高等数学上:D2_3高阶导数4

合集下载

《高数数学(上)》-导数与微分

《高数数学(上)》-导数与微分
(2)设函数 u1(x),u2 (x),u3(x) un (x) 可导, f (x) u1(x)u2 (x) un (x),写出 f (x) 的求导公式.
解 (1)根据导数定义并运用极限的运算法则
u(x)v(x) lim u(x x)v(x x) u(x)v(x)
x0
x
u(x x)v(x x) u(x)v(x x) u(x)v(x x) u(x)v(x)
定理2.1
函数f (x)在x0 处可导的充要条件是左、右导数都存在
且相等.
7
一、 导数的定义
例 1 若函数f (x)在x=0 处连续,且 lim f (x) 存在, x0 x
证明f (x)在x=0 处可导.
证法一
设 lim f (x) A(A为常数),则 x0 x
lim f (x) lim x f (x) 0 A 0,
证 若函数y f (x)在x0 处可导,由导数的定义可得
lim
x x0
f (x) f (x0 ) x x0
f (x0 ),所以利用函数极限与无穷小之间的
关系可得
f (x) f (x0 ) x x0
f
( x0
)
,lim x x0
0,即
f (x) f (x0 ) f (x0 )(x x0 ) (x x0 )
x
所以k 1 时,f (x) 在 x 0 处可导. 2
12
本讲内容
01 导数的定义 02 导数的几何意义 03 可导与连续的关系
二、 导数的几何意义
几何意义
若函数 f (x)在x x0 处可导,f (x0 ) 是曲线 y f (x) 在点 (x0 , f (x0 )) 处切线的斜率.
x0

高等数学导数的计算教学ppt课件

高等数学导数的计算教学ppt课件

25
第二章 导数与微分
第二节 导数的计算
三.隐函数与参数式函数的导数
(一)隐函数的导数
显函数:因变量可由自变量的某一分析式来表示 的函数称为显函数.例如:
y 1 sin3 x , z x2 y2 .
隐函数:由含x,y的方程F(x, y)=0给出的函数称 为隐函数.例如:
x2/ 3 y2/ 3 a2/ 3 , x3 y3 z3 3xy 0 .
32
第二章 导数与微分
第二节 导数的计算
(二)参数式函数的导数
由参数方程给出的函数:
x y
x(t) y(t )
t
确定了y与x的函数关系.其中函数x(t),y(t)可导,且
x (t)0, ,则函数y=f (x)可导且
f ( x) 1
( y)

dy dx
1 dx
.
dy
7
第二章 导数与微分
第二节 导数的计算
例5 求y=arcsinx的导数.
解:由于y=arcsinx,x(-1,1) 为x=siny,y (-/2, /2) 的反函数,且当y (-/2, /2)时,
(siny)=cosy>0. 所以
(arcsin x)' 1 1 1 1 (sin y)' cos y 1 sin2 y 1 x2
f
( x)
3
1
x2
1
x2
1
3
x2
2
2
例10 设y arcsin x 2 x x
解:
y
arcsin
x
3
2x4
,求 y .
1
3
x
1 4
1 x2 2

(完整版)高等数学上册知识点

(完整版)高等数学上册知识点

高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

高等数学-§2.3 高阶导数

高等数学-§2.3 高阶导数

n
其中公式(2)称为莱布尼茨(Leibniz)公式.
高等数学 第2章 导数与微分
2.3 高阶导数
例2.3.7
y sin x cos x
4 4
2 2 2 2
, 求
y
n
.
解 将 y 变形得
y sin x cos x
1 cos 4 x 3 1 1 cos 4 x 4 4 4
2 2x 2 2 x x2 1 x 2x x2
y
y
2 1 x 2 x x 1 x

2
2x x2


2x x
2


2
2 x x 1 x 2x x
2
2 2x 2 2x x
2
高等数学 第2章 导数与微分
x
n
k
k n
高等数学 第2章 导数与微分
2.3 高阶导数
如果函数 u u x 和 v v x 在点 x 处具有 n 阶导数, 那么
u x v x 和 u x v x 在点 x 处也都具有
n 阶导数( , 是常数), 且
n
n 1 ! 1 n 1 x
n 1
通常规定 0! 1 , 因此这个公式当 n 1 时也成立.
高等数学 第2章 导数与微分
2.3 高阶导数
例2.3.6


yx
1

(
是任意常数)的 n 阶导数.
y 1 x 2
,
y x

y sin x cos( x ) sin( x 2 ) 2 2

高等数学2-3高阶导数隐函数求导讲解

高等数学2-3高阶导数隐函数求导讲解

x

2

2
)

sin(
x

3

) 2
y(n) sin( x n ) 2
同理可得 (cos x)(n) cos( x n ) 2
几个常用高阶导数公式
(1) (a x )(n) a x lnn a (a 0) (e x )(n) e x
( 1)( n 1)xn ( n)
2
4

