第1章 材料的种类与性能
第1章 工程材料的分类与键合方式
周期表中I、Ⅱ、Ⅲ族元素的原子很容易丢失其价电子而 成为正离子。
被丢失的价电子为全体原子所公有,这些公有化的电子叫 做自由电子,它们在正离子之间自由运动,形成所谓电 子气。
正离子和电子气之间产生强烈的 静电吸引力,使全部离子结合起 来。这种结合力就叫做金属键。
1.1 工程材料的分类 1.2 材料的键合方式
绪论
1.3 材料的键合方式
C
• 工程材料通常是固态材料,
60
是由各种原子通过原子、离
子或分子结合的特定组合而成的。
• 原子、离子或分子之间的结合力称为结合键。
• 根据结合力的强弱,可以把结合键分为强键(离子键、 共价键及金属键)和弱键(分子键)两类。
1.1 工程材料的分类 1.2 材料的键合方式
绪论
绪论
学习要点:
1.1 材料的定义 1.2 材料的分类 1.3 材料的键合方式
绪论
1.1 材料的定义
材料:是指经过某种加工,具有一定结构、 成分和性能,并可应用于一定用途的物质。 一般把来自采掘工业和农业的劳动对象称为 “原料”,把经过工业加工的原料成为“材 料”。
绪论
1.2 材料的分类
1.2.1 金属材料 金属材料是以金属键结合为主的材 料,具有良好的导电性、导热性、延 展性和金属光泽。
绪论
金属由金属键结合,具有度系数,即随温度升高电阻增大。 ③金属不透明并呈现特有的金属光泽。 ④金属具有良好的塑性变形能力,金属材料的强韧性好。
1.1 工程材料的分类 1.2 材料的键合方式
绪论
1.3.2 离子键
当元素周期表中相隔较远的正电性元素原子和负电性元素 原子相接近时,正电性原子失去外层电子变为正离子,负 电性原子获得电子变为负离子。正负离子通过静电引力互 相吸引,当离子间的引力与斥力相等时就形成稳定的离子 键。
材料化学教材
材料化学教材材料化学是一门研究材料结构、性能和制备方法的学科,它在现代科学技术中扮演着重要的角色。
本教材旨在系统地介绍材料化学的基本理论、实验方法和应用,帮助学生全面了解材料化学的基本知识和发展趋势。
首先,我们将介绍材料的基本分类和性能。
材料可以分为金属材料、无机非金属材料和有机高分子材料三大类。
金属材料具有良好的导电、导热性能,广泛应用于工程领域;无机非金属材料包括陶瓷、玻璃等,具有优良的耐高温、耐腐蚀性能;有机高分子材料主要包括塑料、橡胶等,具有轻质、柔软、绝缘等特点。
不同材料的性能差异主要源于其微观结构和化学成分的差异。
其次,我们将介绍材料的制备方法和表征技术。
材料的制备方法包括物理方法、化学方法和生物方法等,其中化学方法是最常用的制备方法之一。
而材料的表征技术则包括X射线衍射、电子显微镜、质谱分析等,这些技术可以帮助我们了解材料的结构和性能。
接下来,我们将重点介绍材料的性能调控和应用。
材料的性能可以通过改变其组成、结构和形貌来进行调控,例如通过合金化、掺杂等方法来改变材料的导电性能;而材料的应用涉及到材料在能源、环境、医药、电子等领域的广泛应用,例如太阳能电池、催化剂、生物材料等。
最后,我们将展望材料化学的未来发展。
随着科学技术的不断进步,材料化学将会迎来更多的突破和创新,例如纳米材料、功能材料等将成为材料化学的研究热点,同时,材料的可持续发展和环保性能也将成为未来材料研究的重要方向。
总之,材料化学是一门重要的学科,它对于推动科学技术的发展和应用具有重要意义。
本教材将帮助学生全面了解材料化学的基本知识和发展趋势,为他们今后的学习和研究打下坚实的基础。
希望本教材能够对学生们的学习和研究有所帮助,也希望材料化学领域的研究能够取得更多的突破和进展。
第1章 工程 材料的种类和力学性能
传统的无机非金属材料 之一:陶瓷
陶瓷按其概念和用途不同 ,可分为两大类,即普通陶瓷 和特种陶瓷。
根据陶瓷坯体结构及其基 本物理性能的差异,陶瓷制品 可分为陶器和瓷器。
陶瓷制品
陶瓷发动机
• 普通陶瓷即传统陶瓷,是指以粘土为主要原料与其它天然矿物原料经过 粉碎混练、成型、煅烧等过程而制成的各种制品。包括日用陶瓷、卫生 陶瓷、建筑陶瓷、化工陶瓷、电瓷以及其它工业用陶瓷。
材料的强度、塑性指标是通过拉伸实验 测定的。
应力 σ=F/S0
σ (N /m2) ;
F —作用力,(N) S0—试样原始截面 积(m2)。
剪应力τ=F/SO
材料单位面积上的内力称为应力(Pa),以
σ表示。
应变ε(%) ⊿L—试样标距部分伸长量,(mm);
L0 —试样标距部分长度(mm)。ε=⊿L/L0
根据用途不同,特种玻璃分为防辐射玻璃、激光玻璃、 生物玻璃、多孔玻璃、非线性光学玻璃和光纤玻璃等。
传统的无机非金属材料 之三:水泥
水泥是指加入适量水 后可成塑性浆体,既能在 空气中硬化又能在水中硬 化,并能够将砂、石等材 料牢固地胶结在一起的细 粉状水硬性材料。
水泥的种类很多,按其用途和性能可分为: 通用水泥、专用水泥和特性水泥三大类;按其所 含的主要水硬性矿物,水泥又可分为硅酸盐水泥 、铝酸盐水泥、硫铝酸盐水泥、氟铝酸盐水泥以 及以工业废渣和地方材料为主要组分的水泥。目 前水泥品种已达一百多种。
l lO
ll lO
lO lO
l
100lO% lO
100%
剪应变 γ 剪模量 G
a h
tan
