中考数学直角三角形内切圆答题技巧_答题技巧

合集下载

初三圆答题技巧

初三圆答题技巧

初三圆答题技巧初三圆答题技巧如下:1. 熟练掌握基本概念和性质:对于圆的基本概念和性质要熟练掌握,比如圆的半径、直径、弧、弦等概念,以及圆的一些重要性质,如圆心角与弧的关系、垂径定理等。

2. 熟记公式定理:圆中有许多重要的公式定理,比如切割线定理、切线长定理、相交弦定理等,这些定理在解题中有着重要的应用。

3. 学会画图和识图:圆的问题往往与图形密切相关,因此要学会画图和识图。

在解题时,要根据题目描述的情境,画出相应的图形,以便更好地解决问题。

4. 半径与弦长计算,弦心距来中间站:利用弦心距、半径和弦长之间的比例关系进行计算。

5. 圆上若有一切线,切点圆心半径连:如果知道圆上有一条切线,可以通过连接切点和圆心来找到半径。

6. 切线长度的计算,勾股定理最方便:利用勾股定理来计算切线的长度。

7. 要想证明是切线,半径垂线仔细辨:如果要证明某条直线是圆的切线,可以通过作该直线的垂线并与圆心相连来进行证明。

8. 是直径,成半圆,想成直角径连弦:如果知道某段弦是直径,那么它所对的圆周角等于直角。

9. 弧有中点圆心连,垂径定理要记全:如果知道弧的中点,可以通过连接弧的中点和圆心来使用垂径定理。

10. 圆周角边两条弦,直径和弦端点连:如果知道圆周角的两边,可以通过连接直径和弦的端点来找到圆心。

11. 弦切角边切线弦,同弧对角等找完:如果要证明两个角是相等的,可以通过证明它们所对的弧相等来进行证明。

12. 要想作个外接圆,各边作出中垂线:如果要作一个多边形的外接圆,可以通过作各边的中垂线来找到圆心。

13. 还要作个内接圆,内角平分线梦圆:如果要作一个多边形的内接圆,可以通过作各角的平分线来找到圆心。

14. 如果遇到相交圆,不要忘作公共弦:如果两个圆相交,可以通过作公共弦来找到它们的交点。

15. 内外相切的两圆,经过切点公切线:如果两个圆相切,那么它们的公切线经过切点。

16. 若是添上连心线,切点肯定在上面:如果要证明两个圆相切,可以通过作它们的连心线来找到切点。

中考数学常考的圆的六种题型

中考数学常考的圆的六种题型

中考题中常考的圆的六种解题策略第一种场景:遇到弦。

轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.当圆的题目中出现弦的知识点的时候,我们需要迅速联想到弦相关的定理和一些性质,比如垂径定理、弦心距、勾股定理等.例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.【分析】(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.【解答】(1)证明:∵PD∥CB,∴弧PC=弧BD,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r²=(r﹣8)²+12²,解方程得:r=13.所以⊙O的直径为26.【点评】本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.当出现直径的条件时,我们也要快速联想圆心角、圆周角等性质,进而构造等腰三角形、直角三角形等图形,从而求解后面的问题。

例2.如图,在⊙O中,将弧BC沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.(1)若点D恰好与点O重合,则∠ABC=______ °;(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.【分析】(1)根据折叠的性质和圆周角定理解答即可;(2)作点D关于BC的对称点D',利用对称的性质和圆周角定理解答.【解答】(1)∵由折叠可知:∠OBC=∠CBD,∵点D恰好与点O重合,∴∠COD=60°,∴∠ABC=∠OBC=12∠COD=30°;故答案为:30;(2)∠ABM=2∠ABC,理由如下:作点D关于BC的对称点D',连接CD',BD',∵对称,∴∠DBC=∠D'BC,DC=D'C,连接CO,D'O,AC,∴∠AOC=2∠ABC,∠D'OC=2∠D'BC,∴∠AOC=∠D'OC,∴AC=D'C,∵DC=D'C,∴AC=DC,∴∠CAD=∠CDA,∵AB是直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,设∠ABC=α,则∠CAD=∠CDA=90°-α,∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,即∠ACD=2∠ABC,∵∠ABM=∠ACD,∴∠ABM=2∠ABC.切线的定义是:一直线若与一圆有且只有一个交点,那么这条直线就是圆的切线。