求隐函数的导数时,只要记住x是自变量, y是x的函数, 于是y的函数便是x的复合函数, 将方程两边同时对x求导,就得到一个含有导数 y 的方程. 从中解出即可.
虽然隐函数没解出来,但它的导数求出来 了,当然结果中仍含有变量y. 一般来说,隐函数
求导, 允许在 y的表达式中含有变量y.
练习 设sin y xe y 0, 求 dy . dx
解 利用隐函数求导法.
将方程两边对x求导,得
cos y y 1 e y x e y y 0
解出 y, 得
y

ey cos y
xey
3. 对数求导法
作为隐函数求导法的一个简单应用, 介绍 对数求导法, 它可以利用对数性质使某些函数的
求导变得更为简单.
方 法 先在方程两边取对数, 然后利用隐函数的
若 n,则
y(n) ( xn )(n) n!, y(n1) (n!) 0.
( 1)( n 1)xn ( n)
( x )(n)


n!
( n)
0
( n)
例如: ( x5 )(6) 0
( x3 6 x2 5 x 1)(3) 3! 6

高等数学第二章高阶导数

高等数学第二章高阶导数
§2.3 高阶导数
高阶导数的定义 几个基本初等函数的n阶导数 莱布尼茨(Leibniz)公式 小结 思考题 作业
1
第二章 导数与微分
一、高阶导数的定义 高阶导数也是由实
问题:变速直线运动的加速度. 际需要而引入的.
设 s s(t), 则瞬时速度为v(t) s(t)
加速度a是 速度v对时间t的变化率
y

x2

1 3x

2

1
AB
(x 2)(x 1) x 2 x 1
A (x 2) 原式
1
x2
B (x 1) 原式
1
x 1
y 1 1
x 2 x 1
y(n)

(1)n
n!
( x
1 2)n1

(x
1

1)
n1

18
(4) y sin6 x cos 6 x
d2 y 或 d2 y d (dy) dx2 d x 2 d x dx
2
二阶导数的导数称为三阶导数, f ( x),
y,
d3 y dx 3
.
三阶导数的导数称为四阶导数, f (4)( x),
y(4) ,
d4 y dx4 .
一般地, 函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数,记作

2)n
cos
x2
16
,

f (n) (2)
n!
2 2
提示:
各项均含因
(x 2)n(x 1)n cos x2 子 ( x – 2 )
16
n !(x 1)n cos x2

高等数学导数公式大全

高等数学导数公式大全

cos x
(4) 把 tan x 当作中间变量, y ' (etan x ) ' etan x (tan x) ' sec2 xetan x
(5) 把 - x 当作中间变量, y ' (2-x ) ' 2-x ln 2(-x) ' -2-x ln 2
求导方法小结:
先将要求导的函数分解成基本初等函数,或 常数与基本初等函数的和、差、积、商.
解:上式两边对x求导,则有y '=(1) ' (xey ) ',即
y ' ey x (ey ) ey x ey y '
(1- xey ) y ' ey
y
'
ey 1- xey
隐函数的求导步骤: (1)方程两边对x求导,求导过程中把y视为中间变量,
得到一个含有y '的等式; (2)从所得等式中解出y '.
2) y sin( x - 2);
3) y ln cos x;
4) y etan x ;
5) y 2-x
解:(1)函数可以分解为y u3(x),u(x) 3x2 1, y ' [u3(x)]' 3u2 (x) u(x) ' 3(3x2 1)2 (3x2 1) '
3(3x2 1)2 6x 18x(3x2 1)2
v( u(
x) x)
u( x)v( x) - u( x)v( x)
[u( x)]2
.
推论 1 (cu(x)) = cu(x) (c 为常数).
推论 2
1 u( x)
-
u( x) u2 ( x)
.
乘法法则的推广:

高等数学导数的四则运算

高等数学导数的四则运算

课题2导数的四则运算法则一、复习基本初等函数的导数公式用定义只能求出一些较简单的函数的导数(常函数、幂函数、正、余弦函数、指数函数、对数函数),对于比较复杂的函数则往往很困难。

