysis),最坏情况分析( Worst case Analysis),蒙特卡罗分析(Monte Carlo Analysis),批处理分析(Batched Analysis)和用户自定义分析(User Defined Analysis)等。

multisim仿真教程正弦波脉宽调制SPWM逆变电路业界精制

multisim仿真教程正弦波脉宽调制SPWM逆变电路业界精制

技术教育
1
如果将每一等份的正弦曲线与横轴所包围的面 积用一个与此面积相等的等高矩形脉冲代替, 就得到图11.8.1(b)所示的脉冲序列。这样, 由N个等幅而不等宽的矩形脉冲所组成的波形 与正弦波的正半周等效,正弦波的负半周也可 用相同的方法来等效。
技术教育
2
SPWM(Sine Pulse Width Modulation正弦波 脉宽调制)的控制思想,就是利用逆变器的 开关元件,由控制线路按一定的规律控制开 关元件的通断,从而在逆变器的输出端获得 一组等幅、等距而不等宽的脉冲序列。其脉 宽基本上按正弦分布,以此脉冲列来等效正 弦电压波。
方向变化,所得到输出电压的PWM波形也只在 一个方向变化的控制方式称为单极性PWM控制 方式。
3. 双极性PWM控制方式
技术教育
15
图11.8.2的单相桥式逆变电路采用双极性PWM 控制方式的波形如图11.8.4所示。在双极性方
式中ur的半个周期内,三角波载波是在正、负
两个方向变化的,所得到的PWM波形也是在两
11.8.1正弦脉宽调制(SPWM)逆变电路工作原理
1. SPWM控制的基本原理 图11.8.1(a)示出正弦彼的正半周波形,
并将其划分为N等份,这样就可把正弦半波看成 由N个彼此相连的脉冲所组成的波形。这些脉冲 的宽度相等,都等于π/ N,但幅值不等,且 脉冲顶部是曲线,各脉冲的幅值按正弦规律变 化。
技术教育
8
如负载电流较大,那么直到使VT4再一次导通之 前,VD3一直持续导通。如负载电流较快地衰减 到零,在VT4再一次导通之前,负载电压也一直
为零。这样,负载上的输出电压uo就可得到零
和UD交替的两种电平。
技术教育
9

multisim教程

multisim教程

multisim教程以下是Multisim的简单教程:Multisim是一款用于电子电路仿真和设计的软件工具。

下面我将介绍一些基本的操作步骤,帮助你开始使用Multisim。

1. 打开Multisim软件并创建新项目。

选择“File”菜单中的“New”选项,然后选择“New Design”来创建一个新的电路设计。

2. 选择器件进行电路设计。

在“Place”菜单中选择合适的器件,如电阻、电容、二极管等,并将它们拖放到电路图板上。

3. 连接器件。

使用连线工具将器件彼此连接起来,这样就可以形成一个完整的电路。

确保连接正确,以保证电路的功能。

4. 设定器件参数。

双击选择的器件,在弹出的属性框中设置相应的参数,如电阻值、电容大小等。

5. 运行仿真。

选择“Simulate”菜单中的“Run”选项,或使用工具栏上的仿真按钮来运行仿真。

Multisim将模拟电路的行为,并显示电路的响应结果。

6. 分析仿真结果。

查看仿真结果,包括电流、电压、功率等参数。

这些结果将帮助你评估电路的性能和功能。

7. 调整和改进电路设计。

根据仿真结果,你可以对电路进行优化和改进。

调整参数、更换器件或重新设计电路布局,以达到设计要求。

8. 保存和导出设计。

将设计保存为Multisim项目文件,以便后续修改和使用。

如果需要,你还可以导出电路图、仿真结果等。

请注意,以上步骤仅为基础操作示例。

Multisim是一款功能强大的软件工具,还提供许多高级功能和特性,如多工程协作、电路板布局等。

你可以进一步学习和探索这些功能,以扩展你的电子电路设计能力。

Multisim仿真教程

Multisim仿真教程
由于(yóuyú)软件操作都是在计算机环境下进行的,不是真实 的实际的元器件设备的链接,故称虚拟电子实验室。
Multisim意为“万能仿真 ”
精品文档
一、主要(zhǔyào)功能
构建仿真电路(diànlù) 通信系统分析与设计
仿真电路(diànlù)环 的模块