中考数学应试技巧和注意事项

中考数学应试技巧和注意事项

中考数学应试技巧和注意事项1、认真审题,不慌不忙,先易后难,不能忽视题目中旳任何一种条件.做题次序:一般按照试题次序做,实在做不出来,可先放一放,先做别旳题目,不要在一道题上花费太多旳时间,而影响其他题目;做题慢旳同学,要掌握好时间,力争一次旳成功率;做题速度快旳同学要注意做题旳质量,要细心,不要马虎.2、考虑多种简便措施解题.选择题、填空题更是如此.选择题注意选择题要看完所有选项,做选择题可运用多种解题旳措施,常见旳措施如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(例如折一折,量一量等措施).采用淘汰法和代入检查法可节省时间.有些判断几种命题对旳个数旳题目,一定要谨慎,你认为错误旳最佳能找出反例,常见旳措施如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(例如折一折,量一量等措施).采用淘汰法和代入检查法可节省时间.填空题1.注意一题多解旳状况.2.注意题目旳隐含条件,例如二次项系数不为0,实际问题中旳整数等;3.要注意与否带单位,体现格式一定是最终化简成果;4.求角、线段旳长,实在不会时,可以尝试猜测或度量法.解答题(1)注意规范答题,过程和结论都要书写规范.(2)计算题一定要细心,最终答案要最简,要保证绝对对旳.(3)先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;合适考虑技巧,如整体代入.(4)解分式方程一定要检查,应用题中也是如此.(5)解直角三角形问题,注意交代辅助线旳作法,解题环节.关注直角、特殊角.取近似值时一定要按照题目规定.(6)实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式.注意题目当中旳等量关系,是为了构造方程,不等量关系是为了求自变量旳取值范围,求出方程旳解后,要注意验根,与否符合实际问题,要记着取舍.(7)概率题:要通过画树状图、列表或列举,列出所有等也许旳成果,然后再计算概率.(8)方案设计题:要看清晰题目旳设计规定,设计时考虑满足规定旳最简方案,不要考虑复杂、追求美观旳方案.3、解各类大题目时脑子里必须反应出该题与平时做旳哪个题类似,应反应出似曾相识旳感觉.大题目先把会旳一步或两步解好,解题时不会做旳先放一放,最终再来处理此类提高问题.(1)求二次函数解析式,第一步要检查,方可解第二步(第一步不能错,一错前功尽弃).(2)对于压轴题,基础好旳学生应力争解出每一步,方可获得高分,基础稍差旳应会一步解一步,不可留空白.例如:应用题旳题设,存在题旳存在一定要回答(3)对于存在性问题,要注意也许有几种状况不要遗漏.(4)对于动态问题,注意要通过多画草图旳措施把运动过程弄清晰,也要考虑也许有几种状况.要注意点线旳对应关系,用局部旳变化来反应整体变化,一般运用平行得相似,注意临界状态,临界状态往往是自变量取值旳分界线.4、考虑到网上阅卷对答题旳规定很高,因此在答题前应设计好答案旳整个布局,字要大小适中,不要把答案写在规定旳区域以外旳地方.否则扫描时不能扫到你所写旳答案.5、调整好心理状态,解答习题时,不要浮躁,力争考出最佳水平.试题难易我不怕;若试题难,遵照“你难我难,我不怕难”旳原则;若试题易,遵照“你易我易,我不大意”旳原则.二、注意事项1、注意单位、设未知数、答题旳完整.2、求字母系数时,注意检查鉴别式(否则要被扣分).3、注意物理、化学及其他学科习题与数学旳联络,应反应出该题旳公式,把此题公式与数学知识联络起来.此类习题不会太难,但轻易错.4、实际问题要多读题目,注意认真分析,到题目中寻找等量关系,获取信息,不放过任何一种条件(包括括号里旳信息),且注意解答完整.尤其注意应用题中旳圆弧型实物还是抛物线型旳实物.假如是圆弧找圆心,求半径.假如是抛物线建立直角坐标系,求解析式.5、注意假如第一步条件少,无从下手时,应认真审题,画草图寻找突破口,才能完毕下面几步.注意考虑上步结论或上一步推导过程中旳结论.6、注意综合题、压轴题要解清晰,答题要完整,尽量不被扣分.7、因式分解时,首先考虑提取公因式,再考虑公式法.一定要注意最终成果要分解到不能再分为止.8、找规律旳题目,要重在找出规律,切忌盲目乱填.若是函数关系,解好一定要检查,包括自变量.若不是函数关系,应寻找指数或其他关系.9、注意双解或多解旳状况.方程解旳两个答案,有时只有一种答案成立,而有些几何题,却要注意考虑两种状况.有两种答案旳一般有:(1)点在线段还是直线上,若在直线上一般要进行分类讨论(2)等腰三角形注意,告诉一边要分为这一边是底还是腰,告诉一角要分为这一角是顶角还是底角.(3)三角形旳高(两种状况):锐角三角形和钝角三角形不一样样.(4)注意四边形旳分类;以A、B、C、D四个点为顶点旳四边形要注意分类:AB为一边,AB为一对角线.(5)圆中①已知两圆半径,公共弦,求圆心距.②已知弦,求弦所对旳圆周角.③已知半径和两条平行弦,求平行弦间旳距离.④一条弧所对旳圆周角旳度数有一种,一条弦所对旳圆周角旳度数有两个⑤已知两圆半径,求相切时旳圆心距(考虑内切、外切).⑥圆内接三角形,注意圆心在三角形内部还是外部(6)动态问题中旳等腰三角形问题,存在类问题中找相似三角形旳题型.10、注意复杂题目中旳隐含条件,尤其在圆中和平面直角坐标系中,考虑用勾股定理、射影定理、解直角三角形、面积公式、斜边上旳中线、直角三角形内切圆半径公式,直角三角形外接圆半径公式R=11、在三角函数旳计算中,应把角放到直角三角形中,可以作必要旳辅助线.解直角三角形旳应用中要熟悉仰角、俯角、坡角、坡度等概念12、三个视图之间旳长、宽、高关系.即长对正,宽相等,高平齐.13、熟悉圆中常见辅助线旳规律,圆中常见辅助线:(1)见切线连圆心和切点;(2)两圆相交连结公共弦和连心线(连心线垂直平分公共弦);(3)两圆相切,作连心线,连心线必过切点;(4)作直径,作弦心距,构造直角三角形,应用勾股定理;(5)作直径所对旳圆周角,把规定旳角转化到直角三角形中.14、圆柱、圆锥侧面展开图、扇形面积及弧长公式做圆锥旳问题时,常抓住两点:(1)圆锥母线长等于侧面展开图扇形旳半径.(2)圆锥底面周长等于侧面展开图扇形旳弧长.15、求解析式:(1)正比例函数、反比例函数只要已知一种条件即可(2)一次函数须知两个条件(3)二次函数旳三种形式:一般式、顶点式(4)抛物线旳顶点坐标、对称轴16、常用旳定理(1)射影定理(用相似)(2)勾股定理(3)等腰梯形旳性质、鉴定,中位线定理(4)平行四边形、矩形、菱形、正方形中旳有关定理17、反证法第一步应假设与结论相反旳状况.18、(1)是轴对称图形但不是中心对称旳图形有:角、等腰三角形、等边三角形、等腰梯形、正n边形(n为奇数)(2)是中心对称图形但不是轴对称图形有:平行四边形(3)既是轴对称图形又是中心对称图形旳有:线段、矩形、菱形、正方形、圆、正n 边形(n为偶数)19、n边形旳内角和计算公式:,外角和为20、平面图形旳镶嵌要注意:一点处所有内角和为360°21、假如规定尺规作图,应清晰反应出尺规作图旳痕迹,否则会被扣分(一般作垂直平分线和角平分线较多).22、任意四边形旳中点四边形都为平行四边形;顺次连接对角线相等旳四边形旳中点旳四边形是菱形;顺次连接对角线互相垂直旳四边形旳中点旳四边形是矩形23、折叠问题:A 要注意折叠前后线段、角旳变化;B 一般要设求知数,24、注意特殊量旳使用,如等腰三等形中旳三线合一,正方形中旳角,都是做题旳关键.25、面积问题,中考中旳面积问题往往是不规则图形,不易直接求解,往往需要借助于面积和与面积差.26、记录初步和概率习题注意:(1)平均数、中位数、众数、方差、极差、原则差、加权平均数旳计算要精确,方差计算公式:原则差计算公式:(2)认真思索样本、总体、个体、样本容量(不带任何单位,只是一种数)在选择题中旳对旳判断.(注意研究旳对象决定了样本旳说法)(3)概率:①摸球模型题注意放回和不放回.若是二步事件,或放回事件,或关注和或积旳题,一般用列表法;若是三步事件,或不放回事件,一般用树状图.②注意在求概率旳问题中寻找替代物,常见旳替代物有:球,扑克牌,骰子等.27、乘法公式及常见变形:28.综合题:(1)综合题一般分为好几步,逐渐递进,前几步往往比较轻易,一定要做,中考是按环节给分旳,能多做某些就多做某些,可以多得分数.(2)注意大前提和各小题旳小前提,不要弄混.(3)注意前后问题旳联络,前面得出旳结论背面往往要用到.(4)从条件入手,可以多写某些结论,看哪个结论对作题有协助,实在做不下去时,再审题,看看与否尚有条件没有用到,需不需要做辅助线;从结论入手,逆向思维,正着答题.(5)往往运用相似(x形或A字形图),设求知数,构造方程,解方程而求解,必要时需做辅助线.函数图像上旳点可借助函数解析式来设点,一般设横坐标,运用解析式来表达纵坐标.。

中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)知识点总结1. 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

