精馏塔回流罐液位控制系统
化工分离技术----精馏操作
![化工分离技术----精馏操作](https://img.taocdn.com/s3/m/6b1d2cfcba1aa8114531d9bd.png)
一、精馏塔的开工准备在精馏塔的装置安装完成后,需经历一系列投运准备工作后,才能开车投产。
精馏塔在首次开工或改造后的装置开工,操作前必须做到设备检查、试压、吹〔清〕扫、冲洗、脱水及电气、仪表、公用工程处于备用状态,盲板拆装无误,然后才能转入化工投料阶段。
〔一〕设备检查设备检查是依据技术标准、标准要求、检查每台设备安装部件。
设备安装质量的好坏直接影响开工过程和开工后的正常运行。
1、塔设备塔设备的检查包括设备的检查和试验,分别在设备的制造、返修或验收时运行。
通常用的检查法有磁粉探伤仪、渗透探伤法、超声波探伤法、X射线探伤法和y射线探伤法。
试验方法也有煤油试验、水压试验、气压试验和气密性试验。
首次运行的塔设备,必须逐层检查所有塔盘,确定安装准确,检查溢留口尺寸、堰高等,确保其符合要求。
所有阀也要进行检查,确认清洁,例如浮阀要活动自如,舌型塔板、舌口要清洁无损坏。
所有塔盘紧固件正确安装,能起到良好的紧固作用。
所有分布器安装定位正确,分布孔畅通。
每层塔板和降液管清洁无杂物。
所有设备检查工作完成后,马上安装人孔。
2、机泵、空冷风机机泵经过检修和仔细检查,可以备用;泵、冷却水畅通,润滑油加至规定位置,检查合格;空冷风机,润滑油或润滑脂按规定加好,空冷风机叶片调节灵活。
3、换热器换热器安装到位,试压合格,对于检修换热器,抽芯、清扫、疏通后,到达管束外外表清洁和管束畅通,保证开工后换热效果,换热器所有盲板拆除。
〔二〕试压精馏塔设备本身在制造厂做过强度试验,到工厂安装就位后,为了检查设备焊缝的致密性和机械强度,在试用前要进行压力试验。
一般使用清洁水做静液压试验。
试压一般按设计图上的要求进行,如果设计无要求,则按系统的操作压力进行,假设系统的操作压力在5×101.3kPa下,则试验压力为操作压力的1.5倍;假设操作压力在5×101.3kPa以上,则试验压力为操作压力的1.25倍;假设操作压力不到2×101.3kPa,则试验压力为2×101.3kPa即可。
精馏塔控制
![精馏塔控制](https://img.taocdn.com/s3/m/63d3a95adf80d4d8d15abe23482fb4daa58d1d8a.png)
控制结构 (1)方案1:D — LR, B — LB, V — TB; (2)方案2:D — LR, V — LB, B — TB。
提馏段控制方案之一
FC F
TC
FC
LC B
LC D
提馏段控制方案之二
FC F
FC
TC LC
B
LC D
精馏塔两端质量指标控制问题
基本控制系统的分析与设计方法; 5、了解精馏塔的复杂控制与先进控制方法。
连续精馏装置的工艺流程
原料
精 馏 塔
冷凝器
操作目的:
塔顶产品
通过反复的部分汽化 与部分冷凝,将混合
回流罐
液中沸点不同的各组
分分离成产品。
回流泵
再 沸 器
塔底产品
操作代价:
消耗能量,塔底需要 加热使塔底液部分汽 化;塔底需要冷却使 塔顶组分冷凝;
W
D
TR
L
精 馏
LD
塔
B
TS
QH
LB
两端质量指标控制方案
方案 控制变量
D
L
QH
B
1
LD
TR
TS
LB
2
TR
LD
TS
LB
受控变量
3
LD
TR
LB
TS
4
TR
LD
LB
TS
两端质量指标控制方案之一
F
TC
TB V V2
TD
TC
R V1
B
控制方案
(1)若相互耦合不严重, 则可通过调节器参数的整 定,使相关回路的工作频 率拉开以减少关联; (2)若耦合严重,则可 考虑静态解耦或其他先进 控制方法:变结构控制、 预测控制等。
