高考数学一轮复习专题:数列的概念与简单表示法(教案及同步练习)

合集下载

高考数学一轮复习 第5章 数列 第1节 数列的概念与简单表示法教学案 理(含解析)新人教A版-新人教

高考数学一轮复习 第5章 数列 第1节 数列的概念与简单表示法教学案 理(含解析)新人教A版-新人教

第一节 数列的概念与简单表示法[考纲传真]1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的有关概念概念 含义数列 按照一定顺序排列的一列数 数列的项 数列中的每一个数 数列的通项 数列{a n }的第n 项a n通项公式数列{a n }的第n 项a n 与n 之间的关系能用公式a n =f (n )表示,这个公式叫做数列的通项公式前n 项和数列{a n }中,S n =a 1+a 2+…+a n 叫做数列的前n 项和 列表法 列表格表示n 与a n 的对应关系 图象法 把点(n ,a n )画在平面直角坐标系中 公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a 1和a n +1=f (a n )或a 1,a 2和a n +1=f (a n ,a n -1)等表示数列的方法n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类分类标准 类型 满足条件 项数有穷数列 项数有限无穷数列 项数无限项与项间的大小关系递增数列a n +1>a n 其中n ∈N *递减数列a n +1<a n常数列a n +1=a n[常用结论]求数列的最大(小)项,一般可以利用数列的单调性,即用⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.(n ≥2,n ∈N *)或⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *)求解,也可以转化为函数的最值问题或利用数形结合思想求解.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) [答案](1)× (2)× (3)× (4)√2.已知数列11×2,12×3,13×4,…,1n n +1,…,下列各数中是此数列中的项的是( )A.135B.142C.148D.154 B [该数列的通项a n =1nn +1,结合选项可知B 正确.] 3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64 A [a 8=S 8-S 7=82-72=15.故选A.] 4.(教材改编)在数列{a n }中,a 1=1,a n =1+-1na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 D [∵a 1=1,∴a 2=1+-12a 1=1+1=2;a 3=1-1a 2=1-12=12;a 4=1+1a 3=1+2=3; a 5=1-1a 4=1-13=23.]5.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.5n -4 [{a n }是以1为首项,5为公差的等差数列,∴a n =1+(n -1)×5=5n -4.]由a n 与S n 的关系求通项公式1.已知数列{a n }的前n 项和为S n =14n 2+23n +3,则数列{a n }的通项公式a n =________.⎩⎪⎨⎪⎧4712,n =112n +512,n ≥2[当n =1时,a 1=S 1=14+23+3=4712.又当n ≥2时,a n =S n -S n -1 =14n 2+23n +3-⎣⎢⎡⎦⎥⎤14n -12+23n -1+3 =12n +512. ∴a n=⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2.]2.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.(-2)n -1[由S n =23a n +13得当n ≥2时,S n -1=23a n -1+13,∴a n =S n -S n -1=⎝ ⎛⎭⎪⎫23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23a n -23a n -1. 即a n =-2a n -1,(n ≥2).又a 1=S 1=23a 1+13,∴a 1=1.∴数列{a n }是以首项为1,公比为-2的等比数列, ∴a n =(-2)n -1.]3.已知数列{a n }满足a 1+2a 2+3a 3+4a 4+…+na n =3n 2-2n +1,求a n . [解] 设a 1+2a 2+3a 3+4a 4+…+na n =T n , 当n =1时,a 1=T 1=3×12-2×1+1=2, 当n ≥2时,na n =T n -T n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5, 因此a n =6n -5n,显然当n =1时,不满足上式. 故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5n ,n ≥2.][规律方法] 已知S n 求a n 的三个步骤 1先利用a 1=S 1求出a 1.2用n -1替换S n 中的n 得出S n -1,利用a n =S n -S n -1n ≥2便可求出当n ≥2时a n 的表达式.3看a 1是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应写成分段的形式.易错警示:利用a n =S n -S n -1求通项时,应注意n ≥2这一前提条件,易忽视验证n =1致误.由递推关系式求数列的通项公式【例1】 分别求出满足下列条件的数列的通项公式. (1)a 1=2,a n +1=a n +3n +2(n ∈N *); (2)a 1=1,a n =nn -1a n -1(n ≥2,n ∈N *);(3)a 1=1,a n +1=3a n +2(n ∈N *).[解](1)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.(2)当n ≥2,n ∈N *时,a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×21×32×…×n -2n -3×n -1n -2×nn -1=n ,当n =1时,也符合上式, ∴该数列的通项公式为a n =n .(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,因此a n =2·3n -1-1.[规律方法] 由数列的递推关系求通项公式的常用方法 1已知a 1,且a n -a n -1=f n ,可用“累加法”求a n .2已知a 1a 1≠0,且a na n -1=f n ,可用“累乘法”求a n . 3已知a 1,且a n +1=qa n +b ,则a n +1+k =q a n +k其中k 可由待定系数法确定,可转化为{a n +k }为等比数列.易错警示:本题1,2中常见的错误是忽视验证a 1是否适合所求式.(1)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,则a n 等于( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n(2)若a 1=1,a n +1=3a n +3n +1,则a n =________.(1)A (2)n ·3n -2·3n -1[(1)∵a n +1-a n =ln ⎝⎛⎭⎪⎫1+1n =ln ⎝ ⎛⎭⎪⎫n +1n ,∴a 2-a 1=ln ⎝ ⎛⎭⎪⎫21,a 3-a 2=ln ⎝ ⎛⎭⎪⎫32,…,a n -a n -1=ln ⎝ ⎛⎭⎪⎫n n -1,n ≥2,∴a 2-a 1+a 3-a 2+…+a n -a n -1=ln ⎝ ⎛⎭⎪⎫21×32×…×n n -1=ln n ,∴a n -a 1=ln n ⇒a n =2+ln n (n ≥2).将n =1代入检验有a 1=2+ln 1=2与已知符合,故a n =2+ln n . (2)因为a n +1=3a n +3n +1,所以a n +13n +1=a n3n +1,所以a n +13n +1-a n 3n =1,又a 13=13,所以数列⎩⎨⎧⎭⎬⎫a n 3n 是以13为首项,1为公差的等差数列.所以a n 3n =13+(n -1)=n -23,所以a n =n ·3n-2·3n -1.]数列的性质【例2】 (1)已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 018=( )A .-1 B.12 C .1D .2(2)已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是递增数列,则实数λ的取值X 围是( ) A .(2,+∞) B .(3,+∞) C .(-∞,2)D .(-∞,3)(3)已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项.(1)D (2)C (3)5 [(1)由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2, a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. (2)由a n +1=a na n +2,知1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以数列⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,所以1a n+1=2n ,所以b n +1=(n -λ)·2n,因为数列{b n }是递增数列,所以b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n +1-λ)2n -1>0对一切正整数n 恒成立,所以λ<n +1,因为n ∈N *,所以λ<2,故选C.(3)因为a n =n +13n -16,所以数列{a n }的最小项必为a n <0,即n +13n -16<0,3n -16<0,从而n <163.又n ∈N *,所以当n =5时,a n 的值最小.] [规律方法] 1.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 2.判断数列单调性的二种方法(1)作差比较法:比较a n +1-a n 与0的大小. (2)作商比较法:比较a n +1a n与1的大小,注意a n 的符号. 3.求数列最大项或最小项的方法(1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.(1)已知a n =n -1n +1,那么数列{a n }是( ) A .递减数列 B .递增数列 C .常数列D .摆动数列(2)数列{a n }的通项公式是a n =(n +1)·⎝ ⎛⎭⎪⎫1011n,则此数列的最大项是第________项.(3)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值X 围是________. (1)B (2)9或10 (3)(-3,+∞) [(1)a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列.(2)∵a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n =⎝ ⎛⎭⎪⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,且最大项为第9,10项.(3)由a n +1>a n 知该数列是一个递增数列,又∵通项公式a n =n 2+kn +4, ∴(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,∴k >-3.]1.(2018·全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. -63 [因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1,当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1,所以S 6=-1×1-261-2=-63.]2.(2015·全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. -1n[∵a n +1=S n +1-S n ,a n +1=S n S n +1,∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n.]3.(2014·全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.12 [∵a n +1=11-a n, a 8=2,∴a 7=12,a 6=-1,a 5=2,∴{a n }是周期为3的数列, ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.]。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案一、教学目标1. 了解数列的概念,理解数列的表示方法,如通项公式、项的表示等。

2. 学会用图像和数学公式表示数列。

3. 能够运用数列的性质解决实际问题。

二、教学内容1. 数列的概念:数列是按照一定的顺序排列的一列数。

2. 数列的表示方法:a) 通项公式:数列中每一项的数学表达式。

b) 项的表示:用序号表示数列中的每一项。

3. 数列的图像表示:数列的图像通常为一条直线或曲线。

4. 数列的性质:数列的项数、公差、公比等。

三、教学重点与难点1. 教学重点:数列的概念、数列的表示方法、数列的图像表示。

2. 教学难点:数列的性质及其应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳数列的性质。

2. 利用多媒体展示数列的图像,增强学生的直观感受。

3. 开展小组讨论,培养学生合作学习的能力。

五、教学步骤1. 引入数列的概念,引导学生理解数列是按照一定顺序排列的一列数。

2. 讲解数列的表示方法,如通项公式、项的表示,让学生学会用数学公式表示数列。

3. 利用多媒体展示数列的图像,让学生了解数列的图像表示方法。

4. 分析数列的性质,如项数、公差、公比等,并引导学生运用数列的性质解决实际问题。

5. 进行课堂练习,巩固所学内容。

教案设计仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学活动1. 课堂讲解:数列的概念与表示方法。

2. 实例分析:分析生活中常见的数列,如等差数列、等比数列。

3. 练习:求给定数列的前n项和。

七、数列的图像表示1. 讲解:数列图像的绘制方法。

2. 练习:绘制给定数列的图像。

八、数列的性质与应用1. 讲解:数列的性质及其应用。

2. 实例分析:运用数列的性质解决实际问题。

3. 练习:运用数列的性质解决给定问题。

九、课堂小结1. 回顾本节课所学内容,总结数列的概念、表示方法、图像表示和性质。

2. 强调数列在实际问题中的应用。

十、课后作业1. 习题:求给定数列的前n项和。

2020年高考数学一轮复习教案:第5章 第1节 数列的概念与简单表示法(含解析)

2020年高考数学一轮复习教案:第5章 第1节 数列的概念与简单表示法(含解析)

第5章数列第一节数列的概念与简单表示法[考纲传真] 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限单调性递增数列a n+1>a na n+1<a n其中n∈N*递减数列常数列a n+1=a n摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列数列有三种表示法,它们分别是列表法、图象法和通项公式法.4.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.数列的递推公式如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.6.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n , 则a n =⎩⎨⎧S 1(n =1),S n -S n -1(n ≥2).[常用结论]1.数列{a n }是递增数列⇔a n +1>a n 恒成立. 2.数列{a n }是递减数列⇔a n +1<a n 恒成立.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)所有数列的第n 项都能使用公式表达. ( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(3)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) (4)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )[答案] (1)× (2)√ (3)√ (4)√2.(教材改编)数列-1,12,-13,14,-15,…的一个通项公式为( ) A .a n =±1n B .a n =(-1)n ·1n C .a n =(-1)n +11nD .a n =1nB [由a 1=-1,代入检验可知选B.]3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64 A [当n =8时,a 8=S 8-S 7=82-72=15.]4.把3,6,10,15,21,…这些数叫做三角形数,这是因为以这些数目的点可以排成一个正三角形(如图所示).则第6个三角形数是( )A .27B .28C .29D .30 B [由题图可知,第6个三角形数是1+2+3+4+5+6+7=28.] 5.(教材改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5=( )A.32B.53C.85D.23D [a 2=1+1a 1=2,a 3=1+-1a 2=1-12=12,a 4=1+1a 3=1+2=3,a 5=1+-1a4=1-13=23.]由数列的前几项归纳数列的通项公式1.数列0,23,45,67,…的一个通项公式为( ) A .a n =n -1n +1(n ∈N *) B .a n =n -12n +1(n ∈N *) C .a n =2(n -1)2n -1(n ∈N *)D .a n =2n2n +1(n ∈N *) C [注意到分子0,2,4,6都是偶数,对照选项排除即可.]2.数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =__________.2n +1n 2+1 [数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.]3.写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,-34,78,-1516,3132,…; (3)3,33,333,3 333,…; (4)-1,1,-2,2,-3,3….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)数列中各项的符号可通过(-1)n +1表示.每一项绝对值的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =(-1)n +12n -12n .(3)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).(4)数列的奇数项为-1,-2,-3,…可用-n +12表示, 数列的偶数项为1,2,3,…可用n2表示.因此a n =⎩⎪⎨⎪⎧-n +12(n 为奇数),n 2(n 为偶数).殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理.由a n 与S n 的关系求通项公式【例1】 n n {a n }的通项公式a n =________.(2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________. (1)⎩⎨⎧2,n =1,6n -5,n ≥2 (2)(-2)n -1 [(1)当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13, 两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2.又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.][规律方法] 1.已知S n 求a n 的三个步骤,(1)先利用a 1=S 1求出a 1; (2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)注意检验n =1时的表达式是否可以与n ≥2的表达式合并.2.S n 与a n 关系问题的求解思路,根据所求结果的不同要求,将问题向不同的两个方向转化.(1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解; (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.(1)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________.(2)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.(1)⎩⎨⎧4,n =1,2·3n -1,n ≥2 (2)-2n -1 [(1)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2.(2)依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,a n =-2n -1.]由数列的递推关系求通项公式►考法1 形如a n +1=a n +f (n ),求a n【例2】 在数列{a n }中,a 1=2,a n +1=a n +3n +2(n ∈N *),求数列{a n }的通项公式.[解] (1)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =n (3n +1)2(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式, ∴a n =32n 2+n 2.►考法2 形如a n +1=a n f (n ),求a n【例3】 已知数列{a n }满足a 1=1,a n +1=2n a n ,求数列{a n }的通项公式. [解] ∵a n +1=2na n ,∴a n +1a n =2n ,∴a na n -1=2n -1(n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1) =2n (n -1)2.又a 1=1适合上式,故a n =.►考法3 形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .【例4】 已知数列{a n }满足a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. [解] ∵a n +1=3a n +2, ∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n+1}是首项为2,公比为3的等比数列,∴a n+1=2·3n-1,因此a n=2·3n-1-1.[规律方法]由递推关系式求通项公式的常用方法(1)已知a1且a n-a n-1=f(n),可用“累加法”求a n,即a n=(a n-a n-1)+(a n -1-a n-2)+…+(a3-a2)+(a2-a1)+a1.(2)已知a1且=f(n),可用“累乘法”求a n,即a n= (1)(3)已知a1且a n+1=qa n+b,则a n+1+k=q(a n+k)(其中k可由待定系数法确定),可转化为等比数列{a n+k}.(4)形如a n+1=(A,B,C为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.根据下列条件,求数列{a n}的通项公式.(1)a1=1,a n+1=a n+2n;(2)a1=12,a n=n-1n+1a n-1(n≥2);(3)a1=1,a n+1=2a n+3;(4)a1=1,a n+1=2a na n+2.[解](1)由题意知a n+1-a n=2n,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=1-2n1-2=2n-1.(2)因为a n=n-1n+1a n-1(n≥2),所以当n ≥2时,a na n -1=n -1n +1,所以a na n -1=n -1n +1,a n -1a n -2=n -2n ,…,a 3a 2=24,a 2a 1=13,以上n -1个式子相乘得a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n -1n +1·n -2n ·…·24·13, 即a n a 1=1n +1×1n ×2×1,所以a n =1n (n +1).当n =1时,a 1=11×2=12,与已知a 1=12相符,所以数列{a n }的通项公式为a n =1n (n +1).(3)由a n +1=2a n +3得a n +1+3=2(a n +3). 又a 1=1,∴a 1+3=4.故数列{a n +3}是首项为4,公比为2的等比数列, ∴a n +3=4·2n -1=2n +1,∴a n =2n +1-3. (4)因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n =12. 又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12.所以a n =2n +1(n ∈N *).1.(2014·全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.12 [∵a n +1=11-a n, ∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1 =1-111-a n -2=1-(1-a n -2)=a n -2,∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.]2.(2015·全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.-1n [∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n .]3.(2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.[解] (1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n=12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.。