几何语言:若弦CD AB ,交于点P ,则PD PC PB PA ⋅=⋅。

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

几何语言:若AB 是直径,CD 垂直AB 于点P ,则PB PA PD PC ⋅==22。

2. 弦切角定理:(1)弦切角的定义:如图像∠ACP 这样,顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

(2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半。

等于这条弧所对的圆周角。

即∠PCA=∠PBC 。

3. 切线长定理:(1)切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。

(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。

4. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=PA•PB(切割线定理)。

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB由上可知:PT2=PA•PB=PC•PD。

5. 三角形的内切圆与内心:内切圆与内心的概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。

三角形的内心就是三角形三个内角角平分线的交点。

练习题1、(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π).【分析】根据题意,先作出相应的辅助线,然后求出内切圆的半径,再根据图形可知:阴影部分的面积=△ABC的面积﹣正方形CEOD的面积﹣⊙O面积的,代入数据计算即可.【解答】解:作OD⊥AC于点D,作OE⊥CB于点E,作OF⊥AB于点F,连接OA、OC、OB,如图,∵∠C=90°,OD=OE=OF,∴四边形CEOD是正方形,∵AC=4,BC=3,∠C=90°,∴AB===5,∵S△ABC=S△AOC+S△COB+S△BOA,∴=,解得OD=OE=OF=1,∴图中阴影部分的面积为:﹣1×1﹣π×12×=5﹣π,故答案为:5﹣π.2、(2022•泰州)如图,△ABC中,∠C=90°,AC=8,BC=6,O为内心,过点O的直线分别与AC、AB边相交于点D、E.若DE=CD+BE,则线段CD的长为.【分析】连接BO,CO,结合内心的概念及平行线的判定分析可得当DE=CD+BE时,DE∥BC,从而利用相似三角形的判定和性质分析计算.【解答】解:如图,过点O的直线分别与AC、AB边相交于点D、E,连接BO,CO,∵O为△ABC的内心,∴CO平分∠ACB,BO平分∠ABC,∴∠BCO=∠ACO,∠CBO=∠ABO,当CD=OD时,则∠OCD=∠COD,∴∠BCO=∠COD,∴BC∥DE,∴∠CBO=∠BOE,∴BE=OE,则DE=CD+BE,设CD=OD=x,BE=OE=y,在Rt△ABC中,AB==10,∴,即,解得,∴CD=2,过点O作D′E′⊥AB,作DE∥BC,∵点O为△ABC的内心,∴OD=OE′,在Rt△ODD′和Rt△OE′E中,,∴△ODD′≌△OE′E(ASA),∴OE=OD′,∴D′E′=DE=CD+BE=CD′+BE′=2+=,在△AD′E′和△ABC中,,∴△AD′E′∽△ABC,∴,∴,解得:AD′=,∴CD′=AC﹣AD′=,故答案为:2或.3、(2022•黔东南州)如图,在△ABC中,∠A=80°,半径为3cm的⊙O是△ABC的内切圆,连接OB、OC,则图中阴影部分的面积是cm2.(结果用含π的式子表示)【分析】根据角A的度数和内切圆的性质,得出圆心角DOE的度数即可得出阴影部分的面积.【解答】解:∵∠A=80°,⊙O是△ABC的内切圆,∴∠DOE=180°﹣()=180°﹣(180°﹣∠A)=130°,∴S扇形DOE==(cm2),故答案为:.4、(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.【分析】如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,然后利用内切圆和直角三角形的性质得到AC+BC=AB+6,(BC﹣AC)2=49,接着利用完全平方公式进行代数变形,最后解关于AB的一元二次方程解决问题.【解答】解:如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,∴OE=OD=3=,∴AC+BC﹣AB=6,∴AC+BC=AB+6,∴(AC+BC)2=(AB+6)2,∴BC2+AC2+2BC×AC=AB2+12AB+36,而BC2+AC2=AB2,∴2BC×AC=12AB+36①,∵小正方形的面积为49,∴(BC﹣AC)2=49,∴BC2+AC2﹣2BC×AC=49②,把①代入②中得AB2﹣12AB﹣85=0,∴(AB﹣17)(AB+5)=0,∴AB=17(负值舍去),∴大正方形的面积为289.故答案为:289.。

中考数学直角三角形内切圆答题技巧

中考数学直角三角形内切圆答题技巧

中考数学直角三角形内切圆答题技巧 中考数学直角三角形内切圆答题技巧我们知道利用面积法可以解决直角三角形内切圆半径的问题,在此基础上发现假设有两个等圆内切于直角三角形中,也可按面积法求解,具体过程如下。

:在Rt⊿ABC中,⊙O1,⊙O2两等圆外切于H, ⊙O1切AC、AB 于D、E两点,⊙O2切BC、AB于F、G两点,假设AC=4,BC=3,求⊙O1与⊙O2的半径。

解:连接O1 A, O1 D, O1 E, O1 C, O1 O2, O2 C, O2 F, O2 B, O2 G, O1 G,过C作CIAB交AB于I,交O1 O2于J设⊙O1与⊙O2的半径为r∵⊙O1,⊙O2两等圆外切于H, ⊙O1切AC、AB于D、E两点,⊙O2切BC、AB于F、G两点O1 DAC , O1 EAB, O2 GAB, O2 FBCS⊿AO1C=ACO1D=2r S⊿BO2C=BCO2F=1.5rS⊿AO1G+S⊿O2GB =AGO1E+GBO2G=r(AG+ GB)=2.5r又∵CIAB交AB于I,交O1 O2于JCJ+ O2G = CJ+JI=CI CI==2.4S⊿CO1 O2+ S⊿O1 O2G =O1 O2CJ+O1 O2O2G=O1 O2CI=2.4r即S⊿ABC=S⊿AO1C+S⊿BO2C+S⊿AO1G+S⊿O2GB+S⊿CO1O2+ S⊿O1 O2G==68.4r=6 , r=现推广到一般情况在Rt⊿ABC中C=90,⊙O1,⊙O2⊙On(n为正整数)两两等圆外切, ⊙O1切AC、AB,⊙On切BC、AB, 假设AC=b,BC=a,求⊙O1,⊙O2,⊙On的半径。

解:用类比思想我们可以知道,设⊙O1,⊙O2,⊙On的半径为r S⊿ABC = S1+ S2+ (S3+ S4)+ (S5+ S6)=br+ar+r+2(n-1)r又∵S⊿ABC =abr=。