PCB设计模块:直观、
multi mcu(单片机 层板32层、快速自动
精品文档
仿真开关
工程栏
元件
工具栏
菜单栏
设计 (shèjì) 工具栏
使用 (shǐyòng)
中 元件列表
工作区
状态栏
仪器仪表 工具栏
精品文档
常用(chánɡ yònɡ)元件库分类
精品文档
仪器仪表工具栏
从左到右分别是:数字万用表、函数发生器、示 波器、波特图仪、字信号发生器、逻辑分析仪、 瓦特表、逻辑转换仪、失真分析仪、网络分析仪、 频谱分析仪
报告按钮,用以打印有关电路的报告
传输按钮,用以与其它程序通讯,比如与Ult 通讯;也可以将仿真结果输出到 像MathCAD和Excel这样的应用程序。
精品文档
元件(yuánjiàn) 工具栏
电源库 基本元件库 二极管库 晶体管库 模拟元件库 TTL元件库 COMS元件库
精品文档
其他数字元件库 混合芯片库 指示部件库 其他部件库 控制部件库 射频器件库 机电类元件库
给印制电路板设计的原件外形。
“Electronic Parameters”页: 元件的电气参数,包括元件在 实际使用中应该考虑的参数指标。
“User Fields”页:用户使用信息。
精品文档
编辑电阻元件
2、虚拟(xūnǐ)电阻

Multisim仿真教程

Multisim仿真教程

● 可变电感
● 虚拟可变电感
● 开关
● 继电器
● 变压器
● 非线性变压器
● 磁芯
● 无芯线圈
● 连接器
● 插座
● 半导体电阻 ● 半导体电容(diànróng)
● 封装电阻
● SMT电阻
● SMT电容(diànróng)
● SMT电解电容(diànróng)
● SMT电感
现实元件
虚拟元件
精品文档
1、电阻(diànzǔ)
仿真按钮,用以开始、暂停或结束仿真。
分析按钮,用以选择要进行的分析。
精品文档
后分析器按钮,用以进行对仿真结果的进 一步操作。 VHDL/Verilog按钮,用以使用VHDL模型 进行设计
VHDL:VHSIC Hardware Description Language VHSIC:Very High Speed Integrated Circuit
Tools:用于创建、编辑、复制、删除元件
Options:对程序的运行和界面进行设置
精品文档
设计(shiǎnshì)。当选择该按钮 器件选择器显示(xiǎnshì)。
器件编辑器按钮,用以调整或增加器件。
Tools的快捷方式
仪表按钮,用以给电路添加仪表或观察 仿真结果。
设置标号
设置故障
2、直流电压源
精品文档
3、交流(jiāoliú)电压源
设置(shèzhì) 最大值 设置有效值
设置频率 设置初相位
精品文档
4、时钟(shízhōng)电压源
实质上是一个(yī ɡè)频率、占空比及幅度皆可调的方波发生器
精品文档
5、受控源
1)VCVS

最详细最好的Multisim仿真教程

最详细最好的Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。

目录1. Multisim软件入门2. 二极管电路3. 基本放大电路4. 差分放大电路5. 负反馈放大电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim用户界面及基本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。

IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作。

图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

multisim仿真教程混频器电路

multisim仿真教程混频器电路

03
混频器电路设计
电路设计流程
确定设计目标
明确混频器的性能指标,如输入频率、输出 频率、增益等。
选择合适的元件
根据设计目标,选择合适的电阻、电容、电 感等元件。
电路原理图设计
根据混频器的工作原理,使用Multisim软件 绘制电路原理图。
参数设置与优化
根据元件规格和性能指标,设置元件参数并 进行优化。
元件பைடு நூலகம்择与参数设置
元件选择
根据设计需求选择合适的电阻、电容、电感等元件, 确保元件的精度和稳定性。
参数设置
根据元件规格和电路性能要求,设置元件参数,如电 阻值、电容值、电感值等。
参数优化
通过调整元件参数,优化电路性能,提高混频器的性 能指标。
电路仿真与调试
电路仿真
使用Multisim软件进行电路仿真,模拟电路的 实际工作情况。
用于绘制电路图,可随意缩放和平 移。
03
02
元件库
提供各种电路元件,方便用户选择 和放置。
仿真面板
提供仿真参数设置和仿真运行控制。
04
元件库与虚拟仪器
元件库
包含各种电子元件,如电阻、电容、电感、 晶体管等。
虚拟仪器
可设置元件的参数和属性,模拟实际元件的 行为。
元件属性
提供各种测量仪器,如示波器、信号发生器 、频谱分析仪等。
干扰与欺骗
电子战系统中的干扰机使用混频器生成干扰信号,对敌方通 信和雷达系统进行干扰和欺骗。混频器在此过程中起到关键 作用,能够生成具有特定频率和功率的干扰信号,有效降低 敌方系统的性能。
06
总结与展望
混频器电路的重要性和发展趋势
混频器电路在通信、雷达、电子对抗等领域具有广泛应用,是现代电子系统中的 重要组成部分。随着技术的发展,混频器电路的性能要求不断提高,具有更高的 频率、更低的噪声、更小的体积和更低的功耗等发展趋势。

模拟电路Multisim软件仿真教程

模拟电路Multisim软件仿真教程

第13章 Multisim模拟电路仿真本章Multisim10电路仿真软件,本章节讲解使用Multisim进行模拟电路仿真的基本方法。

目录1. Multisim软件入门2. 二极管电路3. 基本放大电路4. 差分放大电路5. 负反馈放大电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim用户界面及基本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。

IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim 经历了多个版本的升级,已经有Multisim2001、 Multisim7、 Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作。

图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

Multisim仿真实用教程讲义

Multisim仿真实用教程讲义

1.3.3 Multisim仪器仪表栏
波特图仪(Bode Plotter) 利用波特图仪可以方便地测量和显示电路的频率响应,波特图
仪适合于分析滤波电路或电路的频率特性,特别易于观察截止频率。 需要连接两路信号,一路是电路输入信号,另一路是电路输出信号, 需要在电路的输入端接交流信号。 波特图仪控制面板分为Magnitude(幅值)或Phase(相位)的 选择、Horizontal(横轴)设置、Vertical(纵轴)设置、显示 方式的其他控制信号,面板中的F指的是终值,I指的是初值。在波 特图仪的面板上,可以直接设置横轴和纵轴的坐标及其参数。
以上这些操作可以在菜单栏File子菜单下选择命令, 也可以应用快捷键或工具栏的图标进行快捷操作。
菜单
1.1.3 元器件基本操作 常用的元器件编辑功能有: 90 Clockwise--顺时针旋转90 90 CounterCW--逆时针旋转90 Flip Horizontal--水平翻转 Flip Vertical--垂直翻转 Component Properties--元件属性等。
两个连接端口是Ready and Triger
1.3.3 Multisim仪器仪表栏
逻辑转换器(Logic Converter)
Multisim提供了一种虚拟仪器:逻辑转换器。实际中没有这 种仪器,逻辑转换器可以在逻辑电路、真值表和逻辑表达式之间进 行转换。有8路信号输入端,1路信号输出端。
6种转换功能依次是:逻辑电路转换为真值表、真值表转换为 逻辑表达式、真值表转换为最简逻辑表达式、逻辑表达式转换为真 值表、逻辑表达式转换为逻辑电路、逻辑表达式转换为与非门电路。
菜单
1.1.5 图纸标题栏编辑 单击Place / Title Block命令,在打开对话框的查找范围 处指向Multisim / Titleblocks目录,在该目录下选择一 个*.tb7图纸标题栏文件,放在电路工作区。用鼠标指向文 字块,单击鼠标右键,在弹出的菜单中选择Properties命令, 或者双击title block进行编辑。

最详细最好的Multisim仿真教程

最详细最好的Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。

目录1。

Multisim软件入门2。

二极管电路3. 基本放大电路4. 差分放大电路5. 负反馈放大电路6. 集成运放信号运算和处理电路7。

互补对称(OCL)功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim用户界面及基本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5。

0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。

IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim 经历了多个版本的升级,已经有Multisim2001、 Multisim7、 Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作.图13。

