.命题及其关系、充分条件与必要条件教案

合集下载

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

§1.2命题及其关系、充分条件与必要条件2014高考会这样考1.考查四种命题的意义及相互关系;2.考查对充分条件、必要条件、充要条件等概念的理解,主要以客观题的形式出现;3.在解答题中考查命题或充分条件与必要条件.复习备考要这样做1.在解与命题有关的问题时,要理解命题的含义,准确地分清命题的条件与结论;2.注意条件之间关系的方向性、充分条件与必要条件方向正好相反;3.注意等价命题的应用.1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.,则p是q的充分不必要条件,p的必要不充分条件是q。

注意对定义的理解:例如:若p⇒q,q p[难点正本疑点清源]1.等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.2.集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有⊂,则p是q的充分不必要条件;(1)若A⊆B,则p是q的充分条件,若A B⊂,则p是q的必要不充分条件;(2)若B⊆A,则p是q的必要条件,若B A(3)若A=B,则p是q的充要条件;(4)若A⊄B,且B ⊄A,则p是q的既不充分也不必要条件.题型一四种命题的关系及真假例1已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是(D)A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题思维启迪:根据四种命题的定义判断一个原命题的逆命题、否命题、逆否命题的表达格式.当命题较简单时,可直接判断其真假,若命题本身复杂或不易直接判断时,可利用其等价命题——逆否命题进行真假判断.解析命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.探究提高(1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)认真仔细读题,必要时举特例.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是(C)A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.题型二充要条件的判断例2已知下列各组命题,其中p是q的充分必要条件的是(D)A.p:m≤-2或m≥6;q:y=x2+mx+m+3有两个不同的零点B.p:()1()f xf x-=;q:y=f(x)是偶函数C.p:cosα=cosβ;q:tanα=tanβD.p:A∩B=A;q:A⊆U,B⊆U,∁U B⊆∁U A思维启迪:首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断.解析对于A,由y=x2+mx+m+3有两个不同的零点,可得Δ=m2-4(m+3)>0,从而可得m<-2或m>6.所以p是q的必要不充分条件;对于B,由()1()f xf x-=⇒f(-x)=f(x)⇒y=f(x)是偶函数,但由y=f(x)是偶函数不能推出()1()f xf x-=,例如函数f(x)=0,所以p是q的充分不必要条件;对于C,当cosα=cosβ=0时,不存在tanα=tanβ,反之也不成立,所以p是q的既不充分也不必要条件;对于D,由A∩B=A,知A⊆B,所以∁U B⊆∁U A;反之,由∁U B⊆∁U A,知A⊆B,即A∩B=A.所以p⇔q.综上所述,p是q的充分必要条件的是D.探究提高判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件; ②“a≤2”是“函数f(x)=|x -a|在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真.命题的序号是①②④ . 解析 对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a≤2时,函数f(x)=|x -a|在区间[2,+∞)上是增函数,因此②正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b>a ,故A =30°,反之,当A =30°时,有sin B =32,由于b>a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①②④. 题型三 利用充要条件求参数例3已知集合M={x|x<-3或x>5},P={x|(x-a)·(x-8)≤0}.(1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.思维启迪:解决此类问题一般是先把充分条件、必要条件或充要条件转化为集合之间的关系,再根据集合之间的关系列出关于参数的不等式求解.解(1)由M∩P={x|5<x≤8},得-3≤a≤5,因此M∩P={x|5<x≤8}的充要条件是{a|-3≤a≤5}.(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a=0,此时必有M∩P={x|5<x≤8};反之,M∩P={x|5<x≤8}未必有a=0,故“a=0”是“M∩P ={x|5<x≤8}”的一个充分但不必要条件.探究提高利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.已知p:x2-4x-5≤0,q:|x-3|<a (a>0).若p是q的充分不必要条件,求a的取值范围.解 设A ={x|x 2-4x -5≤0}={x|-1≤x≤5},B ={x|-a +3<x<a +3},因为p 是q 的充分不必要条件,从而有A ⊂B.故⎩⎪⎨⎪⎧-a +3<-1,a +3>5,解得a>4.等价转化思想在充要条件关系中的应用典例:(12分)已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m>0),且p q ⌝⌝是的必要而不充分条件,求实数m 的取值范围.审题视角 (1)先求出两命题的解集,即将命题化为最简.(2)再利用命题间的关系列出关于m 的不等式或不等式组,得出结论. 规范解答解 方法一 由q :x 2-2x +1-m 2≤0, 得1-m≤x≤1+m ,[2分] ∴q ⌝:A ={x|x>1+m 或x<1-m ,m>0}, [3分] 由p :⎪⎪⎪⎪1-x -13≤2,解得-2≤x≤10,[5分] ∴p ⌝:B ={x|x>10或x<-2}.[6分]∵p q ⌝⌝是的必要而不充分条件. ∴A ⊂B ,∴⎩⎪⎨⎪⎧m>0,1-m<-2,1+m≥10,或⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m>10,即m≥9或m>9.∴m≥9.[12分]方法二 ∵⌝p 是⌝q 的必要而不充分条件,∴p 是q 的充分而不必要条件, [2分] 由q :x 2-2x +1-m 2≤0,得1-m≤x≤1+m ,∴q :Q ={x|1-m≤x≤1+m}, [4分] 由p :⎪⎪⎪⎪1-x -13≤2,解得-2≤x≤10,∴p :P ={x|-2≤x≤10}. [6分] ∵p 是q 的充分而不必要条件, ∴P ⊂Q ,∴⎩⎪⎨⎪⎧m>0,1-m<-2,1+m≥10,或⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m>10,即m≥9或m>9.∴m≥9. [12分] 答题模板第一步:求命题p、q对应的参数的范围.⌝、q⌝对应的参数的范围.第二步:求命题p第三步:根据已知条件构造新命题,如本题构造新命题“p且q”或“p或q”.第四步:根据新命题的真假,确定参数的范围.第五步:反思回顾.查看关键点、易错点及解题规范.温馨提醒解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算.答题时,可依答题模板的格式进行,这样可使答题思路清晰,过程完整.老师在阅卷时,便于查找得分点. 温馨提醒本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1.当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其它三种命题时,应把其中一个(或几个)作为大前提.2.数学中的定义、公理、公式、定理都是命题,但命题与定理是有区别的;命题有真假之分,而定理都是真的.3.命题的充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与B⌝⇒A⌝,B⇒A与A⌝⇒B⌝,A⇔B与綈B⇔A⌝的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A 是B的充要条件.失误与防范1.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q”的形式.2. 判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q”等语言.A 组 专项基础训练一、选择题(每小题5分,共20分)1. (2012·湖南)命题“若α=π4,则tanα=1”的逆否命题是 ( C ) A .若α≠π4,则tanα≠1 B .若α=π4,则tanα ≠1 C .若tanα≠1,则α≠π4 D .若tanα≠1,则α=π4解析 由原命题与其逆否命题之间的关系可知,原命题的逆否命题:若tan α≠1,则α≠π4. 2. (2012·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是 ( D )A .x =-12B .x =-1C .x =5D .x =0解析 ∵a =(x -1,2),b =(2,1),∴a ·b =2(x -1)+2×1=2x.又a ⊥b ⇔a ·b =0,∴2x =0,∴x =0.3. 已知集合M ={x|0<x<1},集合N ={x|-2<x<1},那么“a ∈N”是“a ∈M”的( B )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N”是“a ∈M”的必要而不充分条件.故选B.4. 下列命题中为真命题的是( A )A .命题“若x>y ,则x>|y|”的逆命题B .命题“若x>1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x>1”的逆否命题解析 对于A ,其逆命题:若x>|y|,则x>y ,是真命题,这是因为x>|y|=⎩⎪⎨⎪⎧ y y≥0-y y<0,必有x>y ;对于B ,否命题:若x≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x>0或x<0,不一定有x>1,因此原命题的逆否命题是假命题,故选A.二、填空题(每小题5分,共15分)5. 下列命题:①若ac 2>bc 2,则a>b ;②若sinα=sinβ,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件;④若f(x)=log 2x ,则f(|x|)是偶函数.其中正确命题的序号是①③④.解析 对于①,ac 2>bc 2,c 2>0,∴a>b 正确;对于②,sin 30°=sin 150°则30°≠150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③对;对于④显然对.6. 已知p(x):x 2+2x -m>0,如果p(1)是假命题,p(2)是真命题,则实数m 的取值范围为[3,8). 解析 因为p(1)是假命题,所以1+2-m≤0,解得m≥3;又因为p(2)是真命题,所以4+4-m>0,解得m<8.故实数m 的取值范围是3≤m<8.7. (2011·陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =3或4 解析 ∵x 2-4x +n =0有整数根,∴x =4±16-4n 2=2±4-n , ∴4-n 为某个整数的平方且4-n≥0,∴n =3或n =4.当n =3时,x 2-4x +3=0,得x =1或x =3;当n =4时,x 2-4x +4=0,得x =2.∴n =3或n =4.三、解答题(共22分)8. (10分)判断命题“若a≥0,则x 2+x -a =0有实根”的逆否命题的真假.解 原命题:若a≥0,则x 2+x -a =0有实根.逆否命题:若x 2+x -a =0无实根,则a<0.判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a<0,∴a<-14<0, ∴“若x 2+x -a =0无实根,则a<0”为真命题.9. (12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若p q ⌝⌝是的充分而不必要条件,求实数m 的取值范围.解 由题意得p :-2≤x -3≤2,∴1≤x≤5.p q q p ⌝⌝⇒⇔⇒∴p ⌝:x<1或x>5.q :m -1≤x≤m +1,∴q ⌝:x<m -1或x>m +1.又∵p q ⌝⌝是的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5,且等号不能同时取到,∴2≤m≤4. 法二:p q q p ⌝⌝⇒⇔⇒B 组 专项能力提升一、选择题(每小题5分,共15分)1. (2012·上海)对于常数m 、n ,“mn>0”是“方程mx 2+ny 2=1的曲线是椭圆”的( B )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析 ∵mn>0,∴⎩⎪⎨⎪⎧ m>0,n>0或⎩⎪⎨⎪⎧m<0,n<0, 当m>0,n>0且m≠n 时,方程mx 2+ny 2=1的曲线是椭圆,当m<0,n<0时,方程mx 2+ny 2=1不表示任何图形,所以条件不充分;反之,当方程mx 2+ny 2=1表示的曲线是椭圆时有mn>0,所以“mn>0”是“方程mx 2+ny 2=1的曲线是椭圆”的必要不充分条件.2. 已知p :1x -2≥1,q :|x -a|<1,若p 是q 的充分不必要条件,则实数a 的取值范围为( C ) A .(-∞,3] B .[2,3] C .(2,3] D .(2,3)解析 由1x -2≥1,得2<x≤3;由|x -a|<1,得a -1<x<a +1. 若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧a -1≤2a +1>3,即2<a≤3. 所以实数a 的取值范围是(2,3],故选C.3. 集合A ={x||x|≤4,x ∈R },B ={x|x<a},则“A ⊆B”是“a>5”的 ( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 A ={x|-4≤x≤4},若A ⊆B ,则a>4.a>4D/⇒a>5,但a>5⇒a>4.故“A ⊆B”是“a>5”的必要不充分条件.二、填空题(每小题5分,共15分)4. 设有两个命题p 、q.其中p :对于任意的x ∈R ,不等式ax 2+2x +1>0恒成立;命题q :f(x)=(4a -3)x在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是⎝⎛⎭⎫34,1∪(1,+∞)解析 若命题P 为真,当a =0时,不等式为2x +1>0,显然不能恒成立,故a =0不适合; 当a≠0时,不等式ax 2+2x +1>0恒成立的条件是⎩⎪⎨⎪⎧a>0,Δ=22-4a<0, 解得a>1.若命题q 为真,则0<4a -3<1,解得34<a<1. 由题意,可知p ,q 一真一假.①当p 真q 假时,a 的取值范围是{a|a>1}∩{a|a≤34或a≥1}={a|a>1}; ②当p 假q 真时,a 的取值范围是{a|a≤1}∩{a|34<a<1}={a|34<a<1}; 所以a 的取值范围是⎝⎛⎭⎫34,1∪(1,+∞).5. 若“x ∈[2,5]或x ∈{x|x<1或x>4}”是假命题,则x 的取值范围是__ [1,2)_. 解析 x ∉[2,5]且x ∉{x|x<1或x>4}是真命题.由⎩⎪⎨⎪⎧x<2或x>5,1≤x≤4,得1≤x<2. 点评 “A 或B”的否定是“A B ⌝⌝且.6. “m<14”是“一元二次方程x 2+x +m =0有实数解”充分不必要条件. 解析 x 2+x +m =0有实数解等价于Δ=1-4m≥0,即m≤14,∵m<14⇒m≤14,反之不成立. 故“m<14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件. 三、解答题7. (13分)已知全集U =R ,非空集合2031x A x x a ⎧-⎫=<⎨⎬--⎭⎩,B =⎩⎨⎧⎭⎬⎫x|x -a 2-2x -a <0. (1)当a =12时,求(∁U B)∩A ; (2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.解 (1)当a =12时, A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x -2x -52<0=⎩⎨⎧⎭⎬⎫x|2<x<52, B =⎩⎨⎧⎭⎬⎫x|x -94x -12<0=⎩⎨⎧⎭⎬⎫x|12<x<94, ∴∁U B =⎩⎨⎧⎭⎬⎫x|x≤12或x ≥94. ∴(∁U B)∩A =⎩⎨⎧⎭⎬⎫x|94≤x <52. (2)∵a 2+2>a ,∴B ={x|a<x<a 2+2}.①当3a +1>2,即a>13时,A ={x|2<x<3a +1}. ∵p 是q 的充分条件,∴A ⊆B.∴⎩⎪⎨⎪⎧a≤23a +1≤a 2+2,即13<a≤3-52.②当3a +1=2,即a =13时,A =∅,不符合题意; ③当3a +1<2,即a<13时,A ={x|3a +1<x<2}, 由A ⊆B 得⎩⎪⎨⎪⎧a≤3a +1a 2+2≥2,∴-12≤a<13. 综上所述,实数a 的取值范围是⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.。

