南师大概率论与数理统计2015期末试卷
2015年概率论考试题答案
2005级建筑工程(本)自考班 概率统计期末考试题(A 卷)参考答案一、填空 1. ABBC AC 或 ABC ABC ABC ABC2. 出现的点数恰为53. r p -A 与B 互斥∴ ()()()P A B P A P B =+ 则 ()()()P B P A B P A r p =-=-4.21 ()22~21124()114412X e EX DX EX DX EX ∴===+=+=,则5. 0.25由题设,可得X sin 的概率分布为{}sin 00.250.250.5P X ==+={}5.021sin =⎭⎬⎫⎩⎨⎧===πX P X P则 ()sin 0.5E X =,()sin 0.50.50.25D X =⨯=二、单项选择 1.D 2. A 3. A利用集合的运算性质可得. 4.DA 与B 互斥()0P AB ∴=故 ()()()()P A B P A P AB P A -=-= 5.BB A ⊂ AB B ∴=故 ()()P AB P B = 6. (C )由已知X 服从二项分布(,)B n p ,则()1DX np p =- 又由方差的性质知,(21)4(1)D X np p -=-7. (B )()04X N 服从,04EX DX ∴==,于是 ()222E X X EX EX -=-⎡⎤⎣⎦()24DX EX EX =+-=28. (A ) 由正态分布密度的定义,有 22()2()()x p x x μσ--=-∞<<+∞24()()x x x ϕ--∞<<+∞⇒由 22242σσ=⇒=9. (D )X EX DX λ==若服从泊松分布,则∴如果EX DX ≠时,只能选择泊松分布. 10. (D )∵ X 为服从正态分布N (-1, 2), EX = -1 ∴ E (2X - 1) = -3三、计算与应用题 1. 解:设 A 表示“取到的两球颜色不同”,则1153A n C C =而样本点总数28C n =故 ()1153281528A C C n P A n C ===2. 解:设 A 表示“能把门锁打开”,则112373A n C C C =+,而210C n = 故 ()1123732108A 15A C C C n P n C +=== 3. 解:设 A 表示“有4个人的生日在同一月份”,则21124611C C n A =而样本点总数为612=n故 412612611()0.007312A C C n P A n === 4. 解:设 A 表示“至少取到一个次品”,因其较复杂,考虑逆事件A =“没有取到次品”则 A 包含的样本点数为A n 346C =。
04183概率论与数理统计(经管类)2015年真题2套及标准答案
全国高等教育自学考试概率论与数理统计(经管类)2015年10月真题(课程代码:04183)一、单项选择题(本大题共10小题,每小题2分,共20分)1.设事件A 与B 互不相容,且P(A)=0.4,P(B)=0.2,则P(A∪B)=( )A.0B.0.2C.0.4D.0.62.设随机变量X ~B(3,0.3),则p={X-2}=( ) A.0.189 B.0.21 C.0.441 D.0.73.设随机变量X 的概率密度为( )=⎩⎨⎧≤≤=a x ax x f ,则常数其他,,0,10,)(2 A.0 B.31 C. D.3214.设随机变量X 的分布律为( ){}==-12.06.02.01012X P P X ,则 A.0.2 B.0.4C.0.6D.0.85.设二维随机变量(x,y)的分布律为( ){}==11.02.01.013.02.01.00210\X P YX 则 A.0.1 B.0.2C.0.3D.0.46.设随机变量X ~N(3,),则E(2X+2)=( )22 A.3 B.6 C.9 D.157.设随机变量X 服从参数为3的泊松分布,Y 服从参数为的指数分布,且X,Y51互相独立,则D(X-2Y+1)=( ) A.23 B.28C.103D.1048.已知X 与Y 的协方差Cov (X,Y )=,则Cov (-2X,Y )=( )21- A. B.021- C. D.1219.设为总体X 的一个样本,且为样本均值,)2(,...,,21>n x x x n ,未知)()(μμ=X E x 则的无偏估计为( )μ A. B.x n xC. D.x n )1(-x n )1(1-10.设a 是假设检验中犯第一类错误的概率,为原假设,以下概率为a 的是( )0H A. B.{}不真接受00|H H P {}真拒绝00|H H P C. D.{}不真拒绝00|H H P {}真接受00|H H P 二、填空题(本大题共15小题,每小题2分,共30分)11.袋中有编号为0,1,2,3,4的5个球,从袋中任取一球,取后放回;再从袋中任取一球,则取到两个0号球的概率为_____.12.设A,B 为随机事件,则事件“A,B 至少有一个发生”可由A,B 表示为_____.13.设事件A,B 相互独立,且P(A)=0.3,P(B)=0.4,则=_____.)(B A P 14.设X 表示某射手在一次射击命中目标的次数,该射手的命中率为0.9,则P{x=0}=_____.15.设随机变量X 服从参数为1的指数分布,则P{X >2}=_____.16.设二维随机变量(X,Y)的分布律为则c=_____.cYX 2561256259010\17.设二维随机变量(X,Y)的分布函数为F(x,y),则P{X≤0,Y≤0}用F(x,y)表示为_____.18.设二维随机变量(X,Y)服从区域D:-1≤x≤2,0≤y≤2的均匀分布,则(X,Y)概率密度f(x,y)在D 上的表达式为_____.19.设X 在区间[1,4]上服从均匀分布,则E(X)_____.20.设,则D(X)=_____.⎪⎭⎫⎝⎛515~B ,X 21.设随机变量X 与Y 的协方差Cov(X,Y)=,E(X)=E(Y)=1,则E(XY)=_____.21-22.设二维随机变量(X,Y)服从区域D:0≤x≤4,0≤y≤4上的分布,则____.=+)(22Y X E 23.设总体X ~N(0,1),为来自总体X 的一个样本,且123x x x ,,,则n=______.2222123~()x x x n χ++24.设X ~N(0,1),Y ~(10),且X 与Y 互相独立,则_____.2X =10/Y X25.设某总体X 的样本为_____.=⎪⎭⎫⎝⎛=∑-n i l n x n D X D x x x 12211,)(,,...,,则σ三、计算题(本大题共2小题,每小题8分,共16分)26.已知甲袋中有3个白球、2个红球;乙袋中有1个白球、2个白球,现从甲袋中任取一球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
2015-2016学年第二学期数理统计期末考试原卷及标准答案
XX师范大学2015–2016学年第二学期
期末考试试卷(B卷)参考答案
课程名称数理统计课程编号 XXXXXXX 任课教师
题型选择题填空题计算题证明题总分
分值15 15 50 20 100
得分
得分评阅人
一、:选择题(共5题,每题3分,共15 分)
1、样本取自正态分布总体,已知,但= 未知,则下列随机变量中不能作为统计量的是( C )
A. ;
B. ;
C. ;
D.
