工程热力学概念公式复习过程
工程热力学复习大纲

工程热力学复习大纲第一章基本概念及定义1.热力学系统(开放和封闭;绝热和隔离),区分定义和相互关系2。
区分过程量和状态量。
3、平衡状态(注意区分与均匀和稳定状态的关系)、准平衡过程、可逆过程4、总能的概念如:u、h,比参数u,h5、热效率的定义式,正向循环和逆向循环。
6、工质的内可逆过程。
第二章:热确定性定律1、热力学第一定律的表达式。
2.能够利用开式系统的能量方程解决实际问题(如充气、热力设备(汽轮机等)第三章气体和蒸气的性质1.理想气体状态方程2,R,RG的意义和关系。
3.比热容的定义和特征4、水、水蒸气的各种状态,干度定义第四章气体和蒸汽的基本热力学过程1、p-v图和t-s图上各种热力过程的关系。
能量的变化关系及其判据。
119页图4-72、水蒸气的基本热力过程在p-v图和t-s图上的表示,如等温、等压等。
3.等压过程的焓变等于热交换,等压过程的热力学能变化等于过程的热交换。
4.给定多变系数,各种热力学过程将绘制在PV图和TS图上。
它可以指出工作区域和热量,并判断热量的吸收和释放;以及内能和焓的变化。
5、理想气体的内能和焓是温度的单值函数,指的是比参数。
第五章热的第二定律1、熵是状态量,与过程无关;熵变与可逆过程还是不可逆的关系。
2.深刻理解卡诺定理和热力学第二定律:卡诺定理的两个推论都是可逆的吗循环的热效率都等于卡诺循环?熟悉开氏表述和克氏表述。
3、热熵流表达式,与总熵和熵产关系。
4、熵定义式,及其适用条件。
5、熵方程的应用。
第七章气体和蒸汽的流动喷管的形状选择与那些因素有关?背压对喷管性能有何影响?温度有何变化规律和影响?第八章至第十二章1、压气机,实际过程与理想过程的关系,采用级间冷却,多级压缩的好处?在图上如何表示2.蒸汽压缩制冷与空气压缩制冷的联系和区别,蒸汽压缩制冷的优点,设备上的差异和原因。
3、朗肯循环及其再热循环原理及在t-s图上表示。
4.汽油机和柴油机循环的区别。
以及它们在P-V和T-S图上的表示。
《工程热力学》知识点复习总结

第一部分 (第一章~第五章)一、概念(一)基本概念、基本术语1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用等问题。
2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学研究对象。
这种空间内的物质的总和称为热力系统,简称系统。
3、闭口系统:没有物质穿过边界的系统称为闭口系统。
系统内包含的物质质量为一不变的常量,所以有时又称为控制质量系统。
4、开口系统:有物质流穿过边界的系统称为开口系统。
开口系统总是一种相对固定的空间,故又称开口系统为控制体积系统,简称控制体。
5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。
6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。
7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。
9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参数。
10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数。
11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。
12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。
13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹,这样的过程称为可逆过程。
《工程热力学》总复习

名称含义说明体积功(或膨胀功)W 系统体积发生变化所完成的功。
2①当过程可逆时,W = ∫ pdV 。
1②膨胀功往往对应闭口系所求的功。
轴功W系统通过轴与外界交换的功。
①开口系,系统与外界交换的功为轴功Ws。
②当工质的进出口间的动位能差被忽略时,Wt=Ws,所以此时开口系所求的轴功也是技术功。
《工程热力学》期末总结一、闭口系能量方程的表达式有以下几种形式:1kg 工质经过有限过程:q = ∆u + w(2-1)1kg 工质经过微元过程:δq = du+δw(2-2)mkg 工质经过有限过程:Q = ∆U +W(2-3)mkg 工质经过微元过程:δQ = dU +δW(2-4)以上各式,对闭口系各种过程(可逆过程或不可逆过程)及各种工质都适用。
在应用以上各式时,如果是可逆过程的话,体积功可以表达为:2δw =pdv(2-5)w= ∫1 pdv2(2-6)δW = pdV(2-7)W = ∫1 pdV(2-8)闭口系经历一个循环时,由于U 是状态参数,∫dU = 0 ,所以∫δQ = ∫δW(2-9)式(2-9)是闭口系统经历循环时的能量方程,即任意一循环的净吸热量与净功量相等。
二、稳定流动能量方程q = ∆h + 1∆c 2 2= ∆h + wt + g∆z + ws(2-10)(适用于稳定流动系的任何工质、任何过程)2q = ∆h −∫vdp(2-11)1(适用于稳定流动系的任何工质、可逆过程)三、几种功及相互之间的关系(见表一)表一几种功及相互之间的关系s1名称 质量比热容c体积比热容 c '摩尔比热容 M c 三者之间的关系单位 J/(k g ·K )J/(m 3·K )J/ (kmol ·K )M cc ' = c ρ 0 =22.4ρ 0 − 气体在标准状况下的密度定压 c'c pM c p定容c V'c VM c V推 动功W push开口系因工质流动而传 递的功。
工程热力学复习大纲

