立体几何几种常见题型

合集下载

高一立体几何题型及解题方法

高一立体几何题型及解题方法

高一立体几何题型及解题方法
高一立体几何是数学中的一个重要部分,也是高中数学中难度较大的内容之一。

下面介绍一些高一立体几何的题型及解题方法。

1. 空间向量题型
空间向量题型是高一立体几何中比较基础的题型,需要掌握空间向量的基本概念和运算规律。

解题时需要根据向量的定义和性质,运用向量加法、数乘等基本运算法则,求解向量的模长、方向余弦等相关量。

2. 空间几何体积题型
空间几何体积题型是高一立体几何中比较常见的题型,需要掌握各种几何体的面积和体积公式,并能够灵活运用这些公式进行计算。

解题时需要注意几何体的立体图形,确定所求的体积或面积,再根据公式进行计算。

3. 立体图形的相似题型
立体图形的相似题型需要掌握几何体的相似性质和基本比例关系,能够根据相似性质推导出几何体的相关量。

解题时需要注意几何体的相似条件,确定所求的比例关系,再根据比例关系求解相关量。

4. 空间几何位置关系题型
空间几何位置关系题型需要掌握空间中点、线、面的位置关系及相关性质。

解题时需要注意点、线、面的位置关系,确定所求的相关量,再根据相关性质进行计算。

总之,高一立体几何的题型比较多,需要学生具备扎实的基础知
识和灵活的解题思路,加强对几何图形和空间位置关系的理解和掌握,才能顺利解决高一立体几何的各种题型。

高中必修二数学 立体几何题型总结

高中必修二数学 立体几何题型总结

高中必修二数学立体几何题型总结
高中数学必修二中的立体几何部分是高考的重要考点之一,下面是一些常见的立体几何题型及其解题方法:
1. 空间几何体的表面积和体积
解题方法:熟练掌握各种空间几何体的表面积和体积的公式,根据题目要求进行计算。

2. 空间几何体的直观图和三视图
解题方法:通过观察和分析空间几何体的直观图和三视图,掌握几何体的形状和大小,进而解决相关问题。

3. 空间点、线、面的位置关系
解题方法:理解空间点、线、面的位置关系,掌握各种位置关系的判定定理和性质定理,能够灵活运用解决相关问题。

4. 空间几何体的旋转体问题
解题方法:掌握旋转体的形成过程和性质,通过分析旋转体的轴和母线,利用旋转体的性质进行计算和证明。

5. 空间几何体的平行和垂直问题
解题方法:掌握空间几何体的平行和垂直的判定定理和性质定理,能够灵活运用解决相关问题。

6. 空间几何体的最值问题
解题方法:通过分析几何体的结构特征,利用几何体的性质和不等式等数学知识,求得空间几何体的最值。

7. 空间几何体的实际应用问题
解题方法:通过建立空间几何模型,将实际问题转化为数学问题,利用几何体的性质和数学知识解决实际问题。

以上是高中数学必修二中立体几何部分的一些常见题型及解题方法,掌握这些题型和方法对于提高立体几何部分的解题能力非常有帮助。

立体几何题型及解题方法

立体几何题型及解题方法

立体几何题型及解题方法
立体几何是数学中研究三维空间几何图形的学科。

以下是一些常见的立体几何题型及其解题方法:
1. 计算体积和表面积:这类题目通常涉及到三维空间中的几何形状,如长方体、圆柱体、圆锥体等。

解题方法包括使用体积和表面积的公式,以及根据题目描述建立数学模型。

2. 证明定理和性质:这类题目通常涉及到几何图形的性质和定理,如平行线性质、勾股定理等。

解题方法包括使用已知定理和性质进行推导,以及通过构造辅助线或辅助图形来证明。

3. 求解最值问题:这类题目通常涉及到求几何图形中的最值,如最短路径、最大面积等。

解题方法包括使用不等式、极值定理和优化方法等。

4. 判定和性质应用:这类题目通常涉及到判定几何图形是否满足某个性质,或应用某个性质到实际场景中。

解题方法包括根据性质进行推导和判断,以及根据实际场景建立数学模型。

以上是一些常见的立体几何题型及其解题方法,当然还有其他的题型和解题方法。

在解决立体几何问题时,需要灵活运用几何知识和方法,多做练习,提高自己的解题能力。

四类立体几何题型-新高考数学大题秒杀技巧(解析版)

四类立体几何题型-新高考数学大题秒杀技巧(解析版)