1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

Multisim仿真教程

Multisim仿真教程
Tools:用于创建、编辑、复制、删除元件
Options:对程序的运行和界面进行设置
精品文档
设计(shèjì) 工具栏
器件按钮,缺省显示(xiǎnshì)。当选择该按钮 器件选择器显示(xiǎnshì)。
器件编辑器按钮,用以调整或增加器件。
Tools的快捷方式
仪表按钮,用以给电路添加仪表或观察 仿真结果。
精品文档
设定(shè dìnɡ)控制键
精品文档
三、指示(zhǐshì)器件库
● 电压表
● 电流表
● 探测器
● 灯泡
● 十六进制(shíliùjìn zhì)显示器
● 蜂鸣器
● 条形光柱
设置内阻
电路类型选择
精品文档
3 Multisim 仪器仪表库
数字万用表(Multimeter) 函数信号发生器(Function Generator) 瓦特表(Wattmeter) 示波器(Oscilloscope) 波特(bō tè)图仪(Bode Plotter) 字信号发生器(Word Generator) 逻辑分析仪(Logic Analyzer) 逻辑转换仪(Logic Converter) 失真分析仪(Distortion Analyzer) 频谱分析仪(Spectrum Analyzer) 网络分析仪(Network Analyzer)
仿真)
布线、强制向量和密
FPGA、PLD,CPLD 度直方图
等仿真
自动布线模块
……
精品文档
二、主要(zhǔyào)特点
仿真的手段切合实际,选用的元器件和测量仪器与实际情 况非常接近;并且界面可视、直观。
绘制电路图所需的元器件、仪器、仪表以图标形式出现, 选取方便,并可扩充(kuòchōng)元件库。

multisim仿真教程

multisim仿真教程

Multisim是一个非常简单易懂的电路仿真软件,使用它可以完成数字电路、模拟电路等的仿真。

对于初学者来说,Multisim也非常容易理解和使用。

因此,今天,我将分享如何使用Multisim进行简单电路实验的经验。

工具/原材料
Multisim软件
计算机
方法/步骤
首先,运行我们的Multisim软件
如何使用Multisim进行简单电路仿真
我们需要从原产品目录中选择电路图
如何使用Multisim进行简单电路仿真
元件库的分类从左到右依次是“电源”、“基本元件”(开关、电阻、电容和电感)、二极管、晶体管、模拟电路元件、TTL和CMOS。

你可以根据你的电路需要选择它们
如何使用Multisim进行简单电路仿真
绘制电路图后,可以单击工具栏中的“运行”按钮来运行模拟
如何使用Multisim进行简单电路仿真
在操作过程中,我们可以点击开关来控制开关的开关
如何使用Multisim进行简单电路仿真
当我们想完成模拟实验时,只需点击停止按钮
如何使用Multisim进行简单电路仿真
此外,如果您的电路需要通用仪表、示波器和其他测量仪器,您可以从右侧的测量工具栏中进行选择。