高考数学大一轮复习 第六章 数列 6.1 数列的概念与简单表示法教案 文(含解析)

高考数学大一轮复习 第六章 数列 6.1 数列的概念与简单表示法教案 文(含解析)

6.1 数列的概念与简单表示法按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项.2.数列的分类3.如果数列{a n}的第n项a n与n之间的关系可以用一个函数式a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.4.(选用)数列的递推公式如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.5.a n与S n的关系若数列{a n}的前n项和为S n,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.概念方法微思考1.数列的项与项数是一个概念吗?提示 不是,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列的通项公式a n =3n +5与函数y =3x +5有何区别与联系? 提示 数列的通项公式a n =3n +5是特殊的函数,其定义域为N +,而函数y =3x +5的定义域是R ,a n =3n +5的图象是离散的点,且排列在y =3x +5的图象上. 题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)所有数列的第n 项都能使用公式表达.( × )(3)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ )(4)1,1,1,1,…不能构成一个数列.( × )(5)任何一个数列不是递增数列,就是递减数列.( × ) (6)如果数列{a n }的前n 项和为S n ,则对∀n ∈N +,都有a n =S n -S n-1.( × )题组二 教材改编2.在数列{a n }中,已知a 1=1,a n +1=4a n +1,则a 3=.答案 21解析 由题意知,a 2=4a 1+1=5,a 3=4a 2+1=21.3.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =. 答案 5n -4 题组三 易错自纠4.已知a n =n 2+λn ,且对于任意的n ∈N +,数列{a n }是递增数列,则实数λ的取值范围是. 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N +,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.5.数列{a n }中,a n =-n 2+11n (n ∈N +),则此数列最大项的值是. 答案 30 解析 a n =-n2+11n =-⎝⎛⎭⎪⎫n -1122+1214,∵n ∈N +,∴当n =5或n =6时,a n 取最大值30. 6.已知数列{a n }的前n 项和S n =n 2+1,则a n =. 答案⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N +解析 当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1, a 1=2不满足上式.故a n =⎩⎪⎨⎪⎧2,n =1,a 1=2不满足上式.2n -1,n ≥2,n ∈N +.题型一 由数列的前几项求数列的通项公式例1根据下面各数列前几项的值,写出数列的一个通项公式: (1)23,415,635,863,1099,…;(2)-1,7,-13,19,…; (3)12,2,92,8,252,…;(4)5,55,555,5555,….解 (1)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,…,相邻的偶数.故所求数列的一个通项公式为a n =2n 2n -12n +1.(2)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n (6n -5).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22.(4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为a n =59(10n -1).思维升华求数列通项时,要抓住以下几个特征: (1)分式中分子、分母的特征. (2)相邻项的变化特征.(3)拆项后变化的部分和不变的部分的特征. (4)各项符号特征等.(5)若关系不明显时,应将部分项作适当的变形,统一成相同的形式.跟踪训练1(1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =. 答案 (-1)n1nn +1解析 这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1nn +1.(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =. 答案 2n +1n 2+1解析 数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1. 题型二 由a n 与S n 的关系求通项公式例2(1)已知数列{a n }的前n 项和S n =2n 2-3n ,则a n =. 答案 4n -5解析 a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,∴a n =4n -5.(2)(2018·全国Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=. 答案 -63解析 ∵S n =2a n +1,当n ≥2时,S n -1=2a n -1+1, ∴a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2).当n =1时,a 1=S 1=2a 1+1,得a 1=-1.∴数列{a n }是首项a 1=-1,公比q =2的等比数列,∴S n =a 11-q n 1-q =-1×1-2n1-2=1-2n,∴S 6=1-26=-63.(3)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =2n,则a n =. 答案 ⎩⎪⎨⎪⎧2,n =1,2n -1n ,n ≥2解析 当n =1时,由已知,可得a 1=21=2, ∵a 1+2a 2+3a 3+…+na n =2n,① 故a 1+2a 2+3a 3+…+(n -1)a n -1=2n -1(n ≥2),②由①-②得na n =2n-2n -1=2n -1,∴a n =2n -1n.显然当n =1时不满足上式, ∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1n ,n ≥2.思维升华已知S n 求a n 的常用方法是利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,一定要检验a 1的情况.跟踪训练2(1)已知数列{a n }的前n 项和S n =3n+1,则a n =. 答案⎩⎪⎨⎪⎧4,n =1,2×3n -1,n ≥2解析 当n =1时,a 1=S 1=3+1=4;当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,所以a n =⎩⎪⎨⎪⎧4,n =1,2×3n -1,n ≥2.(2)设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,则a n =.答案 13n解析 因为a 1+3a 2+32a 3+…+3n -1a n =n3,①则当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,所以a n =13n (n ≥2).由题意知a 1=13符合上式,所以a n =13n .(3)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =.答案 (-2)n -1解析 当n =1时,a 1=S 1=23a 1+13,即a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a n a n -1=-2,故a n =(-2)n -1. 题型三 由数列的递推关系求通项公式例3设数列{a n }中,a 1=2,a n +1=a n +n +1,则a n =. 答案n 2+n +22解析 由条件知a n +1-a n =n +1,则a n =(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)+a 1=(2+3+4+…+n )+2=n 2+n +22.引申探究1.若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,如何求解? 解 ∵a n +1=nn +1a n ,a 1=2,∴a n ≠0,∴a n +1a n =n n +1.∴a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n -1n ·n -2n -1·n -3n -2·…·12·2=2n.2.若将“a n +1=a n +n +1”改为“a n +1=2a n +3”,如何求解? 解 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n+1=2a n -t ,解得t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=5,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以5为首项,2为公比的等比数列. 所以b n =5×2n -1,故a n =5×2n -1-3.3.若将“a n +1=a n +n +1”改为“a n +1=2a na n +2”,如何求解?解 ∵a n +1=2a na n +2,a 1=2,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12, 又a 1=2,则1a 1=12,∴⎩⎨⎧⎭⎬⎫1a n 是以12为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2.∴a n =2n . 4.若将本例条件换为“a 1=1,a n +1+a n =2n ”,如何求解? 解 ∵a n +1+a n =2n ,∴a n +2+a n +1=2n +2,故a n +2-a n =2. 即数列{a n }的奇数项与偶数项都是公差为2的等差数列. 当n为偶数时,a 2=1,故a n =a 2+2⎝ ⎛⎭⎪⎫n 2-1=n -1.当n 为奇数时,∵a n +1+a n =2n ,a n +1=n (n +1为偶数),故a n =n .综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -1,n 为偶数,n ∈N +.思维升华已知数列的递推关系求通项公式的典型方法(1)当出现a n =a n -1+m 时,构造等差数列. (2)当出现a n =xa n -1+y 时,构造等比数列. (3)当出现a n =a n -1+f (n )时,用累加法求解.(4)当出现a na n -1=f (n )时,用累乘法求解.跟踪训练3(1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N +),则数列{a n }的通项公式a n =.答案 3×2n -1-2解析 由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n+1-a n =3×2n -1,∴当n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3,将以上各式累加,得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1),∴a n =3×2n -1-2(当n =1时,也满足).(2)在数列{a n }中,a 1=3,a n +1=a n +1nn +1,则通项公式a n =.答案 4-1n解析 原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,逐项相加得a n =a 1+1-1n ,故a n =4-1n,经验证a 1,a 2也符合.题型四 数列的性质 命题点1 数列的单调性例4已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列答案 B 解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N +,易知{a n }是递增数列.命题点2 数列的周期性例5(2019·包头质检)在数列{a n }中,a 1=0,a n +1=3+a n1-3a n ,则S 2020=. 答案 0解析 ∵a 1=0,a n +1=3+a n1-3a n,∴a 2=31=3,a 3=3+31-3×3=23-2=-3,a 4=3-31+3×3=0,即数列{a n }的取值具有周期性,周期为3, 且a 1+a 2+a 3=0, 则S 2020=S 3×673+1=a 1=0. 命题点3 数列的最值例6 已知等差数列{a n }的前n 项和为S n ,且S m -1=-2,S m =0,S m+1=3(m ≥2),则nS n 的最小值为( )A .-3B .-5C .-6D .-9 答案 D解析 由S m -1=-2,S m =0,S m +1=3(m ≥2)可知a m =2,a m +1=3,设等差数列{a n }的公差为d ,则d =1, ∵S m =0,∴a 1=-a m =-2, 则a n =n -3,S n =n n -52,nS n =n 2n -52.设f (x )=x 2x -52,x >0,f ′(x )=32x 2-5x ,x >0,∴f (x )的极小值点为x =103,∵n ∈N +,且f (3)=-9,f (4)=-8, ∴f (n )min =-9.思维升华应用数列单调性的关键是判断单调性,判断数列单调性的常用方法有两个:(1)利用数列对应的函数的单调性判断;(2)对数列的前后项作差(或作商),利用比较法判断.跟踪训练4(1)(2018·葫芦岛模拟)若数列{a n }满足a 1=2,a n +1=1+a n1-a n ,则a 2020的值为( )A .2B .-3C .-12D.13答案 D解析 因为a 1=2,a n +1=1+a n1-a n,所以a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2,故数列{a n }是以4为周期的周期数列, 故a 2020=a 505×4=a 4=13.(2)若数列{a n }的前n 项和S n =n 2-10n (n ∈N +),则数列{na n }中数值最小的项是( ) A .第2项 B .第3项 C .第4项 D .第5项答案 B解析 ∵S n =n 2-10n ,∴当n ≥2时,a n =S n -S n -1=2n -11;当n =1时,a 1=S 1=-9也适合上式. ∴a n =2n -11(n ∈N +).记f (n )=na n =n (2n -11)=2n 2-11n ,此函数图象的对称轴为直线n =114,但n ∈N +,∴当n =3时,f (n )取最小值.∴数列{na n }中数值最小的项是第3项.1.已知数列5,11,17,23,29,…,则55是它的( ) A .第19项 B .第20项 C .第21项 D .第22项答案 C解析 数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…, 所以通项公式为a n =5+6n -1=6n -1, 令6n -1=55,得n =21.2.记S n 为数列{a n }的前n 项和.“任意正整数n ,均有a n >0”是“{S n }是递增数列”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 ∵“a n >0”⇒“数列{S n }是递增数列”, ∴“a n >0”是“数列{S n }是递增数列”的充分条件.如数列{a n }为-1,1,3,5,7,9,…,显然数列{S n }是递增数列,但是a n 不一定大于零,还有可能小于零, ∴“数列{S n }是递增数列”不能推出“a n >0”,∴“a n >0”是“数列{S n }是递增数列”的不必要条件. ∴“a n >0”是“数列{S n }是递增数列”的充分不必要条件.3.(2018·锦州质检)若S n 为数列{a n }的前n 项和,且S n =2a n -2,则S 8等于( )A .255B .256C .510D .511 答案 C解析 当n =1时,a 1=S 1=2a 1-2,据此可得a 1=2, 当n ≥2时,S n =2a n -2,S n -1=2a n -1-2, 两式作差可得a n =2a n -2a n -1,则a n =2a n -1,据此可得数列{a n }是首项为2,公比为2的等比数列, 其前8项和为S 8=2×()1-281-2=29-2=512-2=510.4.(2018·呼和浩特模拟)已知数列{a n }的前n 项和S n =n 2+2n ,则数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前6项和为( )A.215B.415C.511D.1011 答案 A解析 数列{a n }的前n 项和S n =n 2+2n ,S n -1=n 2-1,两式作差得到a n =2n +1(n ≥2),又当n =1时,a 1=S 1=12+2×1=3,符合上式,所以a n =2n +1, 1a n ·a n +1=1()2n +1()2n +3=12⎝⎛⎭⎪⎫12n +1-12n +3 裂项求和得到S 6=12⎝ ⎛⎭⎪⎫13-15+…-115=215,故选A.5.在数列{a n }中,a 1=2,a n +1n +1=a nn +ln ⎝⎛⎭⎪⎫1+1n ,则a n 等于( )A .2+n ln nB .2n +(n -1)ln nC .2n +n ln nD .1+n +n ln n答案 C解析 由题意得a n +1n +1-a nn =ln(n +1)-ln n ,n 分别用1,2,3,…,(n -1)取代,累加得a n n -a 11=ln n -ln1=ln n ,a nn=2+ln n ,∴a n =(ln n +2)n ,故选C.6.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A .2n -1B .n 2C.n +12n 2D.n 2n -12答案 D解析 设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2n -12. 7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=.答案 85解析 借助递推关系,由a 8递推依次得到a 7=2113,a 6=138,a 5=85.8.若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =.答案⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式. 故数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.9.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =. 答案 -1n解析 ∵a n +1=S n +1-S n , ∴S n +1-S n =S n +1S n , 又由a 1=-1,知S n ≠0, ∴1S n -1S n +1=1,∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,且公差为-1,而1S 1=1a 1=-1,∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n.10.已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N +),则a n =. 答案 2n 2-n +2解析 由a n -a n +1=na n a n +1,得1a n +1-1a n=n ,则由累加法得1a n -1a 1=1+2+…+(n -1)=n 2-n2,又因为a 1=1,所以1a n=n 2-n2+1=n 2-n +22,所以a n =2n 2-n +2(n ∈N +).11.已知在数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由S 2=43a 2,得3(a 1+a 2)=4a 2,解得a 2=3a 1=3;由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1.当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理,得a n =n +1n -1a n -1.于是a 1=1,a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1,将以上n 个等式两端分别相乘,整理,得a n =n n +12,经检验n =1时,也满足上式.综上,{a n }的通项公式a n =n n +12.12.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N +).(1)求数列{a n }的通项公式;(2)记b n =3n-λa 2n ,若数列{b n }为递增数列,求λ的取值范围. 解 (1)∵2S n =(n +1)a n , ∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n ,即na n +1=(n +1)a n ,∴a n +1n +1=a nn ,∴a n n =a n -1n -1=…=a 11=1,∴a n =n (n ∈N +).(2)b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2)=2·3n -λ(2n +1).∵数列{b n }为递增数列,∴2·3n -λ(2n +1)>0,即λ<2·3n2n +1.令c n =2·3n2n +1,即c n +1c n =2·3n +12n +3·2n +12·3n =6n +32n +3>1.∴{c n }为递增数列,∴λ<c 1=2,即λ的取值范围为(-∞,2).13.(2018·抚顺模拟)已知数列{a n }的前n 项和为S n ,若3S n =2a n-3n ,则a 2019等于( )A .-22019-1B .32019-6C.⎝ ⎛⎭⎪⎫122019-72 D.⎝ ⎛⎭⎪⎫132019-103答案 A解析 由题意可得,3S n =2a n -3n ,3S n +1=2a n +1-3(n +1),两式作差可得3a n +1=2a n +1-2a n -3,即a n +1=-2a n -3,a n +1+1=-2(a n +1), 结合3S 1=2a 1-3=3a 1可得a 1=-3,a 1+1=-2,则数列{a n +1}是首项为-2,公比为-2的等比数列, 据此有a 2019+1=(-2)×(-2)2018=-22019, ∴a 2019=-22019-1.故选A.14.(2018·赤峰模拟)已知数列{a n }的首项a 1=a ,其前n 项和为S n ,且满足S n +S n -1=4n 2(n ≥2,n ∈N +),若对任意n ∈N +,a n <a n +1恒成立,则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,163 B.⎝ ⎛⎭⎪⎫5,163 C.⎝ ⎛⎭⎪⎫3,163 D .(3,5)答案 D解析 ∵S n +S n -1=4n 2,S n +1+S n =4(n +1)2, ∴当n ≥2时,S n +1-S n -1=8n +4,即a n +1+a n =8n +4, 即a n +2+a n +1=8n +12,故a n +2-a n =8(n ≥2), 由a 1=a 知a 2+2a 1=4×22=16,∴a 2=16-2a 1=16-2a , a 3+2S 2=4×32=36,∴a 3=36-2S 2=36-2(16-a )=4+2a ,a 4=24-2a ; 若对任意n ∈N +,a n <a n +1恒成立,只需使a 1<a 2<a 3<a 4,即a <16-2a <4+2a <24-2a ,解得3<a <5,故选D.15.已知数列{a n }的前n 项和为S n ,a 1=15,且满足a n +12n -3=a n 2n -5+1,已知n ,m ∈N +,n >m ,则S n -S m 的最小值为( )A .-494B .-498C .-14D .-28答案 C 解析 因为a n +12n -3=a n 2n -5+1,且a 12-5=15-3=-5, 所以数列⎩⎨⎧⎭⎬⎫a n 2n -5是以-5为首项、1为公差的等差数列, 则a n 2n -5=-5+(n -1)=n -6, 即a n =(2n -5)(n -6),令a n ≤0,得52≤n ≤6, 又∵n ∈N +,∴n =3,4,5,6,则S n -S m =a m +1+a m +2+…+a n 的最小值为a 3+a 4+a 5+a 6=-3-6-5-0=-14.16.已知数列{a n }是递增的等比数列且a 1+a 4=9,a 2a 3=8,设S n 是数列{a n }的前n 项和,数列⎩⎨⎧⎭⎬⎫a n +1S n ·S n +1前n 项和为T n ,若不等式λ≤T n 对任意的n ∈N +恒成立,求实数λ的最大值. 解 ∵数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8,a 1a 4=a 2a 3,∴a 1,a 4是方程x 2-9x +8=0的两个根,且a 1<a 4.解方程x 2-9x +8=0,得a 1=1,a 4=8, ∴q 3=a 4a 1=81=8,解得q =2, ∴a n =a 1q n -1=2n -1. ∴S n =a 1()1-q n 1-q =1×()1-2n 1-2=2n -1, 令b n =a n +1S n S n +1=2n ()2n -1·()2n +1-1 =12n -1-12n +1-1, ∴数列{b n }的前n 项和T n =1-13+13-17+17-115+…+12n -1-12n +1-1 =1-12n +1-1在正整数集上单调递增, ∴T n ≥T 1=23, ∵λ≤T n ,且对一切n ∈N +成立,∴λ≤23, ∴实数λ的最大值是23.。