2、设总体,为其子样,,
,则有( B )
A.是2的矩估计量B.是2的极大似然估计
量 C.是2的最优无偏估计量D.是的优效估计量
3、在假设检验中,犯第二类错误概率的意义是( C )
A. 原假设H成立,经检验否定H的概率
00
B. 原假设H成立,经检验不否定H的概率
00
C. 备择假设成立,经检验否定的概率
D. 备择假设
H成立,经检验不否定的概率
1
4、设为正态总体的一个样本,表示样本均值,则的置信度为的
置信区间为( C )
A. B.
C. D.
5、关于最小二乘法估计量的性质,下面说法不正确的是( B )
A. 是的线性无偏估计量
B. 不是一个统计量
C. 是的极大似然估计量
D. 在的线性估计量中最优。
《概率论与数理统计》期末考试试题及答案
专业、班级:姓名:学号:
题号
一
二
三
四
五
六
七
八
九
十
十一
十二
总成绩
得分
一、单项选择题(每题3分共18分)
1.D 2.A 3.B 4.A5.A6.B
(1)
(2)设随机变量X其概率分布为 X -1 0 1 2
P 0.2 0.3 0.1 0.4
则 ( )。
(A)0.6(B)1(C)0 (D)
(3)
设事件 与 同时发生必导致事件 发生,则下列结论正确的是()
(A) (B)
(C) (D)
(4)
(5)设 为正态总体 的一个简单随机样本,其中
未知,则()是一个统计量。
(A) (B)
(C) (D)
(6)设样本 来自总体 未知。统计假设
为 则所用统计量为()
(A) (B)
(C) (D)
2、填空题(每空3分共15分)
解:因为 ,所以
(1)根据边缘概率与联合概率之间的关系得出
-1 0 1
0
1
0
0
0
………….4分
(2)因为
所以与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
解:用 表示第 户居民的用电量,则
………2分
则1000户居民的用电量为 ,由独立同分布中心极限定理
………3分
= ………4分
……….6分
概率论与数理统计期末试卷及答案(最新8)
2016-2017学年第二学期期末考试课程试卷(A )校察看,直至开除学籍处分! 一、 选择题(每题3分,共15分)1. 设事件1A 与2A 同时发生必导致事件A 发生,则下列结论正确的是( B ). A .)()(21A A P A P = B. 1)()()(21-+≥A P A P A P C. )()(21A A P A P = D. 1)()()(21-+≤A P A P A P2.假设连续型随机变量X 的分布函数为()F x ,密度函数为()f x .若X 与-X 有相同的分布函数,则下列各式中正确的是( C ).A .()F x =()F x -B .()F x =()F x --C .()f x =()f x -D .()f x =()f x --3. 已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为( D )。
A. )2(2y f X -B. )2(yf X -C. )2(21y f X --D. )2(21y f X - 4. 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{, 若αx X P =<}|{|, 则x 等于( A )。
请考生将答案写在试卷相应答题区,在其他地方作答视为无效!………………………………………………………………………………………………………………A. 12u α-B. 21u α-C. 2u αD. 1u α- 5. 12,,n X X X 是来自正态总体()2,μσXN 的样本,其中μ已知,σ未知,则下列不是统计量的是( C )。
A. 4114i i X X ==∑ B. 142X X μ+-C. 42211()i i K X X σ==-∑ D. 4211()3i i S X X ==-∑二、 填空题(每题3分,共15分)1.设,,A B C 为三个随机事件,则“事件,A B 发生但C 不发生”表示为 。
概率论及数理统计期末试卷习题及标准答案.doc
概率论及数理统计期末试卷习题及标准答案.doc概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50 个球,其中20 个红球, 30 个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为3/5。
2、设 P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么P( A U B )2/3。
3、若随机变量X 的概率密度为 f ( x ) Ax 2 , 1 x 1, 那么A=3/2。
4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/,其它区域都是 0,那么P( X2Y 21 )1/2。
25、掷 n 枚骰子,记所得点数之和为X,则 EX = 。
6、若 X, Y, Z 两两不相关,且DX=DY=DZ=2,则 D(X+Y+Z) = 6 。
7、若随机变量X1 , X 2 ,L , X n相互独立且同分布于标准正态分布N(0,1) ,那么它们的平方和 X 12 X 22 L X n2 服从的分布是2 ( n) 。
8、设n A是 n 次相互独立的试验中事件A 发生的次数,p是事件 A 在每次试验中发生的概率,则对任意的n Ap | } =0 。
0 ,lim {|n n9 、设总体X : N ( , 2 ),其中 2 已知,样本为X 1 , X 2 ,L , X n,设 H 0 :0 ,H 1 :X 0z 。
0 ,则拒绝域为n10、设总体 X 服从区间 [1, a] 上的均匀分布,其中 a 是未知参数。
若有一个来自这个总体的样本 2, , , , , 那么参数 a 的极大似然估计值$2.7 。
a = max{ x1 , x2 ,L , x n }二、选择题1、设10 张奖券只有一张中奖,现有10 个人排队依次抽奖,则下列结论正确的是( A )(A)每个人中奖的概率相同;( B)第一个人比第十个人中奖的概率大;(C)第一个人没有中奖,而第二个人中奖的概率是1/9 ;(D)每个人是否中奖是相互独立的2、设随机变量 X 与 Y 相互独立,且X : N (1, 2 ) ,Y : N ( 2 ,2),则X Y 服从的分布是( B )(A)N ( 1 2 , 2 ) ;(B)N ( 1 2 ,2 2 ) ;(C)N ( 1 2 , 2 ) ;(D)N ( 1 2 , 2 2 ) 3、设事件A、 B 互斥,且P ( A) 0 , P( B ) 0 ,则下列式子成立的是( D )( A)P( A | B )P( A) ;(B)P( B | A)0 ;( C)P( A | B ) P( B) ;( D)P( B | A) 0 ;4、设随机变量 X 与 Y 独立同分布, P(X= -1) = P(Y= -1) =1/2 ,P(X= 1) = P(Y= 1) =1/2 ,则下列成立的是( A )( A)P( X Y ) 1 / 2 ;( B)P( X Y ) 1 ;( C)P( X Y 0) 1/ 4 ;( D)P( XY 1) 1/ 4 ;5、有 10 张奖券,其中8 张 2 元, 2 张 5 元。