中考数学三角形问题解题方法

中考数学三角形问题解题方法

中考数学三角形问题解题方法
中考数学中涉及到的三角形问题是一类重要的题型,需要掌握一些解题方法。

以下是一些常用的解题方法:
1. 勾股定理:当我们知道一个直角三角形的两条直角边的长度时,可以利用勾股定理求出斜边的长度。

勾股定理公式为:直角边1的平方 + 直角边2的平方 = 斜边的平方。

2. 正弦定理:当我们知道一个三角形的某两边和其夹角时,可以利用正弦定理求出第三边的长度。

正弦定理公式为:a/sinA =
b/sinB = c/sinC,其中a、b、c分别是三角形的三条边,A、B、C
分别是它们所对的角度。

3. 余弦定理:当我们知道一个三角形的某两边和它们夹角的余弦时,可以利用余弦定理求出第三边的长度。

余弦定理公式为:c = a + b - 2abcosC,其中a、b、c分别是三角形的三条边,C是它们夹角的角度。

4. 相似三角形:当我们知道两个三角形的对应角度相等时,可以利用相似三角形的性质求出其中一些边长。

相似三角形的性质为:对应角度相等的两个三角形,它们的对应边长成比例。

5. 角平分线定理:当我们知道一个三角形的某个角的角平分线的长度时,可以利用角平分线定理求出其他相关边长。

角平分线定理公式为:在三角形ABC中,AN为角BAC的平分线,BN与AC相交于点M,则AN/BN = AC/BC。

以上是一些常用的解题方法,希望能够对同学们在中考数学中解
决三角形问题有所帮助。

初三数学圆知识点总结和解题技巧

初三数学圆知识点总结和解题技巧

初三数学圆知识点总结和解题技巧初中数学几何中圆是比较重要的一局部,下边给大家总结了,初三数学圆知识点总结和初中数学圆解题技巧,来看看吧 !初三数学圆知识点总结和初中数学圆解题技巧初三数学圆知识点总结一、圆的有关观点1 、圆的定义在一个个平面,线段OA绕它固定的一个端点O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径。

2 、直线圆的与置位关系1.线直与圆有唯公一共时,点做直叫与圆线切2.三角的外形圆接的圆叫做三心形角外心3.弦切角于所等夹弧所对的的圆心角4.三角的形圆切的圆叫做三心形角心5.垂于直径半直线必为圆的的切线6.过径半外的点而且垂直端于半的径直线是圆切线7.垂于直径半直线是圆的的切线8.圆切线垂的直过切于点半径3、圆的几何表示以点 O 为圆心的圆记作“⊙ O〞,读作“圆O〞二、垂径定理及其推论垂径定理:垂直于弦的直径均分这条弦,而且均分弦所对的弧。

推论 1 :(1) 均分弦 (不是直径 )的直径垂直于弦,而且均分弦所对的两条弧。

(2)弦的垂直均分线经过圆心,而且均分弦所对的两条弧。

(3)均分弦所对的一条弧的直径垂直均分弦,而且均分弦所对的另一条弧。

推论 2 :圆的两条平行弦所夹的弧相等。

垂径定理及其推论可归纳为:过圆心垂直于弦直径均分弦知二推三均分弦所对的优弧均分弦所对的劣弧三、弦、弧等与圆有关的定义1、弦连结圆上随意两点的线段叫做弦。

(如图中的AB)2、直径经过圆心的弦叫做直径。

(如途中的CD)直径等于半径的 2 倍。

3、半圆圆的随意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

4、弧、优弧、劣弧圆上随意两点间的局部叫做圆弧,简称弧。

弧用符号“⌒ 〞表示,以A,B 为端点的弧记作“〞,读作“圆弧AB〞或“弧AB〞。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

专题34 三角形的内切圆问题(教师版)-2021年中考数学模型技巧讲义(二轮)

专题34  三角形的内切圆问题(教师版)-2021年中考数学模型技巧讲义(二轮)

