数字基带信号及其功率谱密度函数仿真实验要点
数字随机信号功率谱密度分析-基带1
数字随机信号功率谱密度分析-基带1数字随机信号功率谱密度分析-基带1数字随机信号功率谱密度(PSD )分析-基带1、形如∑a n g (t -nT 0)的基带数字信号的PSD设有随机数字信号x (t )=∑a g (t -nT )= ∑a n δ(t -nT 0)⎪*g (t )⎪n =-∞⎪其中g(t)为基带成型脉冲,其持续时间为t ∈(0,T0) 。
a n 为取值离散的平稳随机随机序列,可以为复值。
(1-1)式可以表示一般的基带随机过程。
至于(窄带)带通过程,则可用等效基带法表示为:s (t )=Re x (t )e j ωc t之后使用窄带随机过程理论来分析。
容易知道,(1-1)式所表示的随机过程是以T 0为周期的周期平稳随机过程。
要求其功率谱密度,一种方法是先求得其周期的自相关函数,然后在一个码元周期内求其平均自相关函数,再对后者求傅里叶变换。
我们这里不使用这种方法,而是直接由功率谱密度的定义来求。
下面使用定义来分析(1-1)式表示的随机信号的功率谱密度。
理论上,随机过程都是功率信号,故其功率谱密度的一般定义为:E ⎪X T (f )⎪⎪ P x (f )=lim ⎪其中X T (f)是对过程截断之后取其傅里叶变换。
E[·]表示取集平均。
按照傅里叶变换的定义:X T (f )=⎪x T (t )e -j 2πft dtx T (t)是对应的截断时间信号。
取T =(2N+1)T0,则(1-3)式变为P x (f )=limE ⎪X (2N +1) T 0(f )⎪ ⎪⎪N →+∞2N +1T ⎪⎪0因为(1-3)表示的极限存在,所以T 无论怎么趋向+∞,得到的极限都应该相等。
这里取特殊的按照T 0的倍数增长的方式, 即x T (t)的时间跨度限制为[-NT0,(N+1)T0],当N →∞时,x T (t)就是x (t)。
于是(1-5)式可以进一步写成P x (f )=limE ⎪X (2N +1) T 0(f )⎪⎪⎪N →+∞2N +1T ⎪⎪0N →+∞2N +1T ⎪0x T (t 1)e -j 2πft 1dt 1x T (t 2)e -j 2πft 2dt 2⎪2⎪⎪E X (2N +1) T 0(f )⎪=E ⎪x T (t )= ∑a n δ(t -nT 0)⎪*g (t )⎪n =-N ⎪x T (t 1)e-j 2πft 1x T (t 2)e -j 2πft 2dt 2⎪∑a g (tT 0+nT 0nT 0T 0-nT 0)ej 2πft 1∑a g (t-mT 0)e -j 2πft 2dt 2]g (t 2-mT 0)e -j 2πft 2dt 2]=E [∑a *n =-N Ng (t 1-nT 0)e j 2πft 1dt 1j 2πf (t 1+nT 0)T 0+mT 0=E [∑a n ⎪g (t 1)ea m ⎪g (t 2)e -j 2πf (t 2+mT 0) dt 2]把求和跟积分分离开,得E ⎪X (2N +1) T 0(f )⎪⎪N N T 0T 0⎪-j 2π(m -n ) fT 0⎪-j 2πf (t 2-t 1) *⎪=E a a e g t g t e dt 1dt 2 (1-8) ()()∑∑n m 12⎪⎪⎪0⎪0⎪⎪⎪m =-N n =-N ⎪在上式后项的积分中令变量替换t 2=t1+τ,得⎪⎪g (t )g (t )e-j 2πf (t 2-t 1)dt 1dt 2=⎪g (t 1)g (t 1+τ)dt 1e -j 2πf τd τR g (τ)e -j 2πf τd τ=ψg (f )正是g(t)的自相关函数的傅里叶变换。
数字基带仿真实验通信系统综合实验报告
数字基带仿真实验通信系统综合实验报告目录实验一数字基带仿真实验 (1)一.实验目的 (1)二.实验设备与软件环境 (1)三.实验内容 (1)四.实验要求 (2)五.实验原理 (2)1.差错控制编码的基本原理 (2)2)CRC码编码的基本原理 (3)2. 跳频的基本原理 (4)六.实验结果 (7)1.基带包的差错控制技术 (7)2.跳频扩频实验 (10)3.加密解密实验 (18)七.思考题 (20)实验二通信传输有效性和可靠性分析实验 (22)一.实验目的 (22)二.实验设备与软件环境 (22)三.实验内容 (22)1.性能仿真 (22)2.数据速率 (23)3.文件传输 (23)四.实验要求 (24)五.实验原理 (25)1. 停止等待协议基本原理 (25)2. 连续ARQ协议基本原理 (25)3. 检错重发ARQ协议基本原理 (26)六.实验结果 (26)1. 性能仿真 (26)2.数据传输速率的分析(点对点通信): (30)七.思考题 (36)实验三无线多点组网实验 (38)一.实验目的 (38)二.实验设备与软件环境 (38)三.实验内容 (38)四.实验要求 (39)五.实验原理 (40)1. 计算机通信网的相关知识 (40)2. Ad hoc网络 (41)3. 路由选择 (42)六.实验结果 (43)七.思考题 (45)实验四语音传输实验 (48)一.实验目的 (48)二.实验设备与软件环境 (48)三.实验内容 (48)四.实验要求 (49)五.实验原理 (49)1. 基带信号编码的基本原理 (49)2. SCO链路和ACL链路的异同 (50)3. 随机错误和突发错误 (51)六.实验结果 (52)2.蓝牙语音链路建立和断开的过程 (59)七.思考题 (61)实验一数字基带仿真实验一.实验目的1. 了解汉明码、CRC码的基本原理。