且有 G
• 弹性变形 形①的弹外性力变撤形除:后当,产变生形变随σ 即消失。
1第一章 混凝土结构用材料的性能(课件)_0
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 1第一章混凝土结构用材料的性能(课件)1 第一章混凝土结构用材料的性能(课件) 混凝土结构设计原理 1 混凝土结构材料的性能本章主要讨论以下三个内容:? 钢筋的品种、级别、性能及其选用原则; ? 混凝土在各种受力状态下的强度与变形性能及其选用原则; ? 钢筋与混凝土的共同工作原理。
1.1 钢筋 1.1.1 钢筋的品种与性能 1、热轧钢筋(1)、热轧钢筋的种类表 1-1 常用热轧钢筋的种类、代表符号和直径范围(2)、热轧钢筋的力学性能①应力应变曲线的一般特征及其简化②热轧钢筋的强度及弹性模量钢筋的屈服强度是混凝土结构构件设计计算时的主要依据之一。
屈服极限极限强度(强度极限)。
屈强比,钢筋的屈服强度与极限抗拉强度之比。
一般要求,屈强比小于 0.8。
③塑性性能 A、伸长率?:1 1 混凝土结构材料的性能 ??l??l?100%。
l 当 l?5d 时,伸长率用?5 表示;当 l?10d 时,伸长率用?10 表示;当l?100mm 时,伸长率用?100 表示;d 为试件直径。
另外,还有均匀伸长率?gt。
B、冷弯性能关于伸长率和冷弯性能的试验方法,如图1 / 121-4、1-5 所示。
2、中高强钢丝和钢绞线(1)、中高强钢丝和钢绞线的力学性能(2)、中高强钢丝和钢绞线的种类(3)热处理钢筋。
3、冷加工钢筋冷加工钢筋,是指在常温下,采用某种工艺对热轧钢筋进行加工得到的钢筋。
常用的加工工艺有,冷拉、冷拔、冷轧和冷轧扭等四种工艺。
(1)、冷拉钢筋,如图 1-8 所示。
(2)、冷拔钢筋,如图 1-9、1-10 所示。
(3)、冷轧带肋钢筋,如图 1-11 所示。
(4)、冷轧扭钢筋,如图 1-12 所示。
机械工程材料复习题1
第一章材料的种类与性能1.学习本课程的主要目的是什么?为什么工程材料的知识对于机械制造工作者来说是必须具备的?2.本课程主要包括那几方面内容,其基本要求是什么?3.比较强度极限s b,屈服极限s s与s0。
2的异同,强度与刚度有何不同?4.解释下列常用机械性能指标:d,y,a k和A k,HB,HRC,HRA,HRB,HV5.硬度有何实用意义?为什么在生产图纸的技术要求中常用硬度来表示对零件的性能要求?HB与HRC分别使用哪些范围?6.为什么要研究材料的工艺性能?7.在有关工件的图纸上,出现了以下几种硬度技术条件的标注方法,这种标注是否正确?(1)600~650 HB (2)HB=200~250 kgf/mm2(3)5~10 HRC (4)70~75 HRC1.拉力试验、疲劳试验、冲击试验在试样承受的应力类型、测定的性能指标,试验的适合场合等方面区别何在?2.材料的性能包括那几方面?材料的性能与其成分、组织和加工工艺之间有什么关系?3.拉力试样的原标距长度为50mm,直径为10mm,经拉力试验后,将已断裂的试样对接起来测量,若最后的标距长度为79mm,颈缩区的最小直径为4.9mm,试求该材料的延伸率和断面收缩率的值?4.下列各工件应该采用何种硬度试验方法测定其硬度?5.(1)锉刀(2)黄铜轴套(3)供应状态的各种碳钢钢材(4)硬质合金的刀片第二章金属的结构与结晶一、名词解释晶体、非晶体;晶格、晶胞、晶格常数、致密度、配位数;晶面、晶向、晶面指数、晶向指数;单晶体的各向异性、各向同性;点缺陷、线缺陷、面缺陷、亚晶粒、亚晶界、位错;单晶体、多晶体;过冷度;变质处理、变质剂二、判断是非1.不论在什么条件下,金属晶体缺陷总是使金属强度降低。
2.工业上常用金属中的原子排列是完整的、规则的,晶格位向也是完全一致的。
3.金属结晶时的冷却速度愈慢,过冷度愈小,金属的实际结晶温度愈接近理论结晶温度。
4.位错是晶体中常见的缺陷,在常见的工业金属中位错密度愈小,其强度愈高.5.在金属结晶过程中,晶体成长常以树枝状方式进行的,但结晶以后一般情况下看不到树枝状晶体。
工材习题集
(A)压应力(B)切应力(C)复合应力(D)拉应力
4.孕育剂的细化晶粒的作用是
(成化合物,并以此作为非自发形核的核心,增加晶核数
(C)提高冷却速度,增加过冷度
(D)降低液态金属的实际结晶温度,提高过冷度
5.实际晶体的冷曲线是
(D)一定温度和成分条件下,从液固两相中同时结晶一种晶体的反应
12.共析钢在727℃奥氏体化后,再缓慢加热至温度为1148℃时,珠光体的含碳量将
(A)从0.77%上升到2.11%(B)保持0.77%不变(C)高于0.77%(D)低于0.77%
13.最适合于热加工成形的相区是
(A)单相的A区(B)双相的F+A区(C)双相的L+A区(D)双相的A+Fe3C
4.已知γ-Fe的晶格常数(a=0.364nm)大于α-Fe的晶格常数(a=0.287nm),为什么γ-Fe冷至912℃转变为α-Fe时,体积反而增大?
5.画出面心立方晶体中的(100)、(110)、(111)晶面和[100]、[110]、[111]晶相,并计算以上各晶面和晶向晶面密度和晶向密度。
6.间隙固溶体与间隙化合物的区别?