概率论与数理统计期末考试试题(答案)
概率论与数理统计期末考试试题(答案)概率论与数理统计开/闭卷闭卷A/B 卷 A2219002801-课程编号 2219002811课程名称概率论与数理统计 ________________ 学分 J ________第⼀部分基本题⼀、选择题(共6⼩题,每⼩题5分,满分30分。
在每⼩题给出的四个选项中,只有⼀个是符合题⽬要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选错0分)2?假设事件A 与事件B 互为对⽴,则事件A B( )(A)是不可能事件 (B)是可能事件(C) 发⽣的概率为1 (D)是必然事件答:选A ,这是因为对⽴事件的积事件是不可能事件。
3. 已知随机变量X,Y 相互独⽴,且都服从标准正态分布,则 X 2 3 + Y 2服从( ) (A)⾃由度为1的2分布 (B)⾃由度为2的2分布2(C) X ;是2的⽆偏估计(D) 刍⼀⽣⼀⽣是2的⽆偏估计3答:选B ,因为样本均值是总体期望的⽆偏估计,其它三项都不成⽴。
6.随机变量X服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( )(A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。
⼆、填空题(共6⼩题,每⼩题5分,满分30分。
把答案填在题中横线上)线1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发⽣ (C)事件B 发⽣但事件A 不发⽣答:选D ,根据A B 的定义可知。
(B) 事件A 发⽣但事件B 不发⽣ (D)事件A 与事件B ⾄少有⼀件发⽣ )封题… 答… 不…内…线…封…密…) (D) X+Y~N(0,3) ⽽ E(X+Y)=E(X)+E(Y)=2-2=0,(C)⾃由度为1的F分布(D)⾃由度为2的F分布答:选B,因为n个相互独⽴的服从标准正态分布的随机变量的平⽅和服从⾃由度为2分布。
4. 已知随机变量X,Y相互独⽴,X~N(2,4),Y~N( 2,1),则((A) X+Y~P ⑷(B) X+Y~U(2,4) (C) X+Y~N(0,5)答:选C,因为相互独⽴的正态变量相加仍然服从正态分布, D(X+Y)=D(X)+D(Y)=4+1=5,所以有X+Y~N(0,5)。
14-15I 概率论与数理统计试卷(A)48学时参考答案与评分标准
| | | | | | | |装|| | | |订| | | | | |线|| | | | | | |防灾科技学院2014~2015年 第一学期期末考试概率论与数理统计试卷(A )考试形式 闭卷 使用班级本科48学时班 答题时间120分钟(请将答案写在答题纸上)一 、填空题(本大题共7小题,每题3分,共21分)1、若以事件i A 表示“一个工人生产的第i 个零件是合格品”(n i ≤≤1),则事件“没有一个零件是不合格品”用i A 表示为 12n A A A ;2、已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P 0.62 .3、假设某潜在震源区年地震发生数X 服从参数为2=λ的泊松分布,则未来一年该震源区发生至少一次地震的概率为21--e ;4、10张彩票中有5张是有奖彩票。
每人依次抽取一张彩票,第2个人抽中奖的概率为 1/2 ;5、假设英语四级考试有60个选择题,每题有四个选项,其中只有一个为正确选项。
小明没有复习而选择 “裸考”,答案全是随便“蒙”的,则Ta “蒙”对题数的期望是 15 ;6、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,6.011,4.01,0)(,则X 的分布律是1130.40.20.4X-⎛⎫ ⎪⎝⎭,=≤<-)31(X P 0.6 ;二、单项选择题(本大题共7小题,每题3分,共21分)7、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β(A )11-=αβ (B )1+=αβ (C )11+=αβ (D )不能确定 ( C ) 8、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则)2(>X P 的值为(A ))]2(1[2Φ-. (B )1)2(2-Φ.(C ))2(2Φ-. (D ))2(21Φ-. ( A )9、某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数 学期望与方差分别为 ( D ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 10、设随机变量X 和Y 不相关,则下列结论中正确的是( B ) (A )X 与Y 独立. (B ))()()(Y D X D Y X D +=-. (C ))()()(Y D X D Y X D -=-. (D ))()()(Y D X D XY D =.11、设离散型随机变量X 和Y 的联合概率分布为若Y X ,独立,则βα,的值为(A )91,92==βα. (B )92,91==βα.(C ) 61,61==βα (D )181,185==βα. ( A ) 12、设样本4321,,,X X X X 为来自总体)1,0(N 的样本,243221)(X X X C X Y +++=,若Y 服从自由度为2的2χ分布,则=C ( B )(A) 3; (B) 1/3; (C) 0; (D) -3 . 13、设随机变量与相互独立,其概率分布分别为则有(A ) (B )(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβX Y 010.40.6X P 010.40.6Y P ()0.P X Y ==()0.5.P X Y ==(C ) (D ) ( C ) 14、设总体)4,2(~2N X ,n X X X ,,,21 为来自X 的样本,则下列结论中正确的是 (A ))1,0(~42N X -. (B ))1,0(~162N X -. (C ))1,0(~22N X -. (D ))1,0(~/42N nX -. ( D ) 三、解答题(本大题共5小题,每题10分,共50分)15、计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。