高考数学一轮复习 专题28 数列的概念与简单表示法教学案 文-人教版高三全册数学教学案

高考数学一轮复习 专题28 数列的概念与简单表示法教学案 文-人教版高三全册数学教学案

专题28 数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数. 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).高频考点一 由数列的前几项求数列的通项公式例1、根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22. (4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为a n =59(10n-1).【方法规律】根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征: (1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征;(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想. 【变式探究】 (1)数列0,23,45,67,…的一个通项公式为( )A.a n =n -1n +2(n ∈N +) B.a n =n -12n +1(n ∈N +)C.a n =2(n -1)2n -1(n ∈N +)D.a n =2n2n +1(n ∈N +)(2)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________.解析 (1)注意到分子0,2,4,6都是偶数,对照选项排除即可.(2)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1n (n +1).答案 (1)C (2)(-1)n1n (n +1)高频考点二 由数列的前n 项和求数列的通项公式例2、设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式.所以a n =2a n -1+2(n ≥2),所以a n +2=2(a n -1+2),因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1,所以a n =3×2n -1-2,当n =1时也成立, 所以a n =3×2n -1-2.【方法规律】数列的通项a n 与前n项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【变式探究】(1)已知数列{a n }的前n 项和S n =n +1n +2,则a 4等于( ) A.130 B.132 C.134D.120(2)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________. 答案 (1)A (2)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2解析 (1)a 4=S 4-S 3 =56-45=130. (2)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.高频考点三、由数列的递推关系求通项公式 例3、在数列{a n }中,(1)若a 1=2,a n +1=a n +n +1,则通项公式a n =________. (2)在数列{a n }中,若a 1=1,a n =n -1na n -1(n ≥2),则通项公式a n =________. (3)a n +1=2a n +3,则通项公式a n =________.解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)法一 因为a n =n -1na n -1(n ≥2), ∴b n =4·2n -1=2n +1,∴a n =2n +1-3.答案 (1)n (n +1)2+1 (2)1n(3)2n +1-3【方法规律】(1)形如a n +1=a n +f (n )的递推关系式利用累加法求和,特别注意能消去多少项,保留多少项.(2)形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n=f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项. (3)形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键.【变式探究】 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N +),则数列{a n }的通项公式a n =________.(2)在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1, a n =a n -1+1n -1-1n, 逐项相加得,a n =a 1+1-1n ,故a n =4-1n.答案 (1)3×2n -1-2 (2)4-1n高频考点四 数列的性质 例4、已知a n =n -1n +1,那么数列{a n }是( ) A .递减数列 B .递增数列 C .常数列D .摆动数列答案 B 解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列. 【变式探究】数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=______________________.答案 12解析 ∵a n +1=11-a n,【感悟提升】(1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列. ②用作商比较法,根据a n +1a n(a n >0或a n <0)与1的大小关系进行判断. ③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.【举一反三】(1)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n≤12,2a n-1,12<a n<1,a 1=35,则数列的第2015项为________.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133C .4D .0答案 (1)25(2)D解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25, a 4=2×25=45, a 5=2×45-1=35,∴{a n }为周期数列且T =4,∴a 2015=a 3=25.(2)∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.1.(2014·江西卷)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .=-2-(2n -2)×3n, 所以S n =(n -1)3n+1.2.(2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.【解析】(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.3.(2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.【解析】(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.4.(2014·重庆卷)设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 【解析】(1)方法一:a 2=2,a 3=2+1. 再由题设条件知 (a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1,易知f (x )在(-∞,1]上为减函数,从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1, 故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立. 综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.5.(2013·安徽卷)如图1-3所示,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等,设OA n =a n ,若a 1=1,a 2=2,则数列{a n }的通项公式是________. 图1-3【答案】a n =3n -2【解析】令S△OA 1B 1=m(m>0),因为所有A n B n 相互平行且a 1=1,a 2=2,所以S 梯形A 1B 1B 2A 2=3m ,当n≥2时,a n a n -1=OA nOA n -1=m +(n -1)×3mm +(n -2)×3m =3n -23n -5, 故a 2n =3n -23n -5a 2n -1, a 2n -1=3n -53n -8a 2n -2,a 2n -2=3n -83n -11a 2n -3,…… a 22=41a 21以上各式累乘可得a 2n =(3n -2)a 21,因为a 1=1, 所以a n =3n -2.6.(2013·辽宁卷)下面是关于公差d>0的等差数列{}a n 的四个命题: p 1:数列{}a n 是递增数列; p 2:数列{}na n 是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{}a n +3nd 是递增数列. 其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4 【答案】D【解析】因为数列{a n }中d>0,所以{a n }是递增数列,则p 1为真命题.而数列{a n +3nd}也是递增数列,所以p 4为真命题,故选D.7.(2013·全国卷)等差数列{a n }前n 项和为S n .已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n+12B.cos n π2 C.cosn +12πD.cosn +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D2.数列23,-45,67,-89,…的第10项是( )A.-1617B.-1819C.-2021D.-2223答案 C3.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( ) A.2n-1B.2n -1+1C.2n -1D.2(n -1)解析 法一 由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n-1. 法二 由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.答案 A4.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A.2n -1 B.n 2C.(n +1)2n2D.n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2(n -1)2.答案 D5.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A.7 B.6C.5D.4解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4.答案 D6.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________.解析 借助递推关系,则a 8递推依次得到a 7=2113,a 6=138,a 5=85.答案 857.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N +),则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥28.已知数列{a n }的前n 项和为S n ,且a n ≠0(n ∈N +),又a n a n +1=S n ,则a 3-a 1=________. 解析 因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1,令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1. 答案 19.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). ∴从第7项起各项都是正数.10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.……a n -1=n n -2a n -2, a n =n +1n -1a n -1. 将以上n 个等式两端分别相乘, 整理得a n =n (n +1)2.显然,当n =1时也满足上式. 综上可知,{a n }的通项公式a n =n (n +1)2. 11.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N +,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N +,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N +,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N +). 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N +).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N +,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).。

高三数学第一轮复习 数列的概念与简单表示法教案(学生)

高三数学第一轮复习  数列的概念与简单表示法教案(学生)

城东蜊市阳光实验学校教案57数列的概念与简单表示法〔1〕一、课前检测〔5m 〕1.〔2021年东城期末5〕在ABC ∆中,假设sin A C =, 30B =,那么角A等于〔〕A .30B .45C .60D .120考点:正、余弦定理〔处理三角形内的三角函数问题勿忘三内角和等于180︒,一般用正、余弦定理施行边角互化〕 ⑴正弦定理:R CcB b A a 2sin sin sin ===〔R 2是ABC ∆外接圆直径〕注:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===;③CB A cb a Cc B b A a sin sin sin sin sin sin ++++===。

⑵余弦定理:A bc c b a cos 2222-+=等三个;bca cb A 2cos 222-+=等三个。

考点:两角和与差的正弦、余弦、正切公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.考点:同角三角函数的根本关系1cos sin 22=+αα,αααcos sin tan =,1cot tan =αα考点:特殊角的三角函数值考点:等边对等角〔初中几何定理〕略解:方法1由于sin A C =, 30B =,所以A)-sin(1503sinA =所以,A=120 方法2由sinC c sinA a =得c 3a 3sinCsinAc a =⇒==故22222222c 3c -4c cos30c c 32-c 3c 2accosB -c a b ==⨯⨯⨯+=+=即 120A 30C B c b=⇒==⇒=〔或者者用余弦定理求21-cosB =也行〕。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。