四类立体几何题型-高考数学大题秒杀技巧立体几何问题一般分为四类:类型1:线面平行问题类型2:线面垂直问题类型3:点面距离问题类型4:线面及面面夹角问题下面给大家对每一个类型进行秒杀处理.技巧:法向量的求算待定系数法:步骤如下:①设出平面的法向量为n =x ,y ,z .②找出(求出)平面内的两个不共线的向量a =a 1,b 1,c 1 ,b =a 2,b 2,c 2 .③根据法向量的定义建立关于x ,y ,z 的方程组n ⋅a =0n ⋅b =0④解方程组,取其中的一个解,即得法向量.注意:在利用上述步骤求解平面的法向量时,方程组n ⋅a =0n ⋅b =0有无数多个解,只需给x ,y ,z 中的一个变量赋于一个值,即可确定平面的一个法向量;赋的值不同,所求平面的法向量就不同,但它们是共线向量.秒杀:口诀:求谁不看谁,积差很崩溃(求外用外减,求内用内减)向量a =x 1,y 1,z 1 ,b =x 2,y 2,z 2 是平面α内的两个不共线向量,则向量n =y 1z 2−y 2z 1,x 2z 1−x 1z 2,x 1y 2−x 2y 1 是平面α的一个法向量.特别注意:空间点不容易表示出来时直接设空间点的坐标,然后利用距离列三个方程求解.类型1:线面平行问题方法一:中位线型:如图⑴,在底面为平行四边形的四棱锥P -ABCD 中,点E 是PD 的中点.求证:PB ⎳平面AEC .分析:方法二:构造平行四边形如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE ⎳CF ,求证:AE ⎳平面DCF .分析:过点E作EG⎳AD交FC于G,DG就是平面AEGD与平面DCF的交线,那么只要证明AE⎳DG即可。

方法三:作辅助面使两个平面是平行如图⑶,在四棱锥O-ABCD中,底面ABCD为菱形,M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD分析::取OB中点E,连接ME,NE,只需证平面MEN∥平面OCD。

立体几何大题题型总结

立体几何大题题型总结

立体几何大题题型总结
立体几何大题包括以下几种题型:
1. 体积计算题:给定一个几何体的形状和尺寸,求其体积。

2. 表面积计算题:给定一个几何体的形状和尺寸,求其表面积。

3. 三视图综合题:给定一个几何体的三视图,通过推理和计算求出其体积和表面积。

4. 截面综合题:给定一个几何体的各个截面的形状和尺寸,通过推理和计算求出其体积和表面积。

5. 相似几何体综合题:给定多个几何体的形状和尺寸,在它们之间应用相似性质,求出它们各自的体积和表面积。

6. 空间几何关系题:给定多个几何体之间的位置关系,例如相切、相交、包含等,求出它们各自的体积和表面积。

7. 作图求解题:通过构造一些几何形状,例如放射形、圆锥、圆台等,求出特定几何体的体积和表面积。

8. 混合几何体综合题:将以上多种题型进行综合,考查学生的综合运用能力。

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

立体几何大题15种题型全归纳

立体几何大题15种题型全归纳

【题型一】 平行1:四边形法证线面平行【典例分析】如图,在正方体中,E ,F 分别是,CD 的中点.(1)求证:平面;(2)求异面直线与所成角的余弦值.【答案】(1)证明见解析;(2(1)在正方体中,取中点G ,连接FG ,,如图,而F 是CD 的中点,则,,又E 是的中点,则,, 因此,,,四边形是平行四边形,有,而平面,平面,平面.【经验总结】基本规律1.利用平移法做出平行四边形2.利用中位线做出平行四边形【变式演练】1.如图所示,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,,,,E 是PB 的中点.(1)求证:平面PAD ;(2)若,求三棱锥P -ACE 的体积.【答案】(1)证明见解析(2) 【分析】(1)取PA 的中点F ,连接EF ,DF ,利用平行四边形证明,再由线面平行的判定定理即可得证;(2)根据等体积法知,即可由棱锥体积公式求解.(1)取PA 的中点F ,连接EF ,DF ,∵点E ,F 分别为PB ,PA 的中点,1111ABCD A B C D -1AA //EF 11A CD 1ED 1A C 1111ABCD A B C D -1CD 1GA 1//FG DD 112FG DD =1AA 11//A E DD 1112A E DD =1//A E FG 1A E FG =1FGA E 1//EF GA EF ⊄11A CD 1GA ⊂11A CD //EF 11A CD AB AD ⊥//AB CD 222AB AD CD ===//CE 2PC =13//EC DF P ACE E ACP V V --=∴,,∴四边形EFDC 是平行四边形,∴,又∵平面PAD ,平面PAD ,∴平面PAD ;2.如图,在四棱锥中,面,,且,,,,为的中点.(1)求证:平面;(2)求平面与平面所成二面角的余弦值;(3)在线段上是否存在一点,使得直线与平面若存在求出的值,若不存在说明理由. 【答案】(1)证明见解析(2)(3)存在, (1)证明:取CP 中点F ,连接NF 、BF ,因为F ,N 分为PC ,PD 的中点,则,且, 又,且,,所以四边形NABF 是平行四边形, ,又面PBC ,面PBC 。

高中数学立体几何题型归纳

高中数学立体几何题型归纳

高中数学立体几何题型归纳
高中数学立体几何是高考数学的一个重要组成部分,其题型归纳如下:
1. 计算题:主要要求异面直线所成的角、直线与平面所成的角、二面角、点到面的距离、表面积、体积等。

2. 证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。

3. 三视图问题:要求画出简单空间图形 (长方体、球、圆柱、圆锥、棱柱等的简易组合) 的三视图,并能识别上述三视图所表示的立体模型。

4. 空间直线与平面的位置关系问题:要求判断直线与平面的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。