概率论期末试题(带答案)
草纸:
试卷纸
共4页
第1页
试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须
用碳素笔楷书,以便誉印;5、考试前到指定地点领取试卷。
学号:
姓名:
班级:
..........................................................密.......................................................封..........................................................线..........................................................
..
27
解
19
8
设每次试验成功的概率为 p, 由题意知至少成功一次的概率是 ,那么一次都没有成功的概率是
. 即 (1 − p)3 =
8
,故
p=1.
27
27
27
3
4. 设随机变量 X, Y 的相关系数为 0.5 , E(X ) = E(Y ) = 0, E= (X 2) E= (Y 2) 2 , 则 E[( X + Y )2 ] =(空 4)
8. 设 zα , χα2 (n), tα (n) , Fα (n1, n2 ) 分别是标准正态分布 N(0,1)、χ 2 (n)分布、t 分布和 F 分布的上α 分位点, 在
下列结论中错误的是(
).
(A) zα = −z1−α .
(B)
χ
2 α
(n)=-
χ2 1−α
概率论和数理统计期末考试题及答案
概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
2014-2015 概率论与数理统计试卷 A参考答案
东莞理工学院(本科)试卷(A 卷)2014 --2015 学年第一学期《概率论与数理统计》评分标准开课单位:计算机学院数学教研室 ,考试形式:闭卷,允许带 计算器 入场题序 一 二 三 四 总 分 得分 评卷人一、选择题(每小题2分,共30分)1.设,A B 为两个相互独立的随机事件,且()0.6,()0.5P A P B ==,则必有()P AB =【 B 】;(A) 0.6 (B) 0.3 (C)0.2 (D) 0.12.袋中共有6只球,其中4只白球,2只红球.从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为【 B 】;(A) 7/15 (B) 8/15 (C) 5/9 (D) 4/93.在区间[0,1]上任取三个数,则这三个数之和小于1的概率为【 C 】;(A) 1/2 (B) 1/3 (C) 1/6 (D) 1/244.某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p <1), 则此人3次射击恰好1次命中目标的概率为【 A 】(A) 2)1(3p p -. (B) 2)1(6p p -.(C) 22)1(3p p -. (D) 22)1(6p p -. 5. 设随机变量X 服从参数为2的泊松分布,则E X 2()=【 C 】;(A) 2 (B) 4 (C) 6 (D) 86.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的点数之和(Z=X+Y)为6的概率为【 B 】; (A) 4/36 (B) 5/36 (C) 6/36 (D) 7/36 7.随机变量X 的期望和方差分别表示X 取值的【 A 】;A .平均值,离散程度B .平均值,平均程度C .绝对值,离散程度D .相对值,平均程度姓名: 学号: 系别: 年级专业:( 密 封 线 内 不 答 题 ) …………………………密………………………………………………封………………………………………线……………………………………8. 设随机变量X 的概率密度为()2(),010, 其它⎧-<<=⎨⎩k x x x f x ,则常数k = 【 D 】(A) 3; (B) 4; (C) 5; (D) 6. 9. 设随机变量X 的概率密度函数为)(x f ,分布函数为)(x F ,对于任意实数x 有【 C 】()0()1<<A F x ; (B )0()1<<f x ; ()0()1≤≤C F x ; ()0()1≤≤D f x10. 设X Y 与为任意二个随机变量,若已知0,=XY ρ则必有【 D 】 () A X Y 与相互独立; () B X Y 与不独立; () C X Y 与相关; (D) X Y 与不相关.11.设相互独立的随机变量X 和Y 的方差都是1,则随机变量52X Y -的方差是【 D 】A .3B .7C .21D .2912.已知随机变量X 与Y 相互独立,且2~(10)X χ,2~(20)Y χ,则Y X /2服从分布【 D 】; (A)(9,29)F (B) (19,9)F (C) (20,10)F(D)(10,20)F13.设总体2(,),XN μσ参数2σ已知, μ未知,12,,,n X X X 是来自总体X 的样本,则μ的极大似然估计量为【 B 】; (A)1ˆ2X μ= (B) ˆX μ= (C)3ˆ2X μ= (D)ˆ2X μ= 14. 设4321,,,X X X X 是来自均值为θ的指数分布总体的样本,其中θ未知,则下列估计量中最有效的θ的无偏估计的为【 D 】;A. 11T X =B. 2121()4T X X =+ C. 31231()3T X X X =++ D. 412341()4T X X X X =+++15.单个正态总体的方差未知时,均值的假设检验中选择的检验统计量为【 B 】. (A)/X Z nμσ-=(B) 0/X t S nμ-=(C)222(1)n S χσ-=(D)2122S F S =二、填空题(每空2分,共30分)1. 设,A B 为两个随机事件,且()0,()()P A P A B P B >=,则必有(|)P B A = 1 .2. 掷两颗骰子,则两颗骰子点数不同的概率为_5/6__.3. 在一次试验中,事件A 发生的概率为0.5,现进行3次独立重复试验,则A 不发生的概率为 0.125 .4. 已知随机变量(100,0XB ,且随机变量21Y X =+,则()E Y = ______21____,()D Y = ______72__.5. 设随机变量X 的密度函数为()23,010,x x f x ⎧≤≤=⎨⎩其它,则12P X ⎧⎫≤=⎨⎬⎩⎭ 1/8 ;又设用Y 表示对X 的2次独立重复观察中事件12X ⎧⎫≤⎨⎬⎩⎭出现的次数,则{}1P Y == 732.6. 