专题34 三角形的内切圆问题【规律总结】1、“直角三角形内切圆半径等于两直角边的和与斜边差的一半.” 又可叙述为:“直角三角形内切圆半径等于它的半周长与斜边的差.”或"直角三角形内切圆的直径等于两直角边的和与斜边的差.”2、“三角形内切圆半径等于三角形的面积与半周长的商.”【典例分析】例1.(2020·湖北武汉市·九年级月考)如图,在ABC ∆中,60BAC ∠=︒其周长为20,I是ABC ∆BIC ∆的外接圆半径为( )A .7B .C .2D . 【答案】D【分析】过C 作CD⊥AB 于D ,由60BAC ∠=︒结合面积求出BC 的长,由内心可以求出120?BIC ∠=,BIC ∆的外接圆圆心为O,F 是O 优弧BC 上任意一点,过O 作OE⊥BC 于E ,求出圆心角2120BOC F ∠=∠=︒,最后由垂径定理求出半径OB【详解】过C 作CD⊥AB 于D ,BIC ∆的外接圆圆心为O,F 是O 优弧BC 上任意一点,过O 作OE⊥BC于E ,设,,AB c AC b BC a ===,⊥60BAC ∠=︒,⊥11,,22AD b DC BD c b ===-,⊥在ABC ∆周长为20⊥112022ABC S CD AB =⨯=,⊥20c =⊥=40bcRt BDC 中,222BD CD BC +=⊥2221())2c b a -+= 222c b bc a +-=⊥在ABC ∆周长为20,⊥+=20c b a +⊥22222()3(20)340a c b bc b c bc a =+-=+-=--⨯解得7BC a ==⊥I 是ABC ∆的内心⊥BI 、CI 分别平分⊥ABC 、⊥ACB ⊥11,22IBC ABC ICB ACB ∠=∠∠∠= ⊥60BAC ∠=︒⊥120?ABC ACB ∠+∠= ⊥1180180()120?2BIC IBC ICB ABC ACB ∠=-∠-∠=-∠+∠= ⊥+180BIC F ∠∠=°⊥60F ∠=︒⊥2120BOC F ∠=∠=︒⊥OE⊥BC ⊥1602BOE BOC ∠=∠=︒,1722BE BC ==⊥72OB BE ===故选D【点睛】 本题综合考察三角形的内心和外心,熟记内心和外心的性质是解题的关键例2.(2019·广东广州市·九年级一模)如图,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,⊙O 为ABC ∆的内切圆,OA ,OB 与⊙O 分别交于点D ,E .则劣弧DE 的长是_______.【答案】32π 【分析】先利用勾股定理计算出10AB =,再利用直角三角形内切圆半径的计算方法得到681022OD +-==,接着三角形角平分线的性质得到135AOB ∠=︒,然后根据弧长公式计算劣弧DE 的长.【详解】解:90C ∠=︒,8AC =,6BC =,10AB ∴==, O 为ABC 的内切圆,681022OD +-∴==,OA 平分BAC ∠,OB 平分ABC ∠, 1190909013522AOB C ∴∠=︒+∠=︒+⨯︒=︒, ∴劣弧DE 的长135231802ππ⨯⨯==. 故答案为32π. 【点睛】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了直角三角形内切圆半径的计算方法和弧长公式.例3.(2020·安徽芜湖市·芜湖一中九年级)如图1,设ABC ∆是一个锐角三角形,且AB AC ≠,Γ为其外接圆,O H 、分别为其外心和垂心,CD 为圆Γ直径,M 为线段BC 上一动点且满足2AH OM =.(1)证明:M 为BC 中点;(2)过O 作BC 的平行线交AB 于点E ,若F 为AH 的中点,证明: EF FC ⊥;(3)直线AM 与圆Γ的另一交点为N (如图2),以AM 为直径的圆与圆Γ的另一交点为P .证明:若AP BC OH 、、三线共点,则AH HN =;反之也成立.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)连接AD ,BD ,得090ADB DBC ∠=∠=,结合H 为垂心,//,//AD BH BD AH ,得出四边形ADBH 为平行四边形,得到BD AH =,结合平行,O 为CD 中点,可得M 为BC 中点;(2)过E 作EG BC ⊥,由EGHF , EGFA 为平行四边形,证明H 为FGC ∆的垂心,从而得到EF FC ⊥;(3)设AM 与OF 交点为I ,得到MH AP ⊥,证明H 是AMQ ∆的垂心,证明AP BC OH 、、三线共点得,,O H Q 三点共线,得到AH HN =.【详解】解:(1)连接,AD BD ,则DA AC ⊥,DB BC ⊥又H 为ABC ∆垂心⊥BH AC ⊥,AH BC ⊥⊥//,//AD BH BD AH⊥四边形ADBH 为平行四边形⊥2DB AH OM ==,又O 为CD 中点⊥M 为BC 中点(2)过E 作EG BC ⊥连接GH ,由(1)可知四边形EGHF 为平行四边形,四边形EGFA 为平行四边形 ⊥,CH AB AB GF ⊥⊥CH GF ⊥⊥H 为FGC ∆垂心⊥,GH GH CF EF ⊥而⊥EF FC ⊥(3)设AM 与OF 交点为I由(1)可知四边形OMFA 为平行四边形⊥I 为直径AM 中点而圆I 与圆Γ相交弦为AP⊥,OF AP MH OF ⊥而⊥MH AP ⊥设,MC AP Q 交于则H 为AMQ ∆垂心⊥QH AM ⊥AP BC OH 、、三线共点⇔,,O H Q 三点共线⇔OH AN⊥⇔AH HN=【点睛】本题考查了圆内的综合问题,熟知圆的性质,平行四边形的判定和性质,垂心的作用是解题的关键.【好题演练】一、单选题1.(2020·浙江金华市·九年级学业考试)如图,⊙O是等边⊙ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则⊙EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【分析】连接OE,OF.求出⊥EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.⊥⊥O是⊥ABC的内切圆,E,F是切点,⊥OE⊥AB,OF⊥BC,⊥⊥OEB=⊥OFB=90°,⊥⊥ABC 是等边三角形,⊥⊥B=60°,⊥⊥EOF=120°, ⊥⊥EPF=12⊥EOF=60°, 故选:B .【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.(2020·浙江温州市·九年级二模)如图,已知矩形ABCD 的周长为16,E 和F 分别为ABC ∆和ADC ∆的内切圆,连接AE ,CE ,AF ,CF ,EF ,若37AECF ABCD S S =四边形矩形,则EF 的长为( )A.B.C.D.【答案】B【分析】设AB=x ,BC=y ,内切圆半径为r ,由矩形的对称性知ABCE ADCF S S =四边形四边形,结合直角三角形内切圆半径与三角形面积间的关系得到x 、y 、r 的关系式,再由37AECF ABCD S S =四边形矩形推导出x 、y 、r 的关系,从而分别求出r ,xy 、22xy +的值,最后由勾股定理求得EF 值. 【详解】如图,设AB=x ,BC=y ,内切圆半径为r ,则⊥矩形ABCD 的周长为16,⊥x+y=8①⊥E 和F 分别为ABC ∆和ADC ∆的内切圆,⊥11(22ABC S xy x y r ∆==++② 由矩形的对称性知ABCE ADCF S S =四边形四边形, ⊥37AECFABCD S S =四边形矩形, ⊥247ABCE ABCD S S =四边形矩形, ⊥112()4227xr yr xy +=, 即()47x y r xy +=③ 由①、②、③联立方程组,解得:r=1,xy=14,2236x y +=,作EH⊥FH 于H ,由勾股定理得:222EF EH FH =+22(2)(2)x y =-+-224()8x y x y =+-++=36-32+8=12,⊥EF=故选:B.【点睛】本题主要考查了矩形的性质、直角三角形内切圆性质、勾股定理等知识,熟练掌握三角形内切圆半径与面积、周长间的关系是解答的关键.二、填空题3.(2019·沙坪坝区·重庆八中九年级月考)如图,O 是四边形ABCD 的内切圆,连接OA 、OB 、OC 、OD .若108AOB ∠=︒,则COD ∠的度数是____________.【答案】72︒【分析】如图,设四个切点分别为点,,,E F G H ,分别连接切点与圆心,可以得到4对全等三角形,进而得到12∠=∠,34∠=∠,56∠=∠,78∠=∠,根据这8个角和为360°,⊥1+⊥8=108AOB ∠=︒,即可求出COD ∠=⊥5+⊥4=72°.【详解】解:设四个切点分别为点,,,E F G H ,分别连接切点与圆心,则OE AB ⊥,OF CB ⊥,OG CD ⊥,OH AD ⊥且OE OF OG OH ===, 在Rt BEO ∆与Rt BFO ∆中OE OF OB OB=⎧⎨=⎩ ⊥Rt BEO Rt BFO ∆∆≌,⊥12∠=∠,同理可得:34∠=∠,56∠=∠,78∠=∠,1145(3456)[360(1278)]22COD ∠=∠+∠=∠+∠+∠+∠=︒-∠+∠+∠+∠ 11[3602(18)][3602108]7222=︒-∠+∠=︒-⨯︒=︒.故答案为:72︒【点睛】本题考查了切线的性质,添加辅助线构造全等等知识点,一般情况下,已知直线为圆的切线,构造过切点的半径是常见辅助线做法.4.(2019·湖南广益实验中学九年级月考)如图,将边长为8的正方形纸片ABCD沿着EF 折叠,使点C落在AB边的中点M处。

解直角三角形中考题型解题技巧

解直角三角形中考题型解题技巧

解直角三角形中考题型解题技巧
解直角三角形中考题型通常包括以下几种:
1.
直接求角度和边长:给出一个已知的角度和一条边的长度,要求另一条边的长度或两个角度的大小。