工程热力学复习大纲一名词解释1 比热容的定义为:单位物量的物质,温度升高或降低1K(1°C)所吸收或放出的热量,称为该物体的比热容(有时简称比热)。
即 c=δq/dT。
2定容比热容:在定容情况下,单位物量的气体,温度变化1K(1°C)所吸收或放出的热量。
即c v=δq v/dT3定压比热容:在定压情况下,单位物量的气体,温度变化1K(1°C)所吸收或放出的热量。
4 梅耶公式(适用于理想气体):c p-c v=R5 c p与c v之比值称为比热容比,它也是一个重要参数。
K= c p/c v=M c p/M c v6 膨胀功(也称容积功):在压力差作用下,由于系统工质容积发生变化而传递的机械功。
7绝热节流:稳态稳流的流体快速流过狭窄断面,来不及与外界换热也没有功量的传递,可理想化称为绝热节流。
绝热节流前后焓相等。
h1=h28 节流过程是指流体(液体、气体)在管道中流经阀门、孔板或多孔堵塞物等设备时,由于局部阻力,使流体压力降低的一种特殊流动过程。
若节流过程中流体与外界没有热量交换,称为绝热节流。
9绝对湿度:每立方米湿空气中所含有的水蒸气质量,称为湿空气的绝对湿度。
绝对湿度也就是湿空气中水蒸气的密度ρv,按理想气体状态方程其计算式为ρv=mv/V=pv/RvT(kg/m³) 10相对湿度(φ):湿空气的绝对湿度ρv与同温度下饱和空气的饱和绝对湿度ρs的比值。
11 定熵滞止参数:将具有一定速度的流体在定熵条件下扩压,使其流速降低为零,这时气体的参数称为定熵滞止参数。
12准静态过程:理论研究可以设想一种过程,这种过程进行的非常缓慢,使过程中系统内部被破坏了的平衡状态有足够的时间恢复到新的平衡态,从而使过程的每一瞬间,系统内部的状态都非常接近平衡状态,即整个过程可看作是由一系列非常接近平衡态的状态所组成,这样的过程称为准静态过程。
13可逆过程:系统经历某一过程后,如果能使系统与外界同时恢复到初始状态,对外界没有留下任何影响,既没有得到功,也没有消耗功。
工程热力学复习大纲资料重点

• 不可逆循环的热效率一定小于可逆循环的热效率。 ()
判断正确性
• 经历一个不可逆过程后,系统能恢复原来状态。 ()
• 热力学第一定律解析式 适用于可逆过程,任何 工质。 ( )
• 孤立系统的熵与能量都是守恒的。 ()
• 不管过程可逆与否,绝热系统的技术功总是等 于初、终态的焓差。 ( )
式
第一知识点 闭口系基本能量方程式
闭口系,
Q U W q u w
δQ dU δW δq du δw
第一定律第一解析式— 热 功的基本表达式
讨论:
Q U W q u w
δQ dU δW δq du δw
1)对于可逆过程 δQ dU pdV
2)对于循环
δQ dU δW Qnet Wnet
)两个解析式的关系
δq dh vdp d u pv vdp
du pdv du δw膨
总之: 1)通过膨胀,由热能
功,w = q –Δu
2)第一定律两解析式可相互导出,但只有在开系中 能量方程才用焓。
技术功(technical work)—
技术上可资利用的功 wt
wt
ws
1 2
cf2
膨胀线在压缩线上方;吸热线在放热线上方。
热力循环的评价指标
正循环:净效应(对外作功,吸热)
动力循环:目的在于净功 用热效率η评价
T1 Q1
h 收益
代价 净功 = W
吸热 Q1
W
Q2 T2
循环经济性指标:
收益 代价
动力循环: 热效率(thermal efficiency)
ht
wnet q1
工程热力学知识点

工程热力学复习知识点一、知识点基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。
1. 基本概念掌握和理解:热力学系统(包括热力系,边界,工质的概念。
热力系的分类:开口系,闭口系,孤立系统)。
掌握和理解:状态及平衡状态,实现平衡状态的充要条件。
状态参数及其特性。
制冷循环和热泵循环的概念区别。
理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。
2. 热力学第一定律掌握和理解:热力学第一定律的实质。
理解并会应用基本公式计算:热力学第一定律的基本表达式。
闭口系能量方程。
热力学第一定律应用于开口热力系的一般表达式。
稳态稳流的能量方程。
理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。
3. 热力学第二定律掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。
掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。
卡诺循环和卡诺定理。
掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。
理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。
热力系的熵方程(闭口系熵方程,开口系熵方程)。
温-熵图的分析及应用。
理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。
4. 理想气体的热力性质熟悉和了解:理想气体模型。
理解并掌握:理想气体状态方程及通用气体常数。
理想气体的比热。
理解并会计算:理想气体的内能、焓、熵及其计算。
理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。
5. 实际气体及蒸气的热力性质及流动问题理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。
例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。
蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。
理解并掌握:绝热节流的现象及特点6. 蒸汽动力循环理解计算:蒸气动力装置流程、朗肯循环热力计算及其效率分析。
工程热力学基本概念