设二维随机变量()Y X ,的分布列为Y X 0 1 0 0.3 0.21a 0.1则a = 0.4 ,()E Y = 0.3 .7. 设1210,,,X X X 是取自总体)1,0(N 的样本,则统计量222125Y X X X =+++服从_____2(5)χ__分布, 2221252226710X X X T X X X +++=+++服从_____(5,5)F __分布. 8. 设110,...,X X 及120,...,Y Y 分别是总体(10,10)N 的容量为10,20的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差.则:~X N(10,1) ,~Y X - N(0,3/2) ,{}5.12>-Y X p = 0.0456 ,2219~10S 2(19)χ. 此题中9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ姓名: 学号: 系别: 年级专业:( 密 封 线 内 不 答 题 ) …………………密………………………………………………封………………………………………线……………………………………三、计算题(共18分)1.(10分)设随机向量(,)X Y 的密度函数为:2,01,01,(,)0,x x y f x y ≤≤≤≤⎧=⎨⎩其它.(1)求分量X 和Y 的密度函数()X f x 及()Y f y ;(4分)(2)求概率{}1P X Y +≤;(2分) (3)求(),().E X D X (4分)解 令{(,)|01,01},D x y x y =≤≤≤≤{(,)|01,01}.G x y x y x =≤≤≤≤-(1)当01x x <>或时,()(,)0,X f x f x y dy +∞-∞==⎰当01x ≤≤时,1()(,)22.X f x f x y dy xdy x +∞-∞===⎰⎰因此, 2,01,()0,X x x f x ≤≤⎧=⎨⎩其它. (2分)当01y y <>或时,()(,)0,Y f y f x y dx +∞-∞==⎰当01y ≤≤时,10()(,)2 1.Y f y f x y dx xdx +∞-∞===⎰⎰因此, 1,01,()0,Y y f y ≤≤⎧=⎨⎩其它.(2分)(2){}11120011(,)22();3xGP X Y f x y dxdy xdx dx x x dy -+≤===-=⎰⎰⎰⎰⎰ (2分)(3)2()(,)3DE X xf x y dxdy ==⎰⎰ 或 1202()()2;3X E X xf x dx x dx +∞-∞===⎰⎰ (2分)11223001()(,)2.2R E X x f x y dxdy x dx dy ===⎰⎰⎰⎰或 12231()()2;2X E X x f x dx x dx +∞-∞===⎰⎰ ( 1分) 22141()()[()]2918D XE X E X =-=-=. (1分)2.(8分)设总体X 的密度函数为()1, 01;;0, .x x f x θθθ-⎧<<=⎨⎩其它其中()0θθ>为待估参数,设12,,,n X X X 是取自X 的一个样本,求θ的矩估计量与最大似然估计量.解 总体X 的一阶原点矩为()11101E X x x dx θθμθθ-===+⎰,(2分)令11A μ=,可求得参数θ的矩估计量为1111A XA Xθ==--.(2分) 设12,,,n x x x 是一个样本值,则似然函数为()1111nnnii i i L xx θθθθθ--====∏∏ ,对数似然函数为()1ln ln (1)ln nii L n xθθθ==+-∑,(2分)对参数θ求导()ln L θ'⎡⎤⎣⎦,并令()ln 0L θ'=⎡⎤⎣⎦得1ln 0ni i nx θ=+=∑,解此方程得1ln nii nx θ==-∑.所以,参数θ的最大似然估计量为1ln nii nXθ==-∑. (2分)四、应用题(共22分)1.(8分)已知一批产品中有95%是合格品,检验产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.01,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率. 解:(1)设A 表示抽得的产品的合格品, B 表示抽得的产品被判为合格品,则()0.95P A =,(|)0.02P B A =,(|)0.01P B A =.(1分)由全概率公式,得()()(|)()(|)(1)0.95(10.02)(10.95)0.010.9315;(2)P B P A P B A P A P B A =+=⨯-+-⨯=分分(2)()()(|)0.931(|)0.9995.()()0.9315P AB P A P B A P A B P B P B ==== (4分)2.(14分)由经验知道某零件重量2(,)XN μσ,其中2,μσ均未知,抽查25个样品,测量其重量,得样本均值的观察值18x =(单位:g),样本标准差的观察值0.8s =. 1)求零件重量的置信度为0.95的置信区间;(6分)2)在显著性水平为0.05α=时,试问重量的方差2σ是否为0.3.(8分)( ()()0.050.0250.050.0251.645, 1.96, 24 1.7109, 24 2.0639 z z t t ====220.9750.95(24)12.401,(24)13.848χχ==,220.0250.05(24)39.364,(24)36.415χχ==)解 1)查表0.025 (24) 2.0639 t =,得μ的置信度为0.95的置信区间为22(24),(24)2525s sx t x t αα⎛⎫-+ ⎪⎝⎭(3分) 0.80.818 2.0639,18 2.0639(17.67,18.33).55⎛⎫=-⨯+⨯= ⎪⎝⎭即元件寿命的置信度为0.95的置信区间为(17.67,18.33).(3分)2) 这是双边检验,检验假设为:2201:0.3, :0.3H H σσ=≠,(2分)因μ未知,故采用2χ检验,检验统计量为22(1)0.3n S χ-=,(2分)已知25, 0.05n α==,查2χ分布表确定临界值,22120.975(1)(24)12.401n αχχ--==,2220.025(1)(24)39.364n αχχ-==,故拒绝域为:{}{}2212.40139.364χχ<⋃>.(2分)计算可得20.07s =,计算可得统计量2χ的观测值为:222(1)240.851.20.30.3n S χ-⨯===,观测值落入拒绝域,故拒绝0H ,认为重量的方差2σ不为0.3.(2分)。
概率论与数理统计期末考试试卷及答案