5. 空间向量问题:要求理解空间向量的概念,掌握空间向量的加减法和数量积运算法则,能够运用空间向量求解立体几何问题。

6. 空间点、线、面之间的位置关系问题:要求判断点、线、面之间的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。

7. 立体几何中的证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。

此外,还有一些特殊的立体几何问题,如立方体问题、圆锥问题、球体问题等。

对于这些问题,需要结合实际情况进行具体分析,并注重理解和掌握相关的概念、定理和公式。

(完整版)高中数学立体几何经典常考题型

(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。

高考复习立体几何考点常见题型

高考复习立体几何考点常见题型

立体几何常见题型考点1 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题例1如图,正三棱柱111A B CA B C -的所有棱长都为2,D 为1C C 中点.(Ⅰ)求证:1A B ⊥平面1A B D ; (Ⅱ)求二面角1A A D B--的大小;(Ⅲ)求点C 到平面1A B D 的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.解答过程:取B C 中点O ,连结A O .A B C△为正三角形,A O B C ∴⊥.正三棱柱111A B C A B C -中,平面A B C ⊥平面11B C C B ,A O ∴⊥平面11B C C B .连结1B O ,在正方形11B B C C 中,O D ,分别为1B C C C ,的中点, 1B O B D∴⊥, 1A B B D∴⊥.在正方形11A B B A 中,11A B A B ⊥, 1A B ∴⊥平面1A B D .(Ⅱ)设1A B 与1A B 交于点G ,在平面1A B D 中,作1G F A D⊥于F ,连结A F ,由(Ⅰ)得1A B ⊥平面1A B D .1A F A D∴⊥, A F G ∴∠为二面角1A A D B--的平面角. 在1A A D △中,由等面积法可求得5A F=AB CD1A1C 1BA BC D1A1C1BO F又112A G AB ==sin 45A G A F GA F∴===∠.所以二面角1A A D B--的大小为arcsin4(Ⅲ)1A B D △中,111A B D B DA D AB S ===∴=△1B C DS =△.在正三棱柱中,1A 到平面11B C C B设点C 到平面1A B D 的距离为d . 由11A B C DC A BD V V --=,得11133B C D A B D S S d=△△,12A B Dd S ∴==△∴点C 到平面1A B D2例2.( 2006年湖南卷)如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.(Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力. 过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:方法一 (Ⅰ)取AD 的中点,连结PM ,QM . 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又⊂PQ 平面PQM ,所以PQ ⊥AD .同理PQ ⊥AB ,所以PQ ⊥平面ABCD .(Ⅱ)连结AC 、BD 设O BD AC = ,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在PQ 上,从而P 、A 、Q 、C 四点共面.取OC 的中点N ,连接PN .QBCPADOM因为21,21===OCNO OANO OQPO ,所以OANO OQPO =,从而AQ ∥PN ,∠BPN (或其补角)是异面直线AQ 与PB 所成的角.因为3P B ===,P N ===10)2()22(2222=+==ON OB BN所以9333210392cos 222=⨯⨯-+=⋅-∠PNPB BNPN PB BPN +=.从而异面直线AQ 与PB 所成的角是93arccos.(Ⅲ)连结OM ,则112.22O M A B O Q ===所以∠MQP =45°.由(Ⅰ)知AD ⊥平面PMQ ,所以平面PMQ ⊥平面QAD . 过P 作PH ⊥QM 于H ,PH ⊥平面QAD .从而PH 的长是点P 到平面QAD 的距离.又03,sin 452P Q P O Q O P H P Q =+=∴==.即点P 到平面QAD 的距离是2..考点2 异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离. 典型例题例3 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离.又 线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S在Rt SCE ∆中,3222=+=CE SC SE 在Rt SCF ∆中,30224422=++=+=CFSCSF又3,6=∴=∆SEF S EF由于h S V V SEF CEF S SEF C ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h故CD 与SE 间的距离为332.小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程.考点3 直线到平面的距离此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 典型例题例4. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解.解答过程:解析一 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,BACDOGH 1A 11D1B 1O1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACCA ,又⊂11D B 平面11D GB∴平面1111D GB ACCA ⊥,两个平面的交线是G O 1,作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O .又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O .即BD 到平面11D GB 的距离等于362.解析二 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V34222213111=⨯⨯⨯⨯=-GBB D V , ,36264==∴h即BD 到平面11D GB 的距离等于362.小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离.考点4 异面直线所成的角此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点. 典型例题例5(2007年北京卷文)如图,在R t A O B △中,π6O A B ∠=,斜边4A B =.R t A O C △可以通过R t A O B△以直线A O 为轴旋转得到,且二面角B A O C --的直二面角.D 是A B 的中点.