工程热力学基本概念及基本公式1.准静态过程(Quasi-static Process )过程中热力学系统经历的是一系列平衡状态并在每次状态变化时仅无限小地偏离平衡状态。
A quasi-static process is one in which the departure from thermodynamic equilibrium is at most infinitesimal.2.外界(Surroundings ):系统之外的一切其它物质。
边界(Boundary ):系统与外界之间的分界面。
闭口系统(Closed System ) ←→控制质量(Control Mass ):系统与外界之间没有物质交换,但有能量交换。
0;0≠=E m δδ开口系统(Open System )←→控制体积(Control Volume ):系统与外界之间不仅有物质交换,还有能量交换。
0;0≠≠E m δδ 孤立系统(Isolated System ):系统与外界之间既无质量交换又无能量交换。
0;0==E m δδ 3.热力学第一定律(First Law of Thermodynamics ):在系统两个状态之间的所有绝热过程的净功是一样的,也就是说,闭口系统在经历给定两点的绝热过程对环境所作的净功仅与系统初态和终态有关,而与绝热过程的具体路径无关。
It is found by experiment that for all adiabatic processes between two states the value of the net work done by or on the system is the same. That is, the value of the net work done by or on a closed system undergoing an adiabatic process between two given states depends solely on the end states and not on the details of the adiabatic process.dE Q W δδ=-→dE QW dt=- 4.第二定律的陈述(Statements of the Second Law )克劳修斯陈述: ① 热能不可能单独地从低温物体传向高温物体。
工程热力学基本概念及重要公式

工程热力学基本概念及重要公式1.热力学系统和热力学过程:热力学系统是指一定空间区域内被观察的物质或物体,它可以是一个封闭系统、开放系统或隔离系统。
热力学过程是指系统经历的状态变化过程,可以分为等温过程、绝热过程、等容过程和等焓过程等。
2.热力学第一定律:热力学第一定律是能量守恒定律在热力学中的表述,即能量守恒原则。
它可以表示为:ΔU=Q-W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。
该定律说明了系统内能的变化等于系统吸收的热量减去系统对外做的功。
3.热力学第二定律:热力学第二定律是热力学中的基本定律之一,也被称为熵增定律。
它可以表述为系统总熵永不减小,即所有自然界的过程和现象都遵循熵增的趋势。
根据熵的定义,dS≥Q/T,其中dS表示系统熵的增量,Q表示吸收的热量,T表示温度。
这个公式说明了系统的熵增量等于吸收的热量除以温度。
4.等温过程和绝热过程:在等温过程中,系统与外界保持温度不变,即温度恒定。
根据理想气体状态方程,PV=常数,即在等温过程中,气体的压强与体积呈反比关系。
在绝热过程中,系统与外界在热量交换上完全隔绝,即吸收或放出的热量为零。
根据理想气体状态方程,PV^γ=常数,其中γ为绝热指数,指的是在绝热过程中,气体压强与体积的幂指数之积的常数。
5.卡诺循环:卡诺循环是热力学中一种完美的热机循环,它由两个等温过程和两个绝热过程组成。
卡诺循环是理想的热机循环,它在可逆过程中实现了最大的功效率。
卡诺循环的功效率可表示为η=(T1-T2)/T1,其中T1表示高温热源的温度,T2表示低温热源的温度。
6.热力学第三定律:热力学第三定律是热力学中的基本定律之一,它表明在温度等于绝对零度时,所有系统的熵都将趋于零。
这个定律的提出为研究低温物理学和凝聚态物理学提供了重要的基础。
这些是工程热力学中的一些基本概念和重要公式。
工程热力学作为能源工程和热力工程等领域的基础学科,对于能量转换和热力设备的设计与运行具有重要作用。
工程热力学基本概念与重要公式