姓名: 班级: 学号: 得分:
一.选择题(18 分,每题 3 分) 1. 如果 P ( A ) + P ( B ) > 1 ,则 事件 A 与 B 必定 ( A ) 独立; ( B ) 不独立; (C ) 相容; ( )
( D ) 不相容.
概率统计试卷 A (评分标准)
一. 选择题(15 分,每题 3 分) [ 方括弧内为 B 卷答案 ] C A C A D . . [ A D B C A ]
二. 填空题(18 分,每题 3 分) 1.
0 . 62 [ 0 . 84 ];
)
ì 1 / p , x 2 + y 2 < 1 , 设 ( X , Y ) ~ f ( x , y 则 X 与 Y 为 ) = í 其 他 . î 0 ,
)
( A ) 独立同分布的随机变量; (C ) 不独立同分布的随机变量; 4.
( B ) 独立不同分布的随机变量; ( D ) 不独立也不同分布的随机变量.
ˆ ( A) m 1 = 1 3 1 X 1 + X 2 + X 3 ; 5 10 2
1 6 1 2
)
ˆ 2 = ( B ) m
1 2 4 X 1 + X 2 + X 3 ; 3 9 9 1 1 5 X 1 + X 2 + X 3 . 3 4 12
域为( ) a = 0. 1
2 2 2 2 ( A) c 2 £ c 0 n ) ; ( B ) c 2 ³ c 0 n ) ; (C ) c 2 £ c 0 n ) ; ( D ) c 2 ³ c 0 n ) . . 1 ( . 1 ( . 05 ( . 05 (
概率论与数理统计试题
《概率论与数理统计》期末试题(1)一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为____________4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 ( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. 3.设随机变量X 和Y 不相关,则下列结论中正确的是 () (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =. 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为 ()(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. 5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是()(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量.三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.七、(11分)设某机器生产的零件长度(单位:cm )2~(,)X N μσ,今抽取容量为16的样本,测得样本均值10x =,样本方差20.16s =. (1)求μ的置信度为0.95的置信区间;(2)检验假设20:0.1H σ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)(1) 设()0.5P A =,()0.6P B =,(|)0.8P B A =,则,A B 至少发生一个的概率为___()()()() 1.10.20.9P AB P A P B P AB =+-=-=______.(2) 设X 服从泊松分布,若26EX =,则P(X>1) =__________(3) 设随机变量X 的概率密度函数为1(1),02,()40,x x f x ⎧+<<⎪=⎨⎪⎩其他. 今对X 进行8次独立观测,以Y 表示观测值大于1的观测次数,则53158888DY =⨯⨯=(4) 元件的寿命服从参数为1100的指数分布,由5个这种元件串联而组成的系统,能够正常工作100小时以上的概率为(5) 设测量零件的长度产生的误差X 服从正态分布2(,)N μσ,今随机地测量16个零件,得1618ii X==∑,162134i i X ==∑. 在置信度0.95下,μ的置信区0.050.025((15) 1.7531,(15) 2.1315)t t ==二、单项选择题(下列各题中每题只有一个答案是对的,请将其代号填入( ) 中,每小题3分,共15分)(1),,A B C 是任意事件,在下列各式中,不成立的是( ) (A )()A B B A B -=.(B )()AB A B -=.(C )()A B AB ABAB -=.(D )()()()AB C A C B C =--.(2)设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =+是某一随机变量的分布函数,在下列给定的各组数值( )中应取(A )32,55a b ==-. (B )22,33a b ==. (C )13,22a b =-=. (D )13,22a b ==.(3)设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数为()Y F y =( ) (A )(53)X F y -. (B )5()3X F y -.(C )3()5X y F +. (D )31()5X yF --.(4)设随机变量12,X X 的概率分布为101111424iX P- 1,2i =.且满足12(0)1P X X ==,则12,X X 的相关系数为12X X ρ= ( )(A )0. (B )14. (C )12. (D )1-. (5)设随机变量1~[0,6],~(12,)4X U Y B 且,X Y 相互独立,根据切比雪夫不等式有(33)P X Y X -<<+( ) (A )0.25≤. (B )512≤. (C )0.75≥. (D )512≥. 三、(8分)在一天中进入某超市的顾客人数服从参数为λ的泊松分布,而进入超市的每一个人购买A 种商品的概率为p ,若顾客购买商品是相互独立的,求一天中恰有k 个顾客购买A 种商品的概率。
《概率论与数理统计》期末考试试题及答案