10高分子材料的聚集态有、、三种。
三、选择题
1.晶体的位错属于:
(A)体缺陷(B)面缺陷(C)点缺陷(D)线缺陷
2.体心立方晶格中,密排面和密排方向分别是:
(A)(110)、<111>(B)(100)、<111>(C)(111)、<110>(D)<110>、(111)
3.面心立方结构中,密排面和密排方向分别是:
二、填空题
1.工程材料材料化过程中关键步骤分别是:金属材料;高分子材料;陶瓷材料。
应用无机化学:第一章 新型无机材料概述
✓ 粉体原料的粒度是纳米量级的,显微结构中的晶粒、晶界、气孔、缺陷分布均在纳米尺度。 ✓ 纳米陶瓷表面和界面非常大,晶界对材料性能其主导影响作用 ✓ 纳米陶瓷是当前陶瓷研究的一个重要趋向,将促使陶瓷从性能到应用都提高到崭新的阶段 9
现代社会的合成材料
钇铝石榴石激光材料,氧化铝、氧化钇透 明材料和石英系或多组分玻璃的光导纤维 等
金 属
高温结构陶瓷
高温氧化物、碳化物、氮化物及硼化物等 难熔化合物
材
超硬材料
碳化钛、人造金刚石和立方氮化硼等
料
人工晶体
铌酸锂、钽酸锂、砷化镓、氟金云母等
生物陶瓷
长石质齿材、氧化铝、磷酸盐骨材和酶的
载体等
21
无机复合材料
陶瓷基、金属基、碳素基的复合材料
对人体有较好的适应性
心瓣膜、人造关节等
23
硬度大、耐磨损
高温炉管
透明、耐高压 氧化铝陶瓷制品
高
压
钠
灯
熔点高
24
氧化铝陶瓷球磨罐
星式氧化铝陶瓷球磨机
25
高压钠灯是发光效率很高的一种电光源,光色 金白,在它的灯光下看物清晰,不刺眼。平均 寿命长达1万小时~2万小时,比高压汞灯寿命 长2倍,高过白炽灯的寿命10倍,是目前寿命 最长的灯。早在20世纪30年代初,人们就已经 知道利用钠蒸气放电可获得一种高效率的光源, 但一直到1960年,高压钠灯才呱呱坠地,后经 不断发展改进,才得以实际应用。
2014级本科生选修课程
应用无机化学
课程内容
第一章 新型无机材料概述
• 新型无机材料发展概况 • 新型无机材料特点 、分类 • 新型无机材料应用领域
材料的性能-工程材料
材料的性能-工程材料引言材料是工程设计和制造中至关重要的因素之一。
不同材料的性能直接影响到工程的可靠性、耐用性、平安性等方面。
本文将介绍工程材料的性能特点,包括力学性能、热性能、化学性能以及其它一些重要性能参数。
力学性能力学性能是材料工程中最根本、最重要的性能之一。
它包括强度、韧性、硬度、弹性模量等指标。
强度是指材料抵抗外部力量破坏的能力,常由抗拉强度或抗压强度来表示。
韧性是指材料在受到外部应力作用下发生塑性变形的能力,常由断裂韧性或冲击韧性来衡量。
硬度是指材料抵抗刮削或压痕的能力,可用洛氏硬度或维氏硬度进行测量。
弹性模量那么表示了材料在受力后会恢复原状的能力。
热性能热性能是材料在受热或受冷时的表现,包括导热性、热膨胀系数、比热容等。
导热性是材料传导热量的能力,由热传导率来度量。
热膨胀系数那么表示材料在温度变化时的体积膨胀或收缩程度。
比热容是指单位质量材料在温度升高1℃时所吸收或释放的热量。
化学性能化学性能是指材料与环境中化学物质发生反响的性能,包括耐腐蚀性、氧化性、复原性等。
耐腐蚀性是材料抵抗化学腐蚀侵蚀的能力,常用酸碱腐蚀试验来评估。
氧化性表示材料与氧气接触时的性能,如金属氧化后形成氧化膜。
复原性是指材料复原他物的能力,用于一些特定工艺中。
其它重要性能参数除了上述的根本性能指标外,还有一些其它重要的性能参数需要考虑。
例如,电导率是指材料导电的能力,常用于电子器件中。
磁性是指材料对磁场的反响能力,用于电磁设备的制造。
透光性是指材料对光线透过的能力,一些光学器件中十分重要。
总结工程材料的性能对工程设计和制造至关重要。
不同材料的性能特点决定了它们的适用范围和工程应用的可行性。
力学性能、热性能、化学性能以及其它一些重要性能参数都需要考虑进去。
通过综合评估材料的性能,可以选择最适宜的材料来满足工程需求。
以上是关于工程材料性能的简要介绍,希望对读者有所帮助。
注意:以上文档为人工智能助手生成,仅供参考。
根据实际需求,建议根据完整性、准确性以及个性化需求进行修改和完善。
材料研究方法 第1章 绪论
按设备的分辨率划分 宏观结构 显微结构 亚微观结构 微观结构
以人眼的分辨率为界 以光学显微镜的分辨率为界
以扫描电子显微镜的分辨率为界
材料结构层次划分及所用设备
结构层次 宏观结构 显微结构 亚微观结构 物体尺寸 > 100 m 0.2-100 m 10-200 nm 研究对象 观测设备
材料研究方法
主讲人:于美燕
课程性质
本课程是一门实验方法课。
光学显微分析、 X 射线衍射分析、电子显 微分析、热分析、光谱分析、核磁共振分 析和质谱分析是现代材料研究的常用方法, 是材料工作者的眼睛,对材料进行宏观上 的性能测试和微观上的成分、结构、组织 的表征。
教学目的
Why:了解研究材料结构、性能的重要性 What:掌握材料结构、性能的测试方法 How:了解影响材料测试、分析结果的仪 器因素
料、信息、能源誉为现代文明的三大支柱,
同时把信息技术、生物技术和新型材料作为
新技术革命的重要标志。
材料科学的任务
使用、研究和制造材料
材料是人类文明的物质基础,每一种新 材料的出现和使用,都伴随着生产力和科学 技术的发展,标志着人类文明的进步。
石器时代
青铜器时代
铁器时代
蒸汽机时代
材料的种类
按化学状态分:金属材料、无机非金属材料、 有机高分子材料、复合材料等。 按使用用途分:建筑材料、包装材料、信息材 料、生物医用材料等。
课程要求
掌握基本原理
了解常用的实验方法,能设计具体课题的 检测方案,并制备样品
能分析各种照片和图谱,看懂文献中的相 关内容
主要参考书
本课程以王培铭等主编的《材料研究方法》为基 本教材,其它可参考下列教材:
工程材料及机械制造基础习题及答案.