工程热力学基本概念与重要公式工程热力学是研究能量转化与能量传递的科学,它是指热力学原理在工程领域的应用。
热力学是研究物质和能量转化过程的一门学科,它研究能量的守恒性、能量的转化和能量的传递规律。
热力学是一门理论和实践相结合的学科,它与能源转化、工程设计等密切相关。
能量是物质存在时所具有的性质,它包括内能、动能和势能等形式。
热量是能量的一种传递方式,是由于温度差异而引起的能量传递。
功是物体由于受力而做的功,是一种能量转化的方式。
温度是物体的一种物理量,是衡量物体热平衡状态的指标。
热平衡是指物体之间没有温度差异,处在热平衡状态下的物体之间不发生热量传递。
在工程热力学中,还有一些重要的公式用于描述能量转化和能量传递过程。
其中,最重要的一条是能量守恒定律,它认为能量不会凭空消失或产生,只会转化为其他形式。
按照能量守恒定律,一个物体接受的热量和功等于物体输出的热量和功,即Q-W=ΔE,其中Q是系统的吸热量,W是系统所做的功,ΔE是系统的内能变化量。
另一个重要的公式是卡诺循环效率的计算公式,其中卡诺循环是一种理想循环,不可逆系统的效率与卡诺循环效率之差称为失效。
卡诺循环效率的计算公式可以表示为η=1-Tc/Th,其中η是卡诺循环效率,Tc是冷源的温度,Th是热源的温度。
工程热力学还涉及到热传导、热辐射和热对流等热传递过程的分析。
热传导是指热量通过物质的传递方式,根据傅里叶热传导定律,热的传导速率与温度梯度成正比。
热辐射是指物体表面由于温度而产生的热辐射,它的强度与物体的温度的四次方成正比。
热对流是指流体由于温度差异而引起的传热现象,它的传热速率与流体的性质、温度差和流速等因素相关。
总之,工程热力学是一门重要的工程科学,它涉及能量转化和能量传递的基本规律。
在工程热力学中,有许多重要的概念和公式,能够用于描述和分析能量转化和能量传递过程。
这些概念和公式为工程热力学的应用提供了理论基础,对于工程设计和能源利用具有重要意义。
工程热力学的公式大全

工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所做的功。
2.理想气体状态方程:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的分子数,R表示气体常数,T表示气体的温度。
3.等温过程:Q=W在等温过程中,系统所吸收的热量等于所做的功。
4.绝热过程:P1V1^γ=P2V2^γ在绝热过程中,气体的压强与体积之积的γ次方是一个常数,γ为气体的绝热指数。
5.等容过程:ΔU=Qv在等容过程中,系统内能的变化等于吸收的热量。
6.等压过程:Q=ΔH在等压过程中,系统所吸收的热量等于焓的变化。
7.等焓过程:ΔH=Qp在等焓过程中,焓的变化等于吸收的热量。
8.热机效率:η=1-,Qc,/,Qh热机效率表示热机从高温热源吸收的热量减去放出的低温热量占高温热量的比例。
9.士温定理:η=1-(Tc/Th)士温定理是热力学第二定律的一种表述,表示热机效率与高温热源温度和低温热源温度的比值有关。
10.开尔文恒等式:η=1-(Tc/Th)=1-(,Qc,/,Qh,)开尔文恒等式是士温定理的另一种形式,表示任何热机的效率都不可能达到100%。
11.准静态过程:ΔS=∫(dQ/T)准静态过程中,系统的熵变等于系统吸收的微小热量除以系统的温度积分得到。
12.绝热可逆过程:ΔS=0在绝热可逆过程中,系统的熵不发生变化。
13.熵的增加原理:ΔS总=ΔS系统+ΔS环境≥0根据熵的增加原理,系统与环境的熵的变化之和大于等于0。
14.卡诺循环效率:η=1-(Tc/Th)卡诺循环是理想热机,其效率由高温热源温度和低温热源温度决定。
15.等温膨胀系数:β=(1/V)*(∂V/∂T)p等温膨胀系数表示单位温度升高时体积的变化与体积的比值。
16.等压热容量:Cp=(∂Q/∂T)p等压热容量表示在等压条件下单位温度升高吸收的热量与温度的比值。
17.等容热容量:Cv=(∂Q/∂T)v等容热容量表示在等容条件下单位温度升高吸收的热量与温度的比值。
工程热力学公式知识点总结

工程热力学公式知识点总结热力学是研究热现象和能量转化的一门物理学科。
它不仅适用于工程领域,也适用于物理、化学、地质等领域。
热力学公式是热力学知识的重要组成部分,掌握好热力学公式可以帮助工程师更好地理解和应用热力学知识。
本文将对工程热力学公式知识点进行总结,并进行详细解释。
1. 热力学基本公式1.1 第一定律:热力学第一定律也称为能量守恒定律,它表明了能量在物质之间的转化和传递过程中的基本规律。
数学表达式为:\[dU = \delta Q - \delta W\]其中,dU表示系统内能的变化量,\(\delta Q\) 表示系统吸收的热量,\(\delta W\) 表示系统对外做功的量。
1.2 第二定律:热力学第二定律指出了自然界不可逆过程的特性,也就是热量永远不能自发地由低温物体传递到高温物体。
热力学第二定律的数学表达式有多种形式,其中最常见的是开尔文表述和克劳修斯表述。
开尔文表述表示为:\[\oint \frac{dQ}{T} \leq 0\]即,对于任何经过完整循环的过程而言,系统吸收的热量与温度的比值总是小于等于零。
而克劳修斯表述表示为:\[\text{不可能使得热量从低温物体自发地转移到高温物体,而不引入外界作用。
}\]1.3 熵增原理:熵是描述系统混乱程度或者无序性的物理量,熵增原理指出了自然界中系统总是朝着熵增长的方向发展。
数学表达式为:\[\Delta S \geq \frac{\delta Q}{T}\]其中,\(\Delta S\)代表系统的熵增量,\(\frac{\delta Q}{T}\)表示系统的对外吸收的热量与温度的比值。
2. 热力学循环公式2.1 卡诺循环公式:卡诺循环是一个理想的热力学循环,它包括两个绝热过程和两个等温过程。
卡诺循环可以用来评价热能机械的性能,其热效率被称为卡诺热效率。
卡诺热效率的数学表达式为:\[\eta_{\text{Carnot}} = 1 - \frac{T_c}{T_h}\]其中,\(\eta_{\text{Carnot}}\)表示卡诺热效率,\(T_c\)表示循环的低温端温度,\(T_h\)表示循环的高温端温度。
工程热力学基本概念及重要公式