举例说明数列的组成,如自然数数列、等差数列等。

1.2 数列的项解释数列中的每一个数称为数列的项。

强调数列项的顺序和重复性质。

1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。

举例讲解如何写出简单数列的通项公式。

第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。

练习写出几个给定数列的列举表示。

2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。

举例说明如何用公式法表示等差数列和等比数列。

2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。

引导学生通过观察图形来理解数列的特点。

第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。

举例说明如何确定一个数列的项数。

3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。

举例说明如何判断一个数列的单调性。

3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。

举例说明如何判断一个数列的周期性。

第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。

推导等差数列的通项公式。

4.2 等比数列的通项公式讲解等比数列的定义和性质。

推导等比数列的通项公式。

4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。

举例讲解如何求解其他类型数列的通项公式。

第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。

推导等差数列的前n项和的公式。

5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。

推导等比数列的前n项和的公式。

5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。

举例讲解如何求解其他类型数列的前n项和。

第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。

最新高中高考数学一轮复习6.1数列的概念与简单表示法教学设计

最新高中高考数学一轮复习6.1数列的概念与简单表示法教学设计

第六章列高考导航1.(1)了解列的概念和几种简单的表示方法(列表、图象、通项(2)了解列是自变量为正整的一类函.2.(1)解等差列、等比列的概念;(2)掌握等差列、等比列的通项公式与前n(3)能在具体问题情境中识别列的等差关系或等比关系,并能(4)了解等差列与一次函、等比列与指函的关系. 本章重点:1.等差列、等比列的定义、通项公式和前n项和公式及有关性质;2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函与方程思想、学模型思想以及离散与连续的关系.本章难点:1.列概念的解;2.等差等比列性质的运用;3.列通项与求和方法的运用.持以前的风格,注重列知识络6.1 列的概念与简单表示法[]典例精析题型一 归纳、猜想法求列通项【例1】根据下列列的前几项,分别写出它们的一个通项公式:(1)7,77,777,7 777,…(2)23,-415,635,-863,… (3)1,3,3,5,5,7,7,9,9,…【解析】(1)将列变形为79·(10-1),79(102-1),79(103-1),…,79(10n -1), 故an =79(10n -1). (2)分开观察,正负号由(-1)n +1确定,分子是偶2n ,分母是1×3,3×5,5×7, …,(2n -1)(2n +1),故列的通项公式可写成an =(-1)n +1)12)(12(2+-n n n.(3)将已知列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….故列的通项公式为an =n +2)1(1n-+.【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序的一般规律,从而求得通项.【变式训练1】如下表定义函f(x):对于列{an},a1=4,an =f(an -1),n =2,3,4,…,则a2 008的值是( )A.1B.2C.3D.4 【解析】a1=4,a2=1,a3=5,a4=2,a5=4,…,可得an +4=an. 所以a2 008=a4=2,故选B.题型二 应用an =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n 求列通项 【例2】已知列{an}的前n 项和Sn ,分别求其通项公式:(1)Sn =3n -2;(2)Sn =18(an +2)2 (an >0). 【解析】(1)当n =1时,a1=S1=31-2=1,当n≥2时,an =Sn -Sn -1=(3n -2)-(3n -1-2)=2×3n-1,又a1=1不适合上式,故an =⎪⎩⎪⎨⎧≥⨯=-)2(32),1(11n n n(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,当n≥2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,又an>0,所以an-an-1=4,可知{an}为等差列,公差为4,所以an=a1+(n-1)d=2+(n-1)·4=4n-2,a1=2也适合上式,故an=4n-2.【点拨】本例的关键是应用an=⎪⎩⎪⎨⎧≥-=-)2(),1(11nSSnSnn求列的通项,特别要注意验证a1的值是否满足“n≥2”的一般性通项公式.【变式训练2】已知a1=1,an=n(an+1-an)(n∈N*),则列{an}的通项公式是( )A.2n-1B.(n+1n)n-1 C.n2 D.n【解析】由an=n(an+1-an)⇒an+1an=n+1n.所以an=anan-1×an-1an-2×…×a2a1=nn-1×n-1n-2×…×32×21=n,故选D.题型三利用递推关系求列的通项【例3】已知在列{an}中a1=1,求满足下列条件的列的通项公式:(1)an+1=an1+2an;(2)an+1=2an+2n+1.【解析】(1)因为对于一切n∈N*,an≠0,因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.所以{1an}是等差列,1an=1a1+(n-1)·2=2n-1,即an=12n-1.(2)根据已知条件得an +12n +1=an 2n +1,即an +12n +1-an 2n=1. 所以列{an 2n }是等差列,an 2n =12+(n -1)=2n -12,即an =(2n -1)·2n -1. 【点拨】通项公式及递推关系是给出列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转,构造新列求通项,进而可以求得所求列的通项公式.【变式训练3】设{an}是首项为1的正项列,且(n +1)·a2n +1-na2n +an +1an =0(n =1,2,3,…),求an.【解析】因为列{an}是首项为1的正项列,所以anan +1≠0,所以(n +1)an +1an -nan an +1+1=0, 令an +1an=t ,所以(n +1)t2+t -n =0, 所以[(n +1)t -n](t +1)=0,得t =n n +1或t =-1(舍去),即an +1an =n n +1. 所以a2a1·a3a2·a4a3·a5a4·…·an an -1=12·23·34·45·…·n -1n ,所以an =1n. 总结提高1.给出列的前几项求通项时,常用特征分析法与归法,所求通项不唯一.2.由Sn 求an 时,要分n =1和n≥2两种情况.3.给出Sn 与an 的递推关系,要求an ,常用思路是:一是利用Sn -Sn -1=an(n≥2)转为an 的递推关系,再求其通项公式;二是转为Sn 的递推关系,先求出Sn 与n 之间的关系,再求an.天星教育来源:天星教育Tesoon来源:天~星~教~育~。