第一章材料的种类与性能1.强度:强度是指在外力作用下,材料抵抗变形和断裂的能力。
2.屈服强度:材料在外力作用下开始发生塑性变形的最低应力值。
3.弹性极限:产生的变形是可以恢复的变形的点对应的弹性变形阶段最大应力称为弹性极限。
4.弹性模量:材料在弹性变形范围内的应力与应变的比值称为弹性模量。
5.抗拉强度:抗拉强度是试样拉断前所能承受的最大应力值。
6.塑性:断裂前材料产生的塑性变形的能力称为塑性。
7.硬度:硬度是材料抵抗硬物压入其表面的能力。
8.冲击韧度:冲击韧度是材料抵抗冲击载荷的能力。
9.断裂韧度:断裂韧度是材料抵抗裂纹扩展的能力。
10.疲劳强度:疲劳强度是用来表征材料抵抗疲劳的能力。
11.黏着磨损:黏着磨损又称咬合磨损,其实质是接触面在接触压力作用下局部发生黏着,在相对运动时黏着处又分离,使接触面上有小颗粒被拉拽出来,反复进行造成黏着磨损。
12.磨粒磨损:磨粒磨损是当摩擦副一方的硬度比另一方大的多时,或者在接触面之间存在着硬质粒子是所产生的磨损。
13.腐蚀磨损:腐蚀磨损是由于外界环境引起金属表面的腐蚀物剥落,与金属表面之间的机械磨损相结合而出现的磨损。
14.功能材料:是具有某种特殊的物理性能,化学性能,生物性能以及某些功能之间可以相互转化的材料。
15.使用性能:是指在正常使用条件下能保证安全可靠工作所必备的性能,包括材料的力学性能,物理性能,化学性能等。
16.工艺性能:是指材料的可加工性,包括可锻性,铸造性能,焊接性,热处理性能及切削加工性。
17.交变载荷:大小,方向随时间呈周期性变化的载荷作用。
18.疲劳:是机械零件在循环或交变载荷作用下,经过较长时间的工作而发生断裂的现象。
20.蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。
21.脆断:在拉应力状态下没有出现塑性变形而突然发生脆性断裂的现象。
22.应力松弛:是指承受弹性应变的零件在工作过程中总变形量保持不变,但随时间的延长,工作应力自行逐渐衰减的现象。
工程材料与热加工复习资料-学生(含部分答案)
工程材料与热加工复习资料第1章材料的力学性能疲劳断口的三个区域。
疲劳源区、疲劳裂纹扩展区和最后断裂区三部分组成5.金属塑性的2个主要指标。
伸长率和断面收缩率6.金属的性能包括力学性能、_物理___性能、_化学_性能和__工艺_性能。
7.材料的工艺性能包括哪些?包括铸造性、焊接性、锻压性、切削性以及热处理性。
第2章金属的晶体结构与结晶二、问答题1.金属中常见的晶体结构有哪几种?(α-Fe、γ-Fe是分别是什么晶体结构)。
体心立方体晶格、面心立方体晶格、密排六方晶格。
α-Fe 是体心立方体晶格结构γ-Fe是面心立方体晶格结构晶体和非晶体的特点和区别。
2.实际晶体的晶体缺陷有哪几种类型?点缺陷、线缺陷、面缺陷。
3点缺陷分为:空位、间隙原子、置换原子4.固溶体的类型有哪几种?置换固溶体、间隙固溶体5.纯金属的结晶是由哪两个基本过程组成的?晶体的形成、晶体的长大6.何谓结晶温度、过冷现象和过冷度?纯金属液体在无限缓慢的冷却条件下的结晶温度,称为理论结晶温度金属的实际结晶温度低于理论结晶温度的现象称为过冷现象理论结晶温度与实际结晶温度的差叫做过冷度过冷度与冷却速度有何关系?结晶时冷却的速度越大,过冷度越大,金属的实际结晶温度就越低。
7.晶粒大小对金属的力学性能有何影响?在一般情况下,晶粒越细,金属的强度、塑性和韧性就越好。
细化晶粒的常用方法有哪几种?增加过冷度、变质处理、振动或搅拌8.什么是共析转变?在恒定温度下,有一特定成分的固相同时分解成两种成分和结构均不同的新固相的转变成为共析转变二、填空题1.珠光体是由___铁素体_____和____渗碳体_____组成的机械混合物(共析组织)。
2.莱氏体是由_____奥氏体___和____渗碳体_____组成的机械混合物(共晶组织)。
3.奥氏体在1148℃时碳的质量分数可达____2.11%______,在727℃时碳的质量分数为____0.77%___。
4. 根据室温组织的不同,钢可分为___共_____钢、____亚共____钢和____过共___钢。
工程材料的分类性能及应用范围
工程材料的分类性能及应用范围第一章一、工程材料的分类、性能及应用范畴;工程材料可分为金属材料(黑色金属及有色金属)、非金属材料(高分子材料及无机非金属材料)和复合材料等。
(一)金属材料1 .黑色金属( 1 )生铁、铁合金。
生铁分炼钢生铁和铸造生铁。
铁与任何一种金属或非金属的合金都叫做铁合金。
( 2 )铸铁。
具有优良的铸造性能和良好的耐磨性、消震性及低的缺口敏锐性。
还具有良好的耐热性和耐腐蚀性。
铸铁包括:灰口铸铁、孕育铸铁、可锻铸铁、球墨铸铁、合金铸铁。
(3 )钢。
①钢的分类如下: A .按化学成分分类,可将钢分为碳素钢和合金钢。
B .按冶炼质量分类,可将钢分为一般钢、优质钢和高级优质钢。
C .按用途分类,可将钢分为结构钢、工具钢、专门性能钢等。
D .按冶炼方法分类,可将钢分为平炉钢、转炉钢、电炉钢。
E .按脱氧程度分类,可将钢分为冷静金刚、半冷静钢和沸腾钢。