工程热力学基本概念及重要公式1.系统与环境在工程热力学中,系统是指研究的对象或我们感兴趣的部分。
环境则是系统以外的其他部分。
系统和环境之间可以通过物质和能量的交换进行相互作用。
2.状态与平衡系统的状态由一组可测量的性质(如温度、压强、体积等)确定。
当系统中各种性质不发生任何变化时,系统处于平衡状态。
在平衡状态下,系统的能量转化不会引起热量或功的流动。
3.热力学函数热力学函数是描述热力学性质的函数,包括熵、焓和自由能等。
它们与系统的状态相对应,可以通过测量一些物理量来计算。
4.热力学第一定律热力学第一定律是能量守恒定律在系统中的应用。
根据这一定律,系统的内能增加等于系统吸收的热量加上对外做的功。
ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统从环境吸收的热量,W 表示系统对外做的功。
5.热力学第二定律热力学第二定律主要研究热量的传递和能量转化中的不可逆性。
根据热力学第二定律,热量只能从高温区传递到低温区,不会自发地从低温区传递到高温区。
6.热力学第二定律的两种表述热力学第二定律有两种表述方式:卡诺定理和熵增定理。
卡诺定理:任何工作在热源和冷源之间的热机,其效率都不会超过卡诺效率,即:η=1-Tc/Th其中,η表示热机的效率,Tc表示冷源的温度,Th表示热源的温度。
熵增定理:封闭系统的熵不会减少,只能增加或保持不变。
在一个孤立系统中,熵增是不可逆过程的一个特征。
7.热力学循环热力学循环是指一系列热力学过程的组合,最终系统回到起始状态。
常见的热力学循环包括卡诺循环、斯特林循环和布雷顿循环等。
8.其他重要公式除了上述公式外,工程热力学还有一些重要的公式,如:热量传递公式:Q=m*c*ΔT其中,Q表示热量,m表示物体的质量,c表示物体的比热容,ΔT表示温度的变化。
功的公式:W = F * d * cosθ其中,W表示功,F表示力,d表示位移,θ表示力的方向与位移方向的夹角。
气体状态方程:PV=nRT其中,P表示压强,V表示体积,n表示物质的摩尔数,R为气体常数,T表示温度。
工程热力学的公式大全

工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU代表内能的变化,Q代表系统吸收的热量,W代表系统对外界做功。
2.热力学第二定律:dS≥δQ/T其中,dS代表系统的熵变,δQ代表系统吸收的热量,T代表系统的绝对温度。
该定律表明在孤立系统中熵永不减少。
3.等容过程(内能不变):Q=ΔU在等容过程中,系统发生的任何热量变化都会完全转化为内能的变化。
4.等压过程(体积不变):W=PΔV在等压过程中,系统对外界所做的功等于系统内能的变化。
5.等温过程(温度不变):W = Q = nRT ln(V2/V1)在等温过程中,系统对外界所做的功等于系统从初始状态到最终状态所吸收的热量。
6.等熵过程(熵不变):Q=-W在等熵过程中,热量变化与对外界的功相等,系统的熵保持不变。
7.热机效率:η=1-(T2/T1)其中,η代表热机的效率,T2和T1分别代表工作物质的工作温度和热源的温度。
8.热泵效率:η=1-(T1/T2)其中,η代表热泵的效率,T1和T2分别代表热源的温度和工作物质的工作温度。
9.卡诺循环热机的效率上限:η=1-(T2/T1)卡诺循环是具有最高效率的热力循环,其效率仅取决于热源和冷源的温度。
10.纯物质气体的理想气体状态方程:PV=nRT其中,P代表压力,V代表体积,n代表物质的摩尔数,R为气体常数,T代表温度。
11.热力学温标:T(K)=T(°C)+273.15将摄氏温度转化为开尔文温标。
这只是一部分常用的工程热力学公式,还有其他更多的公式和关系式在工程热力学中发挥重要作用。
理解和应用这些公式可以帮助我们分析和解决实际工程问题,提高能源利用效率,促进工程技术的发展。
机械工程师技术职称考试的工程热力学公式总结