2.
已知两个角度和一条边长,求另一条边长:给出两个已知的角度和一条边的长度,要求另一条边的长度。

3.
已知三个角度和三条边长,求第四个角度:给出三个已知的角度和三条边的长度,要求第四个角度的大小。

下面是一些解题技巧:
1.
利用三角函数公式:在解直角三角形时,可以使用正弦、余弦、正切等三角函数公式来计算角度和边长。

例如,对于一个直角三角形ABC,其中∠C=90°,AB=c,AC=b,BC=a,则
sinA=a/c,cosA=b/c,tanA=a/b。

2.
利用勾股定理:在解直角三角形时,可以使用勾股定理来计算斜边和直角边的长度。

例如,对于一个直角三角形ABC,其中∠C=90°,AB=c,AC=b,BC=a,则根据勾股定理有a^2+b^2=c^2。

3.
利用相似三角形:在解直角三角形时,可以使用相似三角形的性质来计算角度和边长。

例如,对于一个直角三角形ABC,其中∠C=90°,AB=c,AC=b,BD=x,CD=y,则根据相似三角形的性质有x/a=y/b。

4.
注意单位换算:在解题时需要注意单位换算的问题,特别是在涉及到长度和角度的计算时。

例如,如果题目中给出的角度是以度为单位的,而要求的答案是以弧度为单位的,则需要将角度转换为弧度。

九年级数学圆解题技巧

九年级数学圆解题技巧

九年级数学圆解题技巧
九年级数学圆部分是初中数学的一个重要内容,掌握解题技巧对于提高解题速度和正确率非常重要。

以下是一些常见的圆解题技巧:
1. 确定圆的性质:首先需要了解圆的基本性质,如圆周角定理、垂径定理等。

这些性质是解决圆问题的关键。

2. 利用半径、直径和弦之间的关系:在解题过程中,要善于利用半径、直径和弦之间的关系,如弦心距定理、切割线定理等。

3. 作辅助线:在解题过程中,有时需要作辅助线来帮助解决问题。

作辅助线的方法有很多,需要根据具体问题进行分析。

4. 利用相似三角形:在解决与圆有关的问题时,有时需要利用相似三角形来解决问题。

这时需要找到相似三角形,并利用相似比来求解。

5. 数形结合:在解决与圆有关的问题时,数形结合是一种常用的方法。

通过将问题转化为图形,可以更直观地理解问题,从而更快地找到解决方案。

6. 多做练习:要提高解决圆问题的能力,多做练习是必不可少的。

通过不断的练习,可以加深对圆的理解,掌握更多的解题技巧。

总之,解决圆问题需要掌握一定的技巧和方法,同时还需要多做练习,加深对圆的理解。

只有这样,才能更好地解决与圆有关的问题。

初三数学圆答题技巧

初三数学圆答题技巧

初三数学圆答题技巧
一、初三数学圆题型分类
1.基础题型:包括圆的性质、圆与直线的关系、圆与圆的关系等。

2.复合题型:涉及圆与三角函数、解析几何、概率与统计等知识的综合运用。

3.创新题型:如动态问题、几何构造、最值问题等。

二、答题技巧详解
1.审题要细:抓住题干中的关键信息,如圆的半径、圆心坐标等。

2.画图辅助:对于复杂题目,可以借助画图工具,将问题直观化。

3.公式运用:熟练掌握圆的相关公式,如圆的周长、面积、弧长等。

4.数学方法:灵活运用三角函数、解析几何等知识解题。

5.化简运算:在进行计算时,尽量化简复杂表达式,提高解题效率。

三、应对策略与实战演练
1.强化基础:通过练习基础题型,巩固圆的相关知识。

2.综合训练:多做复合题型,提高知识运用能力和解题技巧。

3.分析总结:在做题后,及时总结经验教训,查找自己的不足。

4.创新思维:尝试解答创新题型,拓宽解题思路。

5.考试策略:在考试中,先解答自己熟悉的题目,最后处理难题。

通过以上分析,我们可以看出,掌握初三数学圆答题技巧,需要在基础知识、解题方法和应试策略等方面下功夫。

中考重点三角形的内切与外切圆性质

中考重点三角形的内切与外切圆性质

中考重点三角形的内切与外切圆性质三角形是中学数学中的基础概念之一,而对于三角形的性质的理解和掌握是中考数学的重点内容之一。

本文将着重介绍三角形的内切与外切圆性质,并分析它们在中考考点中的应用。

一、内切圆的性质内切圆,顾名思义,是能够切合三角形内部的一个圆。

我们先来看一下内切圆的性质:1. 内切圆与三角形的接点内切圆与三角形的三边相切于三个点,分别为三角形的三个顶点。

这个性质可以帮助我们解决一些关于内切圆的问题。

例如,在已知三角形三个顶点的情况下,画出其内切圆时,只需计算三角形的边长,再以三角形的顶点为圆心,三角形的边长为半径,画一个等边三角形,其内切圆的半径就是所求。

2. 内切圆的半径与三角形的性质内切圆的半径具有一定的性质与三角形的边长和面积有关。

根据切线定理,内切圆半径与三角形的三边之和成正比,即 r = S / p,其中 r为内切圆的半径,S 为三角形的面积,p 为三角形的半周长。

3. 内切圆的面积与三角形的性质内切圆的面积与三角形的面积有一定的关系。

根据面积之间的关系,内切圆的面积是三角形面积的一半,即 S1 = S / 2,其中 S1 为内切圆的面积,S 为三角形的面积。

二、外切圆的性质外切圆与三角形的三个顶点都在圆上,且三角形的三边分别与圆相切。

下面我们来了解一下外切圆的性质:1. 外切圆的半径与三角形的性质外切圆的半径与三角形的边长和面积也有一定的关系。

同样根据切线定理,外切圆的半径与三角形的半周长成正比,即 R = a / sinA = b / sinB = c / sinC,其中 R 为外切圆的半径,a、b、c 分别为三角形的三边长,A、B、C 分别为对应的角度。

2. 外切圆的面积与三角形的性质外切圆的面积与三角形的面积也有一定的关系。

根据面积之间的关系,外切圆的面积是三角形面积的两倍,即 S2 = 2S,其中 S2 为外切圆的面积,S 为三角形的面积。

三、内切与外切圆性质的应用了解了内切与外切圆的性质,我们可以通过利用这些性质解决一些与三角形相关的问题。

三角形内切圆解题方法

三角形内切圆解题方法

三角形内切圆解题方法The problem of solving the inscribed circle in a triangle is a common one in geometry. It involves finding the radius and the center of the circle that is tangent to all three sides of the triangle. 这个问题在数学几何中很常见。

它涉及到找到一个圆的半径和圆心,这个圆刚好与三角形的三边相切。

One of the methods for solving this problem is to use the incenter of the triangle. The incenter is the point where the angle bisectors ofthe triangle intersect, and it is also the center of the inscribed circle.一个解决这个问题的方法是使用三角形的内心。

内心是三角形的角平分线相交的点,也是内切圆的圆心。

To find the incenter, one can use the distance formula to calculatethe distances between the vertices of the triangle and the incenter. Then, using the angles of the triangle, one can determine the coordinates of the incenter. 为了找到内心,可以使用距离公式计算三角形顶点和内心之间的距离。

然后,利用三角形的角度,可以确定内心的坐标。

Another method for solving the inscribed circle in a triangle is to use the radius formula for a circle. This formula states that the radius of a circle inscribed in a triangle can be found using the area of the triangle and its semi-perimeter. 另一种解决三角形内切圆的方法是使用圆的半径公式。

初三数学三角形的内切圆知识精讲 人教实验版五四制

初三数学三角形的内切圆知识精讲 人教实验版五四制

初三数学三角形的内切圆知识精讲 人教实验版五四制【同步教育信息】一. 本周教学内容:三角形的内切圆二. 重点、难点:重点:三角形内心的性质,内切圆半径的求法难点:三角形内心与外心的区别三. 具体内容:1.三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切的内切圆。