精馏塔回流罐液位控制系统设计
![精馏塔回流罐液位控制系统设计](https://img.taocdn.com/s3/m/5cc0958b59f5f61fb7360b4c2e3f5727a5e92427.png)
精馏塔回流罐液位控制系统设计
系统结构设计:
精馏塔回流罐液位控制系统的结构设计通常包括液位传感器、液位控
制器、执行器以及控制回路。
其中,液位传感器用于实时测量液位,并将
测量值传输给液位控制器;液位控制器通过对接收到的液位信号进行处理,并输出控制信号给执行器,以调节回流液流入罐内的流量。
传感器选择:
在液位传感器的选择上,可以考虑使用压力传感器、雷达传感器、超
声波传感器等。
不同的传感器具有不同的测量原理和特性,选择合适的传
感器需要考虑到系统的要求,例如精度、可靠性、响应速度等。
液位控制器选择:
液位控制器的选择可以根据控制要求和技术特性进行。
常见的液位控
制器包括PID控制器、模糊控制器、自适应控制器等。
选择合适的液位控
制器需要考虑到系统的动态性能、抗干扰能力、稳态误差等因素。
控制策略设计:
控制参数调整:
控制参数调整是液位控制系统设计中一个重要的环节。
通过对液位控
制器的参数进行调整,可以提高系统的响应速度、稳定性和抗干扰能力。
常用的方法包括试验法、数学建模法、自整定法等。
系统性能评估:
对于设计好的精馏塔回流罐液位控制系统,需要进行系统性能评估。
评估指标通常包括系统的稳态误差、调节时间、超调量等。
通过对系统性能的评估,可以判断设计的优劣,并进行优化改进。
总结:
精馏塔回流罐液位控制系统设计是一个综合性的工程项目,需要考虑多个因素的综合影响。
通过合理的系统结构设计、传感器选择、液位控制器选择、控制策略设计、参数调整和系统性能评估,可以设计出一个性能优良的精馏塔回流罐液位控制系统。
第七章 精馏塔的控制
![第七章 精馏塔的控制](https://img.taocdn.com/s3/m/93407ef17c1cfad6195fa7b5.png)
j LR x j
D,XD
F,ZF Vs y k Ls x k-1 ↑ ↓ k
VS VR , LS LR F
进料为气相,且为露点,则:
Ls B,xB
VR Vs F , LR LS
物料平衡示意图
其它情况下的进料较为复杂,
VR Vs 1 q F LS LR qF
4、节能与经济性
回收率:
Ri 组分i的产品流量 100 % 进料中组分i的流量
例如:丙烯—丙烷塔,进料流量F,丙烯含量Ei,塔顶丙烯 产品流量D,则丙烯回收率 =D/(FEi )×100% 其他的丙烯进入到塔底的丙烷产品中。
能耗-产品纯度-回收率的关系
能耗不变时,产品纯度↑,回收率↓ 保证产品纯度时,能耗↑,回收率↑,但回收率增加 到一定程度时,提高的就不明显了。 保证产品纯度的前提下,权衡回收率与能耗,选择最 佳的回收率与能耗搭配,使得产量尽量多些,能耗尽量少 些。
LR 定义回流比: R D
,则:
LR LR R VR LR D R 1
可通过回流比R和再沸器蒸汽量V→内部物料平衡→yj+1 回流比R↑,y~x斜率↑ 全回流(R=∞,D=0)时, yj+1 =xj为对角线
(3)提镏段物料平衡
再沸器物料平衡:
B LS VS
提馏段操作 线方程
个气泡时的温度称为泡点
全部变成饱和气相的温度称为露点。
精馏塔原理示意图
1、工艺流程 2、分类
板式塔 筛板塔、泡罩塔、浮阀塔
穿流塔、浮喷塔、浮舌塔
填料塔
增加气液两相的接触面积 乱堆填料,规整填料
精馏塔物料流程图
3、机理复杂、控制难度大
_精馏塔操作常见问题详解
![_精馏塔操作常见问题详解](https://img.taocdn.com/s3/m/b3e8a449dcccda38376baf1ffc4ffe473368fda4.png)