《概率论与数理统计》期末考试试题及答案)B 从中任取3),(8a k k ==则Y X =产品中有12件是次品四、(本题12分)设⼆维随机向量(,)X Y 的联合分布律为\01210.10.20.12Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独⽴为什么五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X⼀、填空题(每⼩题3分,共30分) 1、ABC 或AB C 2、 3、2156311C C C 或411或 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N - ⼆、解设12,A A 分别表⽰取出的产品为甲企业和⼄企业⽣产,B 表⽰取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========..... 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=?+?=................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ?=== ............................... 12分三、(本题12分)解 (1)由概率密度的性质知34=+-=+=故16k =. .......................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==?; 当03x <<时, 2011()()612xxF x f t dt tdt x -∞===??; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞==+-=-+-;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞?==+-=;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤< .................................. 9分(3) 77151411(1)22161248P X F F<≤=-=-=?? ????? .......................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ........................................................... 4分0.40.30.3Xp ............................................... 6分120.40.6Y p ................................................... 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===?=,故{}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独⽴. .............................................. 12分五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞??==+-=+-=?........... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=.......................... 9分 221()()[()].6D XE X E X =-= ......................................... 12分⼀、填空题(每空3分,共45分)1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B)=2、设事件A 与B 独⽴,A 与B 都不发⽣的概率为19,A 发⽣且B 不发⽣的概率与B 发⽣且A 不发⽣的概率相等,则A 发⽣的概率为:;3、⼀间宿舍内住有6个同学,求他们之中恰好有4个⼈的⽣⽇在同⼀个⽉份的概率:没有任何⼈的⽣⽇在同⼀个⽉份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ??, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独⽴,则Z=max(X,Y)的分布律:;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独⽴,则D(2X-3Y)= ,1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ??≤≤?=其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ?;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ?<<其他求边缘密度函数(),()X Y x y ??;2)问X 与Y 是否独⽴是否相关计算Z = X + Y 的密度函数()Z1、(10分)设某⼈从外地赶来参加紧急会议,他乘⽕车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率论与数理统计期末考试试题及解答
概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。
解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。
3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。
因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。
又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。
南师大概率论与数理统计2015期末试卷
南师大概率论与数理统计2015期末试卷南京师范大学2014-2015年第二学期《概率论与数理统计》课程期末试卷(A )(3学时)学院: 专业: 班 级: 学号: 姓名: 成 绩: 题号 一 二 三 四 五 六七八 九 总分 得分得分一.填空题:(每题3分,共18分)1. 设随机事件B A ,互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P 。
2.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖 的概率为 。
3.设随机变量X 服从参数为1的指数分布,则=>}{2EX X P 。
4.设随机变量Y X ,相互独立且同分布,21}1{}1{===-=X P X P ,则==}{Y X P 。
5.设)1,3(~N X ,23+=X Y 。
则X 和Y 之间的相关系数为 。
6. 设随机变量)0,3,2,1,3(~),(22N Y X ,则=EXY 。