如何使用Multisim进行简单电路仿真
要保存仿真电路图时,可以单击“文件”菜单并选择“保存”项。

如何使用Multisim进行简单电路仿真

然后,只需选择要保存的路径并单击“确定”按钮。

如何使用Multisim进行简单电路仿真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
见example8_1_2.msm
三 验证叠加原理
例3 测量下图所示电路中的电流I,并验证叠加原理。
电源故障设置
见example8_1_3.msm
电源故障设置
2 动态电路分析
主要目的: 观察动态电路响应的时域波形。
主要方法: 1. 利用“瞬态分析(Transient Analysis) ” 2. 利用示波器
二、基本元件库
● 电阻 ● 电容 ● 电解电容 ● 电感 ● 电位器 ● 可变电容 ● 可变电感 ● 开关 ● 变压器 ● 磁芯 ● 连接器 ● 半导体电阻 ● 封装电阻 ● SMT电容 ● SMT电感 ● 虚拟电阻 ● 虚拟电容 ● 上拉电容 ● 虚拟电感 ● 虚拟电位器 ● 虚拟可变电容 ● 虚拟可变电感 ● 继电器 ● 非线性变压器 ● 无芯线圈 ● 插座 ● 半导体电容 ● SMT电阻 ● SMT电解电容
一、数字万用表
二、函数信号发生器
三、瓦特表
四、示波器
XSC1 G A B T
A、B两通道,G是接地端,T为触发端
① 测量数据显示区
在示波器显示区有两个可以任意移动的游标,游标所 处的位置和所测量的信号幅度值在该区域中显示。其中:
●“T1”、“T2”分别表示两个游标的位置,即信号出 现的时间; ●“VA1”、“VB1”和“VA2”、“VB2”分别表示两 个游标所测得的A通道和B通道信号在测量位置具有的 幅值。
波特图仪(Bode Plotter)
字信号发生器(Word Generator) 逻辑分析仪(Logic Analyzer)
逻辑转换仪(Logic Converter)
失真分析仪(Distortion Analyzer)
频谱分析仪(Spectrum Analyzer)
网络分析仪(Network Analyzer)
机电类器件库(Elector-Mechanical Components)
一、电源库
电源库中共有30个电源器件,分别是:
● 接地端 ● 数字接地端 ● VCC电压源 ● VDD数字电压源 ● 直流电压源 ● 直流电流源 ● 正弦交流电压源 ● 正弦交流电流源 ● 时钟电压源 ● 调幅信号源 ● 调频电压源 ● 调频电流源 ● FSK信号源 ● 电压控制正弦波电压源 ● 电压控制方波电压源 ● 电压控制三角波电压源 ● 电压控制电压源 ● 电压控制电流源 ● 电流控制电压源 ● 电流控制电流源 ● 电流控制电压源 ● 电流控制电流源 ● 脉冲电压源 ● 脉冲电流源图 ● 指数电压源 ● 指数电流源 ● 分段线性电压源 ● 分段线性电流源 ● 压控分段电压源 ● 受控单脉冲 ● 多项式电源 ● 非线性相关电源
四、定制Multisim用户界面
操作: 设置菜单栏Option /Preferences中各属性
选择元件的符号标准 ANSI:美国标准 DIN:欧洲标准。
选择元件、节点及 连接线上所要显示 的说明文字等
设置电路编辑窗口 元器件和背景的颜色
设置元件的识别、参数值 与属性、节点序号、引脚 名称和原理图文本等文字 的属性设置
编辑电阻元件
2、虚拟电阻
3、电位器
设定控制键
设置调节幅度
4、开关
“CURRENT_CONTROLLED SWITCH”(电流控开关) “SPDT”(单刀双掷开关) “SPST”(单刀单掷开关) “TD_SWI”(时间延迟开关) “VOLTAGE_CONTROLLED SWITCH二极管库 晶体管库 模拟元件库 TTL元件库 其他数字元件库 混合芯片库 指示部件库 其他部件库 控制部件库 射频器件库 机电类元件库
COMS元件库
仪器仪表工具栏
从左到右分别是:数字万用表、函数发生器、示 波器、波特图仪、字信号发生器、逻辑分析仪、 瓦特表、逻辑转换仪、失真分析仪、网络分析 仪、频谱分析仪 注:电压表和电流表在指示器件库,而不是仪器 库中选择
设定控制键
三、指示器件库
● 电压表 ● 探测器 ● 十六进制显示器 ● 蜂鸣器 ● 电流表 ● 灯泡 ● 条形光柱
设置内阻 电路类型选择
3
Multisim 仪器仪表库
数字万用表(Multimeter) 函数信号发生器(Function Generator)
瓦特表(Wattmeter)
示波器(Oscilloscope)
基本操作: 选用“直流工作点分析(DC Operating Point Analysis)”
(1)Output variables:主要作用是选择所要分析的节点电压、 电源和电感支路电流。
(2)Miscellaneous Options:用于设置与仿真相关的其它选项。
(3)Summary:对分析设置的汇总。
VHDL:VHSIC Hardware Description Language VHSIC:Very High Speed Integrated Circuit
报告按钮,用以打印有关电路的报告 传输按钮,用以与其它程序通讯,比如与 Ultiboard通讯;也可以将仿真结果输出到 像MathCAD和Excel这样的应用程序。
设计工具栏
器件按钮,缺省显示。当选择该按钮时, 器件选择器显示。 器件编辑器按钮,用以调整或增加器件。 Tools的快捷方式 仪表按钮,用以给电路添加仪表或观察 仿真结果。 仿真按钮,用以开始、暂停或结束仿真。 分析按钮,用以选择要进行的分析。
后分析器按钮,用以进行对仿真结果的进 一步操作。 VHDL/Verilog按钮,用以使用VHDL模型 进行设计
Multisim意为“万能仿真 ”

