稀土元素

合集下载

17种稀土元素名称及用途

17种稀土元素名称及用途

17种稀土元素名称及用途镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。

镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。

她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。

铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。

铈的广泛应用:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。

不仅能防紫外线,还可降低车内温度,从而节约空调用电。

从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。

美国在这方面的消费量占稀土总消费量的三分之一强。

(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。

目前领先的是法国罗纳普朗克公司。

(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。

铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。

如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。

镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。

稀土元素及分组特征

稀土元素及分组特征

稀土元素及分组特征
通常把元素性质相近的17种微量金属元素称为稀土元素,分两组,即轻稀土和重稀土,即镧系+钇+钪:镧(57)、铈(58)、镨(59)、钕(60)、钷(61)、钐(62)、铕(63)、钆(64)、铽(65)、镝(66)、钬(67)、铒(68)、铥(69)、镱(70)、镥(71)+钇(39)、钪(21)。

(1)、轻稀土(7种):即铈组稀土元素,包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)。

(2)、重稀土(9种):即钇组稀土元素,包括钆(Gd)、铽(Tb)镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钇(Y)。

在17种元素中,钪(Sc)不形成独立矿床,也不与其他16种元素共生,因此一般将钪(Sc)单独描述。

除钷、钪以外,按分离工艺上的要求,结合商业价值,又将稀土元素分为三组。

其中按萃取法(目前常用的分离方法)分离可分为:
A、轻稀土(P204弱酸度萃取)组:镧(La)、铈(Ce)、镨(Pr)、钕(Nd);
B、中稀土(P204低酸度萃取)组:钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)或钐(Sm)、铕(Eu)、钆(Gd);
C、重稀土(P204中酸度萃取)组:铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)或铽(Tb)镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)+钇(Y)。

1。

稀土元素知识学习

稀土元素知识学习

一、稀土元素简介稀土,曾称稀土金属,或称稀土元素,是元素周期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。

稀土是制造被称为“灵巧炸弹”的精密制导武器、雷达和夜视镜等各种武器装备不可缺少的元素。

因其天然丰度小,又以氧化物或含氧酸盐矿物共生形式存在,故叫“稀土”。

1.基本简介稀土金属,或称稀土元素,是元素周期表第Ⅲ族副族元素钪、钇和镧系元素共17种化学元素的合称。

钪和钇因为经常与镧系元素在矿床中共生,且具有相似的化学性质,故被认为是稀土元素。

与其名称暗示的不同,稀土元素(钷除外)在地壳中的丰度相当高,其中铈在地壳元素丰度排名第25,占0.0068%(与铜接近)。

然而,由于其化学性质,稀土元素很少富集到经济上可以开采的程度。

稀土元素的名称正是源自其匮乏性。

人类第一种发现的稀土矿物是从瑞典伊特比村的矿山中提取出的硅铍钇矿,许多稀土元素的名称正源自于此地。

2.元素组成稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素。

周期系ⅢB族中原子序数为21、39和57~71的17种化学元素的统称。

其中原子序数为57~71的15种化学元素又统称为镧系元素。

稀土元素的共性是:①它们的原子结构相似;②离子半径相近(REE3+离子半径1.06×10^-10m~0.84×10^-10m,Y3+为0.89×10^-10m);③它们在自然界密切共生。

稀土元素有多种分组方法,目前最常用的有两种:两分法:铈族稀土,La-Eu,亦称轻稀土(LREE)钇族稀土,Gd-Lu+Y,亦称重稀土(HREE)两分法分组以Gd划界的原因是:从Gd开始在4f亚层上新增加电子的自旋方向改变了。

17种稀土元素特点及应用大全

17种稀土元素特点及应用大全

17种稀土元素特点及应用大全稀土元素是镧系元素系稀土类元素群的总称,包含钪Sc、钇Y及镧系中的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。

“稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。

稀土元素分为“轻稀土元素”和“重稀土元素”:“轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。

“重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。

稀土元素特性及应用简介:1、镧(La)镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。

它也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。

2、铈(Ce)A、铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。

不仅能防紫外线,还可降低车内温度,从而节约空调用电。

B、目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。

美国在这方面的消费量占稀土总消费量的三分之一强。

C、硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。

目前领先的是法国罗纳普朗克公司。

D、Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。

铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。

如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。

3、镨(Pr)镨是用量较大的稀土元素,其主要用于玻璃、陶瓷和磁性材料中。

稀土元素

稀土元素

力学因素)。
Ln3+颜色:
La3+(4f0)、Lu3+(4f14)具有封闭电子构型,在可见区、紫外区均 无吸收;Ce3+(4f1)、Eu3+(4f6)、Gd3+(4f7) 、Tb3+(4f8)吸收带全部 或绝大部分在紫外区,Yb3+(4f13)的吸收带出现在近红外区。它 们的4f轨道为全空、半空、全充满、半充满、或接近全空、全充
以上过程只是把稀土元素从矿石中分离出来,得到的氧 化物是混合稀土氧化物,或混合稀土盐。
1.2 稀土元素的分离方法
稀土元素及其+3价态化合物的性质很相似,在自然界中 广泛共存,给分离和提纯工作带来很大困难。 1.分级结晶法 依据稀土元素盐类溶解度差异的方法。 进行多次反复操作。可能反复结晶数十次,百次,甚至 上千次 才可得到符合纯度要求的产品。 2.分级沉淀法 也是依据稀土盐类的溶解度不同,加入化学试剂生产难 溶化合物,沉淀出来,再溶解、沉淀,反复多次。
3.选择性氧化还原法 对于易被氧化或还原的+3价镧系离子,可用合适的氧化 剂或还原剂改变它们的价态,使形成性质上与其它+3价离子 有明显区别的化合物,从而分离。 如Ce3+易氧化为Ce4+ ,Ce4+可形成Ce(IO3)4或Ce(OH)4 从酸性溶液中沉淀出来。
4.离子交换法 利用Ln3+在阳离子交换树脂上吸附强弱不同。 如在磺酸基聚苯乙烯强酸性阳离子树脂(HR)上有: Ln 3+(aq)+ 3HSO3SR(s)= Ln(O3SR)3(s)+3H+(aq) Ln3+在树脂上的吸附次序是La→Lu逐渐减弱。用某种络 合剂(如Na2EDTA)溶液洗淋,洗脱顺序是Lu3+ → La 3+ .

稀土元素(研)资料课件

稀土元素(研)资料课件
稀土元素在高科技产业、新材料、 新能源等领域有广泛应用,全球 需求持续增长。
供需平衡状况
近年来,全球稀土元素供需状况 总体保持平衡,但未来随着新兴 产业的发展,需求还将继续增长。
市场价格波动
影响因素
稀土元素市场价格波动受多种因素影响,包 括全球供需状况、政策调整、技术进步等。
价格走势
近年来,稀土元素市场价格呈现波动上涨趋势,未 来随着需求的增长,价格仍有上涨空间。
溶剂萃取法
原理
利用不同物质在两种不混溶液体中的溶解度差异,将目标稀土元素从 一种溶剂转移到另一种溶剂中。
步骤
混合、搅拌、分离、回收。
优点
高效、选择性高、操作简便。
缺点
需要大量有机溶剂,可能产生环境污染。
离子交换法
原理 利用离子交换剂与溶液中的离子发生交 换反应,将目标稀土元素留在离子交换
剂上,从而实现分离。 优点
选择性。
润滑油
02
添加稀土元素可改善润滑油的性能,延长润滑油的使用寿命。
高分子合成
03
在合成高分子材料中加入稀土元素,可改善其热稳定性、光稳
定性和力学性能。
玻璃陶瓷
玻璃
添加稀土元素可改变玻璃的透光性、颜色和电学性能,制造出各 种特殊功能的玻璃。
陶瓷
在陶瓷材料中加入稀土元素,可改善其力学性能、热稳定性和电学 性能。
稀土元素(研)资料课 件
目录
CONTENTS
• 稀土元素简介 • 稀土元素提取技术 • 稀土元素在各领域的应用 • 稀土元素的环境影响 • 稀土元素的市场前景 • 我国稀土政策与法规
01 稀土元素简介
定义与特性
定义
稀土元素是指元素周期表中镧系元素 加上钪和钇共17种元素的总称。

17种稀土元素

17种稀土元素

17种稀土元素的应用领域稀土的分类1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。

2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。

镧(La)【lán】:镧的应用超级普遍,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各类合金材料等。

她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。

铈(Ce)【shì】:1,铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。

不仅能防紫外线,还可降低车内温度,从而节约空挪用电。

从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。

2,目前正将铈应用到汽车尾气净化催化剂中,可有效避免大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。