本节我们就来建立求导数的基本公式和基本法则,借助于这些公式和法则就能比较方便地求出常见的函数——初等函数的导数,从而是初等函数的求导问题系统化,简单化。

二、导数的四则运算法则设函数)(x u u =、)(x v v =在点x 处可导,则函数)(x u ±)(x v ,)()(x v x u ⋅,)0)(()()(≠x v x v x u 也在点x 处可导,且有以下法则: (1) [])()()()(x v x u x v x u '±'='±推论:[]'±±'±'±'='±±±±n n u u u u u u u u 321321 (2) [])()()()()()(x v x u x v x u x v x u '+'=', 推论1: [])()(x u C x Cu '='(C 为常数); 推论2:此法则可以推广到有限个函数的积的情形. 例 w uv w v u vw u uvw '+'+'=')((3) )0(2≠'-'='⎥⎦⎤⎢⎣⎡v v v u v u v u , 三、例题分析例:求 的导数解:例:已知x x y ln 3=,求y '解:)1ln 3(ln 3)(ln ln )()ln (222333+=+='+'='='x x x x x x x x x x x y例: 解:例:求的导数x x x x y ln cos sin 2⋅+⋅= 解3ln 11cos )(3++-=x x x x f ()()'+'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛-'='3ln 11cos )(3x x x x f 0131sin 234+-+-=-x x x x xx x sin 13123--=(x)f ,1)(2'+=求设x xx f 22222)1()1()1()()1()(x x x x x x x x f +'+-+'='+='2222222)1(1)1(21x x x x x +-=+-+=x x x x x x xx x x x x x x x x x x x cos ln sin cos 2sin )(ln cos ln )(cos )(sin 2sin )(2)ln (cos )sin x 2y +-+='⋅+⋅'+'+'='⋅+'='(附加练习:求下列函数的导数(1)x x y 33log = (2)x x xy sin cos 41+-=,(3)π+-=x x y 32(4)xx y +=41(5) (6)设4sin cos 4)(3π-+=x x x f ,求)(x f '及)2(πf '(7)x x x y cos )ln 2(-=四、导数的应用 例1 [电流]电路中某点处的电流i 是通过该点处的电量q 关于时间的瞬时变化率,如果一电路中的电量为t t t q +=3)(,(1)求其电流函数i (t ) ?(2)t =3时的电流是多少? 解:(1)13)()(23+='+==t t t t i ,(2)i(3)=28例2 [电压的变化率]一个电阻为 Ω6,可变电阻R 为的电路中的电压由下式给出: ,求在R=Ω7电压关于可变电阻R 的变化率 解例3[气球体积关于半径的变化率]现将一气体注入某一球状气球,假定气体的压力不变.问当半径为2cm 时,气球的体积关于半径的增加率是多少?解:气球的体积V 与半径r 之间的函数关系为气球的体积关于半径的变化率为 半径为2cm 时气球的体积关于半径的变化率为小结导数的四则运算作业 上册 p57 1—6),1()11)(1()(22f xx x f '-+=求3256++=R R V 26256333R R R V R R +++''==++()-(625)()()07.01007)7(-=-='V 334r V π=24r V π=')/(1624/322cm cm dtdVr ππ=⋅==课题3复合函数的导数一、复习导数公式 导数的四则运算法则 二、复合函数的求导法则因为x x cos )(sin =',是否可以类似写出x x 2cos )2(sin ='呢? 由三角函数的倍角公式可知x x x cos sin 22sin = ])(cos sin cos )[(sin 2)2(sin '+'='x x x x x )sin (cos 222x x -= x 2c o s 2=显然x x 2cos )2(sin ≠',因为x 2sin 不再是基本初等函数而是一个复合函数,对于求复合函数的导数给出如下法则.定理:如果函数)(x u ϕ=在点x 处可导,而函数)(u f y =在对应的u 处可导,则复合函数[])(x f y ϕ=也在x 处可导,且有dxdudu dy dx dy ⋅= 或 )()(]))(([x u f x f ϕϕ''=', 简记为 x u x u y y ''='证明:当)(x u φ=在x 的某邻域内不等于常数时, ∆u ≠0, 给自变量x 一增量x ∆,相应函数有增量y u ∆∆,因为0y 0x )()(→∆→∆==时,处连续,固有在处可导,可知在x x u x x u φφ)()(lim lim lim lim0000x u f xu u y x u u y x y x u x x ϕ'⋅'=∆∆∆∆=∆∆⋅∆∆=∆∆→∆→∆→∆→∆即 )()(]))(([x u f x f ϕϕ''=' 或 dxdudu dy dx dy ⋅= 当)(x u φ=在x 的某邻域内为常数时, y =f [ϕ(x )]也是常数, 此时导数为零, 结论自然成立. 说明:(1)复合函数对自变量的导数等于它对中间变量的导数乘以中间变量对自变量的导数。