一、主要功能
直流工作点分析 交流分析 暂态分析 傅立叶分析 噪声分析 失真分析 直流扫描 灵敏度分析 参数扫描 温度扫描 零-极点分析 传输函数分析 最坏情况分析 ……
二、主要特点

仿真的手段切合实际,选用的元器件和测量仪器与实
际情况非常接近;并且界面可视、直观。 绘制电路图所需的元器件、仪器、仪表以图标形式出 现,选取方便,并可扩充元件库。 可以对电路中的元器件设置故障,如开路、短路和不
时间常数
τ RC 6.2ms
工程上认为经过4τ~5 τ,暂态过程结束,故 仿真的时间取0~0.05s
3. 结果显示
见example8_2_1.msm
例 2 已知R=1Ω,L=1H,对比分析在电压源作用下RL 串联电路的电感电流的阶跃响应和冲激响应。
关键:
恰当地选择和设置激励源 1. 观察阶跃响应
三、Multisim界面介绍
使用中 元件列表
仿真开关
系统 菜单 工具栏
设计 工具栏
元件 工具栏 仪器仪表 工具栏
电路图 编辑窗口
.com 按钮
状态栏
菜单
View:调整视图窗口 Place:在编辑窗口中放置节点、元器件、总 线、输入/输出端、文本、子电路等对象 Simulate:提供仿真的各种设备和方法 Transfer:将所搭电路及分析结果传输给其他 应用程序 Tools:用于创建、编辑、复制、删除元件 Options:对程序的运行和界面进行设置
③ A(B)信号通道控制调节
● Y轴刻度:设定Y轴每一格的电压刻度 ● Y轴偏移:控制示波器Y轴方向的原点 ● 输入显示方式: AC方式:仅显示信号的交流成分; 0方式:无信号输入; DC方式:显示交流和直流信号之和。
④ 触发控制(Trigger)
● 触发方式Edge:上升沿触发和下降沿触发; ● 触发电平大小Level; ● 触发信号选择: Sing:单脉冲触发; Nor: 一般脉冲触发; Auto: 触发信号不依赖于外信号; A、B:A或B通道的输入信号作为同步X轴的时基 信号; Ext: 用示波器图表上T端连接的信号作为同步X轴 的时基信号。
计算机辅助电路分析
——Multisim仿真
重庆大学电工电子实验教学示范中心
Multisim 基础

Electronics Workbench (EWB)是加拿大IIT公
司于八十年代末、九十年代初推出的用于电路仿真与 设计的EDA软件,又称为“虚拟电子工作台”。

IIT公司从EWB6.0版本开始,将专用于电路仿真与 设计模块更名为MultiSim,大大增强了软件的仿真 测试和分析功能,大大扩充了元件库中的仿真元件数 量,使仿真设计更精确、可靠。
现实元件
虚拟元件
1、电阻
电阻模型分类栏
电阻浏览器
“General”页:元件的一般性 资料,包括元件的名称、制造 商、创建时间、制作者。
“Symbol”页:元件的符号。 “Model”页:元件的模型, 提供电路仿真时所需要的参数。 “Footprint”页:元件封装,提供 给印制电路板设计的原件外形。 “Electronic Parameters”页: 元件的电气参数,包括元件在 实际使用中应该考虑的参数指标。 “User Fields”页:用户使用信息。
例1. 求下图所示电路的节点电压U1、U2。
见example8_1_1.msm
二 求戴维宁等效电路
基本操作: 1. 利用数字万用表测量电路端口的开路电压和短路电流 2. 求解出该二端网络的等效电阻 3. 绘制戴维宁等效模型 例2 求下图所示电路的戴维宁等效电路。
Req=16/6.333≈3Ω
添加输入/输出节点
瞬态分析(Transient Analysis)
设置初始条件 设置分析时间
设置计算步长
例 1 观察下图所示RC电路的零输入响应uc(t), 已知 uc(0+)=10V。
关键:
1. 设置电容元的初值 2. 设置分析时间
1. 设置电容元的初值
1)所选用的电容为现实电容
2)所选用的电容为虚拟电容
2. 设置分析时间


同程度的漏电等,针对不同故障观察电路的各种状态, 从而加深对电路原理的理解。
相关文档
最新文档