2. 了解跳频、扩频的基本原理。
3. 了解常规和公开密钥密码体制的工作原理。
实验一-数字基带传输实验-实验总结报告
数字基带传输实验总结报告小组成员:所在班级:通信一班指导老师:马丕明目录一、实验目的 (3)二、实验原理 (3)三、实验内容 (4)(一)因果数字升余弦滚降滤波器设计 (4)1. 窗函数法设计非匹配形式的发送滤波器 (4)2. 频率抽样法设计匹配形式的发送滤波器 (6)(二)设计无码间干扰的二进制数字基带传输系统 (8)1、子函数模块 (8)2、无码间干扰的数字二进制基带传输系统的模拟 (11)四、实验总结: (145)一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观测眼图和星座图判断信号的传输质量。
二、实验原理图1 基带系统传输模型1、信源信源就是消息的源,本实验中指数字基带信号,信源序列al 采用一个0、1等概率分布的二进制伪随机序列。
信源序列al 经在一比特周期中抽样A 点,即是序列al 每两点之前插A-1个零点,进行抽样,形成发送信号SigWave ,即是发送滤波器模块的输入信号。
2、发送滤波器匹配形式下的发送滤波器SF ,通过窗函数法对模拟升余弦滚降滤波器的时域单位冲激响应hd 进行时间抽样、截断、加窗、向右移位而得;非匹配形式下的发生滤波器SF ,通过频率抽样法对模拟升余弦滚降滤波器的频率响应Hd 进行频率抽样、离散时间傅里叶反变换、向右移位而得。
发送滤波器输出SFO 是由发送滤波器SF 和发送信号SigWave 卷积而得。
3、传输信道本实验中传输信道采用理想信道,即传输信道频率响应函数为1;传输信道输出信号Co 是由发送滤波器输出信号SFO 和加性高斯白噪声GN 叠加而成:Co=SFO+GN 。
4、噪声信道噪声当做加性高斯白噪声,给定标准差调用函数randn 生成高斯分布随机数GN 。
5、接收滤波器匹配形式下,接收滤波器与发送滤波器单位冲激响应幅度相同,角度相反,均为平方根信源发送滤波器信道噪声接收滤波器抽样判决位定时提取输出升余弦滚降滤波器。
通信技术概论数字基带信号的功率谱分析
数字基带信号的传输及码间干扰
数字基带信号的传输
d (t )
发送滤波器 信道 接收滤波器
y (t )
HT ( f )
Hc ( f ) n(t )
HR( f )
H( f )
图5.4.1 数字基带传输系统的数学模型
d (t ) 为经过了码型变换的单位冲激序列,码元间隔为 Tb ,有:
2013-5-5 2
数字基带信号的码型
an
(a) 单极性不归零码
1 0 1 1 0 0 1
t
Tb
(b) 双极性不归零码
t
(c) 单极性归零码
t
(d) 双极性归零码
t
参考 信号 0
(e) 差分码
t
(f)极性交替码(AMI)
图5.2.1
几种典型的二进制码型
2013-5-5
3
数字基带信号的码型
6.差分码 用相邻脉冲的极性变与不变来表示 “1”和“0”。如相邻码元极性变 化 表示“1”,相邻码元极性不变表示“0”。又称相对码 。 bn an bn 1
2013-5-5
B 1 / Tb 1000Hz
8
二元数字基带信号的功率谱分析
例 分析0、1等概的单极性归零码的功率谱。已知单个“1”码 的波形是幅度为A的半占空矩形脉冲 。 g1 (t )
1 ATb S a (fTb / 2) G2 ( f ) 0 2 A2Tb 2 Tb A2 A2 2 n P( f ) S a (f ) ( f ) S a ( ) ( f nfb ) 8 2 16 2 n 1 8 G1 ( f )
fb
G1 ( f ) 、 2 ( f ) G
数字基带信号的功率谱
通信原理仿真作业数字基带信号的功率谱一、实验题目用matlab 画出如下数字基带信号波形及其功率谱密度。
● 单极性不归零(NRZ )波形,设0、1等概,1,0()0,t Tg t else ≤≤⎧=⎨⎩● 单级性归零(RZ )波形,设0、1等概,1,0()0,t Tg t else τ≤<<⎧=⎨⎩● 若sin(/)()/s st T g t t T ππ=,输入为+1/-1序列,且等概出现。
二、实验原理1. 单极性不归零(NRZ )波形:该波形的特点是电脉冲之间无间隔,极性单一。
示意图:2. 单级性归零(RZ )波形:信号电压在一个码元终止时刻前总要回到零电平。
示意图:三、实验过程依据实验原理中波形特点进行matlab 编程仿真,调试程序,观察现象。
四、实验结果及分析1、单极性不归零(NRZ )波形及其功率谱图分析:该波形的特点是电脉冲之间无间隔,极性单一,易于用TTL 、CMOS 电路产生;缺点是有直流分量,要求传输线路具有直流传输能力,因而不适应有交流耦合的远距离传输,只适用于计算机内部或极近距离的传输。
不归零码在传输中难以确定一位的结束和另一位的开始,即位定时较难,对同步要求较高。