(I )求证:平面C O D ⊥平面A O B ; (II )求异面直线A O 与C D 所成角的大小.思路启迪:(II )的关键是通过平移把异面直线转化到一个三角形内. 解答过程:解法1:(I )由题意,C O A O ⊥,B O A O ⊥, B O C ∴∠是二面角B A O C --是直二面角, C O B O ∴⊥,又A O B O O = ,C O ∴⊥平面A O B ,又C O ⊂平面C O D .∴平面C O D ⊥平面A O B .(II )作D E O B ⊥,垂足为E ,连结C E (如图),则D E A O ∥,C D E ∴∠是异面直线A O 与C D 所成的角. 在R t C O E △中,2C OB O ==,112O EB O ==,C E ∴=又12D EA O ==∴在R t C D E △中,tan 3C E CDE D E===∴异面直线A O 与C D 所成角的大小为arctan 3例6.(2006年广东卷)如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE //AD . (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角.命题目的:本题主要考查二面角以及异面直线所成的角等基本知识,考查空间想象能力、逻辑思维能力和运算能力. 过程指引:关键是用恰当的方法找到所求的空间距离和角并掌握利用空间向量求空间距离和角的一般方法. 解答过程: (Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB , AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.是矩形的直径,是圆、ABFC O BC AF ∴ ,OCADBEx是正方形,又ABFCACAB∴==6由于ABFC是正方形,所以∠BAF=450.即二面角B—AD—F的大小为450;(Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,23-,0),B(23,0,0),D(0,23-,8),E(0,0,8),F(0,23,0)所以,)8,23,0(),8,23,23(-=--=FEBDco s,10||||B D F EB D F EB D F E⋅<>===设异面直线BD与EF所成角为α,则.co s co s,10B D F Eα=<>=故直线BD与EF所成的角为1082arccos.考点5 直线和平面所成的角例7.(2007年全国卷Ⅰ理)四棱锥S A B C D-中,底面A B C D为平行四边形,侧面SB C⊥底面A B C D.已知45A B C=∠,2A B=,B C=SA SB==(Ⅰ)证明SA B C⊥;(Ⅱ)求直线SD与平面S A B所成角的大小.考查目的:本小题主要考查直线与直线,直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.解答过程:解法一:(Ⅰ)作SO B C⊥,垂足为O,连结A O,由侧面SB C⊥底面A B C D,得SO⊥底面A B C D.因为SA SB=,所以A O B O=,又45A B C=∠,故A O B△为等腰直角三角形,A O B O⊥,由三垂线定理,得SA B C⊥.DBCAS(Ⅱ)由(Ⅰ)知SA B C ⊥,依题设A D B C ∥, 故SA A D ⊥,由A D B C ==S A =A O =1S O =,S D =.SA B △的面积112SA B ==连结D B ,得D A B △的面积21sin 13522S A B A D ==设D 到平面S A B 的距离为h ,由于D SA B S A B D V V --=,得121133h S S O S =,解得h=设SD 与平面S A B 所成角为α,则sin 11h S Dα===所以,直线SD 与平面SB C 所成的我为arcsin 11考点6 二面角此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点,应重视. 典型例题例8.(2007年湖南卷文)如图,已知直二面角P Q αβ--,A P Q ∈,B α∈,C β∈,C A C B =,45B A P ∠=,直线C A 和平面α所成的角为30.(I )证明B C P Q ⊥;(II )求二面角B A C P --的大小.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:(I )在平面β内过点C 作C O P Q ⊥于点O ,连结O B .ABCQ αβP因为αβ⊥,P Q αβ= ,所以C O α⊥, 又因为C A C B =,所以O A O B =.而45B A O ∠= ,所以45A B O ∠= ,90A O B ∠= , 从而B O P Q ⊥,又C O P Q ⊥,所以P Q ⊥平面O B C .因为B C ⊂平面O B C ,故P Q B C ⊥. (II )解法一:由(I )知,B O P Q ⊥,又αβ⊥,P Q αβ= ,B O α⊂,所以B O β⊥.过点O 作O H A C ⊥于点H ,连结B H ,由三垂线定理知,B H A C ⊥. 故B H O ∠是二面角B A C P --的平面角.由(I )知,C O α⊥,所以C A O ∠是C A 和平面α所成的角,则30C A O ∠=,不妨设2A C =,则A O =sin 302O H A O ==.在R t O A B △中,45A B O B A O ∠=∠=,所以B O A O ==于是在R t B O H △中,tan 22B O B H O O H∠===.故二面角B A C P --的大小为arctan 2.例9.( 2006年重庆卷)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,∠DAB 为直角,AB ‖CD ,AD =CD =2AB , E 、F 分别为PC 、CD 的中点. (Ⅰ)试证:CD ⊥平面BEF ;(Ⅱ)设P A =k ·AB ,且二面角E -BD -C 的平面角大于︒30,求k 的取值范围.解答过程:解法一:(Ⅰ)证:由已知DF //=AB 且∠DAD 为直角,故ABFD 是矩形,从而CD ⊥BF .又P A ⊥底面ABCD,CD ⊥AD,故由三垂线定理知AB CQαβP OHCD ⊥PD .在△PDC 中,E 、F 分别PC 、CD 的中点,故EF ∥PD ,从而CD ⊥EF ,由此得CD ⊥面BEF .(Ⅱ)连结AC 交BF 于G .易知G 为AC 的中点.连接EG ,则在△P AC 中易知EG ∥P A .又因P A ⊥底面ABCD ,故EG ⊥底面ABCD .在底面ABCD 中,过G 作GH ⊥BD ,垂足为H ,连接EH .由三垂线定理知EH ⊥BD .从而∠EHG 为二面角E -BD -C 的平面角. 设AB=a ,则在△P AC 中,有 EG =21P A =21ka .以下计算GH ,考察底面的平面图.连结GD . 因S △GBD =21BD ·GH=21GB ·DF .故GH =BDDF GB ⋅.在△ABD 中,因为AB =a ,AD =2a ,得BD =5a. 而GB =21FB =21AD =a ,DF =AB ,从而得GH =BDAB GB ⋅= aa a 5⋅=.55a因此tan ∠EHG=GHEG =.255521k aka=由k >0知EHG ∠是锐角,故要使EHG ∠>︒30,必须k 25>tan ︒30=,33解之得,k 的取值范围为k >.15152。

