实验室数据分析关于计算不确定度
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
σxt = tPσx, tP 与测量次数有关。
表 1-1 tp 与 n 的关系
tP
P 0.68 0.90 0.95 0.99
n 3 4 5 6 7 8 9 10 15 20 ∞
1.32 2.92 4.30 9.93
1.20 2.35 3.18 5.84
1.14 2.13 2.78 4.60
1.11 2.02 2.57 4.03
根据概率统计理论,在均匀分布函数条件下,一次测量值的 B 类标准差 UB=kPuB=kP△仪/C,C = 3 ,当 P=0.683 时,kP=1,即 UB= 仪 / 3 。在正态分布条件下,一次测量值的 B 类标准差 UB=kPuB=kP△仪/C,C =3, 当 P=0.683 时,kP=1,即 UB= 仪 /3。
3、有效数字运算规则
运算结果的有效数字应由误差计算结果来确定。但是,在作误差计算以前的测量值运算过程中,可由 有效数字运算规则进行初次的取舍,以简化运算过程。 有效数字的取舍的总原则是:运算结果只保留一位欠准数。
4、量具和仪器的有效数字
对于标刻度的量具和仪器,如果被测量量很明确,照明好,仪器的刻度清晰,要估读到最小刻度的几 分这一(如 1/10、1/5、1/2) 。这最小刻度的几分之一,即为测量值的估计误差,记作△估,测量值中能读 准的位数加上估读的这一位为有效数字。
x
x n
i2 n ( n 1)
1
,
平均值的标准偏差是 n 次测量中任一次测量值标准误差的 值 X 的可能性是 68.3%。
n
倍。它表示在 ( x x ) 范围内包含真
7 有限次测量的情况和 t 因子
测量次数趋于无穷只是一种理论情况,这时物理量的概率密度服从正态分布。当次数减少时,概率密 度曲线变得平坦,成为 t 分布,也叫学生分布。当测量次数趋于无限时,t 分布过渡到正态分布。 对有限次测量的结果,要使测量值落在平均值附近,具有与正态分布相同的置信概率,P =0.68,显 然要扩大置信区间,扩大置信区间的方法是把σx 乘以一个大于 1 的因子 tP。 在 t 分布下,标准偏差记为
6 测量结果的最佳值与随机误差的估算
(1)、测量结果的最佳值——算术平均值 设对某一物理量进行了几次等精度的重复测量,所得的一系列测量值分别为:x1、x2、…xi…xn。测量 结果的算术平均值为:
1 n x xi 。 n i 1
xi 是随机变量, x 也是一个随机变量,随着测量次数 n 的增减而变化。由随机误差的上述统计特性可
2
以证明,当测量次数 n 无限增多时,算术平均值 x 就是接近真值的最佳值。 (2)、随机误差的表示法 随机误差的大小常用标准误差、平均误差和极限误差表示。 (3) 、随机误差的估算 由于真值 X 无法知道,因而误差△i 也无法计算。但在有限次测量中,算术平均值 x 是真值的最佳估算 值,且当 n 时, x X 。所以,我们可以用各次测量值与算术平均值之差——残差或偏差来估算误 差。
8 仪器误差
仪器的最大允差△仪:仪器的最大允差就是指在正确使用仪器的条件下,测量所得结果的最大允许误 差。 一般仪器误差的概率密度函数遵从均匀分布。 均匀分布:在△仪范围内,各种误差(不同大小和符号)出现的概率相同,区间外出现的概率为 0。
9 仪器的标准误差σ仪
对于均匀分布的仪器最大允许误差,可计算得标准误差为:
数据测量不确定度分类
§1
1 测量的概念
测量:为确定被测对象的测量值,首先要选定一个单位,然后用这个单位与被测对象进行比较,求出 它对该单位的比值──倍数,这个数即为数值。表示一个被测对象的测量值时必须包含数值和单位两个部 分。 目前,在物理学上各物理量的单位,都采用中华人民共和国法定计量单位,它是以国际单位制(SI) 为基础的单位。它是以米(长度) 、千克(质量) 、秒(时间) 、安培(电流强度) 、开尔文(热力学温度) 、 摩尔(物质的量)和坎德拉(发光强度)作为基本单位,称为国家单位制的基本单位;其它量(如力、能 量、电压、磁感应强度等等)的单位均可由这些基本单位导出,称为国际单位制的导出单位。