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修

教案:高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标1. 理解充分条件和必要条件的概念。

2. 学会判断充分条件和必要条件。

3. 掌握充分条件和必要条件与命题真假之间的关系。

4. 能够运用充分条件和必要条件解决实际问题。

二、教学重点与难点重点:充分条件和必要条件的概念及判断。

难点:充分条件和必要条件与命题真假之间的关系。

三、教学准备1. 教师准备PPT课件,包括充分条件和必要条件的定义、判断方法及应用实例。

2. 准备一些练习题,用于巩固所学知识。

四、教学过程1. 导入:教师通过一个生活实例引入新课,如:“如果一个人每天坚持锻炼身体,他身体健康。

”让学生思考这个实例中的条件和结论之间的关系。

2. 新课讲解:教师讲解充分条件和必要条件的定义,并通过PPT展示相关知识点。

定义:如果一个条件能推出结论,这个条件叫做结论的充分条件;如果结论能推出条件,这个条件叫做结论的必要条件。

教师讲解如何判断充分条件和必要条件,并举例说明。

3. 课堂练习:教师给出一些练习题,让学生判断给出的条件是充分条件还是必要条件,或两者都是。

五、课后作业1. 完成练习册的相关题目。

2. 举出生活中的实例,运用充分条件和必要条件进行分析。

教学反思:教师在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。

如有需要,可在下一节课进行针对性讲解。

六、教学拓展1. 教师通过PPT展示充分条件和必要条件的相关拓展知识,如充分不必要条件、必要不充分条件、既不充分也不必要条件等。

2. 教师举例解释这些概念,并让学生进行判断。

七、课堂小结1. 教师引导学生回顾本节课所学的内容,包括充分条件和必要条件的定义、判断方法及应用。

2. 学生分享自己在课堂练习中的收获和感悟。

八、课后反思1. 教师对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。

《命题及其关系充分条件与必要条件》教案

《命题及其关系充分条件与必要条件》教案

教学过程一、课堂导入思考下列命题的题设(条件)是什么?结论是什么?并判断是否正确?你的理由是什么? (1)边长为a(a>0)的等边三角形的面积为;(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(3)对于任何实数x, x2<0.二、复习预习1、集合的概念及性质2、集合的相互关系及运算三、知识讲解考点1 命题在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.考点2 四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.考点3 充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充分必要条件.记作p⇔q.四、例题精析【例题1】【题干】设原命题是“当c>0时,若a>b,则ac>bc”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假【解析】“当c>0时”是大前提,写其他命题时应该保留,原命题的条件是a>b,结论是ac>bc.因此它的逆命题:当c>0时,若ac>bc,则a>b.它是真命题;否命题:当c>0时,若a≤b,则ac≤bc.它是真命题;逆否命题:当c>0时,若ac≤bc,则a≤b.它是真命题.【例题2】【题干】已知命题p:函数f(x)=|x-a|在(1,+∞)上是增函数,命题q:f(x)=a x(a>0且a≠1)是减函数,则p是q 的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若命题p为真,则a≤1;若命题q为真,则0<a<1.∵由q能推出p但由p不能推出q,∴p是q的必要不充分条件.【例题3】【题干】已知不等式1x-1<1的解集为p,不等式x2+(a-1)x-a>0的解集为q,若p是q的充分不必要条件,则实数a的取值范围是()A.(-2,-1]B.[-2,-1]C.[-3,1] D.[-2,+∞)【答案】A【解析】不等式1x-1<1等价于1x-1-1<0,即x-2x-1>0,解得x>2或x<1,所以p为(-∞,1)∪(2,+∞).不等式x2+(a-1)x-a>0可以化为(x-1)(x+a)>0,当-a≤1时,解得x>1或x<-a,即q为(-∞,-a)∪(1,+∞),此时a=-1;当-a>1时,不等式(x-1)(x+a)>0的解集是(-∞,1)∪(-a,+∞),此时-a<2,即-2<a<-1.综合知-2<a≤-1.【例题4】【题干】设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=________.【答案】3或4【解析】x =4±16-4n 2=2±4-n ,因为x 是整数,即2±4-n 为整数,所以4-n 为整数,且n ≤4,又因为n ∈N *,取n =1,2,3,4,验证可知n =3,4符合题意,所以n =3,4时可以推出一元二次方程x 2-4x +n =0有整数根.五、课堂运用【基础】1.(2013·潍坊模拟)命题“若△ABC有一内角为π3,则△ABC的三内角成等差数列”的逆命题() A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题解析:选D原命题显然为真,原命题的逆命题为“若△ABC的三内角成等差数列,则△ABC有一内角为π3”,它是真命题.2.(2013·日照模拟)已知直线l1:x+ay+1=0,直线l2:ax+y+2=0,则命题“若a=1或a=-1,则直线l1与l2平行”的否命题为()A.若a≠1且a≠-1,则直线l1与l2不平行B.若a≠1或a≠-1,则直线l1与l2不平行C.若a=1或a=-1,则直线l1与l2不平行D.若a≠1或a≠-1,则直线l1与l2平行解析:选A命题“若A,则B”的否命题为“若綈A,则綈B”,显然“a=1或a=-1”的否定为“a≠1且a≠-1”,“直线l1与l2平行”的否定为“直线l1与l2不平行”.3.(2012·安徽高考)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A若α⊥β,又α∩β=m,b⊂β,b⊥m,根据两个平面垂直的性质定理可得b⊥α,又因为a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,一定有b⊥a,但不能保证b⊥α,即不能推出α⊥β.【巩固】4.(2013·南京模拟)有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.解析:①原命题的否命题为“若a≤b则a2≤b2”错误.②原命题的逆命题为:“x,y互为相反数,则x+y=0”正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”正确.答案:②③5.已知α:x≥a,β:|x-1|<1.若α是β的必要不充分条件,则实数a的取值范围为________.解析:α:x≥a,可看作集合A={x|x≥a},∵β:|x-1|<1,∴0<x<2,∴β可看作集合B={x|0<x<2}.又∵α是β的必要不充分条件,∴B A,∴a≤0.答案:(-∞,0]【拔高】6.已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案:(2,+∞)7.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716,∵x ∈⎣⎢⎡⎦⎥⎤34,2,∴716≤y ≤2,∴A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.课程小结1、对“四种命题”的理解由于原命题和它的逆否命题是等价的,所以当一个命题的真假不易判断时,往往可以转化为判断它的逆否命题的真假;有的命题不易直接证明时,就可以改证它的逆否命题成立,所以反证法的实质就是证明“原命题的逆否命题成立”.要注意:否命题与命题的否定是不同的.2、判断命题充要条件的三种方法是:①定义法.②等价法:即利用A⇒B与綈B⇒綈A;B⇒A与綈A⇒綈B;A⇔B与綈B⇔綈A的等价关系,对于条件或结论是不等关系(否定式)的命题,一般运用等价法;③利用集合间的包含关系判断,若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.。

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,掌握简单命题和复合命题的关系。

2. 理解充分条件和必要条件的定义,能够判断一个条件是充分还是必要。

3. 能够运用充分条件和必要条件解决实际问题。

教学内容:第一章:命题及其关系1.1 命题的概念1.2 简单命题和复合命题第二章:充分条件与必要条件2.1 充分条件的定义2.2 必要条件的定义2.3 充分条件和必要条件的关系第三章:判断充分条件和必要条件3.1 如何判断一个条件是充分条件3.2 如何判断一个条件是必要条件3.3 实例分析第四章:充分条件和必要条件在实际问题中的应用4.1 应用举例4.2 练习题5.1 本章小结5.2 知识拓展教学过程:第一章:命题及其关系1.1 命题的概念教师提问:什么是命题?学生回答后,教师给出命题的定义,即可以判断真假的陈述句。