3,硫化铈能够取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。

目前领先的是法国罗纳普朗克公司。

4,Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。

铈应用领域超级普遍,几乎所有的稀土应用领域中都含有铈。

如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各类合金钢及有色金属等。

镨(Pr)【pǔ】:1,镨被普遍应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

2,用于制造永磁体。

选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各类形状的磁体。

普遍应用于各类电子器件和马达上。

3,用于石油催化裂化。

以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳固性。

稀土元素分类

稀土元素分类

稀土元素分类稀土元素是指具有特殊化学性质和广泛应用价值的一类元素。

它们在现代科技、工业生产和国防建设等方面起着重要作用。

稀土元素可以分为两大类:轻稀土和重稀土。

下面将分别介绍这两类稀土元素的特点和应用。

一、轻稀土轻稀土包括镧系元素和钇系元素。

镧系元素包括镧、铈、镨、钕、钷、钐、铕、钆、铽和镝。

钇系元素包括钇、镱、铽、镥和镤。

轻稀土具有相对较低的原子序数和较低的密度。

它们具有较强的磁性、光学性能和化学性质。

轻稀土主要应用于光电子、磁性材料、催化剂和核能等领域。

1. 光电子轻稀土在光电子领域有广泛应用。

例如,镧系元素镧和铈可用于制造荧光粉,用于荧光灯、LED等照明产品。

钇和镱可用于制造激光器和光纤通信设备。

轻稀土的光学性能使其在光电子领域具有重要的应用价值。

2. 磁性材料轻稀土具有良好的磁性能,因此在磁性材料的制备中有重要作用。

钕铁硼磁体是目前最强的永磁材料,其中的主要成分是钕、铁和硼。

镨钕磁体和钇铁石榴石磁体也是常用的磁性材料。

这些磁性材料广泛应用于电机、发电机、电子设备和汽车等领域。

3. 催化剂稀土元素在催化剂领域有重要作用。

例如,镧系元素镧和铈可用于汽车尾气催化剂,帮助减少尾气中有害物质的排放。

镧系元素还可用于制备石油裂化催化剂、合成气转化催化剂等。

轻稀土的催化性能使其在环保和能源领域具有广阔的应用前景。

4. 核能轻稀土在核能领域有重要应用。

镧系元素钕和铕可用于制备核反应堆的控制棒材料,调节核反应的速率。

此外,轻稀土还可用于核燃料加工、核废料处理等。

轻稀土对核能的应用有助于提高核能的利用效率和安全性。

二、重稀土重稀土包括钇系元素和镝系元素。

钇系元素包括铪、钆、铽、镝和钬。

镝系元素包括镝、钇、铒、铥和镧。

重稀土具有较高的原子序数和较高的密度。

它们具有较强的磁性、光学性能和放射性。

重稀土主要应用于磁性材料、高温超导材料和核能等领域。

1. 磁性材料重稀土在磁性材料中起着重要作用。

例如,镝和铒是制备高温超导材料的重要成分,这些材料在超导电力设备中具有广泛应用。

稀土元素-稀土的应用

稀土元素-稀土的应用

工业领域
Magic Rare earth element
医 药 领 域
农业领域
稀 1.冶金工业领域 1. 稀土元素对于硫,氧等元 3. 稀土在玻璃工业中有三个 素的亲和力很强,在炼钢 土 中可混合稀土去除硫,氧 应用:玻璃着色、玻璃脱色和 在石油裂化工业中,稀土分子 元 2.石油化工领域 制备特种性能的玻璃。 等杂质,获得纯净的钢材。 作为筛裂化催化剂,活性高、 4. 稀土可以加入陶瓷和瓷釉 素 选择性好、汽油的生产率高。 • 之中,减少釉和破裂并使其 氢在稀土中有很大的溶解 钕玻璃为粉红色并带有紫 在 3.玻璃工业领域 可以使分子筛的催化效率大大 具有光泽。但更主要用做陶 色光泽、镨玻璃为绿色 度,可以用稀土吸收钢水 (制造滤 增加,并且延长了其使用寿命。 工 瓷的颜料,它可使陶瓷的颜 中的氢,克服氢脆。 光片 )等; 业 4.陶瓷工业领域 色更柔和、纯正,色调新颖, 二氧化铈可将玻璃中呈黄 光洁度好。稀土氧化物还可 领 绿色的二价铁氧化为三价而脱 以制造耐高温透明陶瓷 (应用 5. 稀土作为荧光灯的发 域 5.电光源工业领域 色,还可以加入氧化钕进行物 于激光等领域 )、耐高温坩埚 理脱色; 光材料,是节能性的光 ( 冶金)。 的 源 ,特点是 光效好 、光 稀土特种玻璃如铈玻璃(防 应 6.污染治理 色好 、寿命 长 。比白炽 辐射玻璃 )、镧玻璃(光学玻璃)。 用 灯可节电75—80%。
④ 对人体皮肤的作用
⑤对人体癌症及爱滋病毒的作用
谢谢啊!
优点:
①电动机的效率增强;
磁性材料
②电动汽车起动机的起动力会大大 增加而体积却大大减小; ③家用电器能耗显著降低; ④有广泛的应用前景,如:磁悬浮 高速列车,自动化高速公路。
缺点:成本变高