仪
仪
3
4
。
§2
有效数字及其运算
测量结果的数字中,只保留一个欠准数,即数字的最后一位是欠准数,其余都是可靠数。测量结果中 所有可靠数字和一个欠准数统称为有效数字。它们正确而有效地表示了实验的结果。
1、直接测量的读数原则
直接测量读数应反映出有效数字,所以在直接测量读数时: (1)应估读到仪器最小刻度以下的一位欠准数; (2)有效数字位数的多少既与使用仪器的精度有关,又与被测量本身大小有关。
P =0.68 P =0.95 P =0.99
式中 x 为不含系统误差的测量结果,通常就是测量列的平均值。不确定度取 1 位或 2 位有效数字,测量值
5 误差的分类与来源
1
一般将误差分为系统误差、随机误差、粗大误差三类。 (1) 、系统误差 在相同的测量条件下多次测量同一物理量时,误差的绝对值和符号保持恒定,当测量条件改变时,它 也按某一确定的规律而变化,这样的误差称为系统误差。 系统误差的来源可归结为下几个方面:仪器误差、调整误差、环境误差、方法(或原理)误差、人员 误差。 (2) 、随机误差 在相同的测量条件下多次测量同一物理量时产生的时大时小、时正时负、以不可预知的方式变化的误 差称为随机误差。 随机误差产生的原因主要是由于各种不确定的因素所造成的测量值的无规则的涨落。 服从正态分布的随机误差具有下面的一些特性: 单峰性:绝对值小的误差出现的概率比绝对值大的误差出现的概率大。 对称性:绝对值相等的正负误差出现的概率相同。 有界性:有一定测量条件下,误差的绝对值不超过一定限度。 抵偿性:随机误差的算术平均值随着测定次数的增加而越来越趋向于零, (3) 、粗大误差 用当时的测量条件不能解释为合理的误差称为粗大误差。其产生的主要原因是实验者在操作、读数、 记录、计算等方面的粗心而造成的。含有粗大误差的测量值会明显歪曲客观事实,因而必须用适当的方法 将其剔除 (4) 、误差的转化 由于系统误差和随机误差有时难以分辨,并在一定的条件下可以相互转化,因此,现代误差理论已使 用不确定度来评价测量结果,在误差分类上也不再使用系统误差这个名词,而是根据其来源及是否能用统 计方法进行处理,分别归类于 A 类不确定度和 B 类不确定度。
U0.95=2U0.68=2 U A U B ,
若置信概率为 0.99, K=3
2
2
P =0.95
U0.99=3U0.68=3 u A u B ,
2
2
P =0.99
。
2
测量结果的表示
根据所用的置信概率,测量结果的最终表达式为
X= x ±U0.68 X= x ±U0.95 X= x ±U0.99
n
(x
UA
i 1
i
x) 2 x / n
n(n 1)
n 考虑到有限次测量服从 t 分布,A 类标准不确定度应表示为: 2
(x
i 1
i
x)
n(n 1) B 类标准不确定度
UA tp
t p x / n
测量中凡是不符合统计规律的不确定度统称为 B 类不确定度,记为 UB。 对一般有刻度的量具和仪表,估计误差在最小分格的 1/10~1/5,通常小于仪器的最大允差△仪。所以 通常以△仪表示一次测量结果的 B 类不确定度。 实际上,仪器的误差在[—△仪,△仪]范围内是按一定概率分布的。 一般而言,uB 与△仪的关系为
2、多次直接测量结果的有效数字取舍规则
一般只取 1~2 位数字,因此 x 的末位数应取在σx 所取的一位上,即 x 末位与σx 的一位对齐。 关于 x 和σx 尾数的取舍,常采用下列的法则: (1)遇尾数为 4 或 4 以下的数,则“舍” 。 (2)遇尾数为 6 或 6 以上的数,则“入” 。 (3)遇尾数为 5 的数,要看前一位。前一位为奇数,则“入” ,前一位为偶数则“舍” 。
测量值计算及其各项误差
2 直接测量、间接测量、等精度测量