_精馏塔操作常见问题详解1.精馏塔操作及自动控制系统的改进问:蒸汽压力突然变化时,将直接影响塔釜难挥发组分的蒸发量,使当时塔内热量存在不平衡,导致气-液不平衡,为此如何将塔釜热量根据蒸汽进料量自动调节达到相对稳定,从而保证塔内热量平衡是问题的关键。
在生产过程中,各精馏塔设备已确定,塔釜蒸发量与气体流速成正比关系,而流速与塔压差也成正比关系,所以控制好塔顶、塔釜压力就能保证一定的蒸发量,而在操作中,塔顶压力可通过塔顶压力调节系统进行稳定调节或大部分为常压塔,为此,稳定塔釜压力就特别重要。
于是在蒸汽进料量不变情况下,我们对蒸汽压力变化情况与塔釜压力的变化进行对比,发现两者成正比关系,而且滞后时间极小。
于是将蒸汽进料量与塔釜压力进行串级操作,将塔釜压力信号传递给蒸汽流量调节阀,蒸汽流量调节阀根据塔釜压力进行自动调节,通过蒸汽进料量自动增大或减少,确保塔釜压力稳定,从而保证了精馏操作不受外界蒸汽波动的影响。
我们在讨论精馏塔的控制方式,主要分析的是工艺系统对塔的影响,公用工程几乎不对内部有制约。
实际上也是如此。
举例分析:蒸汽系统的压力突然变化的系数要远远小于一个精馏塔内部压力变化的系数,也就是说蒸汽系统的压力对比塔压是更趋于稳定;基于这个原因塔压的控制才可以串级控制再沸器的进入蒸汽流量。
如果发现蒸汽系统的压力发生了变化,塔压基本没法和加热蒸汽流量串控了。
第二塔的压差基本只是一个参考数据,一般不对塔压差进行控制。
尽管塔压差过高我们要采取一定的措施。
DCS/SCS/APC等技术伴随着大容量的工业电脑的应用,投入成本逐渐下降,精馏塔的高级智能控制也成为可能,比如APC/SCS等技术,精馏产品纯度也得到保证。
可是这些系统其实很脆弱,由于影响这些先进控制的外来因素的影响,DCS操作工随时都可能摘除这些控制,回到DCS的水平,进行人工干预。
问:个人认为首先蒸汽压力的波动可以直接影响釜温和塔釜压力的不稳定,同时造成塔内压差的波动,在锅炉补水或蒸汽温度变化的情况下如果不即时去调节蒸汽量来稳定塔内压差的话,很有可能造成反混和塔釜轻组分超标现象.这个和采用双温差控制的方式相仿,而且在现场操作的时候,如果蒸汽压力升高或降低,如果阀门保持同样的开度的话,蒸汽的流量会多少有加大和减少的情况,我认为公用系统的稳定是精馏系统温度的先决条件,楼上你认为如何?你“说”的没有任何错误。
精馏塔工作原理
![精馏塔工作原理](https://img.taocdn.com/s3/m/46f81fa6b84ae45c3a358cbc.png)
精馏过程的主要设备有:精馏塔、再沸器、 冷凝器、回流罐和输送设备等。精馏塔以进料 板为界,上部为精馏段,下部为提留段。一定 温度和压力的料液进入精馏塔后,轻组分在精 馏段逐渐浓缩,离开塔顶后全部冷凝进入回流 罐,一部分作为塔顶产品(也叫馏出液),另 一部分被送入塔内作为回流液。回流液的目的 是补充塔板上的轻组分,使塔板上的液体组成
保持稳定,保证精馏操作连续稳定地进。而 重组分在提留段中浓缩后,一部分作为塔釜产 品(也叫残液),一部分则经再沸器加热后送 回塔中,为精馏操作提供一定量连续上升的蒸 气气流。
二、精馏塔动画演示
1.板式塔结构 2.板式塔工作原理 3.精馏塔实观 4.精馏塔剖面图 5.板式精馏塔
1.板式塔结构
2.板式塔工作原理
四、组态画面及设备
1.精馏塔单元仿DCS图 2.精馏塔单元仿现场图 3.精馏工艺流程 4.换热器 5.再沸器
1.精馏塔单元仿DCS图
2.精馏塔单元仿现场图
3.精馏工艺流程
4.换热器
感谢您的聆听 您的关注使我们更努力
此课件下载后可自行编辑修改 关注我 每天分享干货
19