1.2 简单命题和复合命题教师通过举例讲解简单命题和复合命题的概念,让学生理解并区分两者。

第二章:充分条件与必要条件2.1 充分条件的定义教师提问:什么是充分条件?学生回答后,教师给出充分条件的定义,即能够导致某个结果的条件。

2.2 必要条件的定义教师提问:什么是必要条件?学生回答后,教师给出必要条件的定义,即某个结果必须满足的条件。

2.3 充分条件和必要条件的关系教师讲解充分条件和必要条件的关系,让学生理解两者之间的区别和联系。

第三章:判断充分条件和必要条件3.1 如何判断一个条件是充分条件教师讲解如何判断一个条件是充分条件,让学生掌握判断方法。

3.2 如何判断一个条件是必要条件教师讲解如何判断一个条件是必要条件,让学生掌握判断方法。

3.3 实例分析教师通过实例分析,让学生理解充分条件和必要条件的应用。

第四章:充分条件和必要条件在实际问题中的应用4.1 应用举例教师通过实际问题举例,让学生学会运用充分条件和必要条件解决问题。

4.2 练习题教师布置练习题,让学生巩固所学知识。

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,掌握简单命题和复合命题的关系。

2. 了解充分条件和必要条件的定义,能够判断一个命题的充分条件和必要条件。

3. 能够运用充分条件和必要条件分析问题,解决问题。

教学重点:1. 命题的概念及分类。

2. 充分条件和必要条件的判断。

教学难点:1. 充分条件和必要条件的判断。

教学准备:1. PPT课件。

2. 教学案例。

教学过程:一、导入(5分钟)1. 引入命题的概念,让学生回顾简单命题和复合命题的关系。

2. 提问:什么是充分条件和必要条件?二、新课讲解(15分钟)1. 讲解充分条件和必要条件的定义。

2. 通过PPT课件和教学案例,让学生理解充分条件和必要条件的判断方法。

3. 讲解充分条件和必要条件与命题的关系。

三、课堂练习(10分钟)1. 让学生运用充分条件和必要条件分析问题,解决问题。

2. 学生互相讨论,老师巡回指导。

四、课堂小结(5分钟)1. 回顾本节课所学内容,让学生巩固知识点。

2. 提问:如何判断一个命题的充分条件和必要条件?五、课后作业(课后自主完成)1. 完成PPT课件上的练习题。

2. 结合自己的生活经验,找出一道具有充分条件和必要条件的命题,并分析。

教学反思:本节课通过讲解命题的概念,充分条件和必要条件的定义,以及判断方法,让学生掌握了充分条件和必要条件与命题的关系。

在课堂练习环节,学生能够运用所学知识分析问题,解决问题。

但在课后作业环节,发现部分学生对充分条件和必要条件的判断仍存在一定的困难,需要在今后的教学中加强训练。

六、案例分析:充分条件与必要条件的应用1. 案例展示:判断火灾发生的充分条件和必要条件。

2. 学生分组讨论,分析案例中哪些条件是充分条件,哪些条件是必要条件。

3. 各组汇报讨论成果,老师点评并总结。

七、练习与巩固1. 完成PPT课件上的练习题。

2. 学生互相讨论,老师巡回指导。

八、充分条件与必要条件的区别与联系1. 讲解充分条件与必要条件的区别与联系。

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,能够正确识别题设和结论。

2. 掌握充分条件和必要条件的定义,能够判断两者之间的逻辑关系。

3. 能够运用充分条件和必要条件解决实际问题。

教学重点:1. 命题的概念及识别。

2. 充分条件和必要条件的定义及判断。

教学难点:1. 命题的逻辑关系的理解。

2. 充分条件和必要条件在实际问题中的应用。

教学准备:1. PPT课件。

2. 教学案例或例题。

教学过程:一、导入(5分钟)1. 引入命题的概念,让学生回顾题设和结论的组成。

2. 提问:什么是有意义的故事?引导学生思考命题与故事之间的关系。

二、新课讲解(15分钟)1. 讲解充分条件和必要条件的定义。

解释:充分条件:一个条件如果能导致某个结果,这个条件就是充分条件。

必要条件:一个条件如果必须满足才能导致某个结果,这个条件就是必要条件。

2. 举例说明充分条件和必要条件的判断方法。

例1:如果下雨,地面湿润。

充分条件:下雨必要条件:地面湿润例2:如果一个人是学生,他有书包。

充分条件:是学生必要条件:有书包3. 引导学生思考充分条件和必要条件之间的关系。

解释:充分条件不一定必要,即满足充分条件不一定能导致结果。

必要条件不一定充分,即结果不一定是由满足必要条件引起的。

三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固充分条件和必要条件的判断。

四、案例分析(10分钟)1. 提供案例,让学生分析案例中的充分条件和必要条件。

案例:小王考试及格了,他一定学习了。

分析:考试及格是充分条件,学习是必要条件。

2. 引导学生运用充分条件和必要条件解决实际问题。

五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结充分条件和必要条件的概念及关系。

2. 强调充分条件和必要条件在实际问题中的应用。

教学反思:本节课通过讲解、举例、练习和案例分析等多种教学方法,让学生掌握了充分条件和必要条件的概念及判断方法。

在课堂练习和案例分析环节,学生能够独立完成题目,并运用所学知识解决实际问题。

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

命题及其关系:充分条件与必要条件教案一、教学目标1. 让学生理解命题的概念,能够正确书写简单命题。

2. 让学生掌握充分条件和必要条件的定义,能够判断一个条件是充分还是必要。

3. 培养学生运用逻辑推理解决实际问题的能力。

二、教学内容1. 命题的概念:命题是判断某件事情的语句,可以是真的,也可以是假的。

2. 充分条件和必要条件的定义:充分条件:如果一个条件能够保证结论的发生,这个条件就是结论的充分条件。

必要条件:如果一个条件是结论发生的前提,这个条件就是结论的必要条件。

三、教学重点与难点1. 教学重点:充分条件和必要条件的判断。

2. 教学难点:如何区分充分条件和必要条件,以及如何在实际问题中运用。

四、教学方法1. 采用案例分析法,通过具体例子让学生理解命题、充分条件和必要条件的概念。

2. 采用小组讨论法,让学生在小组内讨论如何判断一个条件是充分还是必要。

3. 采用练习法,让学生通过做练习题巩固所学知识。

五、教学过程1. 导入:通过一个生活中的例子,如“如果明天不下雨,我们就去公园玩”,引出命题、充分条件和必要条件的概念。

2. 讲解:讲解命题的定义,让学生明白命题是可以判断真假的语句。

讲解充分条件和必要条件的定义,并通过例子让学生判断一个条件是充分还是必要。

3. 互动:让学生在小组内讨论如何判断一个条件是充分还是必要,并分享彼此的看法。

4. 练习:给学生发放练习题,让学生运用所学知识判断题目中的条件是充分还是必要。

5. 总结:对本节课的内容进行总结,强调如何区分充分条件和必要条件,以及如何在实际问题中运用。

6. 作业:布置一道课后作业,让学生巩固所学知识。

六、教学延伸1. 让学生了解充分条件和必要条件之间的关系:充分条件不一定必要,必要条件不一定充分。

2. 引导学生思考:如何找出一个命题中的充分条件和必要条件?七、案例分析1. 案例一:判断“如果一个人是男性,他一定有力气”这个命题中的条件是充分还是必要。

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,能够正确判断一个命题是真是假。

2. 掌握充分条件和必要条件的定义,能够判断一个条件是充分还是必要。

3. 能够运用充分条件和必要条件解决实际问题。

教学重点:1. 命题的真假判断2. 充分条件和必要条件的判断教学难点:1. 命题的真假判断2. 充分条件和必要条件的应用教学准备:1. PPT课件2. 教学案例教学过程:第一章:命题的概念1.1 命题的定义教师讲解命题的概念,引导学生理解命题是由题设和结论两部分组成的陈述句。

1.2 命题的真假判断学生通过举例判断命题的真假,教师讲解判断方法。

第二章:充分条件与必要条件的定义2.1 充分条件的定义教师讲解充分条件的概念,引导学生理解充分条件是指能够保证结论成立的条件。

2.2 必要条件的定义教师讲解必要条件的概念,引导学生理解必要条件是指结论成立的必要条件。

第三章:判断充分条件和必要条件3.1 判断充分条件学生通过举例判断充分条件,教师讲解判断方法。

3.2 判断必要条件学生通过举例判断必要条件,教师讲解判断方法。

第四章:充分条件和必要条件的运用4.1 运用充分条件解决问题学生通过案例运用充分条件解决问题,教师讲解解题方法。

4.2 运用必要条件解决问题学生通过案例运用必要条件解决问题,教师讲解解题方法。

第五章:总结与拓展5.1 总结学生总结本节课所学内容,教师进行点评。

5.2 拓展学生思考如何运用充分条件和必要条件解决更复杂的问题,教师进行引导。

教学评价:1. 课后作业:布置有关命题、充分条件和必要条件的练习题,检查学生掌握情况。

2. 课堂问答:提问学生关于命题、充分条件和必要条件的问题,检查学生理解程度。

3. 案例分析:让学生运用充分条件和必要条件解决实际问题,评估学生应用能力。

第六章:实例分析与判断6.1 实例分析教师提供实例,学生分析实例中的充分条件和必要条件,并判断其真假。

6.2 小组讨论学生分组讨论实例,交流判断方法和思路,教师巡回指导。

命题及其关系充分条件与必要条件教案

命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,能够正确判断一个句子是否为命题。

2. 掌握充分条件和必要条件的定义,能够判断一个条件语句中的条件是充分条件还是必要条件。

3. 能够运用充分条件和必要条件的关系解决实际问题。

教学内容:第一章:命题的概念1.1 命题的定义1.2 命题的分类第二章:条件语句2.1 条件语句的定义2.2 条件语句的类型第三章:充分条件与必要条件3.1 充分条件的定义3.2 必要条件的定义3.3 充分条件与必要条件的关系第四章:判断充分条件和必要条件4.1 判断一个条件语句中的条件是充分条件还是必要条件4.2 判断一个条件语句中的条件既是充分条件又是必要条件第五章:运用充分条件和必要条件解决实际问题5.1 运用充分条件和必要条件的关系解决实际问题的方法5.2 实际问题案例分析教学过程:第一章:命题的概念1.1 命题的定义讲解命题的概念,让学生理解命题是一种可以判断真假的陈述句。