测量分为直接测量和间接测量。直接测量是指把待测物理量直接与作为标准的物理量相比较,例如用 直尺测某长度,间接测量是指按一定的函数关系,由一个或多个直接测量量计算出另一个物理量。 同一个人,用同样的方法,使用同样的仪器并在相同的条件下对同一物理量进行的多次测量,叫做等 精度测量。以后说到对一个量的多次测量,如无另加说明,都是指等精度测量。
uB=△仪/C
C 称置信系数。 正态分布条件下,测量值的 B 类不确定度 UB kPuB kP
仪
C
,
kP 称置信因子,置信概率 P
与 kP 的关系见下表: 表
P kP
0.500 0.675
0.683 1
0.900 1.65
0.950 1.96
0.955 2
0.990 2.58
0.997 3
§3
1 不确定度的概念及计算
测量的不确定度
测量不确定度是与测量结果相关联的参数,表征测量值的分散性、准确性和可靠程度,或者说它是被 测量值在某一范围内的一个评定。测量不确定度分为 A 类标准不确定度和 B 类标准不确定度。 一个完整的测量结果不仅要给出该测量值的大小,同时还应给出它的不确定度,用不确定度来表征测
1.09 1.94 2.46 3.71
1.08 1.86 2.37 3.50
1.07 1.83 2.31 3.36
1.06 1.75 2.26 3.25
1.04 1.73 2.15 2.98
1.03 1.71 2.09 2.86
1 1.65 1.96 2.58
[例]
测量某一长度得到 9 个值:42.35,42.45,42.37,42.33,42.30,42.40,42.48,42.35,42.29
i xi x ,
υi 是可以计算的,当用υi 来计算标准误差σ时,称之为标准偏差。
a . 标准偏差使用符号σx 表示,其计算式为:
x
i2 n 1
。
标准偏差σx 所表示的意义是:任一次测量值 xi 的误差落在(±σx)范围内的概率为 68.3%。 b. 平均值的标准偏差使用符号 x 表示,其计算式为:
(均以 mm 为单位) 。求置信概率为 0.68、0.95、0.99 时,该测量列的平均值、标准偏差σx。 解:计算得到平均值 x =42.369mm 计算得到标准偏差σx = 0.021mm。n=9,查表得
P=0.68, t=1.07, 由式σxt = tPσx 得σxt =1.07×0.021mm=0.022mm P=0.95, t=2.31, σxt =2.31×0.021mm=0.048mm P=0.95, t=3.36, σxt =3.36×0.021mm=0.070mm
3 测量的正确度、精密度和精确度
正确度表示测量结果系统误差的大小,精密度表示测量结果随机性的大小,精确度则综合反映出测量 的系统误差与随机性误差的大小。
4 误差的概念
测量值 x 与真值 X 之差称为测量误差Δ,简称误差。 Δ=x-X。 误差的表示形式一般分为绝对误差与相对误差。 绝对误差使用符号±Δx。 x 表示测量结果 x 与直值 X 之间的差值以一定的可能性 (概率) 出现的范围, 即真值以一定的可能性(概率)出现在 x-Δx 至 x+Δx 区间内。 相对误差使用符号β。由于仅根据Biblioteka Baidu对误差的大小还难以评价一个测量结果的可靠程度,还需要看测 定值本身的大小,故用相对误差能更直观的表达测定值的误差大小。 绝对误差、相对误差和百分误差通常只取 1~2 位数字来表示。
5
量结果的可信赖程度,测量结果应写成下列标准形式: Χ=x±U(单位) ,Ur=±U/x×100% 式中 x 为测量值,对等精度多次测量而言,x 是多次测量的算术平均值 x :U 为不确定度,Ur 为相对 不确定度。 A 类标准不确定度 A 类标准不确定度是在一系列重复测量中,用统计方法计算的分量,它的表征值用平均值的标准偏差 表示,即
6
C 合成标准不确定度和展伸不确定度 假设测量误差在[-△B,△B]范围内服从正态分布,这时 B 类标准不确定度为 uB=△B /C,测量值的合成 标准不确定度为
2 2 U UA UB ,
P =0.68
将合成标准不确定度乘以一个与一定置信概率相联系的包含因子(或称覆盖因子)K,得到增大置信 概率的不确定度,叫做扩展不确定度。 若置信概率为 0.95, K=2