稀土元素

稀土元素

稀土元素稀土是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth),简称稀土(RE或R)。

世界稀土资源世界稀土工业储量约1亿吨,我国居首位为5200万吨(REO),占世界稀土工业总储量一半以上。

其它富有稀土资源的国家和地区依次为美国(1300万吨)、独联体(600万吨)、澳大利亚(520万吨)、印度(110万吨)、加拿大(94万吨)南非(39万吨)、巴西(11万吨)等国家。

欧盟和日本基本没有稀土资源。

中国稀土资源我国稀土资源具有储量大、矿物品种全、稀土配分好等特点。

白云鄂博矿是世界最大的稀土矿山,为氟碳铈和独居石混合型稀土矿。

江西、广东等南方七省区的离子吸附型中重稀土矿是我国独有珍稀矿种。

四川和山东省拥有优质的单一型氟碳铈镧稀土矿。

广东、广西和台湾等省还蕴藏丰富的独居石矿和磷钇矿。

中国稀土工业储量REO万稀土——现代工业的维生素我国稀土应用已有50多年历史。

20世纪50年代开始把稀土应用于汽灯纱罩、打火石和电弧碳棒等方面,进而大量应用于冶金、机械、石油、化工、玻璃和陶瓷等传统产业,对改善产品性能、增加产品品种、提高生产效率发挥了巨大作用。

稀土已成为改进产品结构、提高科技含量、促进行业技术进步的重要元素。

由于稀土用量少,作用大,并已渗透到国民经济各个领域,成为许多产业不可缺少的“助剂”,被人们誉称为“现代工业的维生素”。

永磁之王——钕铁硼金属钕和镨钕合金主要用于制造钕铁硼永磁材料,它是目前世界上磁性最强的永磁体,被誉为“永磁之王”。

用它代替其他永磁材料,可使器件体积和重量成倍下降,从而获得了极为广泛的应用。

目前主要应用领域有:永磁电动机、发电机、核磁共振成像仪、磁选机、音响扬声器、磁力传动、磁力起重、仪器仪表、液体磁化、磁疗设备等等,已成为汽车制造、通用机械、电子信息产业和尖端技术不可缺少的功能材料。

17种稀土元素名称的由来及用途

17种稀土元素名称的由来及用途

元素周期表内的稀土元素位置(资料图)稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。

简称稀土(RE或R)。

稀土一词是历史遗留下来的名称。

稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。

稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。

通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。

也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。

这些稀土元素的发现,从1794年芬兰人加多林(J。

Gadolin)分离出钇到1947年美国人马林斯基(J。

A。

Marinsky)等制得钷,历时150多年。

其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。

钷是美国人马林斯基、格兰德宁(L。

E。

Glendenin)和科列尔(C。

D。

Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。

过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。

大多数稀土元素呈现顺磁性。

钆在0℃时比铁具更强的铁磁性。

铽、镝、钬、铒等在低温下也呈现铁磁性,镧、铈的低熔点和钐、铕、镱的高蒸气压表现出稀土金属的物理性质有极大差异。

钐、铕、钇的热中子吸收截面比广泛用于核反应堆控制材料的镉、硼还大。

稀土金属具有可塑性,以钐和镱为最好。

除镱外,钇组稀土较铈组稀土具有更高的硬度。

稀土元素小百科

稀土元素小百科

稀土元素是‎镧系元素系‎稀土类元素‎群的总称,包含钪Sc‎、钇Y及镧系‎中的镧La‎、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元‎素。