作为回流液由调节器FC104控制流量(9664KG/H) 送回DA405第32层塔板;另一部分则作为产品,其 流量由调节器FC103控制(6707Kg/h)。回流罐的 液位由调节器LC103与FC103构成的串级控制回路 控制。DA405操作压力由调节器PC102分程控制为 5.0Kg/m2。同时调节器PC101将调节回流罐的气相 出料,保证系统的安全和稳定。
塔釜液体的一部分经再沸器EA408A/B回精馏 塔,另一部分由调节器FC102控制流量(7349Kg/h), 作为塔底采出产品。调节器LC101和FC102构成串 级控制回路,调节精馏塔的液位。再沸器用低压 蒸气加热,加热蒸气流量由调节器TC101控制, 其冷凝液送FA414。FA414的液位由调节器LC102 调节。
5.1 精馏塔控制系统
![5.1 精馏塔控制系统](https://img.taocdn.com/s3/m/8ce57a6e58fafab069dc02fe.png)
第五章
(1)温差控制
精馏塔控制系统
在精馏中,任一塔板的温度是成分与压力的函数,影响温度变化的因素 可以是成分,也可以是压力。在一般塔的操作中,无论是常压塔、减压塔还 是加压塔,压力都是维持在很小范围内波动的,所以温度与成分才有对应关 系。但在精密精馏中,要求产品纯度很高,两个组分的相对挥发度差值很小, 由于成分变化引起的温度变化较压力变化引起温度的变化要小得多,所以微 小压力波动也会造成明显的效应。例如,苯-甲苯-二甲苯分离时,大气压变 化6.67 kPa,苯的沸点变化2 ℃,已超过了质量指标的规定。这样的气压变 化是完全可能发生的,由此破坏了温度与成分之间的对应关系。所以在精密 精馏时,用温度作为被控变量往往得不到好的控制效果,为此应该考虑补偿 或消除压力微小波动的影响。 选择温差信号作为间接质量指标时,测温点应按下述方法确定。如塔顶 馏出液为主要产品时,一个测温点应放在塔顶(或稍下一些),即成分和温 度变化较小、比较恒定的位置;而另一个检测点放在灵敏板附近,即成分和 温度变化较大、比较灵敏的位置上。然后取上述两个测温点的温度差∆T作 为被控变量,此时压力波动的影响几乎相互抵消。
第五章
精馏塔控制系统
在一定的纯度要求下,增加塔内的上升蒸汽是有利于提高产品回 收率的,但同时也意味着再沸器的能量消耗要增大。况且,任何事物 总是有一定限度的。在单位进料量的能耗增加到一定数值后,再继续 增加塔内的上升蒸汽,则产品回收率就增长不多了。精馏塔的操作情 况,必须从整个经济效益来衡量。在精馏操作中,质量指标、产品回 收率和能量消耗均是要控制的目标。其中质量指标是必要条件,在质 量指标一定的条件下应在控制过程中使产品的产量尽可能提高一些, 同时能量消耗尽可能低一些。 (4)约束条件 ) 为确保精馏塔的正常、安全运行,必须使某些操作参数限制在约 束条件之内。常用的精馏塔限制条件为液泛限、漏液限、压力限及临 界温差限等。 ① 所谓液泛限,也称气相速度限,即塔内气相速度过高时,雾 沫夹带十分严重,实际上液相将从下面塔板倒流到上面塔板,产生液 泛,破坏正常操作。 ② 漏液限也称最小气相速度限,当气相速度小于某一值时,将 产生塔板漏液,使塔板效率下降。防止液泛和漏液,可以通过塔压降 或压差来监视气相速度。
精馏装置DCS组态控制系统设计_课程设计书 精品
![精馏装置DCS组态控制系统设计_课程设计书 精品](https://img.taocdn.com/s3/m/0fc1c898e53a580216fcfef3.png)
洛阳理工学院过程控制工程课程设计说明书设计题目精馏装置DCS控制系统设计摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。