σxt = tPσx, tP 与测量次数有关。
表 1-1 tp 与 n 的关系
tP
P 0.68 0.90 0.95 0.99
n 3 4 5 6 7 8 9 10 15 20 ∞
1.32 2.92 4.30 9.93
1.20 2.35 3.18 5.84
1.14 2.13 2.78 4.60
1.11 2.02 2.57 4.03
根据概率统计理论,在均匀分布函数条件下,一次测量值的 B 类标准差 UB=kPuB=kP△仪/C,C = 3 ,当 P=0.683 时,kP=1,即 UB= 仪 / 3 。在正态分布条件下,一次测量值的 B 类标准差 UB=kPuB=kP△仪/C,C =3, 当 P=0.683 时,kP=1,即 UB= 仪 /3。
3、有效数字运算规则
运算结果的有效数字应由误差计算结果来确定。但是,在作误差计算以前的测量值运算过程中,可由 有效数字运算规则进行初次的取舍,以简化运算过程。 有效数字的取舍的总原则是:运算结果只保留一位欠准数。
4、量具和仪器的有效数字
对于标刻度的量具和仪器,如果被测量量很明确,照明好,仪器的刻度清晰,要估读到最小刻度的几 分这一(如 1/10、1/5、1/2) 。这最小刻度的几分之一,即为测量值的估计误差,记作△估,测量值中能读 准的位数加上估读的这一位为有效数字。
x
x n
i2 n ( n 1)
1
,
平均值的标准偏差是 n 次测量中任一次测量值标准误差的 值 X 的可能性是 68.3%。
n
倍。它表示在 ( x x ) 范围内包含真
7 有限次测量的情况和 t 因子
测量次数趋于无穷只是一种理论情况,这时物理量的概率密度服从正态分布。当次数减少时,概率密 度曲线变得平坦,成为 t 分布,也叫学生分布。当测量次数趋于无限时,t 分布过渡到正态分布。 对有限次测量的结果,要使测量值落在平均值附近,具有与正态分布相同的置信概率,P =0.68,显 然要扩大置信区间,扩大置信区间的方法是把σx 乘以一个大于 1 的因子 tP。 在 t 分布下,标准偏差记为
6 测量结果的最佳值与随机误差的估算
(1)、测量结果的最佳值——算术平均值 设对某一物理量进行了几次等精度的重复测量,所得的一系列测量值分别为:x1、x2、…xi…xn。测量 结果的算术平均值为:
1 n x xi 。 n i 1
xi 是随机变量, x 也是一个随机变量,随着测量次数 n 的增减而变化。由随机误差的上述统计特性可
2
以证明,当测量次数 n 无限增多时,算术平均值 x 就是接近真值的最佳值。 (2)、随机误差的表示法 随机误差的大小常用标准误差、平均误差和极限误差表示。 (3) 、随机误差的估算 由于真值 X 无法知道,因而误差△i 也无法计算。但在有限次测量中,算术平均值 x 是真值的最佳估算 值,且当 n 时, x X 。所以,我们可以用各次测量值与算术平均值之差——残差或偏差来估算误 差。
8 仪器误差
仪器的最大允差△仪:仪器的最大允差就是指在正确使用仪器的条件下,测量所得结果的最大允许误 差。 一般仪器误差的概率密度函数遵从均匀分布。 均匀分布:在△仪范围内,各种误差(不同大小和符号)出现的概率相同,区间外出现的概率为 0。
9 仪器的标准误差σ仪
对于均匀分布的仪器最大允许误差,可计算得标准误差为:
数据测量不确定度分类
§1
1 测量的概念
测量:为确定被测对象的测量值,首先要选定一个单位,然后用这个单位与被测对象进行比较,求出 它对该单位的比值──倍数,这个数即为数值。表示一个被测对象的测量值时必须包含数值和单位两个部 分。 目前,在物理学上各物理量的单位,都采用中华人民共和国法定计量单位,它是以国际单位制(SI) 为基础的单位。它是以米(长度) 、千克(质量) 、秒(时间) 、安培(电流强度) 、开尔文(热力学温度) 、 摩尔(物质的量)和坎德拉(发光强度)作为基本单位,称为国家单位制的基本单位;其它量(如力、能 量、电压、磁感应强度等等)的单位均可由这些基本单位导出,称为国际单位制的导出单位。