内切圆的圆心叫三角形的内心,这个三角形叫做圆的外切三角形。

2. 三角形内心的性质:三角形的内心到三边的距离相等,并且与顶点的连线平分三角形的内角。

3. 三角形内切圆半径公式:设△ABC 三边分别是c b a ,,,面积为S 。

则内切圆半径 cb a s r ++=2 4. 三角形内心,外心的区别:外心:三边垂直平分线的交点,到三个顶点的距离相等。

内心:三内角平分线的交点,到三边距离相等。

【典型例题】[例1] 已知△ABC ,求作:△ABC 的内切圆⊙I 。

作法:1. 分别作∠B 、∠C 的平分线交于I2. 过I 作BC 的垂线交BC 于D3. 以I 为圆心,以ID 为半径作⊙I⊙I 即为△ABC 的内切圆[例2] 已知:I 是△ABC 的内心,∠A=80°,求∠BIC 的度数。

解:∵ I 是△ABC 的内心∴∠1=∠2=21∠ABC ∠3=∠4=21∠ACB 又∵∠A+∠ABC+∠ACB=180°∠A=80°∴∠ABC+∠ACB=100°∴∠2+∠4=21∠ABC+21∠ACB=21(∠ABC+∠ACB )=50° ∵∠I+∠2+∠4=180°∴∠BIC=130°[例3] 如图,△ABC 中,内切圆I 与边BC 、CA 、AB 分别切于点D 、E 、F ,若∠FDE=70°,求∠A 的度数。

解:连结IE ,IF∵⊙I 切AC 于E ,切AB 于F∴ IE ⊥AC ,IF ⊥AB又∵∠FIE=2∠FDE ,∠FDE=70°∴∠FIE=140°∵∠FIE+∠IEA+∠IFA+∠A=360°∴∠A=180°-∠FIE=40°[例4] 如图,点I 是△ABC 的内心,AI 的延长线交边BC 于点D ,交△ABC 外接圆于点E 。

初三数学圆答题技巧

初三数学圆答题技巧

初三数学圆答题技巧
一、初三数学圆的基本概念和重要性
初三数学圆是数学中的一块重要内容,它不仅在各类考试中占据一定比例,而且对于培养学生的几何思维和空间想象力也具有重要意义。

因此,掌握好圆的相关知识和解题技巧至关重要。

二、解题技巧:步骤和方法
1.审题:仔细阅读题目,提取关键信息,判断题目类型。

2.画图:根据题目要求,作出相应的图形,便于理解问题。

3.列方程:根据题目所给条件,建立合适的数学模型,列出方程。

4.解方程:运用恰当的解方程方法,求解方程组。

5.检验:将求得的解代入原方程,检验是否符合题意。

6.总结:梳理解题过程,提炼方法技巧。

三、常见题型及解题策略
1.圆的性质和计算:熟练掌握圆的性质,如圆心、半径、角度等,运用公式进行计算。

2.圆与直线的关系:了解圆与直线的位置关系,如相交、相切、相离,根据题意求解。

3.圆与圆的关系:掌握两圆位置关系的判断方法,如内切、外切、相离。

4.三角形的几何问题:利用三角形面积公式、角度和周长公式等解决实际问题。

5.圆中的最值问题:利用二次函数在圆中的性质,求解最值问题。

四、应试技巧:时间分配和答题顺序
1.时间分配:合理安排时间,确保每道题都有足够的时间思考和解答。

2.答题顺序:先易后难,遇到不会的题目可以先跳过,等其他题目完成后再回来解决。

五、总结与建议
掌握初三数学圆的解题技巧,需要不断地练习和总结。

在学习过程中,要注重理论知识与实际应用的结合,培养自己的几何思维和空间想象力。

同时,参加各类模拟考试,了解考试题型和难度,增强自己的应试能力。

中考数学直角三角形内切圆答题技巧

中考数学直角三角形内切圆答题技巧

中考数学直角三角形内切圆答题技巧中考数学直角三角形内切圆答题技巧我们知道利用面积法可以解决直角三角形内切圆半径的问题 ,在此根底上发现假设有两个等圆内切于直角三角形中 ,也可按面积法求解 ,具体过程如下。

:在Rt⊿ABC中,⊙O1 ,⊙O2两等圆外切于H, ⊙O1 切AC、AB于D、E 两点,⊙O2 切BC、AB于F、G两点 ,假设AC=4,BC=3 ,求⊙O1与⊙O2的半径。

解:连接O1 A, O1 D, O1 E, O1 C, O1 O2, O2 C, O2 F, O2 B, O2 G, O1 G,过C作CIAB交AB于I,交O1 O2于J设⊙O1与⊙O2的半径为r∵⊙O1 ,⊙O2两等圆外切于H, ⊙O1 切AC、AB于D、E两点 ,⊙O2 切BC、AB于F、G两点O1 DAC , O1 EAB, O2 GAB, O2 FBCS⊿AO1C=ACO1D=2r S⊿BO2C=BCO2F=1.5rS⊿AO1G+ S⊿O2GB =AGO1E+GBO2G=r(AG+ GB)=2.5r又∵CIAB交AB于I,交O1 O2于JCJ+ O2G = CJ+JI=CI CI==2.4S⊿CO1 O2+ S⊿O1 O2G =O1 O2CJ+O1 O2O2G=O1 O2CI=2.4r即S⊿ABC= S⊿AO1C+ S⊿BO2C+ S⊿AO1G+ S⊿O2GB+ S⊿CO1 O2+ S⊿O1 O2G==68.4r=6 , r=现推广到一般情况在Rt⊿ABC中C=90 ,⊙O1 ,⊙O2⊙On(n为正整数)两两等圆外切, ⊙O1切AC、AB,⊙On 切BC、AB, 假设AC=b,BC=a,求⊙O1 ,⊙O2 ,⊙On的半径。

解:用类比思想我们可以知道,设⊙O1 ,⊙O2 ,⊙O n的半径为rS⊿ABC = S1+ S2+ (S3+ S4)+ (S5+ S6)=br+ar+r+2(n-1)r又∵S⊿ABC =abr=。