2、单级性归零(RZ )波形及其功率谱图024681012141618200.51单极性NRZ 波形-5-4-3-2-112345-40-30-20-10010单极性NRZ 功率谱密度(dB/Hz)分析:信号电压在一个码元终止时刻前总要回到零电平。
通常,归零波形使用半占空码,即占空比为50%。
从单极性RZ 波形可以直接提取定时信息。
与归零波形相对应,上面的单极性波形和双极性波形属于非归零(NRZ)波形,其占空比等于100%。
对于单极性归零波形,由于其脉冲窄,有利于减小码元间波形的干扰。
并且码元间隔明显,较不归零波形,有利于同步适中的提取。
但是由于脉冲窄,码元的能量小,归零波形的功率谱比不归零波形的较低,因此在接收端的输出信噪比和归零波形相比低。
(完整word版)AMI与HDB3码波形与功率谱密度实验
数字基带信号的波形与功率谱密度实验一、实验目的1、掌握数字基带码型有关概念及设计原则;2、了解单极性码、双极性码、归零码和不归零码的波形特点;3、掌握AMI和HDB3码的编码规则;4、掌握各种基带码功率谱特性。
二、实验预习要求1、复习《数字通信原理》第七章7.1节和7.2节——数字基带信号的码型与功率谱、AMI与HDB3码波形与功率谱密度;2、学习MATLAB软件的使用;3、认真阅读本实验内容,熟悉实验步骤。
三、实验原理通信的根本任务是远距离传递信息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。
在数字传输系统中,其传输对象通常是二进制数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。
设计数字传输系统的基本考虑是选择一组有限的离散的波形来表示数字信息。
这些离散波形可以是未经调制的不同电平信号,也可以是调制后的信号形式。
由于未经调制的电脉冲信号所占据的频率带宽通常从直流和低频开始,因此称为数字基带信号。
而某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,我们称之为数字信号的基带传输。
数字基带信号是数字信息的电脉冲表示,不同形式的数字基带信号(又称码型)具有不同的频谱结构,合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱结构,是基带传输首先要考虑的问题。
通常又把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。
事实上,在数字设备内部用导线连接起来的各器件之间就是用一些最简单的数字基带信号来传送定时和信息的。
这些最简单的数字基带信号的频谱中含有丰富的低频分量乃到直流分量。
由于传输距离很近,高频分量衰减也不大。
但是数字设备之间长距离有线传输时,高频分量衰减随着距离的增加而增大,同时信道中往往还存在隔直流电容或耦合变压器,因而传输频带的高频和低频部分均受限。
此时必须考虑码型选择问题。
数字信号频带传输的仿真设计
实训四数字信号频带传输的仿真设计一.实验目的1.理解基带信号和2PSK 信号波形及其功率谱密度的仿真方法。
2.理解数字调制的频谱搬移和频带利用率等特性。
3.生成QPSK 信号的星座图,进而理解信号星座图对于确定判决区域的作用。
二.实验内容1.基带信号采用不归零矩形脉冲,生成2PSK 信号的时域波形和功率谱密度。
2.生成QPSK 信号的时域波形与功率谱密度。
3.QPSK 接收信号的星座图。
4.仿真QPSK 系统的误码率。
三.实验结果1.基带信号采用不归零矩形脉冲,生成2PSK 信号的时域波形和功率谱密度(对应的m 文件为bpsk.m).(1)不归零矩形脉冲的时域波形和功率谱密度:-2-1.5-1-0.500.51 1.52-11时间t幅度2012210178 黄亮平 双极性基带信号波形-15-10-505101500.511.52频率f 频谱s (j w )双极性基带信号频谱(2)2PSK 信号的时域波形及功率谱密度:-2-1.5-1-0.500.51 1.52-11时间t幅度2012210178 黄亮平 BPSK 已调信号波形-15-10-505101500.51频率f 频谱s (j w )BPSK 已调信号频谱2.基带信号采用不归零矩形脉冲或滚降系数为1的升余弦谱,生成4PSK 信号的时域波形和功率谱密度(不归零矩形脉冲对应的m 文件为rectqpsk.m,升余弦脉冲对应的m 文件为rcosqpsk.m).(1)不归零矩形脉冲的时域波形和功率谱密度:-2-1.5-1-0.500.51 1.52-11时间t幅度2012210178 黄亮平 双极性基带信号波形-15-10-505101500.511.522.5频率f 频谱s (j w )双极性基带信号频谱(2)QPSK 信号的时域波形与功率谱密度:-2-1.5-1-0.500.51 1.52-11时间t幅度2012210178 黄亮平 QPSK 已调信号波形-15-10-505101500.511.5频率f 频谱s (j w )QPSK 已调信号频谱(3)基带信号为滚降系数为1的升余弦脉冲信号经QPSK 调制得到的已调信号与功率谱密度:02468101214161820-11时间t幅度QPSK 已调信号波形2 2.2 2.4 2.6 2.83 3.2 3.4 3.6 3.8402468频率幅度QPSK 信号频谱3、QPSK 系统的调制和解调原理随机产生10^5个二进制信息数据,串并变换后进行4PSK 调制。