F .按金相组织分类,在退火状态下,可将钢分为亚共析钢、共析钢、过共析钢;在正火状态下,可将钢分为珠光体钢、贝氏体钢、奥氏体钢。
G .按供应时的保证条件分类,可将钢分为甲类钢、乙类钢和特类钢。
②钢的牌号表示方法。
依照牌号能够看出钢的类别、含碳量、合金元素及其含量、冶炼质量以及应该具备的性能和用途。
例如甲类钢牌号用“A”字加上阿拉伯数字0 、1 、2 、3 、4 、5 、6 、7 表示。
又如20 号钢号,表示平均含碳量为0.20% 的钢。
再如9Cr18 表示平均含碳量为0.9% 、含Cr 量为18% 的不锈钢。
③国外钢的牌号的要紧特点方(略)。
④几种常用钢的要紧特点及用途。
A .一般碳素钢分甲类钢和乙类钢两种。
甲类钢多用于建筑工业使用的钢筋,机械制造中使用的一般螺钉、螺母、垫圈、轴套等,也能轧成板材、型材(如工字钢、槽钢、角钢等);乙类钢的用途与相同数字的甲类钢相同。
B .一般低合金钢是在一般碳素钢的基础上。
加入了少量的合金元素,不仅具有耐腐蚀性、耐磨损等优良性能,还具有更高的强度和良好的力学性能。
工程材料的力学性能
练习题二
某工厂买回一批材料(要求: бs≥230MPa;бb≥410MPa;δ5≥23%; ψ≥50%).做短试样(l0=5d0;d 0=10mm)拉伸试验,结果如下: Fs=19KN,Fb=34.5KN;l1=63.1mm; d1=6.3mm;问买回的材料合格吗?
时间。如:120HBS10/1000/30表示直径为10mm的钢球 在1000kgf(9.807kN)载荷作用下保持30s测得的布氏 硬度值为120。
布氏硬度的优点:测量误差小,数据稳定。 缺点:压痕大,不能用于太薄件、成品件及比压头 还硬的材料。
适于测量退火、正火、调质钢,铸铁及有色金属的硬度。
2.洛氏硬度:
延伸率 延伸率与试样尺寸有关;δ5、δ10 (L0=5d,10d)
思考:同一材料δ5 > δ10?
断面收缩率
> 时,无颈缩,为脆性材料表征;
拉
< 时,有颈缩,为塑性材料表征。
伸 试
样
的
颈
缩
现
象
断裂后
练习题一
拉力试样的原标距长度为50mm,直径为10mm,经拉力试 验后,将已断裂的试样对接起来测量,若最后的标距长度为 71mm,颈缩区的最小直径为4.9mm,试求该材料的伸长率 和断面收缩率的值?
介质)下,承受各种外加载荷(拉伸、压缩、 弯曲、扭转、冲击、交变应力等)时所表现出 的力学特征。
指标 : 弹性 、刚度、强度、塑性 、 硬度、冲击韧
性 、断裂韧度和疲劳强度等。
金属材料的结构与性能
第一章材料的性能第一节材料的机械性能一、强度、塑性及其测定1、强度是指在静载荷作用下,材料抵抗变形和断裂的才能。
材料的强度越大,材料所能承受的外力就越大。
常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。
2、塑性是指材料在外力作用下产生塑性变形而不断裂的才能。
塑性指标用伸长率δ和断面收缩率ф表示。
二、硬度及其测定硬度是衡量材料软硬程度的指标。
目前,消费中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。
此时硬度可定义为材料抵抗外表局部塑性变形的才能。
因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。
硬度试验简单易行,有可直接在零件上试验而不破坏零件。
此外,材料的硬度值又与其他的力学性能及工艺能有亲密联络。
三、疲劳机械零件在交变载荷作用下发生的断裂的现象称为疲劳。
疲劳强度是指被测材料抵抗交变载荷的才能。
四、冲击韧性及其测定材料在冲击载荷作用下抵抗破坏的才能被称为冲击韧性。
为评定材料的性能,需在规定条件下进展一次冲击试验。
其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。
五、断裂韧性材料抵抗裂纹失稳扩展断裂的才能称为断裂韧性。
它是材料本身的特性。
六、磨损由于相对摩擦,摩擦外表逐渐有微小颗粒别离出来形成磨屑,使接触外表不断发生尺寸变化与重量损失,称为磨损。
引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。
按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大根本类型。
第二节材料的物理化学性能1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。
不同用途的机械零件对物理性能的要求也各不一样。
2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀才能。
第三节材料的工艺性能一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。
第一章工程材料的分类与性能指标
高分子材料制品
陶瓷是一种或多种金属元素同一种非金属元素(通常为氧)的 化合物。
陶瓷材料属于无机非金属材料
由于大部分无机非金属材料含有 硅和其它元素的化合物,所以又 叫做硅酸盐材料。 它一般包括无机玻璃(硅酸盐玻 璃)、玻璃陶瓷(或称微晶玻璃)和 陶瓷等三类。