镧(lan兰)、铈(shi市)、镨(pu普)、钕(nv女)、钷(po叵)、钐(shan山‎)、铕(you 有)、钆(ga嘎)、铽(te特)、镝(di笛)、钬(huo火)、铒(er耳)、铥(diu丢)、镱(yi 意)、镥(lu鲁),钪(kang抗‎),钇(yi乙)“稀土”一词是十八‎世纪沿用下‎来的名称,因为当时用‎于提取这类‎元素的矿物‎比较稀少,而且获得的‎氧化物难以‎熔化,也难以溶于‎水,也很难分离‎,其外观酷似‎“土壤”,而称之为稀‎土。

稀土元素分‎为“轻稀土元素‎”和“重稀土元素‎”:“轻稀土元素‎”指原子序数‎较小的钪S‎c、钇Y和镧L‎a、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。

“重稀土元素‎”原子序数比‎较大的钆G‎d、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。

二、稀土资源及‎储备状况由于稀土元‎素性质活跃‎,使它成为亲‎石元素,地壳中还没‎有发现它的‎天然金属无‎水或硫化物‎,最常见的是‎以复杂氧化‎物、含水或无水‎硅酸盐、含水或无水‎磷酸盐、磷硅酸盐、氟碳酸盐以‎及氟化物等‎形式存在。

由于稀土元‎素的离子半‎径、氧化态和所‎有其它元素‎都近似,因此在矿物中‎它们常与其‎它元素一起‎共生。

我国稀土资‎源占世界稀‎土资源的8‎0%,以氧化物(REO)计达3 600万吨‎,远景储量实‎际是1亿吨‎。

我国稀土资‎源分南北两‎大块。

——北方:轻稀土资源‎,集中在包头‎白云鄂博特‎等地,以后在四川‎冕宁又有发‎现。

主要含镧、铈、镨、钕和少量钐‎、铕、钆等元素;——南方:中重稀土资‎源,分布在江西‎、广东、广西、福建、湖南等省,以罕见的离‎子态赋存与‎花岗岩风化‎壳层中,主要含钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇和镧、钕等元素。

中重稀土元素

中重稀土元素

中重稀土元素摘要:1.稀土元素的概述2.中重稀土元素的定义和特点3.中重稀土元素的应用领域4.我国中重稀土元素的资源优势和开发状况5.中重稀土元素的市场前景正文:一、稀土元素的概述稀土元素,又称为镧系元素,是指周期表中第ⅢB 族的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、欧(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、铕(Yb)和镱(Lu)15 种金属元素。

由于其具有独特的物理和化学性质,被广泛应用于磁性材料、磁悬浮列车、磁头、发光材料、催化剂等领域。

二、中重稀土元素的定义和特点中重稀土元素是指镧系元素中相对原子质量较大的元素,如钐(Sm)、欧(Eu)、钆(Gd)、铽(Tb)等。

这些元素具有较高的磁性、较强的耐腐蚀性和较好的机械性能等特点,使其在磁性材料、磁悬浮列车、磁头、发光材料、催化剂等领域具有广泛的应用。

三、中重稀土元素的应用领域1.磁性材料:中重稀土元素具有较高的磁性,可作为磁性材料的主要成分,如钐钴磁体、钕铁硼磁体等。

2.磁悬浮列车:中重稀土元素可用于磁悬浮列车的磁力系统,提高列车的运行速度和稳定性。

3.磁头:中重稀土元素可作为磁头材料,提高磁头的灵敏度和读写速度。

4.发光材料:中重稀土元素可用于制造发光材料,如钐离子掺杂的钇铝石榴石发光材料等。

5.催化剂:中重稀土元素可作为催化剂,提高化学反应的速率和选择性,如钐催化剂用于合成氨等。

四、我国中重稀土元素的资源优势和开发状况我国是世界上稀土资源最丰富的国家,拥有全球约90% 的中重稀土资源。

近年来,我国政府对稀土资源的保护和合理开发给予了高度重视,加大了对稀土产业的投资和支持力度,推动了稀土产业的转型升级和可持续发展。

五、中重稀土元素的市场前景随着科技的不断发展和新兴产业的崛起,对中重稀土元素的需求将持续增长。

17种稀土元素名称的由来及用途浅说

17种稀土元素名称的由来及用途浅说

稀土材料第一课概念1.1 什么是稀土?1.2 稀土生产与分离1.3 稀土资源1.1 什么是稀土?稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。