采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。
将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。
所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。
影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。
采用PID控制系统能有效地去除蒸汽压强的波动对温度的影响。
关键词:精馏温度PID控制目录一精馏装置的工作原理 (4)1精馏装置的概述 (4)(1)精馏的简介 (4)(2)精馏原理以及工业流程 (4)2.2.2.单回路控制系统的选用原则 (7)2.3.1.精馏塔精馏段被控变量的选择 (7)二控制系统设计................................... 错误!未定义书签。
2.1控制方案类型 ............................................................................................ 错误!未定义书签。
2.2单回路控制系统简介................................................................................ 错误!未定义书签。
2.2.1. 单回路控制系统的结构和类型.................................................. 错误!未定义书签。
2.2.2.单回路控制系统的选用原则........................................................ 错误!未定义书签。
精馏塔操作与影响因素分析
![精馏塔操作与影响因素分析](https://img.taocdn.com/s3/m/b158f1996aec0975f46527d3240c844769eaa076.png)
预期的分离效果,应根据温度变化情况采取及时有效的措施。 当回流比等操作条件发生改变时,塔内某些塔板上的温度变化特别明显。即
这些塔板的温度对外界干扰特别敏感,所以将这些塔板称为灵敏板。 所以一般精馏塔至少有三个测温点,塔顶、塔底和灵敏板,而观察的重点是
灵敏板温度变化。
精馏塔操作
精馏操作影响因素分析
三、进料状况的影响 1.进料量 若进料量增加,必然会引起塔内汽、液两相量以及加热剂和冷却剂的消耗量
的增加。 2.进料组成 进料组成的变化将直接影响到产品的质量。进料组成升高,增加了提馏段的
分离负荷,若不及时采取措施,会造成残液中易挥发组分含量增高。同理进料组 成低,增加了精馏段的分离负荷,会造成馏出液中易挥发组分含量降低。
精馏塔操作
精馏操作影响因素分析
四、采出量的影响与控制 1.塔顶产品采出量 在冷凝器的冷凝负荷不变的情况下,减小塔顶的采出量,会使回流量增加,可
度以及塔底温度,以便及时作出调整。 6. 在再沸器温度、塔顶温度、塔顶压力、塔压差、回流量等参数趋于稳定后,可基本判定全回流
稳定,可进行连续精馏操作。
精馏塔操作
三、连续精馏操作
1. 全回流稳定后,选择进料板,打开进料泵,调节进料量,进料温度由预热器的加热 功率控制(近泡点进料)。
2. 打开产品采出,采出量要维持回流罐液位恒定(液位低采出量小,液位高采出量可加大)。 3. 在连续精馏进行过程中,确保塔顶压力、塔压差稳定的情况下,及时关注灵敏板的温度、塔顶
提高塔顶产品的纯度。但塔底产品量必然增多,塔底产品中易挥发组分含量增多, 因此易挥发组分的回收率降低。
若塔顶采出量增加,会造成回流量的减少,结果是难挥发组分被带到塔顶,塔 顶产品不合格。