1.2 命题的分类介绍命题的分类,包括简单命题和复合命题,让学生能够判断一个句子是简单命题还是复合命题。

第二章:条件语句2.1 条件语句的定义讲解条件语句的概念,让学生理解条件语句是一种特殊的命题形式。

2.2 条件语句的类型介绍条件语句的类型,包括充分条件语句和必要条件语句,让学生能够判断一个条件语句的类型。

第三章:充分条件与必要条件3.1 充分条件的定义讲解充分条件的定义,让学生理解充分条件是一种可以推出结论的条件。

3.2 必要条件的定义讲解必要条件的定义,让学生理解必要条件是一种必须满足的条件。

3.3 充分条件与必要条件的关系介绍充分条件与必要条件的关系,让学生能够判断一个条件是充分条件还是必要条件。

第四章:判断充分条件和必要条件4.1 判断一个条件语句中的条件是充分条件还是必要条件讲解如何判断一个条件语句中的条件是充分条件还是必要条件,让学生能够运用这个方法判断条件语句中的条件。

高三数学一轮复习优质教案6:1.2 命题及其关系、充分条件与必要条件教学设计

高三数学一轮复习优质教案6:1.2 命题及其关系、充分条件与必要条件教学设计

1.2 命题及其关系、充分条件与必要条件一、必记个知识点1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.二、必明2个易误区1.易混否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.注意区别A是B的充分不必要条件(A⇒B且B ⇒/A);与A的充分不必要条件是B(B⇒A 且A⇒/B)两者的不同.三、必会2个方法1.判断充分条件和必要条件的方法(1)命题判断法:设“若p,则q”为原命题,那么:①原命题为真,逆命题为假时,p是q的充分不必要条件;②原命题为假,逆命题为真时,p是q的必要不充分条件;③原命题与逆命题都为真时,p是q的充要条件;④原命题与逆命题都为假时,p是q的既不充分也不必要条件.(2)集合判断法:从集合的观点看,建立命题p,q相应的集合:p:A={x|p(x)成立},q:B={x|q(x)成立},那么:①若A ⊆B ,则p 是q 的充分条件;若A B 时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若B A 时,则p 是q 的必要不充分条件;③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件.(3)等价转化法:p 是q 的什么条件等价于⌝q 是⌝p 的什么条件.2.转化与化归思想由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假. 考点一 命题及其相互关系1.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4 D .若tan α≠1,则α=π4『解析』选C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”. 考点二 充分必要条件的判定『典例』 (1)(2013·山东高考)给定两个命题p ,q .若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2013·北京高考)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件『解析』 (1)由q ⇒⌝p 且⌝p ⇒/ q 可得p ⇒⌝q 且⌝q ⇒/p ,所以p 是⌝q 的充分而不必要条件.(2)由sin φ=0可得φ=k π(k ∈Z ),此为曲线y =sin(2x +φ)过坐标原点的充要条件,故“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件.『答案』 (1)A (2)A『针对训练』下列各题中,p 是q 的什么条件?(1)在△ABC 中,p :A =B ,q :sin A =sin B ;(2)p :|x |=x ,q :x 2+x ≥0.解:(1)若A =B ,则sin A =sin B ,即p ⇒q .又若sin A =sin B ,则2R sin A =2R sin B ,即a =b .故A =B ,即q ⇒p .所以p 是q 的充要条件.(2)p :{x ||x |=x }={x |x ≥0}=A ,q :{x |x 2+x ≥0}={x |x ≥0,或x ≤-1}=B ,∵A B ,∴p 是q 的充分不必要条件. 考点三 充分必要条件的应用『典例』 已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围;(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围.『解』 (1)由x 2-8x -20≤0得-2≤x ≤10,∴P ={x |-2≤x ≤10},∵x ∈P 是x ∈S 的充要条件,∴P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.(2)由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,∴m ≤3. 综上,可知m ≤3时,x ∈P 是x ∈S 的必要条件.课后作业『试一试』1.(2013·福建高考)设点P (x ,y ),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件『解析』选A “x =2且y =-1”满足方程x +y -1=0,故“x =2且y =-1”可推出“点P 在直线l :x +y -1=0上”;但方程x +y -1=0有无数多个解,故“点P 在直线l :x +y -1=0上”不能推出“x =2且y =-1”,故“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的充分不必要条件.2.“在△ABC 中,若∠C =90°,则∠A 、∠B 都是锐角”的否命题为:____________________. 『解析』原命题的条件:在△ABC 中,∠C =90°,结论:∠A 、∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角”.『答案』“在△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角”『练一练』1.(2014·济南模拟)设x ∈R ,则“x 2-3x >0”是“x >4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件『解析』选B 由x 2-3x >0得x >3或x <0,此时得不出x >4,但当x >4时,不等式x 2-3x >0恒成立,所以正确选项为B.2.与命题“若a ∈M ,则b ∉M ”等价的命题是________.『解析』原命题与其逆否命题为等价命题.『答案』若b ∈M ,则a ∉M做一做1.(2013·安徽高考)“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件『解析』选B 由(2x -1)x =0可得x =12或0,因为“x =12或0”是“x =0”的必要不充分条件.2.(2013·九江一模)命题“若x 2>y 2,则x >y ”的逆否命题是( )A .“若x <y ,则x 2<y 2”B .“若x >y ,则x 2>y 2”C .“若x ≤y ,则x 2≤y 2”D .“若x ≥y ,则x 2≥y 2”『解析』选C 根据原命题和逆否命题的条件和结论的关系得命题“若x 2>y 2,则x >y ”的逆否命题是“若x ≤y ,则x 2≤y 2”.3.(2014·福建质检)已知向量a =(m 2,4),b =(1,1),则“m =-2”是“a ∥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件『解析』选A 依题意,当m =-2时,a =(4,4),b =(1,1),所以a =4b ,a ∥b ,即由m =-2可以推出a ∥b ;当a ∥b 时,m 2=4,得m =±2,所以不能推得m =-2,即“m =-2”是“a ∥b ”的充分而不必要条件.4.(2013·聊城期末)设集合A ,B 是全集U 的两个子集,则A B 是(∁U A )∪B =U 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件『解析』选A 如图所示,A B ⇒(∁U A )∪B =U ;但(∁U A )∪B =U ⇒/A B ,如A =B ,因此A B 是(∁U A )∪B =U 的充分不必要条件.5.命题“若a >b ,则a -1>b -1”的否命题是________.『答案』若a ≤b ,则a -1≤b -1 6.创新题已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若P :“x ∈A ”是Q :“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.『解析』A ={x |x <4},由题意得A B 结合数轴易得a >4.『答案』(4,+∞)『课下提升考能』1.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件『解析』选B M ={x |0<x ≤3},N ={x |0<x ≤2},所以NM ,故a ∈M 是a ∈N 的必要不充分条件.2.(2013·潍坊模拟)命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题『解析』选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 3.(2013·乌鲁木齐质检)“a >0”是“a 2+a ≥0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件『解析』选A a >0⇒a 2+a ≥0;反之a 2+a ≥0⇒a ≥0或a ≤-1,不能推出a >0,选A.。

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

一、教材分析本节课选自苏教版高中数学选修2-3《命题及其关系-充分条件与必要条件》。

这部分内容是学生在学习了简单逻辑用语和复合命题之后,对命题及其关系的进一步拓展。

充分条件和必要条件是描述命题之间关系的重要概念,对于学生理解命题的内在联系,提高逻辑思维能力具有重要意义。

二、教学目标1. 理解充分条件和必要条件的概念,掌握判断充分条件和必要条件的方法。

2. 能够运用充分条件和必要条件分析实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和口头表达能力。

三、教学重点与难点1. 教学重点:充分条件和必要条件的概念及其判断方法。

2. 教学难点:充分条件和必要条件的区分和应用。

四、教学方法采用问题驱动法、案例分析法和小组合作法,引导学生通过自主学习、合作交流,掌握充分条件和必要条件的概念及判断方法。

五、教学过程1. 导入新课:通过一个生活实例,引导学生思考充分条件和必要条件的关系。

2. 自主学习:学生自主阅读教材,理解充分条件和必要条件的概念。

3. 案例分析:分析具体案例,让学生判断其中的充分条件和必要条件。

4. 小组讨论:学生分组讨论,交流判断充分条件和必要条件的心得。

5. 总结提升:教师引导学生总结充分条件和必要条件的判断方法。

6. 课后作业:布置相关练习题,巩固所学知识。

教案连载,请期待后续章节。

六、教学反思在课后,教师应认真反思本节课的教学效果,包括学生的学习兴趣、参与度、理解程度等,以便对教学方法和策略进行调整,提高教学质量。

七、课后作业1. 请用充分条件和必要条件判断下列命题:(1)如果一个人是学生,他一定有身份证。

(2)一个三角形是等边三角形当且仅当它的三条边相等。

2. 结合生活中的实例,运用充分条件和必要条件分析问题。

八、课后辅导针对学生在课后作业中出现的问题,教师应及时给予辅导,帮助学生巩固知识点,提高解题能力。

九、拓展与延伸为了激发学生的学习兴趣,提高学生的综合素质,可以布置一些拓展与延伸的课题,如:1. 研究充分条件和必要条件在实际问题中的应用,举例说明。

命题及其关系、充分条件与必要条件(教案)

命题及其关系、充分条件与必要条件(教案)

§1.2命题及其关系、充分条件与必要条件活动一、要点梳理1.命题的概念在数学中把用语言、符号或式子表达的,能够________的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)四种命题(2)四种命题间的逆否关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有________的真假性;②两个命题互为逆命题或互为否命题,它们的真假性________关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的__________,q是p的________;(2)如果p⇒q,q⇒p,则p是q的____________.活动二、例题赏析题型一四种命题的关系及真假判断例1以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x (a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.题型二 充分、必要、充要条件的概念与判断例2 指出下列命题中,p 是q 的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答).(1)在△ABC 中,p :∠A =∠B ,q :sin A =sin B ;(2)对于实数x 、y ,p :x +y ≠8,q :x ≠2或y ≠6;(3)非空集合A 、B 中,p :x ∈A ∪B ,q :x ∈B ;(4)已知x 、y ∈R ,p :(x -1)2+(y -2)2=0,q :(x -1)(y -2)=0.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则A =30°是B =60°的必要不充分条件.其中真.命题的序号是________. 题型三 利用充要条件求参数例3 已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m >0),且q p ⌝⌝是的必要而不充分条件,求实数m 的取值范围.活动三、反馈练习1、2、3、4、5、6、7、8、9、10、已知p :x 2-4x -32≤0;q :[x -(1-m )][x -(1+m )]≤0 (m >0).若“非p ”是“非q ”成立的必要但不充分条件,求m 的取值范围.11、已知a >12且a ≠1,条件p :函数f (x )=log (2a -1)x 在其定义域上是减函数,条件q :函数g (x )=x +|x -a |-2的定义域为R .如果“p 或q ”为真,试求a 的取值范围.探究提高 (1)首先求出p 真、q 真的条件,即a 的范围.(2)由“p 或q ”为真,判断出p 、q 的真假.12、。