简称稀土(RE或R)。

稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。

根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。

轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。

重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。

称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。

稀土元素的主要物理化学性质稀土元素是典型的金属元素。

它们的金属活泼性仅次于碱金属和碱土金属元素,而比其他金属元素活泼。

在17个稀土元素当中,按金属的活泼次序排列,由钪,钇、镧递增,由镧到镥递减,即镧元素最活泼。

稀土元素能形成化学稳定的氧化物、卤化物、硫化物。

稀土元素可以和氮、氢、碳、磷发生反应,易溶于盐酸、硫酸和硝酸中。

稀土易和氧、硫、铅等元素化合生成熔点高的化合物,因此在钢水中加入稀土,可以起到净化钢的效果。

由于稀土元素的金属原子半径比铁的原子半径大,很容易填补在其晶粒及缺陷中,并生成能阻碍晶粒继续生长的膜,从而使晶粒细化而提高钢的性能。

稀土元素具有未充满的4f电子层结构,并由此而产生多种多样的电子能级。

因此,稀土可以作为优良的荧光,激光和电光源材料以及彩色玻璃、陶瓷的釉料。

稀土离子与羟基、偶氮基或磺酸基等形成结合物,使稀土广泛用于印染行业。

而某些稀土元素具有中子俘获截面积大的特性,如钐、铕、钆、镝和铒,可用作原子能反应堆的控制材料和减速剂。

17种稀土元素

17种稀土元素

17种稀土元素
钪kang4 金属元素符号:Sc 银白色质软可用来制特种玻璃和合金。

钇yi3 金属元素符号:Y 暗灰色可用来制特种玻璃和合金。

镧lan2 金属元素符号:La 银白色质软它的化学物可制特种玻璃和合金
铈shi4 金属元素符号:Ce 铁灰色质软可用来制合金
镨pu3 金属元素符号:Pr 淡黄色它的化学物多呈绿色可用作颜料等
钕nu3 金属元素符号:Nd 银白色可用来制合金,激光材料等,也用作催化剂
钷po3 金属元素符号:Pm 人造的放射性金属元素
钐shan1 金属元素符号:Sm 放射性金属元素
铕you3 金属元素符号:Eu 铁灰色,用于核工业,也可制彩色显像管中的荧光粉
钆ga2 金属元素符号:Gd 银白色,磁性强,用于微波技术,核工业。

铽te4 金属元素符号:Tb 银白色,质软,可用来制荧光物质及某些元件等。

镝di1 金属元素符号:Dy 银白色,用于核工业。

钬huo3 金属元素符号:HO 银白色,质软可用来制磁性材料。

铒er3 金属元素符号:Er 银灰色,质软可用来制特种合金
铥diu1 金属元素符号:Tm 银白色,质软可用来制X射线源等
镱yi 金属元素符号:Yb 银白色,质软,可用来制特种合金,也用作激光材料。

镥lu 金属元素符号:Lu 银白色,质软,可用于核工业。

在钕铁硼产品中常有的稀土金属有钕,镨,镝,铽,钆,钬。

稀土元素

稀土元素

(2)原子半径和离子半径角度
镧系元素的原子半径及 Ln3+离子半径,在总的趋势上 都随着原子核电荷数的增大 而减小,这一现象叫做镧系 收缩。
由于铕和镱各自具有半充满和全充满的4f 亚层,这一相对稳定的结构对核电荷的屏 蔽较大,所以原子半径明显增大。
在镧系 原子半径收 缩的过程中, 有两处突跃。
即铕和 镱的原子半 径突然增大, 在图中在铕 和镱处出现 了两个峰值。
,一次分离重复操作竟达2万次,
对于化学分工步作者法而是言利,用其化艰合辛的物程在溶剂中溶解的难易程 度,度可(想溶而解知。度因)此上用的这差样别的方来法进行分离和提纯的。
不能大量生产单一稀土。
溶解 加热 浓缩
分步 析出
②离子交换法
阳离子交换 树脂填充于 柱子内
形成络合物的 稀土就脱离离 子交换树脂
稀土元素包括钪、钇、镧、铈、镨、钕、 钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、 镥。