精馏塔压力热旁路控制系统的设计
![精馏塔压力热旁路控制系统的设计](https://img.taocdn.com/s3/m/febfd3403b3567ec112d8a14.png)
关闭时,也可导致阀下游的热旁路气体快速冷凝而引起“水锤”现象发生。
式(1)进行整理:
根据此假定,可近似地求出热旁路调节阀气体的流量。
由热量平衡可得:
3、增设冷凝液调节阀
4、增设自冷凝器至回流罐的不凝气线
周期性地开启设在该不凝气线上的遥控阀.将积聚于冷凝器壳程上部的不凝气排送到回流罐,并将热旁路调节阀与回流罐不凝气线上的调节阀分程控制(如图4所示),可有效地解决压力控制不稳的问题。
三、结语
(1)热旁路控制塔压实质上是通过控制冷凝器的液位进而改变气体冷凝的面积来实现的。
其优点:投资低,回流罐置于冷凝器之上可提供给回流泵较高的净正吸人压头,需要频繁清洗时冷凝器可置于地面。
(2)冷凝液不应与热旁路气相混合后再进入回流罐,应单独从罐底进料,即使从罐顶进料,进料管线也应伸人到回流罐底部,以减少对回流罐液位的扰动。
(3)当塔顶馏出物为高纯度产品时,在冷凝液管线上增设一台调节阀可更加快速、有效地控制塔压。
(4)在忽略摩擦损失的情况下,热旁路调节阀设计最小压差可取值为回流罐液位与冷凝器完全浸没时的液位之间的静压差。
热旁路调节阀的正常流量值可按塔顶气体总量的15%-25%设计。
(5)塔顶气相馏出物中不凝气积聚于冷凝器壳程的上部,会造成冷凝器传热系数的降低和热旁路控制不稳定,增设一条自冷凝器壳程出口至回流罐的不凝气放空线是十分必要的。
精馏塔回流罐液位控制系统设计
![精馏塔回流罐液位控制系统设计](https://img.taocdn.com/s3/m/64c6eb1ebb68a98271fefa4a.png)
2 精馏塔
精馏塔是一种进行精馏的塔式气液接触装置,蒸汽由塔底进入,与下降 液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断的向 蒸汽中转移,蒸汽中的难挥发(高沸点)组分不断的向下降液中转移,蒸汽
愈接近塔顶,其易挥发组分愈高,而下降液愈接近塔底,其难挥发组分则愈 富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体一 部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体作为残液取出。 一般精馏装置由精馏塔,再沸器,冷凝器,回流罐等设备组成。
和副回路(内环)。
串级系统控制结构图
串级控制系统应用中一般要分主、副控制器来选择控制规律。本次的液位控 制系统中的串级控制的主、副控制器控制规律选择都应按照工艺要求来进行,主 控制器选用PID控制规律,副控制器选P控制规律;采用串级控制系统和简单控 制系统相比,只是多一点测量变送元件和一个调节器,增加的仪表投资并不多, 但是控制想过却有显著地提高。 我们将温度及液位变化作为一、二次扰动,液位及温度的检测与反馈作为主、 副变送器,液位作为主被控对象,可以得出回流罐液位控制的结构图。
(2)能量平衡关系
图9.3-1 简单精馏控制示意图
x (1 x B ) V ln D F x B (1 x D )
(2)精馏塔的动态分析
再沸器加热蒸汽压力 再沸器加热蒸汽压力影响精馏塔的动态平衡。控制策略是组成 塔压的定值控制,或将蒸汽压力作为串级控制系统的副被控变 量进行控制。 冷却水压力和温度 冷却水温度的变化通常不大,对冷却水可不进行控制。使用
2 精馏塔的扰动分析
(1)精馏塔的静态分析
进料量和进料成分的变化 影 响 物 料 平 衡 的 因 素 进料流量通常不可控但可测。当进料流量变化较大时,对精馏 塔的操作会造成很大的影响。这时可将进料流量作为前馈信号, 引到控制系统中组成前馈-反馈控制系统。进料成分影响物料平衡