数字基带信号的码型实验(含总结)
实验报告20 年度春季学期数字通信原理课程名称实验一数字基带信号的码型实验名称实验1实验名称:数字基带信号码型实验目的:学会使用MATLAB,绘制基本的基带信号码型,分析其功率谱。
实验要求:1.绘制信息为11001011的常用码型(单极性不归零码、双极性不归零码、单极性归零码、双极性不归零码和差分曼彻斯特码)2.画出双极性信号的功率谱密度。
实验过程:首先我先从网上下载、安装了MATLAB,并熟悉了一下基本的操作方法,然后跟着老师给我们的实验指导书以及实验的PPT一步一步的进行了操作。
第一,我利用编写的代码绘制了单极性不归零码的码型第二,我绘制了双极性不归零码,将单极性不归零代码里的y((i-1)*t0+j)=0;中的0改为-1。
第三,我绘制了单极性归零码第四,我绘制了双极性归零码第五,我绘制了差分曼彻斯特码第六,我学会了绘制功率谱密度图像,并绘制出了双极性归零码的功率谱密度图像。
实验小结其实我下载MATLAB这个软件已经很久了,但是一直都没有真正的去使用过它,也可以说其实这个软件完全成为了我的电脑中的“僵尸软件”。
但是通过数据通信的这个实验虽然没有对这个软件达到精通的程度,但却让我真正学到了如何使用这个软件,也从另一个方面像我介绍了这个软件。
在实验中我也碰到了很多的困难,例如一开始不知道在哪里打代码而老师给的教学PPT也只是针对这我们实验室的电脑,所以我又自己上网找了一些学习的资料来辅助我学习使用这款软件。
虽然遇到了种种困难但最后还是在磕磕碰碰中完成了这次的实验并且我认为这次实验真的让我收获了很多课堂上不能学到的知识,增强了我对与课本上的知识的理解程度。
所以在实验下课时,我们都久久没有回过神来,恋恋不舍的离开了实验室,大家还在边走边讨论自己在实验时所遇到的困难,这种学习氛围我认为是上课所达不到的。
期待下一次的实验。
数字基带信号及其功率谱密度函数仿真实验要点
数字基带信号及其功率谱密度函数仿真实验要点题目要求:用matlab画出如下数字基带信号波形及其功率谱密度。
(1)单极性不归零(NRZ)波形,设0、1等概,;(2)单极性归零(RZ)波形,设0、1等概,;(3)若,输入+1/-1序列,且等概出现。
一.实验原理数字信号可以直接采用基带传输,所谓基带就是指基本频带。
基带传输就是在线路中直接传送数字信号的电脉冲。
基带传输时,对于传输数字信号来说,使用的方法是用不同的电压电平来表示两个二进制数字,也即数字信号由矩形脉冲组成。
我们将其划分为单极性码和双极性码,单极性码使用正的电压表示数据;而根据信号是否归零,还可以划分为归零码和非归零码,归零码码元中间的信号回归到0电平,而非归零码遇1电平翻转,零时不变。
二.单极性不归零(NRZ)波形时域及功率谱密度如图所示:0102030405060708090100-1.5-1-0.500.511.5单极性N R Z 时域波形-8-6-4-202468-40-20020单极性N R Z 功率谱密度(d B /H z )时域上看,单极性不归零码,无电压用来表示"0",而恒定的正电压用来表示"1"。
从功率谱密度函数来看,单极性不归零函数根据表达式可知,其功率谱函数值在0点含有冲击。
三. 单极性归零(NZ )波形时域及功率谱密度如图所示:0102030405060708090100-1.5-1-0.500.511.5单极性R Z 时域波形-8-6-4-202468-40-20020单极性R Z 功率谱密度(d B /H z )时域上分析,单极性归零码,当发"1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流;从功率谱密度函数来看,单极性归零函数根据表达式可知,其功率谱函数值在 点含有冲击。
四. 理想低通系统的时域图形及功率谱密度如图所示:0102030405060708090100-2-1012双极性s i n c 时域波形-8-6-4-202468-40-30-20-10010s a 波形功率谱密度(d B /H z )从时域分析,,抽样函数在抽样判决时有较大的不确定性,可以看出其不利于准确的进行抽样判决。
通信原理_数字基带传输系统仿真实验
一、基本原理: (1)数字基带信号传输系统的组成:
基带脉冲 信道信号
输入Biblioteka 形成器信道接收 滤波器
抽 样 基带脉冲 判决器 输出
噪声 (2)余弦特性滚降的传输函数:
同步 提取
TS ,
H () T2S
[1 sin
TS
2
( TS
)],
相应的冲激响应
h(t)为:0,
0 (1 )
统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。
二、仿真代码和图形: (1)绘制α= 0,0.75,1 时的升余弦滚降系统的时域和频谱图;
(2)随机产生周期 Ts=1s 的单位幅度单极性 RZ 和双极性 NRZ 信号,绘制信号的时域波形和 功率谱;
①单极性 RZ:
②双极性 NRZ 信号:
(3)(2)中产生的双极性 NRZ 信号通过 α=1 的系统后,绘制输出信号在示波器上显示的 眼图;
(4)绘制(3)输出的信号加入高斯白噪声信号后的输出眼图;