对工程师来说,陶瓷包括种类繁 多的物质,例如玻璃、砖、石头、 混凝土、磨料、搪瓷、介电绝缘 材料、非金属磁性材料、高温耐 火材料和许多其它材料。
这就解释了为什么当橡胶暴露在阳光和空气 中时会逐渐地硬化;为什么铝不能用在超音速飞 机中;为什么金属在周期性载荷的作用下会产生 疲劳;为什么普通钢的钻头不能象高速钢钻头那 样飞快地切削;为什么磁体在射频场中会失去它 的磁性;又为什么半导体在核辐射下会损坏。这 类例子是数不清的。
在材料的选用中,不仅要考虑初始要求,而 且要考虑那些将使材料内部结构发生变化,从而 也导致材料性能发生变化的使用条件。
因此,金属材料特别是钢铁材料仍然是机械制造业 使用最广泛的材料。
随着科学技术的进步,非金属材料也得到了迅速的 发展。
非金属材料具有一些金属所不具备的许多性能和特 点。
如耐腐蚀、绝缘、消声、质轻、加工成型容易、生 产率高、成本低等。
所以非金属材料在工业中的应用日益广泛。 比如高分子材料常常取代金属材料用作化工管道、
因此,要减少零件的弹性变形,提高其 刚度,只能通过合理设计零件的截面形状、 尺寸,并提高其结构刚度来解决。
刚度:
绝大多数机器零件在工作时基本上都是 处于弹性变形阶段,即均会发生一定量的弹 性变形。但若弹性变形量过大,则工件也不 能正常工作,由此引出了材料对弹性变形的 抵抗能力——刚度(或刚性)指标
补充篇 工程材料的分类与性能
工程材料及机械制造基础习题答案
⼯程材料及机械制造基础习题答案《⼯程材料及机械制造基础》习题参考答案第⼀章材料的种类与性能(P7)1、⾦属材料的使⽤性能包括哪些?⼒学性能、物理性能、化学性能等。
2、什么是⾦属的⼒学性能?它包括那些主要⼒学指标?⾦属材料的⼒学性能:⾦属材料在外⼒作⽤下所表现出来的与弹性和⾮弹性反应相关或涉及⼒与应变关系的性能。
主要包括:弹性、塑性、强度、硬度、冲击韧性等。
3、⼀根直径10mm的钢棒,在拉伸断裂时直径变为8.5mm,此钢的抗拉强度为450Mpa,问此棒能承受的最⼤载荷为多少?断⾯收缩率是多少?F=35325N ψ=27.75%4、简述洛⽒硬度的测试原理。
以压头压⼊⾦属材料的压痕深度来表征材料的硬度。
5、什么是蠕变和应⼒松弛?蠕变:⾦属在长时间恒温、恒应⼒作⽤下,发⽣缓慢塑性变形的现象。
应⼒松弛:承受弹性变形的零件,在⼯作过程中总变形量不变,但随时间的延长,⼯作应⼒逐渐衰减的现象。
6、⾦属腐蚀的⽅式主要有哪⼏种?⾦属防腐的⽅法有哪些?主要有化学腐蚀和电化学腐蚀。
防腐⽅法:1)改变⾦属的化学成分;2)通过覆盖法将⾦属同腐蚀介质隔离;3)改善腐蚀环境;4)阴极保护法。
第⼆章材料的组织结构(P26)1、简述⾦属三种典型结构的特点。
体⼼⽴⽅晶格:晶格属于⽴⽅晶系,在晶胞的中⼼和每个顶⾓各有⼀个原⼦。
每个体⼼⽴⽅晶格的原⼦数为:2个。
塑性较好。
⾯⼼⽴⽅晶格:晶格属于⽴⽅晶系,在晶胞的8个顶⾓和6个⾯的中⼼各有⼀个原⼦。
每个⾯⼼⽴⽅晶格的原⼦数为:4个。
塑性优于体⼼⽴⽅晶格的⾦属。
密排六⽅晶格:晶格属于六⽅棱柱体,在六棱柱晶胞的12个项⾓上各有⼀个原⼦,两个端⾯的中⼼各有⼀个原⼦,晶胞内部有三个原⼦。
每个密排六⽅晶胞原⼦数为:6个,较脆2、⾦属的实际晶体中存在哪些晶体缺陷?它们对性能有什么影响?存在点缺陷、线缺陷和⾯缺陷。
使⾦属抵抗塑性变形的能⼒提⾼,从⽽使⾦属强度、硬度提⾼,但防腐蚀能⼒下降。
3、合⾦元素在⾦属中存在的形式有哪⼏种?各具备什么特性?存在的形式有固溶体和⾦属化合物两种。
(完整版)工程材料及材料成型技术基础
§1-1 材料原子(或分子)的相互作用
1、离子键 当正电性金属原子与负电性非金属
原子形成化合物时,通过外层电子的重 新分布和正、负离子间的静电作用而相 互结合,故称这种结合键为离子键。
离子晶体硬度高,强度大,脆性大。 如氯化钠,陶瓷。
18
2、共价键 当两个相同的原子或性质相差不大的
原子相互接近时,它们的原子间不会有电 子转移。此时原子间借共用电子对所产生 的力而结合,这种结合方式称为共价键。
14
3.陶瓷材料 ① 普通陶瓷—主要为硅、铝氧化物的硅酸盐材料. ② 特种陶瓷—高熔点的氧化物、碳化物、氮化物
等烧结材料。 ③ 金属陶瓷—用生产陶瓷的工艺来制取的金属与
碳化物或其它化合物的粉末制品。 4.复合材料 是由两种或两种以上的材料组合而成的材料。 ①按基体相种类分:聚合物基、金属基、 陶瓷基、 石墨基等。 ②按用途分:结构、功能、智能复合材料。
15
本部分重点
1)工程材料的概念
– 制造工程结构和机器零件使用的材料
2)工程材料的分类
• 金属材料
钢铁材料 有色金属及其合金
• 有机高分子材料
塑料 橡胶等
• 陶瓷材料 • 复合材料
16
第一章 工程材料的结构与性能
§1-1 材料原子(或分子)的相互作用
当大量原子(或分子)处于聚集状态时, 它们之间以键合方式相互作用。由于组成 不同物质的原子结构各不相同,原子间的 结合键性质和状态存在很大区别。
8
绪论
一、材料的发展史
材料(metals) 是人类用来制作各种产品的物质,是 先于人类存在的,是人类生活和生产的物质基础。 反映人类社会文明的水平。
