统计与概率的综合问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计与概率的综合问题
1.某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:
(1)请完成样本数据的茎叶图(在答题卷中);如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论);
(2)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率;
(3)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在区间[]11,15(单位:秒)之内,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.
2. 已知某中学联盟举行了一次“盟校质量调研考试”活动.为了解本次考试学生的某学科成绩情况,从中 抽取部分学生的分数(满分为100分,得分取正整数,抽取学生的分数均在[]50,100之内)作为样本(样 本容量为n )进行统计.按照[]50,60,[]60,70,[]70,80,[]80,90,[]90,100的分组作出频率分布直 方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[]50,60,[]90,100的数据).
(Ⅰ)求样本容量n 和频率分布直方图中的x 、y 的值;
(Ⅱ)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“省级学科基础
知识竞赛”,求所抽取的2名学生中恰有一人得分在[]90,100内的概率.
3.为了解某天甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素,x y 的含量(单位:毫克).当产品中的微量元素,x y 满足175x ≥,且75y ≥ 时,该产品为优等品.已知甲厂该天生产的产品共有98件,下表是乙厂的5件产品的测量数据:
(1)求乙厂该天生产的产品数量;
(2)用上述样本数据估计乙厂该天生产的优等品的数量;
(3)从乙厂抽出取上述5件产品中,随机抽取2件,求抽取的2件产品中优等品至少有1件的概率.
4.某种商品在50个不同地区的零售价格全部介于13元与18元之间,将各地价格按如下方式分成五组:第一组[13,14);第二组[14,15),……,第五组[17,18],下图是按上述分组方法得到的频率分布直方图.
(1)求价格在[16,17)内的地区数,并估计该商品价格的中位数(精确到0.1);
(2)设,m n 表示某两个地区的零售价格,且已知,[13,14)
[17,18]m n ∈,求事件“1m n ->”的概
率.
6.在某次考试中,全部考生参加了“科目一”和“科目二”两个科目的考试,每科成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩数据统计如图所示,其中“科目一”成绩为D的考生恰有4人.
(1)分别求该考场的考生中“科目一”和“科目二”成绩为A的考生人数;
(2)已知在该考场的考生中,恰有2人的两科成绩均为A,在至少一科成绩为A的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为A的概率.
7.某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(1)请先求出频率分布表中①、②位置相应的数据,再画出频率分布直方图;
(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?
8.某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[12,13),第二组[13,14),…,第五组[16,17],如图是根据上述分组得到的频率分布直方图.
(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级800名学生中,成绩属于第三组的人数;
(3)若样本中第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取1名学生组成一个实验组,求所抽取的2名同学中恰好为一名男生和一名女生的概率.
9.春节期间,某微信群主发60个随机红包(即每个人抢到的红包中的钱数是随机的,且每人只能抢一个),红包被一抢而空,后据统计,60个红包中钱数(单位:元)分配如下频率分布直方图所示(其分组区间为[0,1),[1,2),[2,3),[3,4),[4,5)).
(1)试估计该群中某成员抢到钱数不小于3元的概率;
(2)若该群中成员甲、乙两人都抢到4.5元红包,现系统将从抢到4元及以上红包的人中随机抽取2人给群中每个人拜年,求甲、乙两人至少有一人被选中的概率.
试卷答案
1.(1)茎叶图见解析,乙较稳定;(2)“至少有一个”问题可从反面入手,没有一个比1
2.8秒差,利用相互独立事件同时发生的概率可求得;(3)甲同学的成绩为x ,乙同学的成绩为y ,按题意
1115,1115x y ≤≤≤≤,而要求的是0.8x y -<,作出图形,由几何概型概率公式计算可得.
(3)设甲同学的成绩为x ,乙同学的成绩为y ,则0.8,0.80.8x y x y x -<-+<<+,如图阴影部分面积即为44 3.2 3.2 5.76⨯-⨯=……………………………………………………10分 所以,甲、乙成绩之差的绝对值小于0.8秒的概率为 5.760.3616
p ==…………12分 考点:茎叶图,相互独立事件同时发生的概率,几何概型.
2.(Ⅰ)50,0.004,0.030;(Ⅱ)10P 21
=
.