从易到难分析立体几何常见题型及练习

从易到难分析立体几何常见题型及练习

立体几何常见类型题题型一、空间几何体三视图与直观图 (1)由实物图画三视图1.如图甲所示,在正方体1111D C B A ABCD -中,E 、F 分别是1AA 、11D C 的中点,G 是正方形11B BCC 的中心,则四边形AGFE 在该正方体的各个面上的投影可能是图乙中的_______________。

(2)三视图还原实物图2..某空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+ C. 2323π+D. 2343π+ (3)斜二测画法有关的计算问题(S S 42'=) 3.等腰梯形ABCD ,上底1=CD ,腰2==BC AD ,下底,3=AB 以下底所在直线为x 轴,则由斜二侧画法画出的直观图''''D C B A 的面积是 ________ 题型二、空间几何体的表面积与侧面积 (1)空间几何体的表面积与体积4.已知某几何体的俯视图如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形。

(1)画出几何体的直观图 (2)求该几何体的侧面积S 。

(3)求该几何体的体积V ;(2)空间几何体展开图及面积计算5.已知圆锥的侧面展开图是右图所示的扇形,半径为1,圆心角为ο120, 则圆锥的表面积和体积分别是多少?(3)割补法和等体积法求体积6.如图,正方体''''D C B A ABCD -的棱长为2,E 是AB 的中点, 求:(1)三棱锥EC A B '-的体积V . (2)求B 点到平面EC A '的距离。

类型三.证明线面平行1.在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。

2.正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证: C1O ∥面11AB D ; 考点:法1:利用平行四边形 法2:利用面面平行的性质类型四.证明面面平行1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .2.在正方体1111ABCD A B C D -中,E 、F 、G分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .A ED 1CB 1DCBAD 1ODBAC 1B 1A 1C A 1AB 1C 1 CD 1D G EF类型五.证明线面垂直1. 正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. (考点:线面垂直的判定定理)2. ,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD . 考点:线面垂直的判定,运用勾股定理寻求线线垂直3. 已知ABC ∆中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC .4. 四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =,90BDC ∠=o ,求证:BD ⊥平面ACD5. 如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠= 且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂 直于底面ABCD . G 为AD 的中点,求证:BG ⊥平面PAD ; (考点:利用面面垂直性质定理)类型六.证明面面垂直1. 如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. 求证:平面1A AC ⊥平面BDE . (考点:面面垂直的判定)ABD CA ’D ’B ’C ’SDCBA2.如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC . 考点:面面垂直的判定(证二面角是直二面角)类型七.证明线线垂直1. 在正方体ABCD-A ’B ’C ’D ’中,M 为DD ’的中点,O 为AC 的中点,AB=2 证明:B ’O ⊥AC 考点:法1:线面垂直→线线垂直 法2:勾股定理法3:等腰三角形三线合一。

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.π【例1】如图,在△ ABC中,∠ ABC =孑,O为AB边上一点,且 30B= 30C= 2AB ,已知Po丄平面 ABC,2DA = 2A0 = P0, 且 DA // P0.(1) 求证:平面PBD⊥平面C0D;(2) 求直线PD与平面BDC所成角的正弦值.π⑴证明OB= 0C,又τ∠ ABC= ^4,ZπZπ∙∙∙∠ OCB= —, ∙∙∙∠ BOC="2.∙∙∙C0⊥ AB.又PO丄平面ABC0C?平面 ABC, ∙∙∙ PO丄 0C.又∙∙∙ PO, AB?平面PAB P0∩ AB= 0, ∙∙∙ C0⊥平面PAB,即CO丄平面PDB.又C0?平面COD则 C(2, 0, 0), B(0, 2, 0), P(0, 0, 2), D(0,—1,1), ∙∙∙ Pb= (0,— 1,— 1), BC = (2,— 2, 0), BD = (0,— 3, 1).X, y, Z轴,建立空间直角坐标系,如图所示.•••平面PDB丄平面COD.设OA = 1,贝U PO= OB = OC = 2, DA =1.设平面BDC 的一个法向量为n = (x, y, z),n BC = 0,2x —2y= 0, n BD = 0, —3y + Z = 0,令 y= 1,则 X= 1, Z= 3,∙∙∙ n= (1, 1, 3).设PD 与平面BDC 所成的角为θ,1× 0+ 1x(— 1)+ g×(— 1)= 2√221'02+(— 1) 2+(— 1) 2× ,'12+ 12+ 32= 11【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系第二步:确定点的坐标.第三步: 求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值). 第五步: 将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范【变式训练】 如图所示,在多面体A 1B 1D 仁DCBA 中,四边形AA 1B 1B, ADD 1A 1, ABCD 均为正方形, E 为B 1D 1的中点,过A 1, D , E 的平面交CD 1于F.(1) 证明:EF// BC(2) 求二面角E-A I D-B I 的余弦值.(1)证明 由正方形的性质可知 A 1B 1 / AB// DC,且A 1B 1= AB= DC,所以四边形A 1B 1CD 为平行四边形, 从而B 1C// A 1D,又 A 1D?面 A 1DE, B 1C?面 A 1DE,于是 B 1C//面 AQE 又 B 1C?面 B I CDl,面 A 1DE∩面 B I CD= EF,所以EF// BQ.则SinPD ・n IPDlnl即直线PD 与平面BDC 所成角的正弦值为 2 ,22 11AlD⑵解因为四边形 AA i B i B, ADD i A i, ABCD均为正方形,所以AA i ⊥ AB, AA i ⊥ AD, AB⊥ AD且AA i=AB= AD.以A为原点,分别以AB, AD, AA i为X轴,y轴和Z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标 A(0, 0, 0), B(i, 0, 0), D(0, i, 0), A i(0, 0, i), B i(i, 0, i), D i(0,i ii, i),而E点为B i D i的中点,所以E点的坐标为2, 2,i .→i i设平面A i DE的一个法向量n i= (r i, s i, t i),而该面上向量A i E= 2, 2,。