1.2命题及其关系、充分条件与必要条件教案精编版

1.2命题及其关系、充分条件与必要条件教案精编版

§1.2命题及其关系、充分条件与必要条件2014高考会这样考 1.考查四种命题的意义及相互关系;2.考查对充分条件、必要条件、充要条件等概念的理解,主要以客观题的形式出现;3.在解答题中考查命题或充分条件与必要条件.复习备考要这样做 1.在解与命题有关的问题时,要理解命题的含义,准确地分清命题的条件与结论;2.注意条件之间关系的方向性、充分条件与必要条件方向正好相反;3.注意等价命题的应用.1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.≠>,则p是q的充分不必要条件,p的必要不充分条件是q。

注意对定义的理解:例如:若p⇒q,q p[难点正本疑点清源]1.等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.2.集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有⊂,则p是q的充分不必要条件;(1)若A⊆B,则p是q的充分条件,若A B⊂,则p是q的必要不充分条件;(2)若B⊆A,则p是q的必要条件,若B A(3)若A=B,则p是q的充要条件;(4)若A⊄B,且B ⊄A,则p是q的既不充分也不必要条件.题型一四种命题的关系及真假例1已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是(D) A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题思维启迪:根据四种命题的定义判断一个原命题的逆命题、否命题、逆否命题的表达格式.当命题较简单时,可直接判断其真假,若命题本身复杂或不易直接判断时,可利用其等价命题——逆否命题进行真假判断.解析命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.探究提高(1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)认真仔细读题,必要时举特例.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是(C)A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.题型二充要条件的判断例2已知下列各组命题,其中p是q的充分必要条件的是(D)A.p:m≤-2或m≥6;q:y=x2+mx+m+3有两个不同的零点B.p:()1()f xf x-=;q:y=f(x)是偶函数C.p:cosα=cosβ;q:tanα=tanβD.p:A∩B=A;q:A⊆U,B⊆U,∁U B⊆∁U A思维启迪:首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断.解析对于A,由y=x2+mx+m+3有两个不同的零点,可得Δ=m2-4(m+3)>0,从而可得m<-2或m>6.所以p是q的必要不充分条件;对于B,由()1()f xf x-=⇒f(-x)=f(x)⇒y=f(x)是偶函数,但由y=f(x)是偶函数不能推出()1()f xf x-=,例如函数f(x)=0,所以p是q的充分不必要条件;对于C ,当cosα=cosβ=0时,不存在tanα=tanβ,反之也不成立,所以p 是q 的既不充分也不必要条件; 对于D ,由A∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ; 反之,由∁U B ⊆∁U A ,知A ⊆B ,即A∩B =A. 所以p ⇔q.综上所述,p 是q 的充分必要条件的是D.探究提高 判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件; ②“a≤2”是“函数f(x)=|x -a|在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真.命题的序号是①②④ . 解析 对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a≤2时,函数f(x)=|x -a|在区间[2,+∞)上是增函数,因此②正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b>a ,故A =30°,反之,当A =30°时,有sin B =32,由于b>a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①②④. 题型三 利用充要条件求参数例3 已知集合M ={x|x<-3或x>5},P ={x|(x -a)·(x -8)≤0}. (1)求实数a 的取值范围,使它成为M∩P ={x|5<x≤8}的充要条件;(2)求实数a 的一个值,使它成为M∩P ={x|5<x≤8}的一个充分但不必要条件.思维启迪:解决此类问题一般是先把充分条件、必要条件或充要条件转化为集合之间的关系,再根据集合之间的关系列出关于参数的不等式求解. 解 (1)由M∩P ={x|5<x≤8},得-3≤a≤5, 因此M∩P ={x|5<x≤8}的充要条件是{a|-3≤a≤5}.(2)求实数a 的一个值,使它成为M∩P ={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a =0,此时必有M∩P ={x|5<x≤8};反之,M∩P ={x|5<x≤8}未必有a =0,故“a =0”是“M∩P ={x|5<x≤8}”的一个充分但不必要条件.探究提高 利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.已知p :x 2-4x -5≤0,q :|x -3|<a (a>0).若p 是q 的充分不必要条件,求a 的取值范围.解 设A ={x|x 2-4x -5≤0}={x|-1≤x≤5},B ={x|-a +3<x<a +3},因为p 是q 的充分不必要条件,从而有A ⊂B.故⎩⎪⎨⎪⎧-a +3<-1,a +3>5,解得a>4.等价转化思想在充要条件关系中的应用典例:(12分)已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m>0),且p q ⌝⌝是的必要而不充分条件,求实数m 的取值范围.审题视角 (1)先求出两命题的解集,即将命题化为最简.(2)再利用命题间的关系列出关于m 的不等式或不等式组,得出结论. 规范解答解 方法一 由q :x 2-2x +1-m 2≤0, 得1-m≤x≤1+m ,[2分] ∴q ⌝:A ={x|x>1+m 或x<1-m ,m>0}, [3分] 由p :⎪⎪⎪⎪1-x -13≤2,解得-2≤x≤10,[5分] ∴p ⌝:B ={x|x>10或x<-2}.[6分]∵p q ⌝⌝是的必要而不充分条件. ∴A ⊂B ,∴⎩⎪⎨⎪⎧m>0,1-m<-2,1+m≥10,或⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m>10,即m≥9或m>9.∴m≥9.[12分]方法二 ∵⌝p 是⌝q 的必要而不充分条件,∴p 是q 的充分而不必要条件, [2分] 由q :x 2-2x +1-m 2≤0,得1-m≤x≤1+m ,∴q :Q ={x|1-m≤x≤1+m}, [4分] 由p :⎪⎪⎪⎪1-x -13≤2,解得-2≤x≤10,∴p :P ={x|-2≤x≤10}. [6分] ∵p 是q 的充分而不必要条件, ∴P ⊂Q ,∴⎩⎪⎨⎪⎧m>0,1-m<-2,1+m≥10,或⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m>10,即m≥9或m>9.∴m≥9.[12分]答题模板第一步:求命题p、q对应的参数的范围.⌝、q⌝对应的参数的范围.第二步:求命题p第三步:根据已知条件构造新命题,如本题构造新命题“p且q”或“p或q”.第四步:根据新命题的真假,确定参数的范围.第五步:反思回顾.查看关键点、易错点及解题规范.温馨提醒解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算.答题时,可依答题模板的格式进行,这样可使答题思路清晰,过程完整.老师在阅卷时,便于查找得分点. 温馨提醒本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1.当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其它三种命题时,应把其中一个(或几个)作为大前提.2.数学中的定义、公理、公式、定理都是命题,但命题与定理是有区别的;命题有真假之分,而定理都是真的.3.命题的充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与B⌝⇒A⌝,B⇒A与A⌝⇒B⌝,A⇔B与綈B⇔A⌝的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A 是B的充要条件.失误与防范1.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q”的形式.2.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.A组专项基础训练一、选择题(每小题5分,共20分)1. (2012·湖南)命题“若α=π4,则tanα=1”的逆否命题是( C )A .若α≠π4,则tanα≠1B .若α=π4,则tanα ≠1C .若tanα≠1,则α≠π4D .若tanα≠1,则α=π4解析 由原命题与其逆否命题之间的关系可知,原命题的逆否命题:若tan α≠1,则α≠π4.2. (2012·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是 ( D ) A .x =-12B .x =-1C .x =5D .x =0解析 ∵a =(x -1,2),b =(2,1), ∴a ·b =2(x -1)+2×1=2x.又a ⊥b ⇔a ·b =0,∴2x =0,∴x =0.3. 已知集合M ={x|0<x<1},集合N ={x|-2<x<1},那么“a ∈N”是“a ∈M”的( B )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N”是“a ∈M”的必要而不充分条件.故选B.4. 下列命题中为真命题的是( A ) A .命题“若x>y ,则x>|y|”的逆命题 B .命题“若x>1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x>1”的逆否命题解析 对于A ,其逆命题:若x>|y|,则x>y ,是真命题,这是因为x>|y|=⎩⎪⎨⎪⎧y y≥0-y y<0,必有x>y ;对于B ,否命题:若x≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x>0或x<0,不一定有x>1,因此原命题的逆否命题是假命题,故选A. 二、填空题(每小题5分,共15分) 5. 下列命题: ①若ac 2>bc 2,则a>b ; ②若sinα=sinβ,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f(x)=log 2x ,则f(|x|)是偶函数. 其中正确命题的序号是①③④.解析 对于①,ac 2>bc 2,c 2>0,∴a>b 正确;对于②,sin 30°=sin 150°则30°≠150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③对;对于④显然对.6. 已知p(x):x 2+2x -m>0,如果p(1)是假命题,p(2)是真命题,则实数m 的取值范围为[3,8).解析 因为p(1)是假命题,所以1+2-m≤0, 解得m≥3;又因为p(2)是真命题,所以4+4-m>0, 解得m<8.故实数m 的取值范围是3≤m<8.7. (2011·陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =3或4 解析 ∵x 2-4x +n =0有整数根, ∴x =4±16-4n 2=2±4-n ,∴4-n 为某个整数的平方且4-n≥0,∴n =3或n =4. 当n =3时,x 2-4x +3=0,得x =1或x =3; 当n =4时,x 2-4x +4=0,得x =2. ∴n =3或n =4. 三、解答题(共22分)8. (10分)判断命题“若a≥0,则x 2+x -a =0有实根”的逆否命题的真假. 解 原命题:若a≥0,则x 2+x -a =0有实根. 逆否命题:若x 2+x -a =0无实根,则a<0. 判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a<0,∴a<-14<0,∴“若x 2+x -a =0无实根,则a<0”为真命题.9. (12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若p q ⌝⌝是的充分而不必要条件,求实数m 的取值范围.解 由题意得p :-2≤x -3≤2,∴1≤x≤5.p q q p ⌝⌝⇒⇔⇒ ∴p ⌝:x<1或x>5.q :m -1≤x≤m +1,∴q ⌝:x<m -1或x>m +1. 又∵p q ⌝⌝是的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5,且等号不能同时取到,∴2≤m≤4. 法二:p q q p ⌝⌝⇒⇔⇒B 组 专项能力提升一、选择题(每小题5分,共15分)1. (2012·上海)对于常数m 、n ,“mn>0”是“方程mx 2+ny 2=1的曲线是椭圆”的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析 ∵mn>0,∴⎩⎪⎨⎪⎧ m>0,n>0或⎩⎪⎨⎪⎧m<0,n<0,当m>0,n>0且m≠n 时,方程mx 2+ny 2=1的曲线是椭圆,当m<0,n<0时,方程mx 2+ny 2=1不表示任何图形,所以条件不充分;反之,当方程mx 2+ny 2=1表示的曲线是椭圆时有mn>0, 所以“mn>0”是“方程mx 2+ny 2=1的曲线是椭圆”的必要不充分条件.2. 已知p :1x -2≥1,q :|x -a|<1,若p 是q 的充分不必要条件,则实数a 的取值范围为( C )A .(-∞,3]B .[2,3]C .(2,3]D .(2,3)解析 由1x -2≥1,得2<x≤3;由|x -a|<1,得a -1<x<a +1.若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧a -1≤2a +1>3,即2<a≤3.所以实数a 的取值范围是(2,3],故选C.3. 集合A ={x||x|≤4,x ∈R },B ={x|x<a},则“A ⊆B”是“a>5”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 A ={x|-4≤x≤4},若A ⊆B ,则a>4.a>4D/⇒a>5,但a>5⇒a>4.故“A ⊆B”是“a>5”的必要不充分条件. 二、填空题(每小题5分,共15分)4. 设有两个命题p 、q.其中p :对于任意的x ∈R ,不等式ax 2+2x +1>0恒成立;命题q :f(x)=(4a -3)x 在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是⎝⎛⎭⎫34,1∪(1,+∞) 解析 若命题P 为真,当a =0时,不等式为2x +1>0,显然不能恒成立,故a =0不适合; 当a≠0时,不等式ax 2+2x +1>0恒成立的条件是⎩⎪⎨⎪⎧a>0,Δ=22-4a<0, 解得a>1.若命题q 为真,则0<4a -3<1,解得34<a<1.由题意,可知p ,q 一真一假.①当p 真q 假时,a 的取值范围是{a|a>1}∩{a|a≤34或a≥1}={a|a>1};②当p 假q 真时,a 的取值范围是{a|a≤1}∩{a|34<a<1}={a|34<a<1};所以a 的取值范围是⎝⎛⎭⎫34,1∪(1,+∞).5. 若“x ∈[2,5]或x ∈{x|x<1或x>4}”是假命题,则x 的取值范围是__ [1,2)_. 解析 x ∉[2,5]且x ∉{x|x<1或x>4}是真命题.由⎩⎪⎨⎪⎧x<2或x>5,1≤x≤4,得1≤x<2. 点评 “A 或B”的否定是“A B ⌝⌝且.6. “m<14”是“一元二次方程x 2+x +m =0有实数解”充分不必要条件.解析 x 2+x +m =0有实数解等价于Δ=1-4m≥0,即m≤14,∵m<14⇒m≤14,反之不成立.故“m<14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.三、解答题7. (13分)已知全集U =R ,非空集合2031x A x x a ⎧-⎫=<⎨⎬--⎭⎩,B =⎩⎨⎧⎭⎬⎫x|x -a 2-2x -a <0.(1)当a =12时,求(∁U B)∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x -2x -52<0=⎩⎨⎧⎭⎬⎫x|2<x<52,B =⎩⎨⎧⎭⎬⎫x|x -94x -12<0=⎩⎨⎧⎭⎬⎫x|12<x<94, ∴∁U B =⎩⎨⎧⎭⎬⎫x|x ≤12或x ≥94. ∴(∁U B)∩A =⎩⎨⎧⎭⎬⎫x|94≤x <52.(2)∵a 2+2>a ,∴B ={x|a<x<a 2+2}.①当3a +1>2,即a>13时,A ={x|2<x<3a +1}.∵p 是q 的充分条件,∴A ⊆B.∴⎩⎪⎨⎪⎧a≤23a +1≤a 2+2,即13<a≤3-52.②当3a +1=2,即a =13时,A =∅,不符合题意;③当3a +1<2,即a<13时,A ={x|3a +1<x<2},由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,∴-12≤a<13.综上所述,实数a 的取值范围是⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.。