高三数学一轮复习讲义 数列的概念与简单表示法教案 新人教A版

高三数学一轮复习讲义 数列的概念与简单表示法教案 新人教A版

数列的概念与简单表示法自主梳理1.数列的定义按照________________着的一列数叫数列,数列中的______________都叫这个数列的项;在函数意义下,数列是________________________的函数,数列的一般形式为:______________________,简记为{a n },其中a n 是数列的第____项.1.一定顺序排列 每一个数 定义域为N *(或它的子集)a 1,a 2,a 3,…,a n ,… n 2.通项公式:如果数列{a n }的______与____之间的关系可以____________来表示,那么这个式子叫做数列的通项公式.但并非每个数列都有通项公式,也并非都是唯一的.2.第n 项 n 用一个公式3.数列有三种表示法:它们分别是_________、________、________. .解析法(通项公式或递推公式) 列表法 图象法 4.数列的分类:数列按项数来分,分为____________、__________;按项的增减规律分为________、________、__________和__________. 递增数列⇔a n +1______a n ;递减数列⇔a n +1______a n ;常数列⇔a n +1______a n . 按其他标准分类 有界数列存在正数M ,使|a n |≤M摆动数列 a n 的符号正负相间,如1,-1,1,-1,…4.有穷数列 无穷数列 递增数列 递减数列 摆动数列 常数列 > < = 5.a n 与S n 的关系:已知S n ,则a n =⎩⎪⎨⎪⎧,n =1,,n ≥2.S 1 S n -S n -11.对数列概念的理解(1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现.(3)数列的项与项数:数列的项与项数是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. 2.数列的函数特征数列是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应的函数解析式,即f (n )=a n (n ∈N *).自我检测1.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大 ( ) A .10 B .11 C .10或11 D .122.已知数列{a n }的通项公式a n =n +156n(n ∈N *),则数列{a n }的最小项是 ( )A.a 12B.a 13 C .a 12或a 13 D.不存在3.在数列{a n }中,a 1=1,a 2=5,a n +2=a n +1-a n (n ∈N *),则a 100等于( )A.1B .-1C.5D.-54.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于 ( ) A .-165 B .-33 C .-30 D .-215.已知数列-1,85,-157,249,…按此规律,则这个数列的通项公式是( )A .a n =(-1)n ·n 2+n 2n +1 B .a n =(-1)n·n n +32n +1C .a n =(-1)n ·n +12-12n +1D .a n =(-1)n·n n +22n +36.下列对数列的理解:①数列可以看成一个定义在N *(或它的有限子集{1,2,3,…,n })上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点; ④数列的通项公式是唯一的.其中说法正确的序号是 ( )A .①②③B .②③④C .①③D .①②③④7.已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为__ a n =2n -1 (n ∈N *)________. 8.已知数列2,5,22,…,根据数列的规律,25应该是该数列的第___7_____项.9.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =___.2n -11_______;数列{na n }中数值最小的项是第________项.10.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2 (n ∈N *),则该数列的通项a n =___1n___.题型一 由数列的前几项归纳数列的通项公式探究点一 由数列前几项求数列通项例1 根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…; (3)12,14,-58,1316,-2932,6164,…; (4)32,1,710,917,…; (5)0,1,0,1,…. (6)23,415,635,863,1099,…;解题导引 根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,要使用添项、还原、分割等方法,转化为一些常见数列的通项公式来求;解 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n(6n -5). (2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =89⎝ ⎛⎭⎪⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n-32n .(4)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为c n =n 2+1,因此可得它的一个通项公式为a n =2n +1n 2+1.(5)a n =⎩⎪⎨⎪⎧n 为奇数1 n 为偶数或a n =1+-1n2或a n =1+cos n π2.(6)原数列为222-1,2×242-1,2×362-1,2×482-1,2×5102-1,…,∴a n =2n (2n )2-1=2n4n 2-1.探究提高 (1)据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征: ①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的各部分特征;④各项符号特征等,并对此应多进行对比分析、从整体到局部多角度观察、归纳、联想.. (2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n或(-1)n +1来调整.变式训练1 写出下列数列的一个通项公式:(1)3,5,9,17,33,…;(2)12,2,92,8,252,…;(3)2,5,22,11,…;(4)3,5,7,9,…;(5)12,34,78,1516,3132,…;(6)-1,32,-13,34,-15,36,…;(7)3,33,333,3 333,….解 (1)∵a 1=3=21+1,a 2=5=22+1,a 3=9=23+1,…,∴a n =2n+1.(2)将数列中各项统一成分母为2的分数,得 12,42,92,162,252,…, 观察知,各项的分子是对应项数的平方,∴数列通项公式是a n =n 22.(3)将数列各项统一成f (n )的形式得 2,5,8,11,…;观察知,数列各项的被开方数逐个增加3,且被开方数加1后,又变为3,6,9,12,…,所以数列的通项公式是a n =3n -1.(4)各项减去1后为正偶数,所以a n =2n +1.(5)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(6)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1, 所以a n =(-1)n·2+-1nn.也可写为a n=⎩⎪⎨⎪⎧-1nn 为正奇数3nn 为正偶数.(7)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n-1).题型二 已知数列的递推公式求通项公式 例2 根据下列条件,确定数列{a n }的通项公式. (1)a 1=2,a n +1=a n +n ;(2)a n +1=a n +3n +2,且a 1=2,(3)a 1=1,2n -1a n =a n -1 (n ≥2).(4)a 1=1,a n =n -1na n -1 (n ≥2);(5)a 1=1,a n +1=3a n +2;解 (1)当n =1,2,3,…,n -1时,可得n -1个等式,a n -a n -1=n -1,a n -1-a n -2=n -2,…,a 2-a 1=1,将其相加,得a n -a 1=1+2+3+…+(n -1).∴a n =a 1+(1+n -1)(n -1)2=2+n (n -1)2.(2)∵a n +1-a n =3n +2,∴a n -a n -1=3n -1 (n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n2.(3)方法一 a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1 =⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2·…·⎝ ⎛⎭⎪⎫122·⎝ ⎛⎭⎪⎫121=⎝ ⎛⎭⎪⎫121+2+…+(n -1)=⎝ ⎛⎭⎪⎫12n (n -1)2, ∴a n =⎝ ⎛⎭⎪⎫12n (n -1)2. 方法二 由2n -1a n =a n -1,得a n =⎝ ⎛⎭⎪⎫12n -1a n -1.∴a n =⎝ ⎛⎭⎪⎫12n -1a n -1=⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2a n -2 =⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2·…·⎝ ⎛⎭⎪⎫121a 1 =⎝ ⎛⎭⎪⎫12(n -1)+(n -2)+…+2+1=⎝ ⎛⎭⎪⎫12n (n -1)2 (4)∵a n =n -1na n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .(5)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.探究提高 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解. 变式训练2 根据下列条件,确定数列{a n }的通项公式.(1) a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n .(2)a 1=1,a n +1=(n +1)a n ;(3) 在数列{a n }中,a 1=1,a n +1=a n2a n +1;(4)在数列{a n }中,a n +1=3a 2n ,a 1=3; (5) 在数列{a n }中,a 1=2,a n +1=4a n -3n +1;(6) 在数列{a n }中,a 1=8,a 2=2,且满足a n +2-4a n +1+3a n =0.(7) 数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n0≤a n<12,2a n-1 12≤a n<1,若a 1=67,则a 2 010的值为__37__.解 (1) ∵a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,∴a n +1-a n =ln ⎝ ⎛⎭⎪⎫1+1n =ln n +1n.∴a n -a n -1=lnnn -1,a n -1-a n -2=ln n -1n -2,……a 2-a 1=ln 21,累加可得,a n -a 1=ln nn -1+ln n -1n -2+…+ln 21=ln n -ln(n -1)+ln(n -1)-ln(n -2)+…+ln 2-ln 1 =ln n .又a 1=2,∴a n =ln n +2.(2)∵a n +1=(n +1)a n ,∴a n +1a n=n +1. ∴a n a n -1=n ,a n -1a n -2=n -1, ……a 3a 2=3, a 2a 1=2, a 1=1.累乘可得,a n =n ×(n -1)×(n -2)×…×3×2×1=n !. 故a n =n !. (3) 将a n +1=a n2a n +1取倒数得: 1a n +1=2+1a n,∴1a n +1-1a n=2,又1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.∴1a n =1+2(n -1),∴a n =12n -1.(4)由已知a n >0,在递推关系式两边取对数. 有lg a n +1=2lg a n +lg 3, 令b n =lg a n ,则b n +1=2b n +lg 3, ∴b n +1+lg 3=2(b n +lg 3), ∴{b n +lg 3}是等比数列, ∴b n +lg 3=2n -1·2lg 3=2nlg 3,∴b n =2nlg 3-lg 3=(2n-1)lg 3=lg a n , ∴a n =32n-1.(5) 由a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),又a 1-1=1,所以数列{a n -n }是首项为1,且公比为4的等比数列, ∴a n -n =(a 1-1)4n -1,∴a n =4n -1+n .(6) 将a n +2-4a n +1+3a n =0变形为a n +2-a n +1=3(a n +1-a n ),则数列{a n +1-a n }是以a 2-a 1=-6为首项,3为公比的等比数列,则a n +1-a n =-6·3n -1,利用累加法可得a n =11-3n.题型三 由a n 与S n 的关系求通项a n例3 (1)已知数列{a n }的前n 项和S n =2n 2-3n +1,求{a n }的通项公式. 解 当n =1时,a 1=S 1=2×12-3×1+1=0;当n ≥2时,a n =S n -S n -1=(2n 2-3n +1)-2(n -1)2+3(n -1)-1=4n -5; 又n =1时,a n =4×1-5=-1≠a 1,∴a n =⎩⎪⎨⎪⎧0, n =1,4n -5, n ≥2.(2) 已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.求{a n }的通项公式.解 由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项为a n =3n -1.探究提高 (1)已知{a n }的前n 项和S n ,求a n 时应注意以下三点:① a n 与S n 的关系式a n =S n -S n -1的条件是n ≥2,求a n 时切勿漏掉n =1,即a 1=S 1的情况. ②由S n -S n -1=a n 推得的a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写”. ③由S n -S n -1=a n 推得的a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应 分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1 n =1,S n -S n -1n ≥2.(2)利用S n 与a n 的关系求通项是一个重要内容,应注意S n 与a n 间关系的灵活运用. 变式训练3 (1)已知{a n }的前n 项和S n =3n+b ,求{a n }的通项公式.(2)已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,求a n . 解 (1)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式; 当b ≠-1时,a 1不适合此等式.∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b (n =1)2·3n -1(n ≥2). (2)由2S n =a n +1,得S n =⎝ ⎛⎭⎪⎫a n +122,当n =1时,a 1=S 1=⎝ ⎛⎭⎪⎫a 1+122,得a 1=1;当n ≥2时,a n =S n -S n -1 =⎝ ⎛⎭⎪⎫a n +122-⎝ ⎛⎭⎪⎫a n -1+122, 整理,得(a n +a n -1)(a n -a n -1-2)=0, ∵数列{a n }各项为正,∴a n +a n -1>0. ∴a n -a n -1-2=0.∴数列{a n }是首项为1,公差为2的等差数列. ∴a n =a 1+(n -1)×2=2n -1.(3) 设数列{a n }的前n 项和为S n ,a 1=1,a n =S nn+2 (n -1) (n ∈N *). ①求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;②是否存在自然数n ,使得S 1+S 22+S 33+…+S nn -(n -1)2=2 013?若存在,求出n 的值;若不存在,请说明理由.解 ①由a n =S n n+2(n -1),得S n =na n -2n (n -1) (n ∈N *).当n ≥2时,a n =S n -S n -1=na n -(n -1)·a n -1-4(n -1),即a n -a n -1=4,∴数列{a n }是以a 1=1为首项,4为公差的等差数列. 于是,a n =4n -3,S n =a 1+a n n2=2n 2-n (n ∈N *).②由S n =na n -2n (n -1),得S n n=2n -1 (n ∈N *),∴S 1+S 22+S 33+…+S nn -(n -1)2=1+3+5+7+…+(2n -1)-(n -1)2=n 2-(n -1)2=2n -1.令2n -1=2 013,得n =1 007,即存在满足条件的自然数n =1 007.题型四 用函数的思想方法解决数列问题数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.例4已知数列{a n }. (1)若a n =n 2-5n +4, ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.(1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续. 解 (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.②∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.(1)本题给出的数列通项公式可以看做是一个定义在正整数集N *上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决. (2)在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取.(3)易错分析:本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数.(3)已知数列{a n }的通项a n =(n +1)⎝ ⎛⎭⎪⎫1011n (n ∈N *),试问该数列{a n }有没有最大项?若有,求出最大项的项数;若没有,说明理由.解 方法一 令⎩⎪⎨⎪⎧n +1⎝ ⎛⎭⎪⎫1011n ≥n ·⎝ ⎛⎭⎪⎫1011n -1n +1⎝ ⎛⎭⎪⎫1011n ≥n +2·⎝ ⎛⎭⎪⎫1011n +1⇔⎩⎪⎨⎪⎧10n +10≥11n11n +11≥10n +20⇔⎩⎪⎨⎪⎧n ≤10n ≥9,∴n =9或n =10时,a n 最大,即数列{a n }有最大项,此时n =9或n =10. 方法二 ∵a n +1-a n =(n +2)·⎝ ⎛⎭⎪⎫1011n +1-(n +1)·⎝ ⎛⎭⎪⎫1011n=⎝ ⎛⎭⎪⎫1011n ·9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,∴数列{a n }中有最大项,为第9、10项.有关数列的最大项、最小项,数列有界性问题均可借助数列的单调性来解决,判断单调性常用①作差法,②作商法,③图象法.求最大项时也可用a n 满足⎩⎪⎨⎪⎧a n ≥a n +1a n ≥a n -1;若求最小项,则用a n 满足⎩⎪⎨⎪⎧a n ≤a n -1a n ≤a n +1.数列实质就是一种特殊的函数,所以本题就是用函数的思想求最值.方法与技巧1.求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1n =1S n -S n -1 n ≥2.3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有三种常见思路: (1)算出前几项,再归纳、猜想;(2)“a n +1=pa n +q ”这种形式通常转化为a n +1+λ=p (a n +λ),由待定系数法求出λ,再化为等比数列;(3)逐差累加或累乘法.数列的概念与简单表示法一、选择题1.下列说法正确的是( )A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k D.数列0,2,4,6,…可记为{2n } 2.数列{a n }中,a 1=a 2=1,a n +2=a n +1+a n 对所有正整数n 都成立,则a 10等于( ) A.34B .55C.89D.1003.如果数列{a n }的前n 项和S n =32a n -3,那么这个数列的通项公式是( )A.a n =2(n 2+n +1) B.a n =3·2nC.a n =3n +1 D .a n =2·3n二、填空题4.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=19,a 36=__4______.5.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,且1<S k <9 (k ∈N *),则a 1的值为___-1_____,k 的值为__4____.6.已知a 1=2,a n +1-a n =2n +1 (n ∈N *),则a n =_ n 2+1_______. 三、解答题7.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍).∴从第7项起各项都是正数. 一、选择题1.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n ∈N *),则a 1·a 2·…·a 2 011的值为 ( )A.-3B.1C.2D .32.数列{a n }满足a n +a n +1=12 (n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A.5B .72C.92D.1323.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于( ) A .6116B.259C.2516D.31151.设数列{a n }的前n 项和S n =n 2,则a 8的值为 ( ) A .15 B .16 C .49 D .642.已知数列{a n }的通项公式是a n =2n3n +1,那么这个数列是 ( )A .递增数列B .递减数列C .摆动数列D .常数列 3.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2等于 ( ) A .4 B .2 C .1 D .-24.数列{a n }中,若a n +1=a n2a n +1,a 1=1,则a 6等于 ( )A .13 B.113 C .11 D.1115.数列{a n }满足a n +a n +1=12 (n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为 ( )A .5B .72 C.92 D.132二、填空题4.已知数列{a n }中,a 1=12,a n +1=1-1a n (n ≥2),则a 16=__12______.5.数列53,108,17a +b ,a -b 24,…中,有序数对(a ,b )是______⎝ ⎛⎭⎪⎫412,-112________.6.若数列⎩⎨⎧⎭⎬⎫n n +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =__4______.7.已知S n 是数列{a n }的前n 项和,且有S n =n 2+1,则数列{a n }的通项a n =__________⎩⎪⎨⎪⎧2 (n =1)2n -1 (n ≥2,n ∈N *)________. 8.将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 … … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是__n 2-n +62__________.三、解答题7.已知数列{a n }中,a n =1+1a +2n -1(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 7.解 (1)∵a n =1+1a +2n -1 (n ∈N *,a ∈R ,且a ≠0),∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性.可知1>a 1>a 2>a 3>a 4; a 5>a 6>a 7>…>a n >1 (n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2n -1=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,并结合函数f (x )=1+12x -2-a 2的单调性,∴5<2-a 2<6,∴-10<a <-8.9.写出下列各数列的一个通项公式.(1)112,223,334,445,…; (2)-1,32,-13,34,-15,36.9.解 (1)∵a 1=1+12,a 2=2+23,a 3=3+34,…,∴a n =n +n n +1(n ∈N *).(2)∵a 1=-2-11,a 2=2+12,a 3=-2-13, a 4=2+14,…,∴a n =(-1)n ·2+(-1)nn(n ∈N *)10.由下列数列{a n }递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2); (2)a 1=1,a n a n -1=n -1n(n ≥2);(3)a 1=1,a n =2a n -1+1 (n ≥2).10.解 (1)由题意得,a n -a n -1=n ,a n -1-a n -2=n -1,…,a 3-a 2=3,a 2-a 1=2. 将上述各式等号两边累加得, a n -a 1=n +(n -1)+…+3+2,即a n =n +(n -1)+…+3+2+1=n (n +1)2,故a n =n (n +1)2.(2)由题意得,a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 3a 2=23,a 2a 1=12.将上述各式累乘得,a n a 1=1n ,故a n =1n(3)由a n =2a n -1+1,得a n +1=2(a n -1+1), 又a 1+1=2≠0,所以a n +1a n -1+1=2,即数列{a n +1}是以2为首项,以2为公比的等比数列.所以a n +1=2n ,即a n =2n-111.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n . (1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n . 11.(1)解 a 1=S 1=4对于n ≥2有a n =S n -S n -1=2n (n +1)-2(n -1)n =4n .a 1也适合, ∴{a n }的通项公式a n =4n将n =1代入T n =2-b n ,得b 1=2-b 1,故T 1=b 1=1 (求b n 方法一)对于n ≥2,由T n -1=2-b n -1, T n =2-b n ,得b n =T n -T n -1=-(b n -b n -1),∴b n =12b n -1,b n =21-n(求b n 方法二)对于n ≥2,由T n =2-b n 得 T n =2-(T n -T n -1),2T n =2+T n -1,T n -2=12(T n -1-2),T n -2=21-n(T 1-2)=-21-n , T n =2-21-n , b n =T n -T n -1=(2-21-n )-(2-22-n )=21-n . b 1=1也适合综上,{b n }的通项公式b n =21-n . (2)证明 方法一 由c n =a 2n ·b n =n 225-n, 得c n +1c n =12⎝ ⎛⎭⎪⎫1+1n 2 当且仅当n ≥3时,1+1n ≤43<2,∴c n +1c n <12·(2)2=1,又c n =n 2·25-n >0,即c n +1<c n 方法二 由c n =a 2n ·b n =n 225-n,得c n +1-c n =24-n [(n +1)2-2n 2] =24-n [-(n -1)2+2].当且仅当n ≥3时,c n +1-c n <0,即c n +1< c n .。