高中数学立体几何的相关题型及解题思路

高中数学立体几何的相关题型及解题思路

高中数学立体几何的相关题型及解题思路在高中数学中,立体几何是一个重要的考点,也是许多学生感到困惑和头疼的地方。

本文将介绍一些常见的立体几何题型,并给出相应的解题思路和技巧,希望能够帮助高中学生和他们的父母更好地应对这一考点。

一、体积计算题体积计算题是立体几何中最基础的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的体积。

解决这类题目的关键在于熟练掌握各种几何体的体积公式,并能够根据题目给出的条件灵活运用。

例如,某题给出一个长方体的底面积为12平方厘米,高为5厘米,要求计算其体积。

我们可以直接应用长方体的体积公式V=底面积×高,代入已知数据计算得出答案为60立方厘米。

二、表面积计算题表面积计算题也是立体几何中常见的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的表面积。

解决这类题目的关键在于熟练掌握各种几何体的表面积公式,并能够根据题目给出的条件灵活运用。

例如,某题给出一个正方体的边长为3厘米,要求计算其表面积。

我们可以直接应用正方体的表面积公式S=6a^2,其中a为边长,代入已知数据计算得出答案为54平方厘米。

三、立体图形的相似题立体图形的相似题是立体几何中较为复杂的题型之一,常见的题目有判断两个立体图形是否相似、计算相似立体图形的比例等。

解决这类题目的关键在于观察立体图形的形状和比例关系,并能够利用相似三角形的性质进行推理。

例如,某题给出一个正方体ABCDA'B'C'D',另一个正方体EFGHE'F'G'与之相似,要求计算两个正方体的体积比。

我们可以观察到两个正方体的边长比为AE/AA'=EF/EE'=FG/FF'=...=1/2,而体积与边长的关系为V=k^3,其中k为边长的比值。

因此,两个正方体的体积比为(1/2)^3=1/8。

四、立体图形的投影题立体图形的投影题是立体几何中较为抽象的题型之一,常见的题目有计算某个立体图形在某个平面上的投影面积或投影长度等。

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法高考数学中,立体几何是一项重要的考试题型。

相比于平面几何、代数和概率统计等内容,立体几何更为抽象,对学生的空间想象力和逻辑能力要求更高。

本文旨在探讨高考数学中的立体几何问题及其解题方法。

一、立体几何常考题型常见的立体几何问题包括立体几何图形的性质、体积、表面积等问题。

下面列举一些高考中经常出现的立体几何考点。

1. 立体图形的名字和性质高考中经常出现的立体图形包括正方体、长方体、棱柱、棱锥、圆柱、圆锥、球等。

学生需要掌握这些图形的属性,比如正方体的六个面都是正方形、长方体的所有面都是矩形等等,只要掌握了它们的基本属性,在解决题目时就能做到心中有数。

2. 体积求立体图形的体积是立体几何中比较基础和常见的题型。

学生需要清楚掌握各种常见图形的体积公式,例如:①正方体的体积公式:V=a³②长方体的体积公式:V=lxwxh③棱柱的体积公式:V=Ah④圆柱的体积公式:V=πr²h⑤球的体积公式:V=4/3πr³⑥棱锥的体积公式:V=1/3Ah注意,这些公式必须要掌握,不要在考试中还在纠结于公式的推导方法。

3. 表面积求立体图形的表面积也是数学中的一大题型。

常见的几何图形表面积的计算方式有如下几种公式:①正方体的表面积公式:S=6a²②长方体的表面积公式:S=2(lw+lh+wh)③棱柱的表面积公式:S=2B+Ph④圆柱的表面积公式:S=2πr²+2πrh⑤球的表面积公式:S=4πr²⑥棱锥的表面积公式:S=B+1/2Pl其中B表示底面积,P表示底面外接多边形的周长,l表示斜几何。