1 . 石器时代 :古猿到原始人的漫长进化过程。原料: 燧石和石英石。 2. 新石器时代:原始社会末期开始用火烧制陶器。 3. 青铜器时代:夏(公元前2140年始)以前就开始了 4. 铁器时代:春秋战国时期(公元前770~221年)开始 大量使用铁器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③蠕变极限σn 金属材料在高温长期工作时,在一定应力下,会随着时 间的延长缓慢地不断发生塑性变化的现象,称为“蠕变” 现象。 例如,高温高压蒸汽管道虽然其承受的应力远小于工作 温度下材料的屈服点,但在长期的使用中则会产生缓慢 而连续的变形使管径日趋增大,最后可能导致破裂。 材料在高温条件下抵抗这种缓慢塑性变形的能力,用 蠕变极限σn表示。
当载荷F,压头球体直径D一定时,布氏硬度值仅与压痕 直径d有关。d越小,布氏硬度值越大,硬度越高。
在实际测量中,布氏硬度值可以通过测量压痕平均直径 d查表得到。
应用:淬火钢球用以测定硬度<450的金属材料,其硬 度值以HBS表示。布氏硬度在450~650之间的材料,压 头用硬质合金球,其硬度值用HBW表示。
σb σs σe σp σp- 比例极限 σe -弹性极限 σs -屈服极限 σb -强度极限
ε
载荷-伸长量示意图 应力-应变示意图
11
(1) 拉伸曲线
材料性质不同,拉伸曲线形状也不尽相同。以上图为例:
①OPE—弹性变形阶段:试样的伸长量与载荷成正比增 加,卸载可完全复原。Fe是弹性变形的最大拉力。 ②ES—屈服阶段:当载荷>Fe时,弹性变形+塑性变形, 若卸载,试样部分恢复;当载荷=Fe时,图形上出现平台, 即载荷不增加而试样继续伸长,材料丧失了抵抗变形的 能力,此现象即称为屈服。Fs称为屈服载荷。
第1章 材料的种类与性能
主要内容: 工程材料按组成分类的种类及其应用范围;材
料的性能(使用性能和工艺性能)的概念;力
学性能是最重要的使用性能指标及其相应的实 验方法。 重点和难点: 力学性能指标及其相应的实验方法。
1
1.1 材料的种类
一、材料的概念 材料是指人类用于制造物品、器件、构件、机器或 其他产品的那些物质。材料是物质,但不是所有物 质都可以称为材料。如燃料和化学原料、工业化学 品、食物和药物,一般都不算是材料。 材料是人类赖以生存和发展的物质基础。20世纪 70年代人们把信息、材料和能源誉为当代文明的三 大支柱。20世纪80年代以高技术群为代表的新技 术革命,又把新材料、信息技术和生物技术并列为 新技术革命的重要标志。
③SB—均匀塑性变形阶段:载荷>Fs时,试样明显塑性 变形,伸长量随载荷增加而增大。Fb是最大载荷。
④BK—缩颈阶段:载荷达到最大值Fb后,试样局部开始 急剧缩小,出现“缩颈”现象,由于截面积减小,试样 变形所需的载荷也随之降低,至K点发生断裂。
12
拉伸试样
万能材料试验机
拉伸试样的颈缩
13
低碳钢拉伸时的应力-应变曲线
21
k
②断面收缩率Ψ:(percentage reduction in area) 拉伸试样拉断后试样截面积的收缩率。 A0-原截面面积。 Ak-断口处断面面积。 断面收缩率不受试样尽寸的影响,可更可靠的反映材料 的塑性大小。 塑性的意义:δ和ψ的数值越大,表明材料的塑性越好。 塑性良好的金属可进行各种塑性加工。 δ < 2~5% 属脆性材料 δ ≈ 5~10% 属韧性材料 δ > 10% 属塑性材料 总结:δ和Ψ越大,塑性越好,越易变形还不会断裂。
6
7
1.2 材料的性能
一、材料的性能 1、工程材料的性能包括使用性能和工艺性能。
(1) 使用性能:是保证零件的正常工作应具备的性能, 主要包括材料的力学性能、物理性能、化学性能等。
工程材料使用性能的好坏,决定了它的使用范围和寿命。 对绝大多数工程材料来说,其力学性能是最重要的使用 性能。 (2) 工艺性能:是材料在被加工过程中适应各种冷热加 工的性能,包括铸造性能、锻压性能、焊接性能、热处 理性能、切削加工性能等。在设计零件和选择工艺方法 时,要考虑材料的工艺性能。
25
布氏硬度特点:
优点:测量数值稳定,准确,能较真实地反映材料的平 均硬度。缺点:压痕较大,操作慢,不适用批量生产的 成品件和薄形件。
布氏硬度的书写方式:
硬度符号HBS或HBW之前的数字表示硬度值,符号后面 的数字按顺序分别表示球体直径、载荷及载荷保持时间。
120HBS10/1000/30,表示直径为10mm的钢球,在 1000kgf载荷作用下保持30s,测得的布氏硬度值为120。 布氏硬度测量范围:用于原材料与半成品硬度测量, 可用于测量未经淬火的钢、铸铁、有色金属、硬度较低 的钢(如退火、正火、调质处理的钢)。
E
弹性模量表征材料产生弹性变形的难易程度,其在工程 上称为材料的刚度。主要取决于材料内部原子间作用力。
16
(3) 强度指标 金属材料的强度是用应力来衡量的,单位截面积上的内 力称为应力,用σ表示。常用的强度指标有屈服强度和抗 拉强度。 ①屈服点σs:(yield strength)
材料产生屈服时的最小应力,单位为Mpa。
s
Fs-材料发生屈服现象时的力。
F A
s
0