机械工程师技术职称考试的工程热力学公式总结工程热力学是机械工程师技术职称考试中的重要科目之一。
掌握热力学的基本原理和公式是解决实际工程问题的关键。
在本文中,将对一些常用的工程热力学公式进行总结和解析,帮助考生更好地备考。
1. 热力学基本公式热力学基本公式是工程热力学的基石,它包括了能量守恒、熵增原理等基本原理。
其中最重要的公式是能量守恒方程:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所做的功。
这个公式可以用来计算系统内能的变化量。
2. 理想气体状态方程理想气体状态方程是描述气体状态的重要公式,它可以用来计算气体的压力、体积和温度之间的关系。
理想气体状态方程可以表示为:PV = nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质量,R表示气体常数,T表示气体的温度。
这个公式可以用来计算气体在不同条件下的状态。
3. 等温过程和绝热过程在工程热力学中,等温过程和绝热过程是常见的热力学过程。
等温过程是指系统在恒定温度下进行的过程,绝热过程是指系统与外界无热交换的过程。
对于等温过程,可以使用以下公式计算功和热量:W = nRTln(V2/V1)Q = W其中,V1和V2分别表示过程起始和结束时的体积。
等温过程中,系统对外界做的功等于系统吸收的热量。
对于绝热过程,可以使用以下公式计算功和温度变化:W = C_v(T2 - T1)T2/T1 = (V1/V2)^(γ-1)其中,C_v表示定容热容量,γ表示绝热指数。
绝热过程中,系统对外界做的功等于系统内能的变化。
4. 热机效率热机效率是衡量热机能量转化效率的重要指标。
对于热机,可以使用以下公式计算其效率:η = 1 - Tc/Th其中,η表示热机的效率,Tc表示冷源温度,Th表示热源温度。
热机效率的计算可以帮助工程师评估热机的能量利用情况。
5. 热传导方程热传导方程是描述物体内部热传导过程的重要公式。
对于一维热传导,可以使用以下公式计算热传导速率:q = -kA(dT/dx)其中,q表示热传导速率,k表示热导率,A表示传热面积,(dT/dx)表示温度梯度。
工程热力学名词解释及公式汇总

工程热力学基础知识介绍一、基本概念工质:工作介质的简称。
工质的状态参数有六个:1)压力2)温度3)比容:指单位工质所具有的容积。
用γ表示。
γ=V/m (单位:mз/kg)气体比容的倒数为气体的密度。
4)内能:指气体的内位能与内动能之和,用u表示。
5)焓:是一个表示能量的状态参数,用h表示。
它由内能和推动功组成,即h=u+pv6) 熵:是一个导出的状态参数,它表示能量的传递方向。
用s表示。
二、热力学两大定律热力学第一定律:热可以变为功,功也可以变为热。
一定量的热消失时,必产生与之数量相当的功;消耗一定量的功时,也必出现相应数量的热。
热力学第二定律:热量不可能自发的,无条件的从低温物体传到高温物体。
三、热力过程热力过程指工质由一种状态变化为另一种状态所经过的途径。
常见的热力过程有:定容过程、定压过程、定温过程、绝热过程。
理想气体状态方程:PV=nRT1)定容过程:V=定值, P1/P2=T1/T2定容过程中,工质不输出膨胀功,加给工质的热量未转化为机械能,全部用于增加工质的热力学能,因而工质温度升高。
2)定压过程:P=定值,V1/V2=T1/T2定压过程中,工质流过换热器等设备时,不对外做技术功,这时工质吸收热量转化的机械能全部用来维持工质的流动。
3)定温过程:T=定值,P1V1=P2V2定温过程中,由于热力学能不变,所以在定温膨胀时吸收的热量,全部转化未膨胀功。
4)绝热过程:ΔQ=0绝热过程中,工质所作的技术功等于焓降,与外界无能量交换,过程功只来自工质本身的能量转换。
四、热力循环一个热力系统经过一系列的热力变化,最后又回到原来完全相同的状态称为热力循环。
余热电站的热力循环即为简单的朗肯循环。
0→1:水在锅炉内预热,汽化并过热,变为过热蒸汽,是一个定压吸热过程。
1→2:过热蒸汽进入汽轮机膨胀做功,放热,是一个绝热膨胀过程。
2→3:乏汽进入凝汽器,凝结成水,是一个定压冷凝过程。
3→4:凝结水经给水泵提压后进入锅炉,是一个绝热压缩过程。
工程热力学知识点总结