稀土金属是芬兰学者加多林
土 (Johan Gado1in)在1794年发现的。

当时在瑞典的矿石中发现了矿物 组成类似“土”状物而存在的钇
素 土,且又认为稀少,便定名为



(Baxe Earth)。
①燃点低。 ②比其他金属元素都活泼。 ③ 氧化物稳定。 ④氧化物熔点高,生成自由能负值大。
一.稀土元素的简介和性质 二. 稀土元素的应用 三. 稀土元素的分离 四. 稀土元素的制备
稀土元素 稀土元素 的组成 的发现
稀土元素的 稀土元素的 化学性质 物理性质
稀土元素的组成
稀土元素:周期系ⅢB族中原子序数为 21、39和57~71的17种化学元素的统称。
其中原子序数为57~ 71的15种化学元 素又统称为镧系元素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
15
2L11n10原5 子Ln半原离径子和半离径子半径
Eu
200
210150
128000
105
La Ce
La
Pr
Nd
Pm
Sm Eu
Eu
Sm
Gd Tb
Dy
Ho
Yb
Ln(+II) Ln Er LnTm(+III) Lu
Ce
Ln(+IV)
116905
100
Pr Nd
Yb
190
14905
185
11289000 11078055
1 、氧化物
19
4 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr
钾钙 钪钛 钒 铬锰铁钴镍 铜 锌镓锗砷硒 溴氪
5 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe
97.9
-2.29
96.4
-2.30
95.0
-1.99
93.8 -2.28
92.3
-2.31
90.8
-2.29
89.4
-2.33
88.1
-2.32
86.9
-2.32
85.8
-2.22
8
84.8
-2.30
从上图中可以看出,镧系元素的原子半径和
离子半径在总的趋势上都随着原子序数的增加而
缩小的幅度很小,这叫做
16
LaLaCeCe PrPr NdNd PmPm SmSm EuEu GGdd TTbb DDyy HHoo EErr TTmm YYbb Lu
问题 为什么铈、镨、铽、镝常发现+4价而钐、
铕、铥、镱却能生成+2价?
答:根据洪特规则,等价轨道上的电子除了分占轨道外,轨 道处于全充满,半充满或全空时代较稳定的结构,镧系元 素4f轨道有一种保持或接近这种稳定性结构的倾向。
7 87 Fr 88 Ra 89-103 104 Rf 105 Db 106Sg 107 Bh 108 Hs 109 Mt 110 111 112
钫 镭 Ac-Lr 钅卢 钅杜 钅喜 钅波 钅黑 钅麦 Uun Uuu Uub
114 116 118
镧 锕系 系镧锕系系85镧 锕97ALca85镧锕97A5L9铈 钍80caTC59he铈钍80 TC59he9镨镤1 P5P99镨镤1arPP69ar0钕2铀N690U钕2d铀NUd69钷 镎136P9N钷镎13mpPNmp69钚24钐69钚24PS钐PSumum
铷 锶 钇 锆铌 钼 锝 钌 铑钯银 镉 铟 锡 锑 碲 碘 氙
6 55 Cs 56 Ba 57-71 72 Hf 73 Ta 74 W 75Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn
铯 钡 La-Lu 铪 钽 钨 铼 锇 铱 铂 金 汞 铊 铅 铋 钋 砹 氡
现象。
镧系元素相继填充处于内层的4f 能级,为什么 还发生镧系收缩的现象?
9
a) 镧系收缩的原因 1. 是由于4f 电子对原子核的屏蔽作用比较弱,随
着原子序数的递增,外层电子所经受的有效核 电荷缓慢增加,外电子壳层依次有所缩小。
2. 由于f 轨道的形状太分散,4f 电子互相之间的屏 蔽也非常不完全,在填充 f 电子的同时,每个4f 电子所经受的有效核电荷也在逐渐增加,结果使 得4f 壳层也逐渐缩小。
6铕36铕3EEuu 9镅59镅5AAmm
664钆4钆GGdd 9锔9锔66CCmm
6655铽铽TTbb 9977锫锫BBkk
6969镝锎68镝锎68DCDCyfyf69钬7锿969钬7H锿9EHoEsos160镄8铒1060镄8铒FE0mrFEm1r60铥钔911MT60铥钔9dm1MT1dm704镱锘021NY70镱 锘ob02NY170ob1镥铹3 L1L701u镥铹r3 LLur
187800
Pm
Ln
La
Sm
Eu
Ln(+II)
La
CeCe
Pr
Pr
Nd
Pm
SSmm
Eu
Ce
Pr
Nd
Pm
Sm
Eu
Ce Pr
Gd Tb
Tm
L n ( +YIb I I )
Dy
Ln(+IV)
Gd
Ho
Tb Dy
GdGd TbTb Dy Gd Tb
Ho
Ho
Er
Er
Er
Tm
TTmm
Tm
Yb Yb Yb
Lu
Lu
Lu
Earths ),用 RE 表示 。
内过渡 元素
有电子填充在内层的(n-2)f 能级。但对于镧 系和锕系来讲并不规则,电子也会填入5d 或 6d 能级:这是由于4f 和 5d, 5f 和6d 能级的能 量较为接近的原因。
具有重要工业意义的稀土矿物有磷钇矿(YPO4)、氟碳铈矿
(Ce(CO3)F) 、褐钇铌矿(YNbO4)等等。
三、氧化态
+III氧化态是所有Ln元素的特征氧化态。
Ce(4f15d16s2),Pr(4f36s2),Tb(4f96s2),Dy(4f106s2) 能形成+IV氧化态即
Ce(4f0),Pr(4f1),Tb(4f7),Dy(4f8) 。
Sm(4f66s2),Eu(4f76s2),Tm(4f136s2),Yb(4f146s2) 能形成+II氧化态即
Sm(4f6),Eu(4f7),Tm(4f13),Yb(4f14) 。 从4f电子层结构来看,其接近或保持全空、 半满及全满时的状态较稳定(也存在热力学及动力
13
学因素)。
问题
为什么镧系元素的特征氧化态是+3?
镧系元素外层电子有2个6S电子,1个5d电子或
n个f电子,它们的氧化态不仅决定于S电子,也 取决于d电子和f电子,由于镧系金属在气态时, 失去2个S电子和1个d电子或2个S和一个f电子所 需的能力较低(为什么?),所以一般能形成 稳定+3氧化态。
稀土元素
概 述
镧 系 元
镧 镧铈 系 系元 元 元素
素 素 素的
性 的 的应
质 重 应用
要用