仪
仪
3
4
。
§2
有效数字及其运算
测量结果的数字中,只保留一个欠准数,即数字的最后一位是欠准数,其余都是可靠数。测量结果中 所有可靠数字和一个欠准数统称为有效数字。它们正确而有效地表示了实验的结果。
1、直接测量的读数原则
直接测量读数应反映出有效数字,所以在直接测量读数时: (1)应估读到仪器最小刻度以下的一位欠准数; (2)有效数字位数的多少既与使用仪器的精度有关,又与被测量本身大小有关。
P =0.68 P =0.95 P =0.99
式中 x 为不含系统误差的测量结果,通常就是测量列的平均值。不确定度取 1 位或 2 位有效数字,测量值
5 误差的分类与来源
1
一般将误差分为系统误差、随机误差、粗大误差三类。 (1) 、系统误差 在相同的测量条件下多次测量同一物理量时,误差的绝对值和符号保持恒定,当测量条件改变时,它 也按某一确定的规律而变化,这样的误差称为系统误差。 系统误差的来源可归结为下几个方面:仪器误差、调整误差、环境误差、方法(或原理)误差、人员 误差。 (2) 、随机误差 在相同的测量条件下多次测量同一物理量时产生的时大时小、时正时负、以不可预知的方式变化的误 差称为随机误差。 随机误差产生的原因主要是由于各种不确定的因素所造成的测量值的无规则的涨落。 服从正态分布的随机误差具有下面的一些特性: 单峰性:绝对值小的误差出现的概率比绝对值大的误差出现的概率大。 对称性:绝对值相等的正负误差出现的概率相同。 有界性:有一定测量条件下,误差的绝对值不超过一定限度。 抵偿性:随机误差的算术平均值随着测定次数的增加而越来越趋向于零, (3) 、粗大误差 用当时的测量条件不能解释为合理的误差称为粗大误差。其产生的主要原因是实验者在操作、读数、 记录、计算等方面的粗心而造成的。含有粗大误差的测量值会明显歪曲客观事实,因而必须用适当的方法 将其剔除 (4) 、误差的转化 由于系统误差和随机误差有时难以分辨,并在一定的条件下可以相互转化,因此,现代误差理论已使 用不确定度来评价测量结果,在误差分类上也不再使用系统误差这个名词,而是根据其来源及是否能用统 计方法进行处理,分别归类于 A 类不确定度和 B 类不确定度。
U0.95=2U0.68=2 U A U B ,
若置信概率为 0.99, K=3
2
2
P =0.95
U0.99=3U0.68=3 u A u B ,
2
2
P =0.99
。
2
测量结果的表示
根据所用的置信概率,测量结果的最终表达式为
X= x ±U0.68 X= x ±U0.95 X= x ±U0.99
n
(x
UA
i 1
i
x) 2 x / n
n(n 1)
n 考虑到有限次测量服从 t 分布,A 类标准不确定度应表示为: 2
(x
i 1
i
x)
n(n 1) B 类标准不确定度
UA tp
t p x / n
测量中凡是不符合统计规律的不确定度统称为 B 类不确定度,记为 UB。 对一般有刻度的量具和仪表,估计误差在最小分格的 1/10~1/5,通常小于仪器的最大允差△仪。所以 通常以△仪表示一次测量结果的 B 类不确定度。 实际上,仪器的误差在[—△仪,△仪]范围内是按一定概率分布的。 一般而言,uB 与△仪的关系为
2、多次直接测量结果的有效数字取舍规则
一般只取 1~2 位数字,因此 x 的末位数应取在σx 所取的一位上,即 x 末位与σx 的一位对齐。 关于 x 和σx 尾数的取舍,常采用下列的法则: (1)遇尾数为 4 或 4 以下的数,则“舍” 。 (2)遇尾数为 6 或 6 以上的数,则“入” 。 (3)遇尾数为 5 的数,要看前一位。前一位为奇数,则“入” ,前一位为偶数则“舍” 。
测量值计算及其各项误差
2 直接测量、间接测量、等精度测量
测量分为直接测量和间接测量。直接测量是指把待测物理量直接与作为标准的物理量相比较,例如用 直尺测某长度,间接测量是指按一定的函数关系,由一个或多个直接测量量计算出另一个物理量。 同一个人,用同样的方法,使用同样的仪器并在相同的条件下对同一物理量进行的多次测量,叫做等 精度测量。以后说到对一个量的多次测量,如无另加说明,都是指等精度测量。