高等数学第二章导数与微分(4)

高等数学第二章导数与微分(4)
14
(arcsin x) 1 1 x2
(arctan
x
)
1
1 x
2
(arccos x) 1 1 x2
(arc
cot
x)
1
1 x2
2.函数的和、差、积、商的求导法则
设u u(x),v v(x)可导,则
(1)(u v) u v, (2)(cu) cu ( C 是常数)
(3)(uv)
由y f 1(x)的严格单调性可知 y 0,
于是有
y x
1 x
,
y
y 0 (x 0),
y f 1(x)连续, 又知 f ( y) 0
[ f 1(x)] lim y lim 1 1 x0 x y0 x f ( y)
即[ f 1(x)] 1 .
y
f ( y)
4
例7 求函数 y arcsin x 的导数.
19
例20 双曲函数与反双曲函数的导数
ex ex
ex ex
sinh x
,cosh x
2
2
(sinh x) e x e x cosh x 2
(sinh x) cosh x (cosh x) sinh x
tanh x sinh x cosh x
(tanh
x)
1 cosh2
x
20
arcsinh x ln( x 1 x2 )
利用上述公式及法则, 初等函数求导问题可完全解决.
结论:初等函数的导数仍为初等函数.
16
例16 解
求函数 y x a2 x2 a2 arcsin x 的导数 .
y x 2
a2
2
x2
a2 2
2

同济版高等数学第二章导数与微分_3高阶导数课件

同济版高等数学第二章导数与微分_3高阶导数课件

阶数 2
分析:
f
(
x)


4x3 2x3
, ,
x0 x0

f
(0)

lim
x 0
2x3 x
0
0
f (0)

lim
x0
4x3 0 x

0

f
(
x)


12x 2 , 6x2,
x0 x0

f
(0)

lim
x0
6x2 x
0
f
(0)

lim
x0
的导数为 f (x) 的二阶导数 , 记作 或

y ( y)

d2 y d x2
d (dy) d x dx
类似地 , 二阶导数的导数称为三阶导数 , 依次类推 ,
n 1 阶导数的导数称为 n 阶导数 , 分别记作

机动 目录 上页 下页 返回 结束
例1. 设

解: y a1 2a2 x 3a3x2 nan xn1 y 2 1a2 3 2a3x n(n 1)an xn2
1
x2
B (x 1) 原式
1
x 1
y 1 1
x 2 x 1
y(n)

(1)n
n!
( x
1 2)n1

(x
1

1)
n1

机动 目录 上页 下页 返回 结束
(4) y sin6 x cos 6 x
解:
sin4 x sin2 x cos 2 x cos 4 x

高数(上)第二章第三节高阶导数

高数(上)第二章第三节高阶导数

f '"( x ) 2 3[ f ( x )]2 f '( x ) 3![ f ( x )]4 ,
故 f ( n) ( x ) n![ f ( x )]n1
已知 f ( x ) 存在,且 f ( x ) 0, y ln[ f ( x )],
d2 y 求 . 2 dx
v ' 2 x , v '' 2 , v ( n) 0(n 3)
由莱布尼兹公式
0 (10) (0) 1 (9) ' 2 (8) '' y (10) C10 u v C10 u v C10 u v 10 9 2 x sin( x 10 ) 10 2 x sin( x 9 ) 2 sin( x 8 ) 2 2 2 2
同理二阶导数的导数称为三阶导数. 记为
y, f ( x ), d3 y , 3 dx d3 f dx 3
三阶导数的导数称为四阶导数.记为
y
(4)
,
f
(4)
( x ),
d4 y , 4 dx
d4 f dx 4
f ( x x ) f ( x ) 即 f ( x ) lim x 0 x
( n)
= (-1)
n-1
( n 1)! xn
1 ( n) n n! ( ) = (-1) n1 x x
( n 1)! (6) (ln ( 1 x ) ) (-1) n ( 1 x )
( n) n-1
1 ( n) n! n ( ) = (-1) n1 1 x (1 x)
1 ( n) n! ( ) = n 1 1 x (1 x)