输入 n0=0.2,仿真图形如下:
(5) 若考虑最佳接收,接收端采用匹配滤波器,绘出基带信号,及相应匹配滤波器的冲激 响应波形,信号通过加性高斯白噪声信道 SNR 任选,绘制信号波形及匹配滤波器输出波形。
直流分量,不受信道特性变化的影响,抗噪声性能好。 (5)眼图:
指通过用示波器观察接收端的基带信号波形,从而估计和调整系统性能的一种方法。在 传输二进制信号波形时,由于示波器的余晖作用,使扫描所得的每一个码元波形重叠在一起, 示波器显示的图形很像人的眼睛,故名“眼图”。 眼图模型如下所示:
抽样失真
过零点失真
判决门限电平
对定时误差的灵敏度
数字基带信号实验报告
数字基带信号实验报告指导老师:李敏姓名:学号:试验一数字基带信号一、试验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌控AMI、HDB3码的编码规章。
3、掌控从HDB3码信号中提取位同步信号的方法。
4、掌控集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3〔AMI〕编译码集成电路CD22103。
二、试验内容1、用示波器观测单极性非归零码〔NRZ〕、传号交替反转码〔AMI〕、三阶高密度双极性码〔HDB3〕、整流后的AMI码及整流后的HDB3码。
2、用示波器观测从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观测HDB3、AMI译码输出波形。
三、试验步骤本试验运用数字信源单元和HDB3编译码单元。
1、熟识数字信源单元和HDB3编译码单元的工作原理。
接好电源线,打开电源开关。
2、用示波器观测数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在试验板任何位置的GND点均可,进行以下观测:〔1〕示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对比发光二极管的发光状态,判断数字信源单元是否已正常工作〔1码对应的发光管亮,0码对应的发光管熄〕;〔2〕用开关K1产生代码×1110010〔×为任意代码,1110010为7位帧同步码〕,K2、K3产生任意信息代码,观测本试验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
3、用示波器观测HDB3编译单元的各种波形。
仍用信源单元的FS信号作为示波器的外同步信号。
〔1〕示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观测全1码对应的AMI码〔开关K4置于左方AMI端〕波形和HDB3码〔开关K4置于右方HDB3端〕波形。
再将K1、K2、K3置为全0,观测全0码对应的'AMI 码和HDB3码。
实验三数字基带信号的波形和功率谱密度
实验三数字基带信号的波形和功率谱密度实验目的1、通过实验深入理解常用数字基带信号的波形和功率谱密度;2、掌握用MA TLAB绘制常用数字基带信号的波形和功率谱密度的方法;3、练习根据理论分析自行设计实验方法的能力。
实验内容基带信号的时间分辨率为0.001s(即采样频率为1000Hz),共产生2000个二进制码元,每个码元的持续时间为1秒。
要求1:时域波形图显示的横坐标时间范围为0~20s,纵坐标范围为-0.9V~1.1V,注意横坐标、纵坐标及Title,波形线宽为1.5。
实验结果应该如下图所示。
246810121416182000.20.40.60.81二进制单极性不归零基带信号时间(s)电压值(V )要求2:功率谱密度采用归一化dB 形式,显示的横坐标频率范围为-6~6Hz ,纵坐标范围为-80dB~0dB 。
实验结果应该如下图所示。
-6-4-20246-80-70-60-50-40-30-20-100频率(Hz)功率谱幅度值(d B )二进制单极性不归零基带信号功率谱(dB)要求1:时域波形图显示的横坐标时间范围为0~20s ,纵坐标范围为-0.9V~1.1V ,注意横坐标、纵坐标及Title ,波形线宽为1.5。
实验结果应该如下图所示。
246810121416182000.20.40.60.81二进制单极性归零基带信号时间(s)电压值(V )要求2:功率谱密度采用归一化dB 形式,显示的横坐标频率范围为-6~6Hz ,纵坐标范围为-80dB~0dB 。
实验结果应该如下图所示(注意与单极性不归零信号频谱进行比较)。
-80-70-60-50-40-30-20-100频率(Hz)功率谱幅度值(d B )二进制单极性归零基带信号功率谱(dB)要求1:时域波形图显示的横坐标时间范围为0~20s ,纵坐标范围为-1.1V~1.1V ,注意横坐标、纵坐标及Title ,波形线宽为1.5。
实验结果应该如下图所示。
通信原理实验--数字基带传输仿真实验
数字基带传输实验实验报告一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观测眼图和星座图判断信号的传输质量。