1
“稀土”元
镧系元素概述
素并不
引言
稀少
镧系元素(Lanthanides)包括从镧(57)到镥(71)的15个第
六周期的内过渡元素, 用Ln 表示。镧系元素与化学性质相
近的钪(Sc)和钇(Y),共17个元素总称为稀土元素( Rare
铷 锶 钇 锆铌 钼 锝 钌 铑钯银 镉 铟 锡 锑 碲 碘 氙
6 55 Cs 56 Ba 57-71 72 Hf 73 Ta 74 W 75Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn
铯 钡 La-Lu 铪 钽 钨 铼 锇 铱 铂 金 汞 铊 铅 铋 钋 砹 氡
5
6
镧系元素性质 一、通性
镧在基态时不存在f电子,但镧与它后面的14 种元素性质很相似,所以把它作为镧系元素。
由于镧系收缩的影响,使得Y的原子半径 (0.181nm)、与元素Nd、Sm(0.182、0.18nm)及离子 半径Y3+(0.089nm)与Ho3+、Er3+(0.0894、0.0881nm) 接近。
IB IIB 铝 硅 磷 硫 氯 氩
4 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr
钾钙 钪钛 钒 铬锰铁钴镍 铜 锌镓锗砷硒 溴氪
5 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe
11
例: IV B族的Zr4+(80 pm)和Hf4+(79 pm); V B族 的Nb5+(70 pm)和Ta5+(69 pm);VI B族的Mo6+(62 pm)和W6+(62 pm),离子半径极为接近,化学性 质相似。结果造成锆与铪,铌与钽,钼与钨这三 对元素在分离上的困难。
12
镧系元素性质
原子半径/pm
187.7 182.4 182.8 182.1 181.0 180.2 204.2 180.2 178.2 177.3 176.6 175.7 174.6 194.0 173.4
Ln3+半径 /pm E q /V
106.1 -2.38
103.4 -2.34
101.3 -2.35
99.5 -2.32
整个电子壳层依次收缩的积累造成总的镧系收缩
10
b) 镧系收缩的影响
➢使钇Y3+(88 pm)在离子半径的序列中落在铒 Er3+(88.1 pm)的附近,因而在自然界中常同镧系 元素共生,成为稀土元素的一员. ➢使镧系后面各族过渡元素的原子半径和离子半 径分别与相应同族上面一个元素的原子半径和离 子半径极为接近。 因此,镧系之后的同周期元素与对应的上一周期 元素在性质上极为相似,也是镧系收缩所带来的 影响。
相关文档
最新文档