上面列举的是一些常见的立体几何题目,还有一些特殊题目需要学生掌握,例如“平行四边形体积定理”、“曲面半径定理”等等。

二、举例分析解题方法1. 体积题例题:某学校花坛为正方形,长和宽之和为25米,现在将花坛增加5个方块,每个方块边长为2米,求增加的花坛的体积。

(完整版)立体几何的经典题型

(完整版)立体几何的经典题型

(完整版)立体几何的经典题型立体几何的经典题型
1. 点、线、面的基本概念
在立体几何中,点、线和面是基本概念,对于经典题型的理解
至关重要。

- 点: 点是立体几何中最基本的要素,没有长度、宽度和高度,
只有一个位置。

- 线: 线由无数个点组成,没有宽度,只有长度和方向。

- 面: 面是由无数个线组成的,具有长度和宽度,但没有高度。

2. 立体图形的计算
掌握立体图形的计算方法能够解决很多经典题型。

- 体积: 体积是立体图形所占的空间大小,常见的计算公式有:
- 立方体的体积:V = 边长^3
- 圆柱体的体积:V = 底面积 ×高度
- 圆锥体的体积:V = 1/3 ×底面积 ×高度
- 表面积: 表面积是立体图形外部的总面积,常见的计算公式有:- 立方体的表面积:A = 6 ×边长^2
- 圆柱体的表面积:A = 2 ×底面积 + 侧面积
- 圆锥体的表面积:A = 底面积 + 侧面积
3. 空间关系和投影
理解立体图形的空间关系和投影对于解决经典题型至关重要。

- 平行关系: 如果两个面或两个线在空间中永远保持相同的距离
且不相交,它们是平行的。

- 垂直关系: 如果两个线或两个面彼此相交,并且交角为90度,它们是垂直的。

- 投影: 在立体几何中,我们常常需要计算一个图形在投影时的
变化。

常见的投影有平面投影和正交投影。

以上是立体几何的一些经典题型和基本概念,掌握了这些内容,你将能够更好地解决相关的问题。

希望对你有所帮助!。

(完整版)高中数学立体几何经典常考题型

(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【变式训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D ­B 1的余弦值为 |n 1·n 2||n 1|·|n 2|=23×2=63.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等. (2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【变式训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB ∥CD ,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6, 在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为P A ,PB 的中点, ∴EM ∥AB 且EM =6,又DC ∥AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9). 则cos 〈n ,m 〉=n ·m|n ||m |=81×82+122+92=817. 又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力. 【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化. 【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何几种常见题型一、求体积,距离型1.(2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD , 12AB AA ==.OD 1B 1C 1D ACBA 1(Ⅰ) 证明: A 1BD // 平面CD 1B 1;(Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. 12.(2013年高考福建卷(文)如图,在四棱锥P ABCD-中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 83D PBC V -=3.(2013年高考湖南(文))如图2.在直菱柱ABC-A 1B 1C 1中,∠B AC=90°,AB=AC=错误!未找到引用源。

,AA 1=3,D 是BC 的中点,点E 在菱BB 1上运动.(I) 证明:AD⊥C 1E; (II)当异面直线AC,C 1E 所成的角为60°时,求三菱子C 1-A 2B 1E 的体积.324.(2013年高考课标Ⅰ卷(文))如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16AC =求三棱柱111ABC A B C -的体积.3C 1B 1AA 1B C5.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB,BB 1的中点.(1) 证明: BC 1//平面A 1CD;(2) 设AA 1= AC=CB=2,AB=2错误!未找到引用源。

,求三棱锥C 一A 1DE 的体积.6.(2013年高考安徽(文))如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=.已知2,6PB PD PA ===.(Ⅰ)证明:PC BD ⊥(Ⅱ)若E 为PA 的中点,求三菱锥P BCE -的体积.0.5【答案】解:(2) 由(1)BD ⊥面PAC︒⨯⨯⨯==45sin 3262121PAC PEC S S △△=32236=⨯⨯ 111132322P BEC B PEC PEC V V S BO --∆==⋅⋅=⨯⨯=7.(2013年高考江西卷(文))如图,直四棱柱ABCD – A 1B 1C 1D 1中,AB//CD,AD ⊥AB,AB=2,AD=错误!未找到引用源。

,AA 1=3,E 为CD 上一点,DE=1,EC=3(1) 证明:BE ⊥平面BB 1C 1C;(2) 求点B1 到平面EA 1C 1 的距离1052,5d d ==(2)1111111123A B C E A B C V AA S ∆-•三棱锥的体积==221111111112Rt A D C AC A D D C ∆+在中,==3 , 同理,22112EC EC CC +==3 ,222113EA AD ED AA ++==2因此115A C E S ∆=3.设点B1到平面11EA C 的距离为d,则111B EAC -三棱锥的体积11153A EC V d S d ∆••==,从而1052,5d d == 二、有关折叠型。