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标:1. 理解充分条件和必要条件的概念。

2. 学会判断充分条件和必要条件。

3. 掌握充分条件和必要条件与命题之间的关系。

二、教学内容:1. 充分条件和必要条件的定义。

2. 判断充分条件和必要条件的方法。

3. 充分条件和必要条件与命题之间的关系。

三、教学重点与难点:1. 教学重点:充分条件和必要条件的概念及判断方法。

2. 教学难点:充分条件和必要条件与命题之间的关系。

四、教学方法:1. 采用案例分析法,通过具体例子引导学生理解充分条件和必要条件的概念。

2. 采用小组讨论法,让学生在小组内讨论如何判断充分条件和必要条件。

3. 采用归纳法,引导学生总结充分条件和必要条件与命题之间的关系。

五、教学过程:1. 引入新课:通过一个生活中的例子,引导学生思考什么是充分条件和必要条件。

2. 讲解充分条件和必要条件的定义:给出充分条件和必要条件的定义,让学生理解这两个概念。

3. 判断充分条件和必要条件:通过例子,讲解如何判断充分条件和必要条件。

4. 充分条件和必要条件与命题之间的关系:引导学生总结充分条件和必要条件与命题之间的关系。

5. 课堂练习:给出一些题目,让学生判断充分条件和必要条件。

6. 课堂小结:总结本节课所学内容,让学生巩固知识。

7. 作业布置:布置一些练习题,让学生巩固所学知识。

六、教学评估:1. 课堂问答:通过提问学生,了解学生对充分条件和必要条件的理解和掌握程度。

2. 课堂练习:观察学生在练习题中的表现,判断他们是否能够正确判断充分条件和必要条件。

3. 课后作业:通过批改学生的作业,了解他们对本节课知识的掌握情况。

七、教学反思:1. 反思教学方法:根据学生的反馈,调整教学方法,确保学生能够更好地理解和掌握充分条件和必要条件。

2. 反思教学内容:根据学生的掌握情况,调整教学内容,确保学生能够全面掌握充分条件和必要条件。

八、课后作业:1. 练习题:让学生通过做练习题,巩固对充分条件和必要条件的理解和判断能力。

《命题及其关系充分条件与必要条件》优秀教案

《命题及其关系充分条件与必要条件》优秀教案

第2讲命题及其关系、充分条件与必要条件基础巩固题组建议用时:30分钟一、选择题1.命题“若一个数是负数,则它的平方是正数”的逆命题是A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”解析依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.答案 B2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析同时否定原命题的条件和结论,所得命题就是它的否命题.答案 A3.命题“若,都是偶数,则+也是偶数”的逆否命题是A.若+是偶数,则与不都是偶数B.若+是偶数,则与都不是偶数C.若+不是偶数,则与不都是偶数D.若+不是偶数,则与都不是偶数解析由于“,都是偶数”的否定表达是“,不都是偶数”,“+是偶数”的否定表达是“+不是偶数”,故原命题的逆否命题为“若+不是偶数,则,不都是偶数”,故选C答案 C4.2021·郑州检测已知直线,m,其中只有m在平面α内,则“∥α”是“∥m”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析当∥α时,直线与平面α内的直线m平行、异面都有可能,所以∥m不成立;当∥m时,根据直线与平面平行的判定定理知直线∥α,即“∥α”是“∥m”的必要不充分条件,故选B 答案 B5.2021·成都二诊下列说法正确的是A.命题“若2>1,则>1”的否命题为“若2>1,则≤1”B.命题“∃0∈R,错误!>1”的否定是“∀∈R,2>1”C.命题“若=,则co =co ”的逆否命题为假命题D.命题“若=,则co =co ”的逆命题为假命题解析A项中否命题为“若2≤1,则≤1”,所以A错误;B项中否定为“∀∈R,2≤1”,所以B错误;因为逆否命题与原命题同真假,所以C错误;易知D正确,故选D答案 D6.2021·广东卷在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“in A≤in B”的A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析结合正弦定理可知,a≤b⇔2R in A≤2R in B⇔in A≤in BR为△ABC外接圆的半径.故选A 答案 A7.2021·临沂模拟已知2”2”2”<错误!”是“一元二次方程2++m=0有实数解”的________条件填“充分不必要、必要不充分、充要”.解析2++m=0有实数解等价于Δ=1-4m≥0,即m≤错误!答案充分不必要11.函数f=2+m+1的图象关于直线=1对称的充要条件是________.解析已知函数f=2-2+1的图象关于直线=1对称,则m=-2;反之也成立.所以函数f=2+m+1的图象关于直线=1对称的充要条件是m=-2答案m=-212.下列命题:①“全等三角形的面积相等”的逆命题;②“若ab=0,则a=0”的否命题;③“正三角形的三个角均为60°”的逆否命题.其中真命题的序号是________.解析①“全等三角形的面积相等”的逆命题为“面积相等的三角形全等”,显然该命题为假命题;②“若ab=0,则a=0”的否命题为“若ab≠0,则a≠0”,而由ab≠0,可得a,b都不为零,故a≠0,所以该命题是真命题;③因为原命题“正三角形的三个角均为60°”是一个真命题,故其逆否命题也是一个真命题.答案②③能力提升题组建议用时:15分钟13.2021·天津卷设a,b∈R,则“a>b”是“a|a|>b|b|”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析先证“a>b”⇒“a|a|>b|b|”.若a>b≥0,则a2>b2,即a|a|>b|b|;若a≥0>b,则a|a|≥0>b|b|;若0>a>b,则a2<b2,即-a|a|<-b|b|,从而a|a|>b|b|再证“a|a|>b|b|”⇒“a>b”.若a,b≥0,则由a|a|>b|b|,得a2>b2,故a>b;若a,b≤0,则由a|a|>b|b|,得-a2>-b2,即a2<b2,故a>b;若a≥0,b<0,则a>b综上,“a>b”是“a|a|>b|b|”的充要条件.答案 C14.2021·成都检测已知+1,∈R},若∈B成立的一个充分不必要的条件是∈A,则实数m的取值范围是________.解析A=错误!={|-1<<3},∵∈B成立的一个充分不必要条件是∈A,∴A B,∴m+1>3,即m>2答案2,+∞。