高等数学2-3、4

高等数学2-3、4
(n) ( n)
1 8 1+ , n=1 2 2 ( x 1) ( x 2) = ( 1)n n! ( 1)n n! , n>1 +8 n+1 n+1 ( x 1) ( x 2)
例11 设 y = sin 6 x + cos 6 x , 求y ( n ) .
2 3 2 3 解 y = (sin x ) + (cos x )
∴y
(n)
3 n π = 4 cos(4 x + n ). 8 2
例12 设 g′( x ) 连续,且 f ( x ) = ( x a )2 g ( x ) , 连续, 解 求 f ′′(a ) . ∵ g ( x ) 可导
∴ f ′( x ) = 2( x a ) g ( x ) + ( x a )2 g′( x )
莱布尼兹公式
例8 设 y = x 2e 2 x , 求y ( 20 ) . 解
设u = e 2 x , v = x 2 , 则由莱布尼兹公式知
y ( 20 ) = (e 2 x )( 20 ) x 2 + 20(e 2 x )( 19 ) ( x 2 )′ 20( 20 1) 2 x ( 18 ) (e ) ( x 2 )′′ + 0 + 2! = 220 e 2 x x 2 + 20 219 e 2 x 2 x 20 19 18 2 x 2 e 2 + 2! = 220 e 2 x ( x 2 + 20 x + 95) 注意: 注意: 莱布尼兹公式不是对所 有乘积形式求导
y ( n ) = α( α 1) ( α n + 1) x α n ( n ≥ 1)
若 α 为自然数 n, 则

高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-2_5 高阶导数-电子课件

高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-2_5 高阶导数-电子课件

(x 1)(n 1, 2,...).
注 0! 1,因此,这个结果n 1 时也成立.
例5
求函数 f (x)
1 x2 6x 5
(x 1,5)的 n 阶导数.

f
(x)
x2
1 6x 5
1 (x 1)(x 5)
1 4
1 x 5
1 x 1
f
( x)
1 4
(x
1 5)2
1 (x 1)2
例如,自由落体的位置函数 s(t) 1 gt2 ,一阶导数 2
v(t) s(t) gt 是瞬时速度, Biblioteka (t) (gt) g 是加速度 .
例 1 设 f (x) x5 4x2 3x, 求 f (x)及 f (1).
解 因为 f (x) 5x4 8x 3, 则 f (x) (5x4 8x 3) 20x3 8
所以 f (1) (20x3 8) |x1 12.
例 2 证明: y exsinx满足关系式 y 2 y 2 y 0.
证明 因为 y exsinx excosx ex (sinx cosx),
y ex sin x cos x ex cos x sin x 2ex sin x
一般地, f (x)的 n-1 阶导数的导数称为 f (x) 的 n 阶导数.
三阶导数的记号是
y,
f
( x),
d3 y dx3
或d3 f dx3
.
n
4时的
n
阶导数
的记号是
y(n) ,
f
(n) (x),
dn y dxn
或dn f dxn
.二阶或二阶以上的导数统
称为高阶导数.
二阶导数有明显的物理意义.变速直线运动的位置函 数s s(t)时,s(t)为瞬时速度v(t),加速度是速度v(t)的变 化率,等于v(t) ,即位置函数 s(t)的二阶导数 s(t)为变速 直线运动的加速度 a(t ).

南邮高数 2-3高阶导数及相关变化率

南邮高数 2-3高阶导数及相关变化率

x(3) y
2x 1 x2 x
2
解 (1) y(n) ( x2 sin 3x)(n) (sin 3x x2 )(n)
vu
莱布尼兹公式
(sin 3x)(n) x2 n(sin 3x)(n1) ( x2 )
n(n 1) (sin 3x)(n2) ( x2 ) 2!
3n sin(3x n ) x2 n3n1(sin 3x (n 1) ) 2x
3)分段函数、隐函数以及参数方程表达的函数的 高阶导数
例5
设f
(
x)
ex ax 2
bx
c
x 0,问a, b, c为 x0
何值时f ( x)在x 0处具有二阶导数.
解 ex , ax2 bx c处处均连续且有各阶导数
要使f (x)在x 0处有二阶导数,必须且只需
f (0 0) f (0 0) ( f (x)在x 0处连续)
解:方程两边对x求导, 注意到 y是 x函数, 有
1 y 1 cos y y 0
(1)
2
y
1
1 1 cos
y
2
2 cos
y
( 2)
2
(2) 式继续对x求导, 得
y
2 sin y y (2 cos y)2
4sin (2 cos
y y)3
或者 (1) 式继续对x求导, 得
y 1 sin y ( y)2 1 cos y y 0

ex x lim
x0
0 (2ax b) x0
ex 1 lim 2ax
x
x0
b x
b
1c
1
b
1 2a
当a 1 , b 1, c 1时, f ( x)在x 0处有二阶导数. 2

高数上D2_3高阶导数

高数上D2_3高阶导数

用数学归纳法可证莱布尼兹公式成立 .
例7.