二、系统框图及编程原理1.带限信道的基带系统模型(连续域分析)✧输入符号序列――✧发送信号―― ――比特周期,二进制码元周期✧发送滤波器―― 或或✧发送滤波器输出――✧信道输出信号或接收滤波器输入信号(信道特性为1)✧接收滤波器―― 或或✧接收滤波器的输出信号其中(画出眼图)✧如果位同步理想,则抽样时刻为✧抽样点数值为(画出星座图)✧判决为2.升余弦滚降滤波器式中称为滚降系数,取值为, 是常数。
时,带宽为Hz;时,带宽为Hz。
此频率特性在内可以叠加成一条直线,故系统无码间干扰传输的最小符号间隔为s,或无码间干扰传输的最大符号速率为Baud。
相应的时域波形为此信号满足在理想信道中,,上述信号波形在抽样时刻上无码间干扰。
如果传输码元速率满足,则通过此基带系统后无码间干扰。
3.最佳基带系统将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。
要求接收滤波器的频率特性与发送信号频谱共轭匹配。
由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。
设信道特性理想,则有(延时为0)有可选择滤波器长度使其具有线性相位。
如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。
由模拟滤波器设计数字滤波器的时域冲激响应升余弦滤波器(或平方根升余弦滤波器)的带宽为,故其时域抽样速率至少为,取,其中为时域抽样间隔,归一化为1。
抽样后,系统的频率特性是以为周期的,折叠频率为。
故在一个周期内以间隔抽样,N为抽样个数。
频率抽样为,。
相应的离散系统的冲激响应为将上述信号移位,可得因果系统的冲激响应。
西安邮电--软件仿真试验、数字基带系统
软件仿真实验一数字基带系统实验目的:1、熟悉仿真环境;2、掌握数字基带信号的常用波形与功率谱密度;3、掌握奈奎斯特第一准则与码间干扰的消除;4、掌握眼图及其性能参数。
知识要点:1、单、双极性不归零码的波形与功率谱密度;2、单、双极性归零码的波形与功率谱密度;3、奈奎斯特第一准则与码间干扰的消除;4、眼图及其性能参数。
仿真要求:建议时间参数:No. of Samples = 4096;Sample Rate = 2000Hz双边功率谱密度选择(Power dBm in 50 ohm)1、记录单、双极性不归零码的波形与功率谱密度;Rate = 100Hz;双极性码Amp = 10V;单极性码Amp = 10V,Offset = 10V;2、记录单、双极性归零码的波形与功率谱密度;用于采样的矩形脉冲序列幅度1V,频率100Hz;脉宽0.005s(占空比50%);3、改变采样脉冲的占空比,观察并记录归零码波形与功率谱密度的变化;4、建立如下系统:其中图符4、5均为示波器;图符0为Rate = 100Hz,Amp = 10V的双极性不归零码;图符3为FIR低通滤波器,其参数设置如下:通带增益0dB,阻带增益-40dB;归一化最低截止频率10Hz/2000Hz = 0.005;归一化最高截止频率190Hz/2000Hz = 0.095;分别记录信源与信宿的眼图,建议时间参数:Start = 0.02s,Length = 0.05s;5*、改变FIR低通滤波器的归一化截止频率,观察并记录信宿眼图的变化;6*、在FIR低通滤波器前加入高斯白噪声,观察并记录信宿眼图的变化,建议Density in 1 ohm = 0.001W/Hz;7*、改变高斯白噪声的功率谱密度,观察并记录信宿眼图的变化。
实验报告要求:1、记录数字基带信号的常用波形与功率谱密度,并分析其各自的特点;2、记录归零码的变化,分析占空比对归零码波形与功率谱密度的影响;3、记录信宿眼图的变化,并分析系统传输特性对信宿眼图的影响;4、记录信宿眼图的变化,并分析噪声对信宿眼图的影响。
通信原理第四章2
对比图4.3.2可以看出,传 输过程中第4个码元发生 了误码。产生该误码的原 因之一是信道加性噪声, 之二是传输总特性(包括 收、发滤波器和信道的特 性)不理想引起的波形畸 变,使码元之间相互串扰, 从而产生码间干扰。
图43.2 数字基带传输系统各点波形 《通信原理课件》
4.3.2 基带传输系统的数学分析 传输过程中第4个码元发生了误码,产生 该误码的原因就是信道加性噪声和频率特性。 基带传输系统的数学模型如图所示:
(2)尾部衰减要快。
经整理后无码间串扰的条件为:
1(或常数) h(kT ) 0 k 0 k 0
可以找到很多能满足此条件的系统,例如
h(t) 1
-4T
-3T -2T
-T
0
T
2T
3T
4T
t
《通信原理课件》
能满足码间无串扰的传递函数H(ω)不止一个,如: ① 门传递函数的冲击响应: h(t ) Sa( t ) Ts h(t ) Sa 2 ( t ) ② 三角传递函数的冲击响应: Ts m ③ 宽门传递函数的冲击响应: h(t ) Sa( t ) Ts
0 k
j
0
k
0
R
0
k j
讨 论:
① r(t)的采样值有三项: (a) ak h(t0 ):有用信息项 (b) 码间串扰值 : 除第k个码元波形之外的所有其它码元 在采样时刻的代数和,由于 a n 是随机变量,码间串扰也 是一个随机变量。 (c) 加性噪声干扰值:随机干扰 ② 由于存在码间串扰和加性噪声,判别 r kTs t0 值是“0” 还是“1”,可能错判。 ③ 理想情况:是在无干扰下,r (kTs + t0 ) = ak h(t0 )> Vd Vd:判别门限