充分条件和必要条件教案

充分条件和必要条件教案

《充分条件和必要条件》教案【教学目标】1. 正确理解充分不必要条件、必要不充分条件的概念;2.会判断命题的充分条件、必要条件.3.正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义.4.正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件. 【导入新课】复习导入1. 命题的概念、命题的组成;2. 四种命题之间的关系;3.判断下列命题是真命题还是假命题?(1)若x>a2+b2,则x>2ab.(2)若ab=0,则a=o.(3)有两角相等的三角形是等腰三角形.(4)若a2>b2,则a>b.4 写出下列两个命题的条件和结论,并判断是真命题还是假命题?(1)若x>a2+ b2,则x>2ab;(2)若ab=0,则a=0...新授课阶段问题3的答案:(1)、(3)为真命题;(2)、(4)为假命题.对问题4的归纳:命题(1)为真命题,命题(2)为假命题.置疑:对于命题“若p,则q”,有时是真命题,有时是假命题.如何判断其真假的?答:看p能不能推出q,如果p能推出q,则原命题是真命题,否则就是假命题.1.充分条件和必要条件的定义命题“若p ,则q” 为真命题,是指由p 经过推理能推出q ,也就是说,如果p 成立,那么q 一定成立.换句话说,只要有条件p 就能充分地保证结论q 的成立,这时我们称条件p是q 成立的充分条件.一般地,“若p ,则q”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p可推出q ,记作:p ⇒q.定义:如果命题“若p ,则q”为真命题,即p ⇒ q ,那么我们就说p 是q 的充分条件;q是p 必要条件.上面的命题(1)为真命题,即x >a 2+b 2 ⇒x >2ab ,所以“x >a 2+ b 2 ”是“x >2ab”的充分条件,“x >2ab”是“x >a 2+ b 2”的必要条件.例1:下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?221133213203()()34x x x x x x f x f x x x >-<-=-+==-()若,则;()若,则;()若,则为减函数;()若为无理数,则为无解析: 根据命题的组成特征得到:只有第四个命题不符合条件.例2:下列“若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1)若a =0,则ab =0 ;(2)若两个三角形的面积相等,则这两个三角形全等;(3)若a >b ,则ac >bc ;(4)若x =y ,则x 2=y 2.解析:根据必要条件的概念,得到只有第2个符合条件.2. 充要条件的有关概念已知p :整数a 是2的倍数;q :整数a 是偶数.请判断: p 是q 的充分条件吗?p 是q 的必要条件吗?分析:要判断p 是否是q 的充分条件,就要看p 能否推出q ,要判断p 是否是q 的必要条件,就要看q 能否推出p .易知:p ⇒q ,故p 是q 的充分条件;又q ⇒ p,故p是q的必要条件.此时,我们说, p是q的充分必要条件.类比归纳一般地,如果既有p⇒q ,又有q⇒p 就记作p ⇔q.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p ⇔ q,那么p 与 q互为充要条件.例3:下列各题中,哪些p是q的充要条件?(1)p:b=0,q:函数f(x)=ax2+bx+c是偶函数;(2)p:x > 0,y > 0,q: xy> 0;(3)p: a > b ,q: a + c > b + c;(4)p:x > 5, ,q: x > 10;(5)p: a > b ,q: a2> b2.分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p.解:命题(1)和(3)中,p⇒q ,且q⇒p,即p ⇔ q,故p 是q的充要条件;命题(2)中,p⇒q ,但q ≠>p,故p 不是q的充要条件;命题(4)中,p≠>q ,但q⇒p,故p 不是q的充要条件;命题(5)中,p≠>q ,且q≠>p,故p 不是q的充要条件.归纳:一般地,若p⇒q ,但q ≠>p,则称p是q的充分但不必要条件;若p≠>q,但q ⇒p,则称p是q的必要但不充分条件;若p≠>q,且q ≠>p,则称p是q的既不充分也不必要条件.在讨论p是q的什么条件时,就是指以下四种之一:①若p⇒q ,但q ≠>p,则p是q的充分但不必要条件;②若q⇒p,但p ≠>q,则p是q的必要但不充分条件;③若p⇒q,且q⇒p,则p是q的充要条件;④若p ≠>q,且q ≠>p,则p是q的既不充分也不必要条件.课堂小结1.总结如下:①若p⇒q ,但q⇒p,则p是q的充分但不必要条件;②若q⇒p,但p⇒q,则p是q的必要但不充分条件;③若p⇒q,且q⇒p,则p是q的充要条件;④若p ⇒q ,且q ⇒ p ,则p 是q 的既不充分也不必要条件.2.充要条件的判定方法:如果“若p ,则q ”与“ 若p 则q ”都是真命题,那么p 就是q 的充要条件,否则不是.作业见同步练习部分拓展提升1.设R a ∈,则1a >是11a< 的 ( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件D .既不充分也不必要条件 2.设,R a b ∈,则不等式a b >与11a b>都成立的充要条件是( ) A.0ab > B.0,0a b >< C.0ab < D.0ab ≠3.给出下列命题:①0a b >>是22a b >的充要条件; ②0a b >>是b a 11<的充要条件; ③0a b >>是33a b >的充要条件.则其中为真命题的有( )A .0个B .1个C .2个D .3个 4.已知命题:p 40k -<<;命题:q 函数21y kx kx =--的值恒为负.则命题p 是命题q 成立的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件5.不等式(1||)(1)0x x -+>成立的充要条件是 .6.命题:20,01p m n -<<<<;命题:q 关于x 的方程20x mx n ++=有两个小于1的正根,试分析p 是q 的什么条件.参考答案1. A 【解析】1a >,则1110a a a --=<, ∴11a <,条件充分,反之不真,如1a =-. 【解析】110b a a b ab->⇒>, ∵a b >, ∴0ab <.而a b >,故得0,0a b ><. 【解析】①220a b a b >>⇒>,反之不真;②0a b >>⇒ba 11< ,反之不真;③330ab a b >>⇒>,反之不真.【解析】2400,40k k k k -<<⇒<∆=+<;函数21y kx kx =--的值恒为负,不一定有40k -<<,如0k =时,函数21y kx kx =--的值恒为负. 5. 1x <且1x ≠-【解析】0x ≥时,2(1||)(1)010x x x -+>⇔->, ∴01x ≤<;0x <时, 2(1||)(1)0(1)0x x x -+>⇔+>此式当1x ≠-时恒成立.6.解:设关于x 的方程20x mx n ++=有两个小于1的正根12,x x ,则12x x m +=-,12x x n ⋅=,∵1201,01x x <<<<, ∴02,01m n <-<<<, ∴20,01m n -<<<<,这说明p 是q 的必要条件.设20,01m n -<<<<,关于x 的方程20x mx n ++=不一定有两个小于1的正根,如1,m =-34n =时,方程2304x x -+=没有实数根,这说明p 不是q 的充分条件.综上,p 是q 的必要不充分条件.。

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标:1. 让学生理解充分条件和必要条件的概念,掌握判断充分条件和必要条件的方法。

2. 培养学生运用充分条件和必要条件分析问题、解决问题的能力。

3. 帮助学生建立充分条件和必要条件之间的联系,理解它们在数学论证中的应用。

二、教学内容:1. 充分条件和必要条件的定义。

2. 判断充分条件和必要条件的方法。

3. 充分条件和必要条件与数学论证的关系。

三、教学重点与难点:重点:充分条件和必要条件的定义及判断方法。

难点:充分条件和必要条件在数学论证中的应用。

四、教学过程:1. 导入:通过生活实例引入充分条件和必要条件的概念。

2. 新课讲解:讲解充分条件和必要条件的定义,举例说明判断方法。

3. 课堂练习:让学生运用充分条件和必要条件判断给出的命题。

4. 案例分析:分析充分条件和必要条件在数学论证中的应用。

5. 总结提升:总结本节课的主要内容,强调充分条件和必要条件的重要性。

五、课后作业:1. 复习本节课的内容,理解充分条件和必要条件的概念及判断方法。

2. 完成课后练习题,巩固所学知识。

3. 思考充分条件和必要条件在实际问题中的应用,准备下一节课的分享。

六、教学策略:1. 采用问题驱动的教学方法,引导学生通过实例发现充分条件和必要条件的规律。

2. 利用逻辑推理和反证法,让学生在实践中掌握充分条件和必要条件的判断方法。

3. 设计具有针对性的练习题,及时巩固所学知识,提高学生的应用能力。

4. 组织小组讨论,鼓励学生分享自己的思路和经验,培养学生的合作意识。

七、教学准备:1. 准备相关的生活实例和数学案例,用于引导学生理解和应用充分条件和必要条件。

2. 设计课后练习题,包括基础题和拓展题,以满足不同层次学生的学习需求。

3. 准备教学PPT,用于辅助讲解和展示教学内容。

八、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2命题及其关系、充分条件与必要条件2014高考会这样考1.考查四种命题的意义及相互关系;2.考查对充分条件、必要条件、充要条件等概念的理解,主要以客观题的形式出现;3.在解答题中考查命题或充分条件与必要条件.复习备考要这样做1.在解与命题有关的问题时,要理解命题的含义,准确地分清命题的条件与结论;2.注意条件之间关系的方向性、充分条件与必要条件方向正好相反;3.注意等价命题的应用.1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.,则p是q的充分不必要条件,p的必要不充分条件是q。