高考数学一轮复习 第六章 数列 第1讲 数列的概念及简单表示法教案 文 新人教A版-新人教A版高三全

高考数学一轮复习 第六章 数列 第1讲 数列的概念及简单表示法教案 文 新人教A版-新人教A版高三全

第1讲数列的概念及简单表示法一、知识梳理1.数列的有关概念(1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.(2)数列的分类分类标准类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n按其他标准分类有界数列存在正数M,使|a n|≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列周期数列对n∈N*,存在正整数常数k,使a n+k=a n(3)数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析式法.2.数列的通项公式(1)数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.常用结论1.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在正整数集或其子集{1,2,3,…,n }上的函数,当自变量依次从小到大取值时所对应的一列函数值.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1. 二、习题改编1.(必修5P33A 组T4改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D .23解析:选 D.a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23. 2.(必修5P33A 组T5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =.答案:5n -4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)所有数列的第n 项都能使用通项公式表示.( ) (3)数列{a n }和集合{a 1,a 2,a 3,…,a n }是一回事.( ) (4)若数列用图象表示,则从图象上看都是一群孤立的点.( ) (5)一个确定的数列,它的通项公式只有一个.( )(6)若数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n =S n -S n -1.( )答案:(1)× (2)× (3)× (4)√ (5)× (6)× 二、易错纠偏常见误区(1)忽视数列是特殊的函数,其自变量为正整数集N *或其子集{1,2,…,n }; (2)根据S n 求a n 时忽视对n =1的验证.1.在数列-1,0,19,18,…,n -2n 2中是它的第项.解析:依题意得n -2n 2=225,解得n =10或n =52(舍). 答案:102.已知S n =2n+3,则a n =.解析:因为S n =2n+3,那么当n =1时,a 1=S 1=21+3=5;当n ≥2时,a n =S n -S n -1=2n+3-(2n -1+3)=2n -1(*).由于a 1=5不满足(*)式,所以a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2由数列的前几项求数列的通项公式(师生共研)(1)数列1,3,6,10,15,…的一个通项公式是( ) A .a n =n 2-(n -1) B .a n =n 2-1 C .a n =n (n +1)2D .a n =n (n -1)2(2)已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是.【解析】 (1)设此数列为{a n },则由题意可得a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,…仔细观察数列1,3,6,10,15,…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4.…所以第n 项为1+2+3+4+5+…+n =n (n +1)2,所以数列1,3,6,10,15,…的通项公式a n =n (n +1)2.(2)各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子数比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式可以为a n =(-1)n·2n-32n .【答案】 (1)C (2)a n =(-1)n·2n-32n解决此类问题,需抓住下面的特征: (1)各项的符号特征,通过(-1)n或(-1)n +1来调节正负项.(2)考虑对分子、分母各个击破或寻找分子、分母之间的关系. (3)相邻项(或其绝对值)的变化特征. (4)拆项、添项后的特征.(5)通过通分等方法变化后,观察是否有规律.[注意] 根据数列的前几项求其通项公式其实是利用了不完全归纳法,蕴含着“从特殊到一般”的数学思想,由不完全归纳法得出的结果不一定是准确的!1.数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =.解析:数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.答案:2n +1n 2+12.数列3,7,11,15,…的一个通项公式是.解析:因为7-3=11-7=15-11=4,即a 2n -a 2n -1=4,所以a 2n =3+(n -1)×4=4n -1,所以a n =4n -1.答案:a n =4n -1由a n 与S n 的关系求通项公式a n (师生共研)(1)(2020·某某三市联考)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1的值为( )A.12B.14C.18D .116(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a 1=,{a n }的通项公式为.【解析】 (1)因为S n =a 1(4n -1)3,a 4=32,所以S 4-S 3=255a 13-63a 13=32,所以a 1=12,故选A.(2)数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n , 当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1), 所以(2n -1)a n =2,所以a n =22n -1.当n =1时,a 1=2,上式也成立. 所以a n =22n -1.【答案】 (1)A (2)2 a n =22n -1(1)已知S n 求a n 的三个步骤 ①先利用a 1=S 1求出a 1;②用n -1替换S n 中的n 得到一个新的关系式,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;③注意检验n =1时的表达式是否可以与n ≥2的表达式合并. (2)S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. ①利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解; ②利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.1.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =.解析:当n ≥2时,a n =S n -S n -1=2n +1;当n =1时,a 1=S 1a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.答案:⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥22.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =.解析:由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,所以a 1=1,所以{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.答案:(-2)n -1由递推关系求数列的通项公式(师生共研)分别求出满足下列条件的数列的通项公式. (1)a 1=0,a n +1=a n +(2n -1)(n ∈N *); (2)a 1=1,a n +1=2n a n (n ∈N *); (3)a 1=1,a n +1=3a n +2(n ∈N *).【解】 (1)a n =a 1+(a 2-a 1)+…+(a n -a n -1)=0+1+3+…+(2n -5)+(2n -3)=(n -1)2,所以数列的通项公式为a n =(n -1)2. (2)由于a n +1a n =2n ,故a 2a 1=21,a 3a 2=22,…,a n a n -1=2n -1, 将这n -1个等式叠乘,得a n a 1=21+2+…+(n -1)=2n (n -1)2,故a n =2n (n -1)2, 所以数列的通项公式为a n =2n (n -1)2.(3)因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3,又a 1+1=2,所以a n +1=2·3n -1,所以该数列的通项公式为a n =2·3n-1-1.由递推关系求数列的通项公式的常用方法1.在数列{a n }中,若a 1=2,a n +1=a n +2n -1,则a n =.解析:a 1=2,a n +1=a n +2n -1⇒a n +1-a n =2n -1⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1,则a n =2n -2+2n -3+…+2+1+a 1=1-2n -11-2+2=2n -1+1.答案:2n -1+12.若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =. 解析:由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =nn +1·n -1n ·n -2n -1·…·34×23×1=2n +1,(*) 又a 1也满足(*)式,所以a n =2n +1. 答案:2n +1数列的函数特征(多维探究) 角度一 数列的单调性已知数列{a n }的通项公式为a n =3n +k2n ,若数列{a n }为递减数列,则实数k 的取值X 围为( )A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)【解析】 因为a n +1-a n =3n +3+k 2n +1-3n +k 2n =3-3n -k2n +1,由数列{a n }为递减数列知,对任意n ∈N *,a n +1-a n =3-3n -k 2n +1<0,所以k >3-3n 对任意n ∈N *恒成立,所以k ∈(0,+∞).故选D.【答案】 D(1)解决数列单调性问题的三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列; ②用作商比较法,根据a n +1a n(a n >0或a n <0)与1的大小关系进行判断;③结合相应函数的图象直观判断. (2)求数列最大项或最小项的方法①可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;②利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.角度二 数列的周期性等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取得最大值时的项数n 的值为( )A .5B .6C .5或6D .6或7【解析】 由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0, 因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C. 【答案】 C解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.已知数列{a n }满足a n =(n -λ)2n(n ∈N *),若{a n }是递增数列,则实数λ的取值X 围是.解析:因为数列{a n }是递增数列,所以a n +1>a n ,所以(n +1-λ)2n +1>(n -λ)2n,化为λ<n +2,对∀n ∈N *都成立.所以λ<3.答案:(-∞,3)核心素养系列13 逻辑推理——数列的通项公式逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程.主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比推理;一类是从一般到特殊的推理,推理形式主要有演绎推理.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),且a 1=1,通过计算a 2,a 3,猜想a n 等于( )A.2(n +1)2B.2n (n +1)C.12n-1D .12n -1【解析】 法一(归纳推理):因为S n =n 2a n ,所以a n +1=S n +1-S n =(n +1)2a n +1-n 2a n , 故a n +1=nn +2a n , 当n =2时,a 1+a 2=4a 2,a 1=1, 所以a 2=13.所以a 1=1=21×2,a 2=13=22×3, a 3=22+2a 2=12×13=16=23×4, a 4=33+2a 3=35×16=110=24×5, a 5=44+2a 4=23×110=115=25×6, 由此可猜想a n =2n (n +1).法二(演绎推理):因为a 1=1,S n =n 2a n ,所以n ≥2时,a n =S n -S n -1=n 2a n -(n -1)2a n -1,即(n +1)(n -1)a n =(n -1)2a n -1,所以a n a n -1=n -1n +1, 所以a n a n -1·a n -1a n -2·…·a 2a 1=n -1n +1×n -2n ×n -3n -1·…·24×13, 即a n a 1=2n (n +1),所以a n =2n (n +1).【答案】 B本题是从特殊到一般的归纳,是不完全归纳,解答此类问题的具体策略:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理.1.在数列1,2,7,10,13,…中219是这个数列的第项.解析:数列1,2,7,10,13,…,即数列1,3×1+1,3×2+1,3×3+1,3×4+1,…,所以该数列的通项公式为a n =3(n -1)+1=3n -2, 所以3n -2=219=76,所以n =26,故219是这个数列的第26项. 答案:262.已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 020等于.解析:因为a 1=1,所以a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的周期数列,所以a 2 020=a 2=0.答案:0[基础题组练]1.已知数列{a n }的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }的项 B .3只是数列{a n }的第2项 C .3只是数列{a n }的第6项 D .3是数列{a n }的第2项和第6项解析:选D.令a n =3,即n 2-8n ,得n 2-8n +12=0,解得n =2或n D.2.已知数列{a n }满足:任意m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,则a 5=( )A.132B.116C.14 D .12解析:选A.由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,所以a 5=a 3·a 2=132.3.在数列{a n }中,“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选 B.“|a n +1|>a n ”⇔a n +1>a n 或-a n +1>a n ,充分性不成立,数列{a n }为递增数列⇔|a n +1|≥a n +1>a n 成立,必要性成立,所以“|a n +1|>a n ”是“数列{a n }为递增数列”的必要不充分条件.故选B.4.已知数列{a n }满足a n +1=1-1a n(n ∈N *),且a 1=2,则( )A .a 3=-1B .a 2 019=12C .S 3=3D .S 2 019=2 019解析:选A.数列{a n }满足a 1=2,a n +1=1-1a n (n ∈N *),可得a 2=12,a 3=-1,a 4=2,a 5=12,…所以a n -3=a n ,数列的周期为3.a 2 019=a 672×3+3=a 3=-1.S 6=3,S 2 019=2 0192. 5.设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n =( ) A.13n -1B.2n (n +1)C.6(n +1)(n +2)D .5-2n 3解析:选B.由题意知,S n +na n =2, 当n ≥2时,S n -1+(n -1)a n -1=2, 所以(n +1)a n =(n -1)a n -1, 从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1, 则a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1).6.数列1,23,35,47,59,…的一个通项公式a n =.解析:由已知得,数列可写成11,23,35,…,故通项公式可以为n2n -1.答案:n2n -17.若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为. 解析:a 1·a 2·a 3·…·a n =(n +1)(n +2), 当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2),a 1·a 2·a 3·…·a n -1=n (n +1),故当n ≥2时,a n =n +2n, 所以a n =⎩⎪⎨⎪⎧6,n =1,n +2n,n ≥2,n ∈N *. 答案:a n =⎩⎪⎨⎪⎧6,n =1,n +2n,n ≥2,n ∈N *8.(2020·某某(区县)调研测试)已知数列{a n }的前n 项和为S n ,a 1=1,2S n =(n +1)a n ,则a n =.解析:由2S n =(n +1)a n 知,当n ≥2时,2S n -1=na n -1,所以2a n =2S n -2S n -1=(n +1)a n-na n -1,所以(n -1)a n =na n -1,所以当n ≥2时,a n n =a n -1n -1,所以a n n =a 11=1,所以a n =n .答案:n9.已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n+2n +1,求a n .解:(1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2×3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2×3n -1+2,n ≥2. 10.(2020·某某四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3. (1)写出该数列的前4项,并归纳出数列{a n }的通项公式; (2)证明:a n +1+1a n +1=4. 解:(1)a 1=3,a 2=15,a 3=63,a 4a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n-1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4(a n +1)a n +1=4. [综合题组练]1.(2020·某某某某第四次模拟)已知数列{a n }的通项公式为a n =2n,记数列{a n b n }的前n 项和为S n ,若S n -22n +1+1=n ,则数列{b n }的通项公式为b n =.解析:因为S n -22n +1+1=n ,所以S n =(n -1)·2n +1n ≥2时,S n -1=(n -2)2n +2,两式相减,得a n b n =n ·2n,所以b n =n ;当n =1时,a 1b 1=2,所以b 1,b n =n ,n ∈N *.故答案为n .答案:n2.(2020·某某一诊)数列{a n }满足a 1=3,a n -a n a n +1=1,A n 表示{a n }的前n 项之积,则A 2 019=.解析:由a n -a n a n +1=1,得a n +1=1-1a n,又a 1=3,则a 2=1-1a 1=23,a 3=1-1a 2=1-32=-12,a 4=1-1a 3=1-(-2)=3,则数列{a n }是周期为3的周期数列,且a 1a 2a 3=3×⎝ ⎛⎭⎪⎫23×⎝ ⎛⎭⎪⎫-12=-1,则A 2 019=(a 1a 2a 3)·(a 4a 5a 6)·…·(a 2017a 2 018a 2 019)=(-1)673=-1.答案:-13.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1;S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理a 3=3,a 4=4. (2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0, 所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .4.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值X 围. 解:(1)依题意得S n +1-S n =a n +1=S n +3n, 即S n +1=2S n +3n, 由此得S n +1-3n +1=2(S n -3n),即b n +1=2b n ,又b 1=S 1-3=a -3,因此,所求通项公式为b n =(a -3)2n -1,n ∈N *.(2)由(1)可知S n =3n+(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n+(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n-2,a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3,所以,当n ≥2时,a n +1≥a n ⇒12⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9,又a 2=a 1+3>a 1,a ≠3.所以,所求的a 的取值X 围是[-9,3)∪(3,+∞).。

届数学一轮复习第六章数列第1节数列的概念与简单表示法教学案含解析

届数学一轮复习第六章数列第1节数列的概念与简单表示法教学案含解析

第1节数列的概念与简单表示法考试要求1。

了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数。

知识梳理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。

2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式(1)通项公式:如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式。

(2)递推公式:如果已知数列{a n}的第1项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.[常用结论与微点提醒]1。

数列的最大(小)项,可以用错误!(n≥2,n∈N*)错误!求,也可以转化为函数的最值问题或利用数形结合求解.2.数列是按一定“次序"排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数"的排列顺序有关。

3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号。

诊断自测1。

判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.()(2)1,1,1,1,…,不能构成一个数列.()(3)任何一个数列不是递增数列,就是递减数列。

()(4)如果数列{a n}的前n项和为S n,则对任意n∈N*,都有a n+1=S n+1-S n。

()解析(1)数列:1,2,3和数列:3,2,1是不同的数列.(2)数列中的数是可以重复的,可以构成数列.(3)数列可以是常数列或摆动数列.答案(1)×(2)×(3)×(4)√2。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案数列是指由一系列按照特定规律排列的数所组成的序列。

数列的概念和简单表示法是数学中重要的概念之一。

通过学习数列的概念和简单表示法,我们可以更好地理解数学中的序列和数的变化规律,并应用到解决实际问题中。

一、数列的概念1. 定义:数列是指由一系列按照特定规律排列的数所组成的序列。

2. 表示方法:数列可以用各种方法进行表示,常用的有列表法和通项公式法。

- 列表法:将数列的每一项按照规律列成一个列表,例如:1, 3, 5, 7, 9, ...- 通项公式法:用一个公式表示数列的第n项,例如:an =2n - 1。