uB=△仪/C
C 称置信系数。 正态分布条件下,测量值的 B 类不确定度 UB kPuB kP
仪
C
,
kP 称置信因子,置信概率 P
与 kP 的关系见下表: 表
P kP
0.500 0.675
0.683 1
0.900 1.65
0.950 1.96
0.955 2
0.990 2.58
0.997 3
§3
1 不确定度的概念及计算
测量的不确定度
测量不确定度是与测量结果相关联的参数,表征测量值的分散性、准确性和可靠程度,或者说它是被 测量值在某一范围内的一个评定。测量不确定度分为 A 类标准不确定度和 B 类标准不确定度。 一个完整的测量结果不仅要给出该测量值的大小,同时还应给出它的不确定度,用不确定度来表征测
1.09 1.94 2.46 3.71
1.08 1.86 2.37 3.50
1.07 1.83 2.31 3.36
1.06 1.75 2.26 3.25
1.04 1.73 2.15 2.98
1.03 1.71 2.09 2.86
1 1.65 1.96 2.58
[例]
测量某一长度得到 9 个值:42.35,42.45,42.37,42.33,42.30,42.40,42.48,42.35,42.29
i xi x ,
υi 是可以计算的,当用υi 来计算标准误差σ时,称之为标准偏差。
a . 标准偏差使用符号σx 表示,其计算式为:
x
i2 n 1
。
标准偏差σx 所表示的意义是:任一次测量值 xi 的误差落在(±σx)范围内的概率为 68.3%。 b. 平均值的标准偏差使用符号 x 表示,其计算式为:
(均以 mm 为单位) 。求置信概率为 0.68、0.95、0.99 时,该测量列的平均值、标准偏差σx。 解:计算得到平均值 x =42.369mm 计算得到标准偏差σx = 0.021mm。n=9,查表得
P=0.68, t=1.07, 由式σxt = tPσx 得σxt =1.07×0.021mm=0.022mm P=0.95, t=2.31, σxt =2.31×0.021mm=0.048mm P=0.95, t=3.36, σxt =3.36×0.021mm=0.070mm
3 测量的正确度、精密度和精确度
正确度表示测量结果系统误差的大小,精密度表示测量结果随机性的大小,精确度则综合反映出测量 的系统误差与随机性误差的大小。
4 误差的概念
测量值 x 与真值 X 之差称为测量误差Δ,简称误差。 Δ=x-X。 误差的表示形式一般分为绝对误差与相对误差。 绝对误差使用符号±Δx。 x 表示测量结果 x 与直值 X 之间的差值以一定的可能性 (概率) 出现的范围, 即真值以一定的可能性(概率)出现在 x-Δx 至 x+Δx 区间内。 相对误差使用符号β。由于仅根据Biblioteka Baidu对误差的大小还难以评价一个测量结果的可靠程度,还需要看测 定值本身的大小,故用相对误差能更直观的表达测定值的误差大小。 绝对误差、相对误差和百分误差通常只取 1~2 位数字来表示。
5
量结果的可信赖程度,测量结果应写成下列标准形式: Χ=x±U(单位) ,Ur=±U/x×100% 式中 x 为测量值,对等精度多次测量而言,x 是多次测量的算术平均值 x :U 为不确定度,Ur 为相对 不确定度。 A 类标准不确定度 A 类标准不确定度是在一系列重复测量中,用统计方法计算的分量,它的表征值用平均值的标准偏差 表示,即
6
C 合成标准不确定度和展伸不确定度 假设测量误差在[-△B,△B]范围内服从正态分布,这时 B 类标准不确定度为 uB=△B /C,测量值的合成 标准不确定度为
2 2 U UA UB ,
P =0.68
将合成标准不确定度乘以一个与一定置信概率相联系的包含因子(或称覆盖因子)K,得到增大置信 概率的不确定度,叫做扩展不确定度。 若置信概率为 0.95, K=2