A0-材料的原始横截面面积。 对于无明显屈服现象的金属材料(如铸铁、高碳钢等) 测定σs很困难,通常规定产生0.2%塑性变形时的应力作 为条件屈服点,用σ0.2表示: σ0.2=F0.2/A0
17
屈服强度的测定
18
②抗拉强度σb (tensile strength) 表示材料抵抗外力而不致断裂的最大应力,单位为Mpa
Rr例如Rr0.2
Rm
屈服强度
抗拉强度 断后伸长率 断面收缩率
σ0.2
σb
A
A11.3 Z
δ5
δ10 ψ
23
3、硬度(hardness) 定义:金属材料抵抗局部变形,特别是塑性变形、压痕 的能力。
衡量:布氏硬度、洛氏硬度、维氏硬度等。
硬度测量的应用:硬度测量具有简便、快捷;不破坏 试样(非破坏性试验);硬度能综合反映材料的强度等其 他力学性能;硬度与耐磨性具有直接关系,硬度越高, 耐磨性越好。所以硬度测量应用极为广泛,常把硬度标 注于图纸上,作为零件检验、验收的主要依据。 测量方法:可采用压入法、加弹法、划痕法等测量方 法。生产中常用压入法(有布氏硬度法、洛氏硬度法、维 氏硬度法等)。
22
A0 Ak 100 % A0
金属材料强度与塑性的新、旧标准名词和符号对照表
新标准(GB/T228-2002) 性能名称 符号 旧标准(GB/T228-1987) 性能名称 符号
屈服强度
上屈服强度 下屈服强度
-
ReH ReL
屈服强度
- -
σs
- -
规定残余延伸强度
抗拉强度 断后伸长率 断面收缩率
Fb-最大的载荷。
b
F A
b
0
A0-材料的原始截面面积。 应用:汽缸的密封、钢绳吊重物、机车的牵引等。 强度意义: 一般机械零件或工具使用时,不允许发生塑性变形, 故屈服点σs是机械设计强度计算的主要依据。
抗拉强度代表材料抵抗拉断的能力,若应力大于抗拉 强度,则会发生断裂而造成事故。
σs/σb屈强比:越小,可靠性越高;越大,可靠性越低。
8
2、力学性能——选材的主要依据 是指在力的作用下所显示的与弹性和非弹性反应相关或 涉及应力—应变关系的性能,通俗地讲是指材料抵抗外 力引起的变形和破坏的能力。 以试验温度区分,可分为高温力学性能、常温力学性能 和低温力学性能。 材料在加工或使用过程中所受的外力称为载荷。根据载 荷作用性质不同,可分为静载荷、冲击载荷、疲劳载荷 三种。
①静载荷:大小不变或变化很慢的载荷。
②冲击载荷:突然增加或消失的载荷。 ③疲劳载荷:周期性的动载荷。
9
二、静载时材料的力学性能指标
静载是指对试样缓慢加载,最常用的静载试验有拉伸、 压缩、硬度、弯曲、扭转等,利用这些不同的试验,可 测得材料的各种力学性能指标。
常用的力学性能指标有:强度、塑性、硬度、冲击韧度、 疲劳强度等。
应力:材料在任一时刻所受的力除以横截面积之商。 用σ(sigma)表示,即:σ = F/A。
变形:金属在外力的作用下尺寸和形状的变化。 弹性变形:去除外力后,物体能完全恢复原状的变化。
塑性变形:当外力取消后,物体的变形不能完全恢复, 而产生的永久变形。
10
1、强度(strength) 材料的强度是指材料抵抗外加载荷而不致失效破坏的能 力。按照载荷作用方式的不同,强度可分为抗拉强度、 抗压强度、抗弯强度和抗剪强度。工程上常用的金属材 料的强度指标有屈服强度(σs)和抗拉强度(σb) 。 σ
24
Байду номын сангаас
①布氏硬度:HB(Brinell-hardness)(HBS、HBW)
试验:GB84。一定直径的淬火钢球(HBS)或硬质合金球 (HBW),规定的载荷及时间后。
F F 2F HBS ( HBW ) 0.102 0.102 0.102 S Dh D( D D 2 d 2 )
2
材料除了具有重要性和普遍性以外,还具有多样性。由 于材料多种多样,分类方法也就没有一个统一标准。常 见的工程材料按组成分类如下:
3
二、工程材料简介
1、金属材料 指金属元素或以金属元素为主构成的具有金属特性的材 料的统称。包括纯金属、合金、金属间化合物和特种金 属材料等。由于金属材料具有良好的力学性能、物理性 能、化学性能及工艺性能,能采用比较简便和经济的工 艺方法制成零件,因此金属材料是目前应用最广泛的材 料之一。 2、高分子材料 高分子材料是由相对分子质量较高的化合物构成的材料, 包括塑料、橡胶、纤维、涂料、胶粘剂和高分子基复合 材料等。因其原料丰富、成本低、加工方便等优点,发 展极其迅速,目前已在工业上得到广泛应用。
4
3、无机非金属材料
以某些元素的氧化物、碳化物、氮化物、卤素化合物、 硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组 成的材料,主要有陶瓷材料、水泥、玻璃和耐火材料等。 它具有不可燃烧性、高耐热性、高化学稳定性、不老化 性以及高硬度和良好的耐压性,且原料丰富,应用日趋 广泛。无机非金属材料是与有机高分子材料和金属材料 并列的三大材料之一。 4、复合材料 由两种或两种以上不同性质的材料,通过物理或化学的 方法,在宏观上组成具有新性能的材料。即由基体材料 (金属、树脂、陶瓷)和增强相(颗粒、纤维、晶须)复合 而成。其既有组成材料的特性,又有组成后的新特性。