得分3分,共15分) 1. 某人射击时,中靶的概率为43,若射击直到中靶为止,则射击次数为3的概率为( ))(A643;)(B6427; )(C649;)(D641。
2.设随机变量X 的密度函数为⎩⎨⎧≤>=-000)(x x e x p x ,则条件概率}1|2{≥≤X X P 的值为 ( ))(A 2-e ; )(B 21--e ; )(C 1-e ; )(D11--e 。
3.设)(),(x p x F 分别为某随机变量的分布函数和密度函数,则必有 ( ))(A )(x p 单调不减; )(B 0)(=-∞F ;)(C1)(=⎰+∞∞-dx x F ; )(D ⎰+∞∞=-)()(dx x p x F 。
4. 设随机变量X 服从)2,2(-上的均匀分布,则随机变量X Y e =的密度函数)(y p Y在1=y 处的值为 ( ))(A 0; )(B21; )(C 41; )(D 81。
5.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布a EX i =,b DX i =,则这些随机变量的算术平均值∑==ni i X n X 11的数学期望和方差分别为 ( ))(Aa ,2n b ;)(B a,nb ;)(C a,nb 2;)(Dna ,b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京师范大学2014-2015年第二学期
《概率论与数理统计》课程期末试卷(A )(3学时)
学院: 专业: 班 级:
一.填空题:(每题3分,共18分)
1. 设随机事件B A ,互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P 。
2.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖 的概率为 。
3.设随机变量X 服从参数为1的指数分布,则=>}{2EX X P 。
4.设随机变量Y X ,相互独立且同分布,2
1
}1{}1{===-=X P X P ,则==}{Y X P 。
5.设)1,3(~N X ,23+=X Y 。
则X 和Y 之间的相关系数为 。
6. 设随机变量)0,3,2,1,3(~),(22N Y X ,则=EXY 。
3分,共15分) 1. 某人射击时,中靶的概率为
4
3
,若射击直到中靶为止,则射击次数为3的概率为 ( )
)(A
643; )(B 6427; )(C 649; )(D 64
1。
2.设随机变量X 的密度函数为⎩⎨⎧≤>=-000
)(x x e x p x ,则条件概率}1|2{≥≤X X P 的
值为 ( ) )(A 2-e ; )(B 21--e ; )(C 1-e ; )(D 11--e 。
3.设)(),(x p x F 分别为某随机变量的分布函数和密度函数,则必有 ( )
)(A )(x p 单调不减; )(B 0)(=-∞F ;
)(C
1)(=⎰
+∞
∞
-dx x F ; )(D ⎰
+∞
∞
=-)()(dx x p x F 。
4. 设随机变量X 服从)2,2(-上的均匀分布,则随机变量X Y e =的密度函数)(y p Y
在1=y 处的值为 ( )
)(A 0; )(B
21; )(C 41; )(D 8
1。
5.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布a EX i =,b DX i =,
则这些随机变量的算术平均值∑==n
i i X n X 1
1的数学期望和方差分别为 ( )
)(A a ,2n
b ; )(B a ,n b
; )(C a ,n b 2 ; )(D n a ,b 。
品分别占总数的0.2、0.3、0.4和0.1。
出现次品的概率分别为201、301、40
1
和
50
1。
试求(1)从这批产品中任取一件产品为次品的概率?(2)已知从这批产品中随机地抽取一件发现是次品,问这件产品是丁车间生产的概率是多少?(11分)
四、将一温度调节器放置在贮存着某种液体的容器内,调节器整定在d C 0度,液面的温度X (以C 0计)是一个随机变量,且)5.0,(~2d N X 。
(1)若90=d C 0,求X 小于89C 0的概率。
(2)若要求保持液面的温度至少为80C 0的概率不低于
99.0,问d 至少为多少?(需要的数据在试卷最后一页下面)(10分)
五、设随机变量),(Y X 的联合分布列为
若8.0=EXY ,求(1),a b ;(2)),(Y X Cov 及相关系数XY ρ.(10分)
六、设随机变量),(Y X 的密度函数⎩⎨⎧<<<<+=其它01
0,10)(),(y x y x c y x p
(1)求常数c ;(2)试求Y X ,的边缘密度函数;(3)问X 与Y 是否相互独立? (4)求Y X Z +=的密度函数。
(14分)
20小时,具体使用时是当一个元件损坏后立即更换另一新元件,如此继续。
试利用中心极限定理求90个元件的总寿命超过2000小时的概率。
(需要的数据在试卷最后一页下面)(8分)
八、设621,,,X X X 是来自正态总体)1,0(N 的样本,试问统计量
2
6423
13131⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑==i i i i X X Y
服从什么分布,请说明理由。
(6分)
九、设随机变量X 的密度函数⎪⎩⎪⎨⎧≤>β=β+β1
1),(1
x x x
x p ,其中1>β为未知参数, n X X X ,,,21 是来自总体的一个样本,求β的矩估计量和极大似然估计量。
(8分)
南京师范大学2014-2015学年第二学期(3学时) 《概率统计》课程期末试卷(A )答案 一、1.74; 2.05.0;3.2-e ;4.2
1
;5.1;6.3.
二、1.A ;2.D ;3.B ;4.C ;5.B 。
三、1254; 161。
四、(1)0228.0 (2)165.81 五、(1)1.0=a ,3.0=b , (2)1.0),(=Y X Cov 6
6
=
ρXY 六、(1)1=c
(2)⎪⎩⎪⎨⎧<<+=其它01021)(x x x p X ,⎪⎩⎪⎨⎧<<+=其它
01021)(y y y p Y
(3)Y X ,不独立。
(4)⎪⎩
⎪
⎨⎧≤≤-<<=其它021)2(10)(2z z z z z z p Z
七、 1469.0
八、)2(~2χY 。
九、矩估计量1
ˆ-=β
X X ;极大似然估计量为∑==β
n
i i
x
n
1
ln ˆ。
专业 班级 学号 姓名
-------------------------装----------------------订------------------------线------------------------。