解: 设

代入莱布尼兹公式 , 得
例8. 设

解:

用莱布尼兹公式求 n 阶导数







作业
习题2-3 P104页 2, 5, 6, 7, 8(1)(2)
内容小结
(1) 逐阶求导法
(2) 利用归纳法
(3) 间接法
—— 利用已知的高阶导数公式
备用题

二、高阶导数的运算法则
第三节
一、高阶导数的概念
高阶导数
第二章
一、高阶导数的概念
速度

加速度

引例:变速直线运动
定义.
若函数
的导数
可导,



类似地 , 二阶导数的导数称为三阶导数 ,
阶导数的导数称为 n 阶导数 ,

的二阶导数 ,
记作
的导数为
依次类推 ,
分别记作
则称


解:
依次类推 ,
例1.
(4) 利用莱布尼兹公式
高阶导数的求法
如,
思考与练习
1. 如何求下列函数的 n 阶导数?
解:
解:
(3)
提示: 令
原式
原式
解:
2. (填空题) (1) 设

提示:
各项均含因子 ( x – 2 )
(2) 已知
任意阶可导, 且

提示:
则当
3. 试从
导出
解:
同样可求
解:

大学数学_2_5 高阶导数

大学数学_2_5 高阶导数

二阶导数有明显的物理意义 .变速直线运动的位置函 数 s s (t ) 时,s(t ) 为瞬时速度 v(t ) ,加速度是速度 v(t ) 的变 化率,等于 v(t ) ,即位置函数 s (t ) 的二阶导数 s(t ) 为变速 直线运动的加速度 a (t ). 1 2 s ( t ) gt ,一阶导数 例如,自由落体的位置函数 2 v(t ) s(t ) gt 是瞬时速度, s(t ) ( gt ) g 是加速度 . 例 1 设 f ( x) x5 4 x 2 3x, 求 f ( x) 及 f (1) .
证明 因为 y e x sinx e x cosx e x (sinx cosx), y e x sin x cos x e x cos x sin x 2e x sin x 0 所以
y 2 y 2 y 2e x cosx 2e x sinx cosx 2e xsinx
1 ( x 1,5) 的 n 阶导数. 例 5 求函数 f ( x) 2 x 6x 5
解 f ( x)
内容小结
高阶导数的求法
(1) 逐阶求导法 (2) 利用归纳法
(3) 间接法 —— 利用已知的高阶导数公式
作业
P98 2(3), (4), 3(2), 4, 5(2)
解 因为 f ( x) 5 x 4 8 x 3, 则 f ( x) (5 x 4 8 x 3) 20 x 3 8 所以 f (1) (20 x3 8) |x1 12.
例 2 证明: y e xsinx 满足关系式 y 2 y 2 y 0.
例 4 求对数函数 y ln(1 x) ( x 1) 的 n 阶导数.