数字基带信号的功率谱计算专项文档
这是一个周期函数,具有信号频率特性中的线谱 部分。令
g1(t)FG1() g2(t)FG2()
将v(t)展开成傅氏级数
v(t)
Cmej2msft
m
其C 中 mT 1S
Ts
2 Tsv(t)ej2msftdt 2
其中
Cm
1 TSf
st dt
2
1
1、对于非归零二元码信号,时域为矩形脉 冲,频域如图:
G(0)0, G(1/Ts)= G(2/Ts)= G(3/Ts)= G(k/Ts)=0 离散频谱中只有直流分量,没有其它高次谐波。
2、对于占空比50%的归零信号,脉冲时宽为 非归零信号的一半,带宽就为非归零信号的一倍。
归零信号的离散线谱中,除直流分量外,还有 奇次线谱,没有偶次线谱,由于有基频分量fs,可以 提取位定时信号。
平均功率谱密度计算式(1)
*功率谱的连续部分与单个脉冲功率谱的平方成正比。 式中:G(f)是单个波形g(t)的频域特性。 E(a)是系数的均值。
E[a]E[an]an
R(k)是相关值。
R (k)E {an,ank}anank
*它的线谱部分计算式如:
S(T kS)2E T 2 S 2 (a)|G (T kS)|2(fT n S)
周期性确知信号具有离散的线状频谱。
非周期确知信号没有离散线谱,只有用功率谱 密度描述的连续谱。
随机信号一般既有离散线谱,又有连续谱。
*9.2.1 相同波形随机序列的功率谱
对于随机序列
S(t) ang(tnT S)
s(f) T 1 S|G (f)|2 { R (0 ) E 2 [a ] 2 k 1 (R (k ) E 2 [a ]c2 o fS T s )} (
数字基带信号波形仿真
通信原理上机实验报告年级:姓名:学号:时间:数字基带信号波形仿真一、实验目的1.熟悉MATLAB软件的工作环境二、实验原理数字基带信号的波形经常采用方波,其中最基本的二进制基带信号波形有单极性归零波形、单极性不归零波形、双极性归零波形、双极性不归零波形。
三、实验内容与结果(1)数字基带信号波形的MATLAB仿真下面通过MATLAB程序来仿真一串随机消息代码的基带信号波形、首先产生1000个随机信号序列,分别用单极性归零码、单极性不归零码、双极性归零码和双极性不归零码编码,并且求平均功率谱密度。
源代码(以双极性为例)如下:close allclear allk=14;L=32;N=2^k;M=N/L;dt=1/L;T=N*dt;df=1.0/T;Bs=N*df/2;t=linspace(-T/2,T/2,N);f=linspace(-Bs,Bs,N);EP1=zeros(size(f));EP2=zeros(size(f));EP3=zeros(size(f));for x=1:1000k=round(rand(1,M));nrz=zeros(L,M);rz=zeros(L,M);for i=1:Mif k(i)==1nrz(:,i)=1;elsenrz(:,i)=-1;rz(1:L/2,i)=-1;endendnrz=reshape(nrz,1,N);rz=reshape(rz,1,N);NRZ=t2f(nrz,dt);P1=NRZ.*conj(NRZ)/T;RZ=t2f(rz,dt);P2=RZ.*conj(RZ)/T;EP1=(EP1*(x-1)+P1)/x;EP2=(EP2*(x-1)+P2)/x;endfigure(1)subplot(2,2,1);plot(t,nrz)axis([-5,5,min(nrz)-0.1,max(nrz)+0.1])title('Ë«¼«ÐÔ²»¹éÁãÂë','fontsize',12)xlabel('t(ms)','fontsize',12)ylabel('nrz(t)','fontsize',12)grid onsubplot(2,2,2);plot(t,rz)axis([-5,5,min(rz)-0.1,max(rz)+0.1])title('Ë«¼«ÐÔ¹éÁãÂë','fontsize',12)xlabel('t(ms)','fontsize',12)ylabel('rz(t)','fontsize',12)grid onsubplot(2,2,3);plot(f,EP1)axis([-5,5,0,1.2])title('Ë«¼«ÐÔ²»¹éÁãÂ빦ÂÊÆ×ÃܶÈͼ','fontsize',12) xlabel('f(kHz)','fontsize',12)ylabel('P1(f)','fontsize',12)grid onsubplot(2,2,4);plot(f,EP2)axis([-5,5,0,0.3])title('Ë«¼«ÐÔ¹éÁãÂ빦ÂÊÆ×ÃܶÈͼ','fontsize',12) xlabel('f(kHz)','fontsize',12)ylabel('P2(f)','fontsize',12)grid on调用傅里叶变换的函数t2f,该函数定义如下:function X=t2f(x,dt)X=fftshift(fft(x))*dt;end(1)实验结果1.数字基带信号波形的Simulink仿真(1)Simulink仿真模型(2)数字基带信号波形的Simulink仿真参数(3)实验结果。