8.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中22BC =. (1) 证明:DE //平面BCF ;(2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.图 4GEF ABCD图 5DGBFCAE9.如图1所示,在Rt △ABC 中,AC =6,BC =3,∠ABC =90°,CD 为∠ACB 的平分线,点E 在线段AC 上,CE =4.如图2所示,将△BCD 沿CD 折起,使得平面BCD ⊥平面ACD ,连接AB ,BE ,设点F 是AB 的中点. (1)求证:DE ⊥平面BCD ;32(2)若EF ∥平面BDG ,其中G 为直线AC 与平面BDG 的交点,求三棱锥B -DEG 的体积.(1)证明 ∵AC =6,BC =3,∠ABC =90°,∴∠ACB =60°. ∵CD 为∠ACB 的平分线,∴∠BCD =∠ACD =30°. ∴CD =2 3.∵CE =4,∠DCE =30°,∴DE 2=CE 2+CD 2-2CE ·CD ·cos 30°=4, ∴DE =2,则CD 2+DE 2=EC 2. ∴∠CDE =90°,DE ⊥DC .又∵平面BCD ⊥平面ACD ,平面BCD ∩平面ACD =CD ,DE ⊂平面ACD ,∴DE ⊥平面BCD .(2)解 ∵EF ∥平面BDG ,EF ⊂平面ABC ,平面ABC ∩平面BDG =BG , ∴EF ∥BG .∵点E 在线段AC 上,CE =4,点F 是AB 的中点,∴AE =EG =CG =2. 如图,作BH ⊥CD 于H . ∵平面BCD ⊥平面ACD , ∴BH ⊥平面ACD . 由条件得BH =32,S △DEG =13S △ACD =13×12AC ·CD ·sin 30°=3,∴三棱锥B -DEG 的体积V =13S △DEG ·BH=13×3×32=32.10. (2012·北京)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE ∥平面A 1CB .(2)求证:A 1F ⊥BE . (3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.(1)证明 因为D ,E 分别为AC ,AB 的中点,所以DE ∥BC .又因为DE ⊄平面A 1CB ,所以DE ∥平面A 1CB . (2)证明 由已知得AC ⊥BC 且DE ∥BC , 所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD . 又A 1D ∩CD =D ,所以DE ⊥平面A 1DC . 而A 1F ⊂平面A 1DC ,所以DE ⊥A 1F . 又因为A 1F ⊥CD ,所以A 1F ⊥平面BCDE , 又因为BE ⊂平面BCDE ,所以A 1F ⊥BE .(3)解 线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .理由如下: 如图,分别取A 1C ,A 1B 的中点P ,Q ,则PQ ∥BC . 又因为DE ∥BC ,所以DE ∥PQ . 所以平面DEQ 即为平面DEP .由(2)知,DE ⊥平面A 1DC ,所以DE ⊥A 1C . 又因为P 是等腰三角形DA 1C 底边A 1C 的中点,所以A 1C ⊥DP .所以A 1C ⊥平面DEP . 从而A 1C ⊥平面DEQ . 故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ . 三、 线面位置关系中的存在性问题11、 如图,在矩形ABCD 中,AB =2BC ,P 、Q 分别是线段AB 、CD 的 中点,EP ⊥平面ABCD . (1)求证:DP ⊥平面EPC ;(2)问在EP 上是否存在点F ,使平面AFD ⊥平面BFC ?若存在,求出FPAP的值;若不存在,说明理由.思维启迪 先假设EP 上存在点F 使平面AFD ⊥平面BFC ,然后推证点F 的位置. (1)证明 ∵EP ⊥平面ABCD , ∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 分别为AB 、CD 的中点,连接PQ , 则PQ ⊥DC 且PQ =12DC .∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC . ∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB ,AB ∩EP =P ,∴AD ⊥平面EAB , ∴l ⊥平面F AB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角. ∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP . ∴当FP =AP ,即FPAP =1时,平面AFD ⊥平面BFC .如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1;(2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定 点E 位置;若不存在,说明理由.(1)证明 在直四棱柱ABCD -A 1B 1C 1D 1中,连接C 1D , ∵DC =DD 1,∴四边形DCC 1D 1是正方形,∴DC 1⊥D 1C . 又AD ⊥DC ,AD ⊥DD 1,DC ∩DD 1=D ,∴AD ⊥平面DCC 1D 1, 又D 1C ⊂平面DCC 1D 1,∴AD ⊥D 1C .∵AD ⊂平面ADC 1,DC 1⊂平面ADC 1,且AD ∩DC 1=D , ∴D 1C ⊥平面ADC 1,又AC 1⊂平面ADC 1,∴D 1C ⊥AC 1. (2)解 假设存在点E ,使D 1E ∥平面A 1BD . 连接AD 1,AE ,D 1E ,设AD 1∩A 1D =M ,BD ∩AE =N ,连接MN ,∵平面AD 1E ∩平面A 1BD =MN , 要使D 1E ∥平面A 1BD ,可使MN ∥D 1E , 又M 是AD 1的中点,则N 是AE 的中点. 又易知△ABN ≌△EDN ,∴AB =DE .即E 是DC 的中点.综上所述,当E 是DC 的中点时, 可使D 1E ∥平面A 1BD . 四、有关角度问题。

12、如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,23AC=,2PA=,求:-的体积(1)三棱锥P ABC(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示)13、空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E、F分别为BC、AD的中点,求EF与AB所成角的大小.五、共线共面问题。

相关文档
最新文档