工程热力学知识点总结1. 热力学基本概念1.1 热力学系统:研究对象,与周围环境有能量和物质交换。
1.2 环境:系统之外的一切,与系统形成对比。
1.3 边界:系统与环境之间的分界线。
1.4 状态:系统在某一时刻宏观性质的集合。
1.5 平衡态:系统状态不随时间变化的状态。
1.6 过程:系统从一个平衡态到另一个平衡态的演变。
2. 热力学第一定律2.1 能量守恒:系统内能量的变化等于热量与功的和。
2.2 内能:系统内部微观粒子动能和势能的总和。
2.3 热量:系统与环境之间由于温度差而交换的能量。
2.4 功:系统对环境或其他系统施加的力与其位移的乘积。
2.5 热力学第一定律公式:ΔU = Q - W。
3. 热力学第二定律3.1 熵:系统无序度的量度,是不可逆过程的度量。
3.2 孤立系统:不与外界交换能量或物质的系统。
3.3 熵增原理:孤立系统熵永不减少。
3.4 卡诺定理:所有热机的最大效率由卡诺循环确定。
4. 热力学性质4.1 温度:系统热动能的度量,是热力学过程的驱动力。
4.2 压力:分子对容器壁单位面积的平均作用力。
4.3 体积:系统占据的空间大小。
4.4 比热容:单位质量的物质温度升高1K所需吸收的热量。
4.5 热容:系统温度升高1K所需吸收的热量。
5. 理想气体行为5.1 理想气体状态方程:PV = nRT。
5.2 摩尔体积:1摩尔理想气体在标准状态下的体积。
5.3 气体常数:理想气体状态方程中的常数R。
5.4 马略特定律:理想气体在恒定温度下,体积与压力成正比。
5.5 波义耳定律:在恒温条件下,理想气体的压强与其体积成反比。
6. 热力学循环6.1 卡诺循环:理想化的热机循环,由四个可逆过程组成。
6.2 奥托循环:内燃机的理想循环,包括等容加热、绝热膨胀、等容放热和绝热压缩。
6.3 朗肯循环:蒸汽动力循环,包括泵吸、锅炉加热、涡轮膨胀和冷凝器排热。
7. 相变与潜热7.1 相变:物质从一种相态转变为另一种相态的过程。
工程热力学公式大全