AMI及HDB3码波形及功率谱密度实验
数字基带信号的波形与功率谱密度实验一、实验目的1、掌握数字基带码型有关概念及设计原则;2、了解单极性码、双极性码、归零码和不归零码的波形特点;3、掌握AMI和HDB3码的编码规则;4、掌握各种基带码功率谱特性。
二、实验预习要求1、复习?数字通信原理?第七章7.1节和7.2节——数字基带信号的码型与功率谱、AMI 与HDB3码波形与功率谱密度;2、学习MATLAB软件的使用;3、认真阅读本实验容,熟悉实验步骤。
三、实验原理通信的根本任务是远距离传递信息,因而如何准确地传输数字信息是数字通信的一个重要组成局部。
在数字传输系统中,其传输对象通常是二进制数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字终端的脉冲编码信号。
设计数字传输系统的根本考虑是选择一组有限的离散的波形来表示数字信息。
这些离散波形可以是未经调制的不同电平信号,也可以是调制后的信号形式。
由于未经调制的电脉冲信号所占据的频率带宽通常从直流和低频开场,因此称为数字基带信号。
而*些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,我们称之为数字信号的基带传输。
数字基带信号是数字信息的电脉冲表示,不同形式的数字基带信号〔又称码型〕具有不同的频谱构造,合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱构造,是基带传输首先要考虑的问题。
通常又把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。
事实上,在数字设备部用导线连接起来的各器件之间就是用一些最简单的数字基带信号来传送定时和信息的。
这些最简单的数字基带信号的频谱中含有丰富的低频分量乃到直流分量。
由于传输距离很近,高频分量衰减也不大。
但是数字设备之间长距离有线传输时,高频分量衰减随着距离的增加而增大,同时信道中往往还存在隔直流电容或耦合变压器,因而传输频带的高频和低频局部均受限。
此时必须考虑码型选择问题。
5.3 数字基带信号功率谱 功率谱公式的求解
离散谱是否存在, 关系着位定时信号
的提取
为了提取位定时, “制造”离散谱?
如何制造?
11
小结
为什么:
• 为什么要进行 功率谱的分析
是什么:
• 求解功率谱公 式的思路
• 分解,局部, 整体
怎么样:
• 对公式物理意 义的分析
• 是求解的目的, 实际应用的基 础
12
第五章 数字信号的基带传输
5.3 数字基带信号的功率谱 (功率谱公式的求解)
1
引言
数字基带信号的
典型码型
• 数字基带信号的时域波形,时域特性
数字基带信号的 频域特性
• 规则波形----确定性函数----频谱函数 • 随机脉冲序列 ----功率谱
求解功率谱公式 的方法
• 自相关函数,付氏变换:计算过程复杂
n=− N
g1 (t − nTs ) − Pg1 (ቤተ መጻሕፍቲ ባይዱ − nTs ) − (1− P)g2 (t − nTs )
un
(t
)
=
g
2
=
(t
(1− P)
− nTs ) −
g1 (t − Pg1 (t
nTs ) − − nTs )
g2 (t − nTs ) − (1− P)g2 (t
, −
以概率
nTs )
• 显然,功率谱含有连续谱和离散谱两部分。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
10
对公式意义的分析
公式的适用范围 是有限的
计算结果所具有 的意义是普遍的
上述公式只适用于简单二元码, 且前后波形相互独立的情形。
二进制随机脉冲序列的功率谱可 能包含连续谱和离散谱两部分;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1数字基带信号及其功率谱密度函数
题目要求:
用matlab画出如下数字基带信号波形及其功率谱密度。
(1)单极性不归零(NRZ)波形,设0、1等概,;
(2)单极性归零(RZ)波形,设0、1等概,;
(3)若,输入+1/-1序列,且等概出现。
一.实验原理
数字信号可以直接采用基带传输,所谓基带就是指基本频带。
基带传输就是在线路中直接传送数字信号的电脉冲。
基带传输时,对于传输数字信号来说,使用的方法是用不同的电
压电平来表示两个二进制数字,也即数字信号由矩形脉冲组
成。
我们将其划分为单极性码和双极性码,单极性码使用正的
电压表示数据;而根据信号是否归零,还可以划分为归零码和
非归零码,归零码码元中间的信号回归到0电平,而非归零
码遇1电平翻转,零时不变。
二.单极性不归零(NRZ)波形时域及功率谱密度如图所示:
0102030405060708090100-1.5-1-0.500.511.5
单极性N R Z 时域波形-8-6-4-202468
-40-20020单极性N R Z 功率谱密度(d B /H z )
时域上看,单极性不归零码,无电压用来表示"0",而恒定的正电压用来表示"1"。
从功率谱密度函数来看,单极性不归零函数根据表达式
可知,其功率谱函数值在0点含有冲
击。
三. 单极性归零(NZ )波形时域及功率谱密度如图所示:。