3. 数列的性质:数列可以有不同的性质,例如有界性、单调性、周期性等。

- 有界性:数列中的数有上下界,即存在最大值和最小值。

- 单调性:数列中的数可以是递增的,也可以是递减的。

- 周期性:数列的数按照一定规律重复出现。

二、数列的简单表示法1. 递推公式:递推公式是指用数列的前几项来表示数列的后续项的公式。

- 递推公式的一般形式为:an+1 = f(an),其中f为确定的函数关系。

- 递推公式的例子:an+1 = an + 2,即后一项等于前一项加2。

2. 通项公式:通项公式是指用n来表示数列的第n项的公式。

- 对于等差数列,通项公式的一般形式为:an = a1 + (n - 1)d,其中a1为首项,d为公差。

- 对于等比数列,通项公式的一般形式为:an = a1 * r^(n-1),其中a1为首项,r为公比。

- 对于其他特殊数列,也可以通过观察规律,推导出通项公式。

三、教学设计建议1. 引导学生理解数列的概念:通过列举生活中的数列实例,如自然数序列、偶数序列等,引导学生理解数列的概念。

2. 举例说明不同数列的特点:通过具体的数列例子,如等差数列和等比数列,说明数列的有界性、单调性、周期性等特点。

3. 教授数列的表示方法:通过具体的数列例子,引导学生掌握列表法和通项公式法表示数列的方法。

数列的概念与简单表示教案

数列的概念与简单表示教案

数列的概念与简单表示教案教案标题:数列的概念与简单表示教学目标:1. 了解数列的概念和基本特征;2. 能够通过简单的表示方法表达数列;3. 能够识别并分析数列中的规律。

教学重点:1. 数列的概念和基本特征;2. 数列的简单表示方法;3. 数列中的规律分析。

教学准备:1. 教师准备:投影仪、教材、白板、彩色粉笔;2. 学生准备:教材、笔、笔记本。

教学过程:一、导入(5分钟)1. 利用投影仪或白板展示一些有规律的数字,例如:1, 3, 5, 7, 9;2. 引导学生思考这些数字之间是否存在某种规律,并让学生尝试猜测下一个数字是多少。

二、概念讲解(10分钟)1. 介绍数列的概念:数列是按照一定规律排列的一组数字;2. 解释数列中的基本特征:首项、公差、项数;3. 通过示例解释数列的表示方法,包括通项公式和递推公式。

三、示例分析(15分钟)1. 给出一个数列的示例,例如:2, 4, 6, 8, 10;2. 引导学生找出该数列的首项、公差,并利用递推公式推算下一个数字;3. 让学生尝试用通项公式表示该数列。

四、练习与巩固(15分钟)1. 分发练习题,让学生独立完成,题目包括找出数列的首项、公差,利用递推公式求下一个数字,以及用通项公式表示数列;2. 对学生的答案进行讲评,纠正他们可能存在的错误,并解释正确答案的推导过程。

五、拓展与应用(10分钟)1. 引导学生思考数列在实际生活中的应用,例如:等差数列在计算机存储空间的分配中的应用;2. 提供一些拓展题目,让学生进一步巩固数列的概念和表示方法。

六、总结与反思(5分钟)1. 总结数列的概念和基本特征;2. 让学生思考本节课学到了什么,有哪些困惑或疑问;3. 解答学生的问题,并鼓励他们在课后进一步思考、复习和巩固所学内容。

教学延伸:1. 鼓励学生通过互动讨论、小组合作等方式,进一步探索数列的特性和应用;2. 提供更多的数列练习题,以加深学生对数列概念的理解和应用能力。

高三数学复习教案设计:《数列的概念与简单表示法》

高三数学复习教案设计:《数列的概念与简单表示法》

高三数学复习教案设计:《数列的概念与简单
表示法》
智慧本身就隐藏在我们的脑海中,消除惰性,敢于超越自己的人,会使自己的智慧充分显现,使自己获得最后的成功。

一、教学目标
理解数列的概念,掌握数列的运用
教学重难点
理解数列的概念,掌握数列的运用
二、教学过程
1、数列:按照一定次序排列的一列数(与顺序有关)
2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

(通项公式不唯一)
3、数列的表示:
(1)列举法:如1,3,5,7,9……;
(2)图解法:由(n,an)点构成;
(3)解析法:用通项公式表示,如an=2n+1
(4)递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1
4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列
5、任意数列{an}的前n项和的性质
[点评]数列问题转化为解方程和不等式问题,注意正整数解
例4、有一数列{an},a1=a,由递推公式an+1=,写出这个数列的前4项,并根据前4项观察规律,写该数列的一个通项公式。

详见优化设计P37典例剖析之例2,解答过程略。

(理科班学生可要求通项公式的推导:倒数法)
变式:在数列{an},a1=1,an+1=,求an。

详见优化设计P37典例剖析之例1,解答过程略。

[点评]对递推公式,要求写出前几项,并猜想其通项公式,此外了解常用的处理办法,如:迭加、迭代、迭乘及变形后结合等差(比)数列公式,也很必要。

高考数学一轮复习第五章数列5.1数列的概念与简单表示法教案

高考数学一轮复习第五章数列5.1数列的概念与简单表示法教案
列表法
列表格表示n与an的对应关系
图象法
把点(n,an)画在平面直角坐标系中
公式法
通项公式
把数列的通项使用公式表示的方法
递推公式
使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an,an-1)等表示数列的方法
知识点4 数列与函数的关系
从函数观点看,数列可以看作定义域为正整数集N*(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.
考点分项突破
考点一:由数列的前几项归纳数列的通项公式
1.数列1,3,6,10,…的一个通项公式是( )
A.an=n2-(n-1)
B.an=n2-1
C.an=
D.an=
【解析】 观察数列1,3,6,10,…可以发现
1=1,
3=1+2,
6=1+2+3,
10=1+2+3+4,

第n项为1+2+3+4+…+n= .
教师引导学生及时总结,以帮助学生形成完整的认知结构。
引导学生对所学的知识进行小结,由利于学生对已有的知识结构进行编码处理,加强理解记忆,提高解题技能。
环节三:
课堂小结:
1.数列的概念和几种简单的表示方法(列表、图象、公式法).
2.数列是自变量为正整数的一类特殊函数.
学生回顾,总结.
引导学生对学习过程进行反思,为在今后的学习中,进行有效调控打下良好的基础。
【解题提示】依照 递减数列的定义,得 ,再由指数 函数性质得 结合等差数列的定义即可解决问题.【解析】选 D.
由于数列 为递减数列,得 ,再由指数函数性质得 ,
由等差数列的公差为 知, ,所以
2.(2014·新课标全国卷Ⅱ高考文科数学·T16)数列{an}满足an+1= ,a8=2,

高考数学一轮复习教案(含答案) 第5章 第1节 数列的概念与简单表示法

高考数学一轮复习教案(含答案) 第5章 第1节 数列的概念与简单表示法

第5章数列第一节数列的概念与简单表示法[考纲传真] 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类数列有三种表示法,它们分别是列表法、图象法和通项公式法.4.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.数列的递推公式如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.6.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n , 则a n =⎩⎨⎧S 1(n =1),S n -S n -1(n ≥2).[常用结论]1.数列{a n }是递增数列⇔a n +1>a n 恒成立. 2.数列{a n }是递减数列⇔a n +1<a n 恒成立.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)所有数列的第n 项都能使用公式表达. ( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(3)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) (4)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )[答案] (1)× (2)√ (3)√ (4)√2.(教材改编)数列-1,12,-13,14,-15,…的一个通项公式为( ) A .a n =±1n B .a n =(-1)n ·1n C .a n =(-1)n +11nD .a n =1nB [由a 1=-1,代入检验可知选B.]3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64 A [当n =8时,a 8=S 8-S 7=82-72=15.]4.把3,6,10,15,21,…这些数叫做三角形数,这是因为以这些数目的点可以排成一个正三角形(如图所示).则第6个三角形数是( )A .27B .28C .29D .30 B [由题图可知,第6个三角形数是1+2+3+4+5+6+7=28.] 5.(教材改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5=( )A.32B.53C.85D.23D [a 2=1+1a 1=2,a 3=1+-1a 2=1-12=12,a 4=1+1a 3=1+2=3,a 5=1+-1a4=1-13=23.]1.数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +1(n ∈N *) B .a n =n -12n +1(n ∈N *) C .a n =2(n -1)2n -1(n ∈N *)D .a n =2n2n +1(n ∈N *) C [注意到分子0,2,4,6都是偶数,对照选项排除即可.]2.数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =__________.2n +1n 2+1 [数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.]3.写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,-34,78,-1516,3132,…; (3)3,33,333,3 333,…; (4)-1,1,-2,2,-3,3….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)数列中各项的符号可通过(-1)n +1表示.每一项绝对值的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =(-1)n +12n-12n .(3)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).(4)数列的奇数项为-1,-2,-3,…可用-n +12表示, 数列的偶数项为1,2,3,…可用n2表示. 因此a n =⎩⎪⎨⎪⎧-n +12(n 为奇数),n2(n 为偶数).【例1】 n n {a n }的通项公式a n =________.(2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________. (1)⎩⎨⎧2,n =1,6n -5,n ≥2 (2)(-2)n -1 [(1)当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎨⎧2,n =1,6n -5,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13, 两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2.又n =1时,S 1=a 1=23a 1+13,a 1=1, ∴a n =(-2)n -1.](1)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________.(2)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.(1)⎩⎨⎧4,n =1,2·3n -1,n ≥2 (2)-2n -1 [(1)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.(2)依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,a n =-2n -1.]►考法1 形如a n +1=a n +f (n ),求a n【例2】 在数列{a n }中,a 1=2,a n +1=a n +3n +2(n ∈N *),求数列{a n }的通项公式.[解] (1)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =n (3n +1)2(n ≥2). 当n =1时,a 1=12×(3×1+1)=2符合公式, ∴a n =32n 2+n 2.►考法2 形如a n +1=a n f (n ),求a n【例3】 已知数列{a n }满足a 1=1,a n +1=2n a n ,求数列{a n }的通项公式. [解] ∵a n +1=2n a n ,∴a n +1a n=2n ,∴a na n -1=2n -1(n ≥2),∴a n=a na n-1·a n-1a n-2·…·a2a1·a1=2n-1·2n-2·…·2·1=21+2+3+…+(n-1)=2n(n-1)2.又a1=1适合上式,故a n=.►考法3形如a n+1=Aa n+B(A≠0且A≠1),求a n.【例4】已知数列{a n}满足a1=1,a n+1=3a n+2,求数列{a n}的通项公式.[解]∵a n+1=3a n+2,∴a n+1+1=3(a n+1),又a1=1,∴a1+1=2,故数列{a n+1}是首项为2,公比为3的等比数列,∴a n+1=2·3n-1,因此a n=2·3n-1-1.··(3)已知且a=方法构造新数列求解.n(1)a1=1,a n+1=a n+2n;(2)a1=12,a n=n-1n+1a n-1(n≥2);(3)a1=1,a n+1=2a n+3;(4)a 1=1,a n +1=2a na n +2.[解] (1)由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+2+1=1-2n 1-2=2n-1.(2)因为a n =n -1n +1a n -1(n ≥2), 所以当n ≥2时,a n a n -1=n -1n +1, 所以a n a n -1=n -1n +1,a n -1a n -2=n -2n ,…,a 3a 2=24,a 2a 1=13, 以上n -1个式子相乘得a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n -1n +1·n -2n ·…·24·13, 即a n a 1=1n +1×1n ×2×1,所以a n =1n (n +1).当n =1时,a 1=11×2=12,与已知a 1=12相符,所以数列{a n }的通项公式为a n =1n (n +1).(3)由a n +1=2a n +3得a n +1+3=2(a n +3). 又a 1=1,∴a 1+3=4.故数列{a n +3}是首项为4,公比为2的等比数列, ∴a n +3=4·2n -1=2n +1,∴a n =2n +1-3. (4)因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n =12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12.所以a n =2n +1(n ∈N *).1.(2014·全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.12 [∵a n +1=11-a n , ∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.]2.(2015·全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.-1n [∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n =-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n .]3.(2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.[解] (1)由题意可得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因为{a n}的各项都为正数,所以a n+1a n=12.故{a n}是首项为1,公比为12的等比数列,因此a n=12n-1.。

高三 一轮复习 2数列的概念及简单的表示法 教案

高三 一轮复习 2数列的概念及简单的表示法 教案

数列的概念与简单表示法1.数列的定义、分类与通项公式 (1)数列的定义:①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类:分类标准 类型 满足条件 项数有穷数列 项数有限 无穷数列 项数无限项与项间的大小关系递增数列a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列a n +1=a n(3)数列的通项公式:如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. [试一试]1.已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为________.2.已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 4·a 3=________.1.辨明数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列. 2.明确a n 与S n 的关系a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1(n ≥2).[练一练]1.(2013·南京、淮安二模)已知数列{a n }的通项为a n =7n +2,数列{b n }的通项为b n =n 2.若将数列{a n },{b n }中相同的项按从小到大的顺序排列后记作数列{c n },则c 9的值是________.2.(2014·苏锡常镇调研)设u (n )表示正整数n 的个位数,a n =u (n 2)-u (n ),则数列{a n }的前2 014项和等于________.考点一由数列的前几项求数列的通项公式1.(2014·南通二模)将正偶数按如下所示的规律排列:2 4 6 8 10 12 14 16 18 20 …则第n (n ≥4)行从左向右的第4个数为________.2.根据数列的前几项,写出各数列的一个通项公式:(1)4,6,8,10,…;(2)-11×2,12×3,-13×4,14×5,…;(3)a,b,a,b,a,b,…(其中a,b为实数);(4)9,99,999,9 999,….[类题通法]用观察法求数列的通项公式的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n或(-1)n+1来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.考点二由an与S n的关系求通项a n[典例]已知下面数列{a n}的前n项和S n,求{a n}的通项公式:(1)S n=2n2-3n;(2)S n=3n+b.[类题通法]已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式; (3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写. [针对训练]已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *,求{a n }的通项公式.考点三由递推关系式求数列的通项公式递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,归纳起来常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 角度一 形如a n +1=a n f (n ),求a n1.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.[课堂练通考点]1.(2014·苏北四市质检)在数列{a n }中,已知a 1=2,a 2=3,当n ≥2时,a n +1是a n ·a n -1的个位数,则a 2014=________.2.(2013·盐城三调)已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6, x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________.3.已知数列{a n }满足a st =a s a t (s ,t ∈N *),且a 2=2,则a 8=________.4.已知数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }前n 项的和,则S 2 013=____________.5.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式.。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案一、教学目标知识与技能:1. 理解数列的概念,掌握数列的表示方法。