高数复习知识点

高数复习知识点

高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;(重点)函数)(x f 在0x 连续)()(lim 00x f x f xx =→第一类:左右极限均存在.间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理(重点)、介值定理及其推论.(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若lim 0α=则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:(重点)a) 1sin lim 0=→x x x b) e xx xx xx =+=++∞→→)11(lim )1(lim 15) 无穷小代换:(0→x )(重点)a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c)x e x ~1- (a x a x ln ~1-)d) x x ~)1ln(+ (axx a ln ~)1(log +)e)x x αα~1)1(-+二、 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、 可导与连续的关系:4、 求导的方法1) 导数定义;(重点) 2) 基本公式; 3) 四则运算;4) 复合函数求导(链式法则);(重点) 5) 隐函数求导数;(重点) 6) 参数方程求导;(重点)7) 对数求导法. (重点) 5、 高阶导数1) 定义:⎪⎭⎫⎝⎛=dx dy dx d dx y d 22 2)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关.2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:(重点)若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使.2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使.3、 Cauchy 中值定理:若函数)(),(x F x f 满足:1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则(重点) (三) T aylor 公式(不考) (四) 单调性及极值1、 单调性判别法:(重点)],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:(重点))(x f 在0x 的邻域内可导,且0)(0='x f ,c) 则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.d) 第二充分条件:(重点))(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,e) 则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2(,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2( ,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的.2)判定定理(重点):)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的;b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、 利用函数单调性;(重点)3、 利用极值(最值). (六) 方程根的讨论1、 连续函数的介值定理;2、 Rolle 定理;3、 函数的单调性;4、 极值、最值;5、 凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线; 2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线; 3、 斜渐近线:k xx f x =∞→)(lim b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜 渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数. (重点)2、 不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);(重点)4、 性质(线性性).(二) 换元积分法(重点)1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv (重点)(四) 有理函数积分 1、“拆”;2、变量代换(三角代换、倒代换、根式代换等).五、 定积分 (一) 概念与性质:1、 定义:∑⎰=→∆=ni i i bax f dx x f 1)(lim )(ξλ2、 性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ (平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)(重点)1、 变上限积分:设⎰=Φxadt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ 2、 N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分(重点)1、 换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)(2、 分部积分法:[]⎰⎰-=babab a vdu uv udv (四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat a dx x f dx x f )(lim )( ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、 瑕积分:⎰⎰+→=btat ba dx x f dx x f )(lim )((a 为瑕点) ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1 ,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q q a b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x fA )]()([12(重点)2、 极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:(重点)a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x f V )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=bay dx x xf V )(2π (柱壳法)2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(12、 参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、 极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程(重点)dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设x y u =,则dxdu x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dydv y v dy dx += (四) 一阶线性微分方程(重点))()(x Q y x P dxdy =+ 用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f y n =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dy dp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程(重点)二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程)(x f qy y p y =+'+''1、)()(x P e x f m x λ=(重点)设特解)(*x Q e x y m x k λ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m m x k ωωλsin )(cos )()2()1(*+=,其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。

2-3高阶导数

2-3高阶导数

解 y cos x sin( x )
y

cos(
x


)

sin(
2 x



)

sin(
x

2


)
2
22
2
y cos( x 2 ) sin( x 2 ) sin( x 3 )
2
22
2
一般地
y(n) sin( x n )
例 1 y 3 x ln x ,求 y
例2 设 y x x ,求 y
x2, x 0

y


x2
,
,所以
x0
f(0)
lim
x0
f (x) x
f (0)
lim
x0
x
0
f(0)
lim
x0
f (x) x
f (0)
lim ( x) 0
分析
y

1 2
ln
x

1

ln
x

2
y'

1 2
1 x 1

x
1
2
高阶导数的运算法则:
设函数u和v具有n阶导数, 则 (1) (u v)(n) u(n) v (n)
(2) (Cu)(n) Cu(n)
(3)莱布尼茨(Leibniz)公式
( uv )( n )
2,
x0
y 不存在, x 0
2,
x0
例3 设 y x4 3x2 x 1,求 y(n)

导数同构高低阶

导数同构高低阶

导数同构高低阶下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!导数同构高低阶是高等数学中一个重要的概念,它在各种数学问题中都起着至关重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
eax a2 b2 sin(bx ) ( arctan b)
a y a2 b2
a2 b2 eax a2 b2 sin(bx 2)
a
2
b2 (
a
y(n) (aa22
snin b22)2 e
abxxsin(bax2bnb2
cos bx)
) (
arctan
b
பைடு நூலகம்
)
a
cos
sin
lim
x0
6
x x
2
0
f
(0)
lim
x0
12x x
2
0
f
( x)
24x 12x
, ,
x0 x0
但是 f(0) 12 , f(0) 24 , f (0) 不存在 .
机动 目录 上页 下页 返回 结束
二、高阶导数的运算法则
设函数

都有 n 阶导数 , 则
(C为常数) n(n 1) 2!
n(n 1)(n k 1) k!
3
S 4r2(t)
显然,V和S都是t的函数.
今问:当r 10cm时V (t) ? S(t) ?
因为r(t)未知, 无法求出V (t), S(t)关于t的导数,
所 以 只 能 从 已 知 公 式 出发 考 虑 问 题, 从 而 得
r(t) 10cm时 dV 4 3r2(t) dr(t)
dt 3
dt
由题设知dr(t) 10cm / s2 dt
dV dt
r(t)10 4 102 10 4000cm3 / s
类似地, dS 4 2r(t) dr(t)
dt
dt
dS dt
r(t )10 4
2 10 10 800cm2 / s
即r 10cm时,体积的增长速度为4000cm3 / s,
的导数为 f (x) 的二阶导数 , 记作 或

y ( y)