注意对定义的理解:例如:若p⇒q,q p[难点正本疑点清源]1.等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.2.集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有⊂,则p是q的充分不必要条件;(1)若A⊆B,则p是q的充分条件,若A B⊂,则p是q的必要不充分条件;(2)若B⊆A,则p是q的必要条件,若B A(3)若A=B,则p是q的充要条件;(4)若A⊄B,且B ⊄A,则p是q的既不充分也不必要条件.题型一四种命题的关系及真假例1已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是(D)A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题思维启迪:根据四种命题的定义判断一个原命题的逆命题、否命题、逆否命题的表达格式.当命题较简单时,可直接判断其真假,若命题本身复杂或不易直接判断时,可利用其等价命题——逆否命题进行真假判断.解析命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.探究提高(1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)认真仔细读题,必要时举特例.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是(C)A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.题型二充要条件的判断例2已知下列各组命题,其中p是q的充分必要条件的是(D)A.p:m≤-2或m≥6;q:y=x2+mx+m+3有两个不同的零点B.p:()1()f xf x-=;q:y=f(x)是偶函数C.p:cosα=cosβ;q:tanα=tanβD.p:A∩B=A;q:A⊆U,B⊆U,∁U B⊆∁U A思维启迪:首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断.解析对于A,由y=x2+mx+m+3有两个不同的零点,可得Δ=m2-4(m+3)>0,从而可得m<-2或m>6.所以p是q的必要不充分条件;对于B,由()1()f xf x-=⇒f(-x)=f(x)⇒y=f(x)是偶函数,但由y=f(x)是偶函数不能推出()1()f xf x-=,例如函数f(x)=0,所以p是q的充分不必要条件;对于C,当cosα=cosβ=0时,不存在tanα=tanβ,反之也不成立,所以p是q的既不充分也不必要条件;对于D,由A∩B=A,知A⊆B,所以∁U B⊆∁U A;反之,由∁U B⊆∁U A,知A⊆B,即A∩B=A.所以p⇔q.综上所述,p是q的充分必要条件的是D.探究提高判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件; ②“a≤2”是“函数f(x)=|x -a|在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真.命题的序号是①②④ . 解析 对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a≤2时,函数f(x)=|x -a|在区间[2,+∞)上是增函数,因此②正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b>a ,故A =30°,反之,当A =30°时,有sin B =32,由于b>a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①②④. 题型三 利用充要条件求参数例3已知集合M={x|x<-3或x>5},P={x|(x-a)·(x-8)≤0}.(1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.思维启迪:解决此类问题一般是先把充分条件、必要条件或充要条件转化为集合之间的关系,再根据集合之间的关系列出关于参数的不等式求解.解(1)由M∩P={x|5<x≤8},得-3≤a≤5,因此M∩P={x|5<x≤8}的充要条件是{a|-3≤a≤5}.(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a=0,此时必有M∩P={x|5<x≤8};反之,M∩P={x|5<x≤8}未必有a=0,故“a=0”是“M∩P ={x|5<x≤8}”的一个充分但不必要条件.探究提高利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.已知p:x2-4x-5≤0,q:|x-3|<a (a>0).若p是q的充分不必要条件,求a的取值范围.解 设A ={x|x 2-4x -5≤0}={x|-1≤x≤5},B ={x|-a +3<x<a +3},因为p 是q 的充分不必要条件,从而有A ⊂B.故⎩⎪⎨⎪⎧-a +3<-1,a +3>5,解得a>4.等价转化思想在充要条件关系中的应用典例:(12分)已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m>0),且p q ⌝⌝是的必要而不充分条件,求实数m 的取值范围.审题视角 (1)先求出两命题的解集,即将命题化为最简.(2)再利用命题间的关系列出关于m 的不等式或不等式组,得出结论. 规范解答解 方法一 由q :x 2-2x +1-m 2≤0, 得1-m≤x≤1+m ,[2分] ∴q ⌝:A ={x|x>1+m 或x<1-m ,m>0}, [3分] 由p :⎪⎪⎪⎪1-x -13≤2,解得-2≤x≤10,[5分] ∴p ⌝:B ={x|x>10或x<-2}.[6分]∵p q ⌝⌝是的必要而不充分条件. ∴A ⊂B ,∴⎩⎪⎨⎪⎧m>0,1-m<-2,1+m≥10,或⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m>10,即m≥9或m>9.∴m≥9.[12分]方法二 ∵⌝p 是⌝q 的必要而不充分条件,∴p 是q 的充分而不必要条件, [2分] 由q :x 2-2x +1-m 2≤0,得1-m≤x≤1+m ,∴q :Q ={x|1-m≤x≤1+m}, [4分] 由p :⎪⎪⎪⎪1-x -13≤2,解得-2≤x≤10,∴p :P ={x|-2≤x≤10}. [6分] ∵p 是q 的充分而不必要条件, ∴P ⊂Q ,∴⎩⎪⎨⎪⎧m>0,1-m<-2,1+m≥10,或⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m>10,即m≥9或m>9.∴m≥9. [12分] 答题模板第一步:求命题p、q对应的参数的范围.⌝、q⌝对应的参数的范围.第二步:求命题p第三步:根据已知条件构造新命题,如本题构造新命题“p且q”或“p或q”.第四步:根据新命题的真假,确定参数的范围.第五步:反思回顾.查看关键点、易错点及解题规范.温馨提醒解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算.答题时,可依答题模板的格式进行,这样可使答题思路清晰,过程完整.老师在阅卷时,便于查找得分点. 温馨提醒本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1.当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其它三种命题时,应把其中一个(或几个)作为大前提.2.数学中的定义、公理、公式、定理都是命题,但命题与定理是有区别的;命题有真假之分,而定理都是真的.3.命题的充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与B⌝⇒A⌝,B⇒A与A⌝⇒B⌝,A⇔B与綈B⇔A⌝的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A 是B的充要条件.失误与防范1.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q”的形式.2. 判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q”等语言.A 组 专项基础训练一、选择题(每小题5分,共20分)1. (2012·湖南)命题“若α=π4,则tanα=1”的逆否命题是( C )A .若α≠π4,则tanα≠1B .若α=π4,则tanα ≠1C .若tanα≠1,则α≠π4D .若tanα≠1,则α=π4解析 由原命题与其逆否命题之间的关系可知,原命题的逆否命题:若tan α≠1,则α≠π4.2. (2012·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是 ( D ) A .x =-12B .x =-1C .x =5D .x =0解析 ∵a =(x -1,2),b =(2,1), ∴a ·b =2(x -1)+2×1=2x.又a ⊥b ⇔a ·b =0,∴2x =0,∴x =0.3. 已知集合M ={x|0<x<1},集合N ={x|-2<x<1},那么“a ∈N”是“a ∈M”的( B )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N”是“a ∈M”的必要而不充分条件.故选B.4. 下列命题中为真命题的是( A ) A .命题“若x>y ,则x>|y|”的逆命题 B .命题“若x>1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x>1”的逆否命题解析 对于A ,其逆命题:若x>|y|,则x>y ,是真命题,这是因为x>|y|=⎩⎪⎨⎪⎧y y≥0-y y<0,必有x>y ;对于B ,否命题:若x≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x>0或x<0,不一定有x>1,因此原命题的逆否命题是假命题,故选A. 二、填空题(每小题5分,共15分) 5. 下列命题: ①若ac 2>bc 2,则a>b ; ②若sinα=sinβ,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f(x)=log 2x ,则f(|x|)是偶函数. 其中正确命题的序号是①③④.解析 对于①,ac 2>bc 2,c 2>0,∴a>b 正确;对于②,sin 30°=sin 150°则30°≠150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③对;对于④显然对.6. 已知p(x):x 2+2x -m>0,如果p(1)是假命题,p(2)是真命题,则实数m 的取值范围为[3,8). 解析 因为p(1)是假命题,所以1+2-m≤0, 解得m≥3;又因为p(2)是真命题,所以4+4-m>0, 解得m<8.故实数m 的取值范围是3≤m<8.7. (2011·陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =3或4 解析 ∵x 2-4x +n =0有整数根, ∴x =4±16-4n2=2±4-n ,∴4-n 为某个整数的平方且4-n≥0,∴n =3或n =4. 当n =3时,x 2-4x +3=0,得x =1或x =3; 当n =4时,x 2-4x +4=0,得x =2. ∴n =3或n =4. 三、解答题(共22分)8. (10分)判断命题“若a≥0,则x 2+x -a =0有实根”的逆否命题的真假. 解 原命题:若a≥0,则x 2+x -a =0有实根. 逆否命题:若x 2+x -a =0无实根,则a<0. 判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a<0,∴a<-14<0,∴“若x 2+x -a =0无实根,则a<0”为真命题.9. (12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若p q ⌝⌝是的充分而不必要条件,求实数m 的取值范围.解 由题意得p :-2≤x -3≤2,∴1≤x≤5.p q q p ⌝⌝⇒⇔⇒ ∴p ⌝:x<1或x>5.q :m -1≤x≤m +1,∴q ⌝:x<m -1或x>m +1. 又∵p q ⌝⌝是的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5,且等号不能同时取到,∴2≤m≤4. 法二:p q q p ⌝⌝⇒⇔⇒B 组 专项能力提升一、选择题(每小题5分,共15分)1. (2012·上海)对于常数m 、n ,“mn>0”是“方程mx 2+ny 2=1的曲线是椭圆”的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析 ∵mn>0,∴⎩⎪⎨⎪⎧ m>0,n>0或⎩⎪⎨⎪⎧m<0,n<0,当m>0,n>0且m≠n 时,方程mx 2+ny 2=1的曲线是椭圆, 当m<0,n<0时,方程mx 2+ny 2=1不表示任何图形,所以条件不充分;反之,当方程mx 2+ny 2=1表示的曲线是椭圆时有mn>0, 所以“mn>0”是“方程mx 2+ny 2=1的曲线是椭圆”的必要不充分条件.2. 已知p :1x -2≥1,q :|x -a|<1,若p 是q 的充分不必要条件,则实数a 的取值范围为( C )A .(-∞,3]B .[2,3]C .(2,3]D .(2,3)解析 由1x -2≥1,得2<x≤3;由|x -a|<1,得a -1<x<a +1.若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧a -1≤2a +1>3,即2<a≤3.所以实数a 的取值范围是(2,3],故选C.3. 集合A ={x||x|≤4,x ∈R },B ={x|x<a},则“A ⊆B”是“a>5”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 A ={x|-4≤x≤4},若A ⊆B ,则a>4.a>4D/⇒a>5,但a>5⇒a>4.故“A ⊆B”是“a>5”的必要不充分条件. 二、填空题(每小题5分,共15分)4. 设有两个命题p 、q.其中p :对于任意的x ∈R ,不等式ax 2+2x +1>0恒成立;命题q :f(x)=(4a -3)x 在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是⎝⎛⎭⎫34,1∪(1,+∞) 解析 若命题P 为真,当a =0时,不等式为2x +1>0,显然不能恒成立,故a =0不适合; 当a≠0时,不等式ax 2+2x +1>0恒成立的条件是⎩⎪⎨⎪⎧a>0,Δ=22-4a<0, 解得a>1.若命题q 为真,则0<4a -3<1,解得34<a<1.由题意,可知p ,q 一真一假.①当p 真q 假时,a 的取值范围是{a|a>1}∩{a|a≤34或a≥1}={a|a>1};②当p 假q 真时,a 的取值范围是{a|a≤1}∩{a|34<a<1}={a|34<a<1};所以a 的取值范围是⎝⎛⎭⎫34,1∪(1,+∞).5. 若“x ∈[2,5]或x ∈{x|x<1或x>4}”是假命题,则x 的取值范围是__ [1,2)_. 解析 x ∉[2,5]且x ∉{x|x<1或x>4}是真命题.由⎩⎪⎨⎪⎧x<2或x>5,1≤x≤4,得1≤x<2. 点评 “A 或B”的否定是“A B ⌝⌝且.6. “m<14”是“一元二次方程x 2+x +m =0有实数解”充分不必要条件.解析 x 2+x +m =0有实数解等价于Δ=1-4m≥0, 即m≤14,∵m<14⇒m≤14,反之不成立.故“m<14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.三、解答题7. (13分)已知全集U =R ,非空集合2031x A xx a ⎧-⎫=<⎨⎬--⎭⎩,B =⎩⎨⎧⎭⎬⎫x|x -a 2-2x -a <0. (1)当a =12时,求(∁U B)∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x -2x -52<0=⎩⎨⎧⎭⎬⎫x|2<x<52, B =⎩⎨⎧⎭⎬⎫x|x -94x -12<0=⎩⎨⎧⎭⎬⎫x|12<x<94, ∴∁U B =⎩⎨⎧⎭⎬⎫x|x ≤12或x ≥94. ∴(∁U B)∩A =⎩⎨⎧⎭⎬⎫x|94≤x <52.(2)∵a 2+2>a ,∴B ={x|a<x<a 2+2}.①当3a +1>2,即a>13时,A ={x|2<x<3a +1}.∵p 是q 的充分条件,∴A ⊆B.∴⎩⎪⎨⎪⎧a≤23a +1≤a 2+2,即13<a≤3-52.②当3a +1=2,即a =13时,A =∅,不符合题意;③当3a +1<2,即a<13时,A ={x|3a +1<x<2},由A ⊆B 得⎩⎪⎨⎪⎧a≤3a +1a 2+2≥2,∴-12≤a<13.综上所述,实数a 的取值范围是⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.。

相关文档
最新文档