2. 学会用数列表示一些常见数列,并能运用数列的表示方法解决实际问题。

过程与方法:1. 通过观察、分析、归纳等方法,引导学生发现数列的规律。

2. 培养学生运用数列表示数的能力,提高学生的数学思维能力。

情感态度与价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性。

2. 培养学生团队协作、交流分享的良好学习习惯。

二、教学重点与难点重点:1. 数列的概念及其表示方法。

2. 运用数列表示一些常见数列。

难点:1. 数列的规律的发现与运用。

2. 数列表示方法的灵活运用。

三、教学方法情境教学法、引导发现法、讨论法相结合。

四、教学准备教师准备数列的相关实例和练习题,制作PPT。

学生准备笔记本、笔。

五、教学过程1. 导入新课教师通过PPT展示一些生活中的数列实例,如阶梯价格、比赛排名等,引导学生观察并思考这些数列有什么共同特点。

2. 自主学习学生通过阅读教材,理解数列的概念,掌握数列的表示方法。

3. 课堂讲解教师讲解数列的概念,阐述数列的表示方法,并结合实例进行讲解。

4. 课堂练习5. 拓展提高教师出示一些数列题目,学生独立完成,并交流解题思路。

6. 课堂小结7. 课后作业教师布置相关数列的练习题,让学生巩固所学知识。

8. 教学反思教师在课后对自己的教学进行反思,看是否达到教学目标,学生是否掌握了数列的概念和表示方法。

9. 学生评价学生对自己的学习进行评价,看自己在数列学习方面的进步。

10. 教学改进教师根据教学反思和学生的评价,调整教学方法,为下次教学做好准备。

六、教学内容与要求教学内容:1. 数列的通项公式及其应用。

2. 等差数列与等比数列的概念及其性质。

教学要求:1. 学生能理解数列的通项公式的含义,并能运用通项公式解决实际问题。

2. 学生能掌握等差数列和等比数列的概念及其性质,并能运用这些性质解决相关问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 【知识拓展】1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( × )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (3)1,1,1,1,…,不能构成一个数列.( × )(4)任何一个数列不是递增数列,就是递减数列.( × )(5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ )1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图所示).则第7个三角形数是( ) A .27 B .28 C .29 D .30答案 B解析 由图可知,第7个三角形数是1+2+3+4+5+6+7=28.2.已知数列11×2,12×3,13×4,…,1n (n +1),…,下列各数中是此数列中的项的是( )A.135B.142C.148D.154 答案 B3.(教材改编)在数列{a n }中,a 1=1,a n =1+(-1)n a n -1(n ≥2),则a 5等于( )A.32B.53 C.85 D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.4.数列{a n }中,a n =-n 2+11n ,则此数列最大项的值是________. 答案 30解析 a n =-n 2+11n =-(n -112)2+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 5.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.题型一 由数列的前几项求数列的通项公式例1 (1)(2016·太原模拟)数列1,3,6,10,…的一个通项公式是( ) A .a n =n 2-(n -1) B .a n =n 2-1 C .a n =n (n +1)2D .a n =n (n -1)2(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)C (2)2n +1n 2+1解析 (1)观察数列1,3,6,10,…可以发现1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,…第n 项为1+2+3+4+…+n =n (n +1)2.∴a n =n (n +1)2.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 解 (1)数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5).(2)数列变为89⎝⎛⎭⎫1-110,89⎝⎛⎭⎫1-1102,89⎝⎛⎭⎫1-1103,…, 故a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的绝对值的分子分别比分母小3. 因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n2n -32n.题型二 由a n 与S n 的关系求通项公式例2 (1)(2017·南昌月考)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.(2)已知下列数列{a n }的前n 项和S n ,求{a n }的通项公式. ①S n =2n 2-3n ;②S n =3n +b . 解 ①a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,∴a n =4n -5. ②a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b ) =2·3n -1.当b =-1时,a 1适合此等式; 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.思维升华 已知S n ,求a n 的步骤(1)当n =1时,a 1=S 1;(2)当n ≥2时,a n =S n -S n -1;(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式.(1)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.(2)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n 等于( ) A .2n -1 B .(32)n -1C .(32)nD.12n -1 答案 (1)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 (2)B解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.(2)由a n +1=S n +1-S n ,得12S n =S n +1-S n ,即S n +1=32S n (n ≥1),又S 1=a 1=1,所以数列{S n }是首项为1,公比为32的等比数列,所以S n =(32)n -1,故选B.题型三 由数列的递推关系求通项公式例3 根据下列条件,确定数列{a n }的通项公式.(1)a 1=2,a n +1=a n +ln(1+1n );(2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=3a n +2. 解 (1)∵a n +1=a n +ln(1+1n),∴a n -a n -1=ln(1+1n -1)=ln nn -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lnn n -1+ln n -1n -2+…+ln 32+ln 2+2=2+ln(n n -1.n -1n -2 (3)2·2)=2+ln n (n ≥2).又a 1=2适合上式,故a n =2+ln n (n ∈N *). (2)∵a n +1=2n a n ,∴a n a n -1=2n -1 (n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1.思维升华 已知数列的递推关系求通项公式的典型方法(1)当出现a n =a n -1+m 时,构造等差数列;(2)当出现a n =xa n -1+y 时,构造等比数列;(3)当出现a n =a n -1+f (n )时,用累加法求解;(4)当出现a na n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1n·a n -1(n ≥2且n ∈N *),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5等于( ) A .-16 B .16 C .31 D .32 答案 (1)1n(2)B解析 (1)∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1,∴a n =S n -S n -1=2a n -2a n -1,∴a n =2a n -1. ∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16. 题型四 数列的性质 命题点1 数列的单调性例4 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列答案 B解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列.命题点2 数列的周期性例5 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=____________________________.答案 12解析 ∵a n +1=11-a n,∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2.而a 2=11-a 1,∴a 1=12.命题点3 数列的最值例6 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060答案 C解析 令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.(1)(2016·哈尔滨模拟)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 015项为________.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0答案 (1)25(2)D解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 015=a 503×4+3=a 3=25.(2)∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.12.解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·(1011)n ,则此数列的最大项是第________项.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是__________.思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析. 解析 (1)∵a n +1-a n =(n +2)(1011)n +1-(n +1)(1011)n=(1011)n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9、10项. (2)由a n +1>a n 知该数列是一个递增数列, 又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. 答案 (1)9或10 (2)(-3,+∞)1.数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021.2.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项和第6项 答案 D解析 令a n =3,即n 2-8n +15=3,整理得n 2-8n +12=0,解得n =2或n =6. 3.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A .2n -1 B .(n +1n )n -1C .n 2D .n答案 D解析 ∵a n =n (a n +1-a n ),∴a n +1a n =n +1n, ∴a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n -1·n -1n -2·n -2n -3·…·32·21·1=n .4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( )A .3B .2 C.12 D.23答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12,a 5=a 4a 3=13,a 6=a 5a 4=23,a 7=a 6a 5=2,a 8=a 7a 6=3,∴数列{a n }具有周期性,T =6, ∴a 2 018=a 336×6+2=a 2=3.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,若S n 是数列{a n }的前n 项和,则S 21为( )A .5B.72C.92D.132 答案 B解析 ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.故选B. 6.(2016·开封一模)已知函数y =f (x )的定义域为R .当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f (-2-a n ) (n ∈N *),则a 2 015的值为( ) A .4 029B .3 029C .2 249D .2 209 答案 A解析 根据题意,不妨设f (x )=(12)x ,则a 1=f (0)=1,∵f (a n +1)=1f (-2-a n ),∴a n +1=a n +2,∴数列{a n }是以1为首项,2为公差的等差数列,∴a n =2n -1,∴a 2 015=4 029.7.数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 7=________.答案 1解析 由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________.答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1), 即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.9.已知数列{a n }的通项公式a n =(n +2)·(67)n ,则数列{a n }的项取最大项时,n=________. 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,即⎩⎨⎧ (n +2)·(67)n ≥(n +1)·(67)n -1,(n +2)·(67)n ≥(n +3)·(67)n +1,解得⎩⎪⎨⎪⎧n ≤5,n ≥4, 即4≤n ≤5, 又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. 10.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n ∈N *),则该数列的前2 019项的乘积a 1·a 2·a 3·…·a 2 019=________. 答案 3解析 由题意可得,a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1, ∴数列{a n }是以4为周期的数列,而2 019=4×504+3,a 1a 2a 3a 4=1,∴前2 019项的乘积为1504·a 1a 2a 3=3.11.已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .解 (1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2×3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2×3n -1+2,n ≥2.12.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解 (1)由S n =12a 2n +12a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4.(2)S n =a n 2+12a 2n ,① 当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列,故a n =n .*13.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.第六章数列第1讲数列的概念与简单表示法一、选择题1.数列{a n}:1,-58,715,-924,…的一个通项公式是( )A.a n=(-1)n+12n-1n2+n(n∈N+)B.a n=(-1)n-12n+1n3+3n(n∈N+)C.a n=(-1)n+12n-1n2+2n(n∈N+)D.a n=(-1)n-12n+1n2+2n(n∈N+)解析观察数列{a n}各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案 D2.把1,3,6,10,15,21这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图所示).则第七个三角形数是( ).A.27 B.28 C.29 D.30解析观察三角形数的增长规律,可以发现每一项与它的前一项多的点数正好是本身的序号,所以根据这个规律计算即可.根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28.答案 B3.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5=().A.-16 B.16 C.31 D.32解析 当n =1时,S 1=a 1=2a 1-1,∴a 1=1,又S n -1=2a n -1-1(n ≥2),∴S n -S n -1=a n =2(a n -a n -1).∴a n a n -1=2.∴a n =1×2n -1,∴a 5=24=16. 答案 B4.将石子摆成如图的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 014项与5的差即a 2 014-5=( ).A .2 020×2 012B .2 020×2 013C .1 010×2 012D .1 010×2 013解析 结合图形可知,该数列的第n 项a n =2+3+4+…+(n +2).所以a 2 014-5=4+5+…+2 016=2 013×1 010.故选D.答案 D5.在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是 ( ).A .103 B.8658 C.8258D .108 解析 根据题意并结合二次函数的性质可得:a n =-2n 2+29n +3=-2⎝⎛⎭⎪⎫n 2-292n +3=-2⎝⎛⎭⎪⎫n -2942+3+8418, ∴n =7时,a n 取得最大值,最大项a 7的值为108.答案 D6.定义运算“*”,对任意a ,b ∈R ,满足①a *b =b *a ;②a *0=a ;(3)(a *b )*c =c *(ab )+(a *c )+(c *b ).设数列{a n }的通项为a n =n *1n *0,则数列{a n }为( ).A .等差数列B .等比数列C .递增数列D .递减数列解析 由题意知a n =⎝ ⎛⎭⎪⎫n *1n *0=0]n ·1n +(n *0)+⎝ ⎛⎭⎪⎫0]1n )=1+n +1n ,显然数列{a n } 既不是等差数列也不是等比数列;又函数y =x +1x 在[1,+∞)上为增函数,所以数列{a n }为递增数列.答案 C二、填空题7.在函数f (x )=x 中,令x =1,2,3,…,得到一个数列,则这个数列的前5项是________.答案 1,2,3,2, 58.已知数列{a n }满足a 1=1,且a n =n (a n +1-a n )(n ∈N *),则a 2=________;a n =________.解析 由a n =n (a n +1-a n ),可得a n +1a n=n +1n , 则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n n -1×n -1n -2×n -2n -3×…×21×1=n ,∴a 2=2,a n =n . 答案 2 n9.已知f (x )为偶函数,f (2+x )=f (2-x ),当-2≤x ≤0时,f (x )=2x ,若n ∈N *,a n =f (n ),则a 2 013=________.解析 ∵f (x )为偶函数,∴f (x )=f (-x ),∴f (x +2)=f (2-x )=f (x -2).故f (x )周期为4,∴a 2 013=f (2 013)=f (1)=f (-1)=2-1=12.答案 1210.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 的值为________.解析 ∵S n =n 2-9n ,∴n ≥2时,a n =S n -S n -1=2n -10,a 1=S 1=-8适合上式,∴a n =2n -10(n ∈N *),∴5<2k -10<8,得7.5<k <9.∴k =8.答案 8三、解答题11.数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16,即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍), ∴从第7项起各项都是正数.12.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧ 12,n =1,-12n (n -1),n ≥2.13.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2, 当n =1时,a 1=a 不适合上式,故a n =⎩⎨⎧ a ,n =1,2×3n -1+(a -3)2n -2,n ≥2. a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).14.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数 列{b m }的前m 项和S m .解 (1)因为{a n }是一个等差数列,所以a 3+a 4+a 5=3a 4=84,即a 4=28.设数列{a n }的公差为d ,则5d =a 9-a 4=73-28=45,故d =9. 由a 4=a 1+3d 得28=a 1+3×9,即a 1=1. 所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *).(2)对m ∈N *,若9m <a n <92m ,则9m +8<9n <92m +8,因此9m -1+1≤n ≤92m -1, 故得b m =92m -1-9m -1.于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1) =9×(1-81m )1-81-1-9m1-9=92m +1-10×9m +180.。

相关文档
最新文档