初三数学圆的解题技巧 一般都采用待定系数法

初三数学圆的解题技巧 一般都采用待定系数法

初三数学圆的解题技巧
一、确定圆心位置
确定圆心的位置是解题的第一步,通常根据题目给出的条件,通过分析、推理和计算来确定圆心的位置。

二、确定半径长度
确定半径的长度也是解题的重要步骤之一。

通常可以通过题目给出的条件或者利用已知的圆心和圆上一点的距离来计算半径的长度。

三、使用待定系数法
在解题过程中,我们常常需要设立一些未知数来解决问题,这就是待定系数法。

在解决圆的题目时,我们可以通过设立未知数来表示一些未知的量,然后通过已知条件建立方程来求解这些未知数。

四、应用切线的性质
切线性质是解决圆的题目时的一个重要知识点。

在解题过程中,我们可以通过分析切线的性质,结合已知条件来解决问题。

例如,切线与半径垂直的性质可以用来证明某些几何关系或者求解某些未知量。

五、熟练掌握圆的基础性质
熟练掌握圆的基础性质是解决圆的题目的基础。

在解题过程中,我们需要根据圆的基础性质来分析问题、推导结论。

例如,圆的对称性、圆的周长和面积的
计算公式等都是解题时常用的知识点。

综上所述,初三数学圆的解题技巧包括确定圆心位置、确定半径长度、使用待定系数法、应用切线的性质和熟练掌握圆的基础性质等方面。

通过不断练习和总结,我们可以提高自己的解题能力,更好地掌握圆的解题技巧。

中考重点三角形的外接圆与内切圆

中考重点三角形的外接圆与内切圆

中考重点三角形的外接圆与内切圆中考重点:三角形的外接圆与内切圆三角形是中考数学中的一个重要内容,其中与三角形相关的圆也是必须掌握的知识点。

本文将重点讨论三角形的外接圆与内切圆。

一、外接圆外接圆指的是一个圆能够完全围住一个三角形,并且三角形的三个顶点均在这个圆上。

我们下面以直角三角形和一般三角形来介绍外接圆的求解方法。

1. 直角三角形在直角三角形中,外接圆的圆心位于斜边的中点,并且半径等于斜边的一半。

这个性质可以通过勾股定理来进行推导。

假设直角边分别为a和b,斜边为c,斜边的中点坐标为(M, N)。

首先根据勾股定理,我们有:a² + b² = c²由于斜边的中点坐标为(M, N),根据坐标推导,我们可以得到:M = (a + b) / 2N = (a - b) / 2根据外接圆的性质,斜边的中点与外接圆圆心重合,即斜边的中点坐标即为外接圆圆心的坐标。

所以外接圆的圆心坐标为(M, N)。

而外接圆的半径等于斜边的一半,即半径R = c / 2。

2. 一般三角形对于一般三角形,我们可以利用三角形的垂心来求解外接圆的圆心和半径。

垂心是三角形的三条高所共有的交点,即三条高的交点称为垂心。

垂心到三角形三个顶点的距离分别等于它到三个高的距离。

首先,我们需要求解出三角形的垂心坐标。

求解过程中可以利用垂心的性质:三条高的交点到三个顶点的距离乘积相等。

假设三角形的三个顶点坐标分别为(Ax, Ay),(Bx, By),(Cx, Cy),垂心的坐标为(Dx, Dy)。

首先我们可以计算三角形三条边的长度:a = √((By-Cy)² + (Bx-Cx)²)b = √((Ay-Cy)² + (Ax-Cx)²)c = √((Ay-By)² + (Ax-Bx)²)然后我们可以根据垂心的性质,求解垂心的坐标:Dx = (a²*Ax + b²*Bx + c²*Cx) / (a² + b² + c²)Dy = (a²*Ay + b²*By + c²*Cy) / (a² + b² + c²)根据垂心的坐标,我们就可以求得外接圆的圆心坐标,同时外接圆的半径等于垂心到任意一个顶点的距离。

初中数学 如何使用三角形的内切圆解决实际问题

初中数学 如何使用三角形的内切圆解决实际问题

初中数学如何使用三角形的内切圆解决实际问题三角形的内切圆是初中数学中一个重要的概念,它可以帮助我们解决各种与三角形有关的实际问题。

在本文中,我们将深入探讨如何使用三角形的内切圆解决实际问题,并通过具体的例题来帮助读者更好地理解和掌握这一概念。

首先,让我们回顾一下三角形的内切圆的定义。

对于一个任意三角形ABC,如果能找到一个圆,使得这个圆与三角形的三条边都切于一点,那么这个圆就是三角形ABC的内切圆。

利用三角形的内切圆,我们可以解决许多实际问题。

其中最常见的问题是确定内切圆的半径和圆心的位置。

接下来,我们将通过一些具体的例题来演示如何使用三角形的内切圆解决实际问题。

例题1:在图中,已知三角形ABC的三个顶点坐标分别为A(1, 2),B(5, 6),C(3, 8),求三角形ABC的内切圆的半径。

解析:根据题目中的已知条件,我们可以利用三角形的内切圆来解决这个问题。

首先,我们可以利用三角形的两边的坐标来确定三角形的边长。

根据两点间距离公式,我们可以得到AB的边长为√[(5-1)^2 + (6-2)^2] = √[16 + 16] = √32。

同样地,我们可以得到AC的边长为√[(3-1)^2 + (8-2)^2] = √[4 + 36] = √40。

最后,我们可以得到BC的边长为√[(5-3)^2 + (6-8)^2] = √[4 + 4] = √8。

根据三角形的内切圆的性质,三角形的内切圆的半径等于三角形的面积除以半周长。

因此,我们可以先求出三角形ABC的半周长。

根据已知条件,我们可以得到半周长s = (AB + BC + AC) / 2 = (√32 + √8 + √40) / 2。

因此,我们可以得到三角形ABC的半周长s。

接下来,我们可以利用三角形的海伦公式来求解三角形ABC的面积。

根据海伦公式,我们可以得到三角形ABC的面积为√[s(s-AB)(s-BC)(s-AC)]。

通过计算,我们可以得到三角形ABC的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学直角三角形内切圆答题技巧_答题技巧
中考数学直角三角形内切圆答题技巧
我们知道利用面积法可以解决直角三角形内切圆半径的问题,在此基础上发现若有两个等圆内切于直角三角形中,也可按面积法求解,具体过程如下。

已知:在Rt⊿ABC中,⊿O1 ,⊿O2两等圆外切于H, ⊿O1 切AC、AB于D、E两点,⊿O2 切BC、AB于F、G两点,若AC=4,BC=3,求⊿O1与⊿O2的半径。

解:连接O1 A, O1 D, O1 E, O1 C, O1 O2, O2 C, O2 F, O2 B, O2 G, O1 G,过C作CIAB交AB于I,交O1 O2于J
设⊿O1与⊿O2的半径为r
⊿⊿O1 ,⊿O2两等圆外切于H, ⊿O1 切AC、AB于D、E两点,
⊿O2 切BC、AB于F、G两点
O1 DAC , O1 EAB, O2 GAB, O2 FBC
S⊿AO1C=ACO1D=2r S⊿BO2C=
BCO2F=1.5r
S⊿AO1G+ S⊿O2GB =
AGO1E+GBO2G=
r(AG+ GB)=2.5r
又⊿CIAB交AB于I,交O1 O2于J
CJ+ O2G = CJ+JI=CI CI==2.4
S⊿CO1 O2+ S⊿O1 O2G =
O1 O2CJ+O1 O2O2G=
O1 O2CI=2.4r
即S⊿ABC= S⊿AO1C+ S⊿BO2C+ S⊿AO1G+ S⊿O2GB+ S⊿CO1 O2+ S⊿O1 O2G==6
8.4r=6 , r=
现推广到一般情况在Rt⊿ABC中C=90,⊿O1 ,⊿O2⊿On(n为正整数)两两等圆外切, ⊿O1切AC、AB,⊿On 切BC、AB, 若AC=b,BC=a,求⊿O1 ,⊿O2 ,⊿On的半径。

解:用类比思想我们可以知道,设⊿O1 ,⊿O2 ,⊿On的半径为r
S⊿ABC = S1+ S2+ (S3+ S4)+ (S5+ S6)=br+ar+r+2(n-1)r
又⊿S⊿ABC =ab
r=。

相关文档
最新文档