第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程热力学概念公式第一部分 (第一章~第五章)一、概念(一)基本概念、基本术语1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用等问题。
2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学研究对象。
这种空间内的物质的总和称为热力系统,简称系统。
3、闭口系统:没有物质穿过边界的系统称为闭口系统。
系统内包含的物质质量为一不变的常量,所以有时又称为控制质量系统。
4、开口系统:有物质流穿过边界的系统称为开口系统。
开口系统总是一种相对固定的空间,故又称开口系统为控制体积系统,简称控制体。
5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。
6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。
7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。
9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参数。
10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数。
11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。
12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。
13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹,这样的过程称为可逆过程。
15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。
16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热效率等于循环中转换为功的热量除以工质从热源吸收的总热量。
17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为卡诺循环。
18、卡诺定理:卡诺定理可表达为:①所有工作于同温热源与同温冷源之间的一切热机,以可逆热机的热效率为最高。
②在同温热源与同温冷源之间的一切可逆热机,其热效率均相等。
19、孤立系统熵增原理:孤立系统的熵只能增大(不可逆过程)或不变(可逆过程),决不可能减小,此为孤立系统熵增原理,简称熵增原理。
(二)与工质性质有关的概念1、温度:把这种可以确定一个系统是否与其它系统处于热平衡的物理量定义为温度。
2、压力:流体单位面积上所受作用力的法向分量称为压力(又称压强)。
3、比容:单位质量工质所占有的容积称为工质的比容。
4、理想气体:理想气体是一种经过科学抽象的假想气体模型,它被假设为:气体分子是一些弹性的、不占有体积的质点,分子相互之间没有作用力(引力和斥力)。
5、比热:单位物量的物体,温度升高或降低1K 所吸收或放出的热量,称为该物体的比热,即dTqc δ=。
6、定容比热:在定容情况下,单位物量的气体,温度变化K 1所吸收或放出的热量,称为该气体的定容比热,即dTq c v v δ=。
7、定压比热:气体加热在压力不变的情况下进行,加入的热量部分用于增加气体的内能,使其温度升高,部分用于推动活塞升高而对外作膨胀功。
即:dTq c pp δ=。
(三)与能量有关的概念1、功:在热力学里,我们这样来定义功:“功是物系间相互作用而传递的能量。
当系统完成功时,其对外界的作用可用在外界举起重物的单一效果来代替。
”2、膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。
3、轴功:系统通过机械轴与外界传递的机械功称为轴功。
4、流动功:开口系统因工质流动而传递的功。
5、技术功:技术上可资利用的功,它是稳定流动系统动能、位能的增量与轴功三项之和。
6、热量:热量学的热量定义是,在温差作用下系统与外界传递的能量称为热量。
7、系统储存能:系统储存的能量称为储存能,它有内部储存能和外部储存能之分。
8、内部储存能:储存于系统内部的能量,它与系统内工质的分子结构及微观运动形式有关,称为内能(或内储存能)。
9、外部储存能:与系统整体运动以及外界重力场有关的能量,称为外储存能。
10、焓:焓的定义式为h u pv =+。
对于流动工质,焓具有能量意义,它表示流动工质向流动前方传递的总能量(共四项)中取决于热力状态的那部分能量。
对于不流动工质,因pv 不是流动功,焓只是一个复合状态参数,没有明确的物理意义。
11、熵:熵是一种广延性的状态参数。
熵的定义式re Q ds Tδ=,即熵的变化等于可逆过程中系统与外界交换的热量与热力学温度的比值。
1-5章 公式(一)基本定律、基本方程 1、理想气体状态方程①RT pv = (1kg 物量表示的状态方程式) ②mRT PV = (mkg 物量表示的状态方程式)③T R pV M 0= (kmol 1物量表示的状态方程式)④T nR pV 0= (nkmol物量表示的状态方程式) 2、热力学第一定律 (1)闭口系统能量方程①w u q +∆= (任何工质,任何过程)②w du q δδ+= (任何工质,任何过程)③pdv du q +=δ (可逆过程) ④⎰+∆=21pdv u q (可逆过程)(2)开口系统能量方程22222211111122net cv Q h c gz m h c gz m W dE δδδδ⎛⎫⎛⎫=++-++-+ ⎪ ⎪⎝⎭⎝⎭(3)开口系统稳态稳流能量方程①t w h q +∆= (任何工质,任何过程)②t w dh q δδ+= (任何工质,任何过程)③q dh vdp δ=- (可逆过程) ④21q h vdp =∆-⎰ (可逆过程)3、热力学第二定律①0QTδ≤⎰Ñ (循环过程)②rQS T δ∆≥⎰(闭口系统)③f g S S S ∆=+ (闭口系统)④0iso S ∆≥ (孤立系统或闭口绝热系统) (二)基本公式 1、温度273.15t T =- 2、循环效率①12121101q q q q q q w -=-==η ②212021q q q w q -==ε ③211012q q q w q -==ε 3、理想气体比热①dTq c δ= ②04.22'ρc Mcc ==③MMc c =④R c c v p =- (梅耶公式) ⑤vp vpvp Mc Mc c c c c ===''κ ⑥1-=κR c v ⑦1-=κκR c p ⑧02R i Mc v = ⑨022R i Mc p +=4、系统总储存能gz c u e e u e p k ++=++=2215、理想气体内能变化①dT c du v = (理想气体,任何过程) ②⎰=∆21dT c u v (理想气体,任何过程)6、理想气体焓变计算①dT c dh p = (理想气体,任何过程) ②⎰=∆21dT c h p (同)7、理想气体熵变计算①1212ln lnv v R T T c s v +=∆ ②1212ln ln p pR T T c s p -=∆ ③1212ln ln p pc v v c s v p +=∆ 8.膨胀功 ①w pdv δ= ②21w pdv =⎰(仅适用于可逆过9、流动功①f w pv = ②1122v p v p w f -= (移动kg 1工质进、出控制体净流动功) 10、技术功①s t w z g c w +∆+∆=221 (任何工质,任何过程) ②s t w gdz dc w δδ++=221(任何工质,任何过程)③vdp w t -=δ (可逆过程) ④⎰-=21vdp w t (可逆过程)11、热量①q Tds δ= ②⎰=21Tds q 12、多变指数 )/ln()/ln(2112v v p p n =13、多变比热 v n c n n c 1--=κ14、活塞式压气机余隙百分比313100%V c V V =⨯- 15、多级压气机每级升压比β=16、卡诺循环热效率①12,1T T c t -=η ②212,1T T T c -=ε ③21121101,2T T T q q q w q c -=-==ε17、作功能力损失 ①g S T L 0= ②iso iso S T L ∆=0 18、熵方程①sys f g S S S ∆=+ (闭口系统) ②f g s s s s --=12 (稳态稳流的开口系统)(三)导出公式1、多变过程的过程方程式n p v Const ⋅=2、多变过程初、终状态参数间的关系①nv v p p ⎪⎪⎭⎫ ⎝⎛=2112 (定值=n pv )②12112-⎪⎪⎭⎫ ⎝⎛=n v v T T (定值=-1n Tv)③nn p p T T 11212-⎪⎪⎭⎫ ⎝⎛=(定值=-nn pT 1)3、膨胀功2111221212111()11()1111n n w pdvp v p v n R T T n p RT n p -==--=--⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎰ 4、技术功 t w n w =⋅ 5.热量2112212121211()()()()11()()1n v v v v n R q c T T T T c T T c T T n n n c T T c T T n κκ-=-+-=------=-=--第二部分 水蒸气一、概念1、汽化:物质由液相转变为气相的过程,称为汽化。
气化有蒸发和沸腾两种形式。
蒸发是指液体表面的汽化过程,通常在任何温度下都可以发生,沸腾是指液体内部的汽化过程,它只能在达到沸点温度时才会发生。
2、凝结:物质由气相转变为液相的过程,称为凝结。
3、水蒸气的饱和状态:液体汽化和气体凝结的动态平衡状况称为水蒸气的饱和状态。
4、汽化潜热:将1kg 饱和液体转变成同温度的干饱和蒸汽所需要的热量。
5、干度:单位质量湿蒸汽中所含干饱和蒸汽的质量叫作湿饱和蒸汽的干度。
6、临界点:当温度超过一定值c t 时,液相不可能存在,而只可能是气相。
c t 称为临界温度,与临界温度相对应的饱和压力c p 称为临界压力。
所以,临界温度和压力是液相与气相能够共存时的最高值。
当压力高于临界压力时,液-汽两相的转变不经历两相平衡共存的饱和状态,在定压下液-汽两个相区不存在明显的、确定的界线。