d2 y d x2
d (dy) d x dx
类似地 , 二阶导数的导数称为三阶导数 , 依次类推 ,
n 1 阶导数的导数称为 n 阶导数 , 分别记作

机动 目录 上页 下页 返回 结束
例1. 设

解: y a1 2a2 x 3a3x2 nan xn1 y 2 1a2 3 2a3x n(n 1)an xn2
2!
机动 目录 上页 下页 返回 结束
例 求由摆线x a( sin ), y a(1 cos )所
确定的函数y y( x)的二阶导数.
解 dy y a sin sin dx x a(1 cos ) 1 cos
d2y dx 2
d dx
( sin 1 cos
)
d
d
( sin 1 cos
一 个
题变

求出未知的相关变化率

如 何 求 出 另 一 个 变 化 率
? :
机动 目录 上页 下页 返回 结束
例 一个气球的半径以10cm / s2的速度增长着, 求当半径为10cm时体积和表面积的增长速度.
解 设在时刻t时, 气球的半径为r r(t), 则气球的体积和表面积分别为
V 4 r3(t)
)
d
dx
cos
(1
cos ) sin (1 cos )2
sin
a(1
1
cos
)
a(1
1
cos
)2
若参数方程中
二阶可导, 且
则由它确定的函数
可求二阶导数 .
x (t)
利用新的参数方程 dy (t) ,可得 dx (t)
d2 y d x2
d (dy) dx dx
d (dy) d t dx
依次类推 , 可得
y(n) n!an
思考: 设 y x ( 为任意常数), 问
机动 目录 上页 下页 返回 结束
例2. 设 y eax , 求 y(n).
解: y aeax , y a2 eax , y a3eax , ,
y(n) aneax
特别有: (ex )(n) e x
例3. 设
莱布尼兹(Leibniz) 公式
推导 目录 上页 下页 返回 结束
例7.

解: 设 u e2x , v x2 , 则
u(k) 2k e2x ( k 1 , 2 ,, 20 )
v 2x , v 2 ,
v(k) 0 (k 3 ,, 20)
代入莱布尼兹公式 , 得
y(20) 220 e2x x2 20 219 e2x 2x 20 19 218 e2x 2
dx dt
(t)(t) (t)(t)
2 (t)
(t )
(t
)
(t) (t 3 (t )
)
(t
)
机动 目录 上页 下页 返回 结束
三、相关变化率
为两可导函数
之间有联系
之间也有联系
相关变化率问题解法:
称为相关变化率 相已
找出相关变量的关系式
关知
变其
对 t 求导
化中
得相关变化率之间的关系式
率 问
机动 目录 上页 下页 返回 结束
例6. 设 f (x) 3x3 x2 x , 求使 f (n) (0) 存在的最高
阶数 2
分析:
f
(x)
4x3, 2x3,
x0 x0
f
(0)
lim
x 0
2x3 x
0
0
f (0)
lim
x0
4x3 0 x
0
f
(
x)
12x 2 , 6x2,
x0 x0

f
(0)
第四节 高阶导数
第二章
一、高阶导数的概念 二、高阶导数的运算法则 三 、 相关变化率
机动 目录 上页 下页 返回 结束
一、高阶导数的概念
引例:变速直线运动
速度
即 v s
加速度

a (s)
机动 目录 上页 下页 返回 结束
定义. 若函数 y f (x) 的导数 y f (x) 可导, 则称

y 1 1 x
y
1 (1 x)2
解:
y 1 , 1 x
y
1 (1 x)2
,
y
(1)2
1 (1
2 x)3
,
,
y(n)
(1)n1
(n 1)!
(1 x)n
规定 0 ! = 1
思考:
机动 目录 上页 下页 返回 结束
例4. 设

解:
y
cos x
sin(x
2
)
y
cos(
x
2
)
sin(x
2
2
)
sin(x
表面积的增长速度为800cm2 / s.
例. 有一底半径为 R cm , 高为 h cm 的圆锥容器 ,
今以 25cm3 s自顶部向容器内注水 , 试求当容器内水
位等于锥高的一半时水面上升的速度.
2
2
)
y
cos( x
2
2
)
sin(x
3
2
)
一般地 ,
(sin
x)(n)
sin( x
n
2
)
类似可证:
(cos
x)(n)
cos(
x
n
2
)
机动 目录 上页 下页 返回 结束
例5 . 设 y eax sin bx (a ,b为常数), 求 y(n).
解: y aeax sin bx beax cos bx eax (a sin bx b cos bx)
相关文档
最新文档