讨论!精馏塔回流罐液位经常突降
![讨论!精馏塔回流罐液位经常突降](https://img.taocdn.com/s3/m/ab900582a0116c175f0e485c.png)
我们装置丙烯精馏塔采用塔顶冷回流温度控制塔顶压力,具体为气相丙烯自塔顶出来以后经冷凝器冷凝变成也液相后进入回流罐,再经泵抽出,一路作为产品出装置,一路作为冷回流。
其中塔压控制大约为1.4mpa,塔顶温度35度左右,塔底48度左右,回流30度左右,回流温度比装置未改造前有所降低,这里所说的改造主要是为了安装其他设备将回流罐升高了一层,冷凝器位置不变。
每次回流罐液位突降,都能同时看到塔压升高,回流温度有所上升的现象,发生的先后顺序几乎同时,不能区分;其中回流罐液位突降速度较快,在一两分钟内降低20-40%,请问各位海友,是什么原因造成的呢?1楼.回流量,出装置量变不变?塔顶温度,塔顶冷后温度变不变?发生的频率有没有规律? 实际液位与仪表是否一致?冷凝器工作如何,是不是量偏小?会不会气阻?2楼.我判断是塔顶气相负荷超过冷却能力,可能是换热器偏流或者是换热器管程结垢导致,反应的现象就是塔压力波动和回流罐液位大幅度波动3楼.有可能是冷凝效果不好造成的吧4楼.我判断是塔顶气相负荷超过冷却能力,可能是换热器偏流或者是换热器管程结垢导致,反应的现象就是塔压力波动和回流罐液位大幅度波动’能不能具体讲一下换热器偏流具体的形式是怎样的,发生的原理和具体的过程是怎样的,这个现象发生的还是比较有规律的,每次发生后各个参数变化的形式都是一样的,想请教一下楼上的那位,为什么偏流会引起精馏塔液位和压力的大幅度变化呢,另外,还想请教一下这个现象如果是因为气阻而产生的,那么发生的原理又是什么呢,他的具体过程是怎样发生的呢,关于操作跟改造前的不同是改造后回流温度比以前低了好几度,个人感觉应该是回流罐位置加高所致,同时也觉得回流罐液位的突降与此有关,但就是想不通他的具体导致这个情况的作用过程,还请各位解答5楼.浸没式冷凝器,塔顶回流罐液位突降,是产品留在了冷凝器及管线内。
6楼.我认为应该是先由压力高引起的。
当塔顶气相负荷大、塔顶压力高时,热旁路压控应该关小,让更多的气相走浸没式冷却器,但是当气相负荷超过冷却负荷时,压力持续上升,操作上应该是打开热旁路排不凝气。
精馏回流如何控制
![精馏回流如何控制](https://img.taocdn.com/s3/m/fa70791c86c24028915f804d2b160b4e777f814d.png)
精馏回流如何控制塔顶回流控制分两种情况:一是手动控制(强制回流),一是自动控制。
自动控制时:回流量受塔顶采出量的影响。
当进料量不变时,要控制好塔顶采出量。
若塔顶采出量增大,回流比减小,气液接触不好,塔顶产品的质量不合格。
如果进料量加大,要计算出塔顶采出增加量,采出过小,回流量增加,回流量增大,塔内物料增多,上升蒸汽速度增大,塔顶与塔釜的压差增大,严重时会引起液泛;采出过大,回流量减小,气液接触不好,塔顶产品的质量不合格。
手动控制时在精馏塔正常操作时,只要塔顶产品质量没有大的变化,塔的回流量变化很小,甚至可以保持不变。
在实际操作中,回流量基本不受进料量的影响。
要保持回流罐液位,不能出现满罐或抽空现象。
一、开车前应该做什么准备?开车前检查精馏塔,尽早发现缺陷和差错,尽早进行修复,所花费的时间最短,其费用也能减到最小,所以应提倡边安装边检查。
开车前应该做的准备:1.检查水、电、气(空气、氮气)、汽(水蒸气)是否符合工艺的要求;2.传动设备是否备二待用;3.设备、仪表、安全设施是否齐全好用;4.所有的阀门要处于关闭状体;5.个水冷凝(冷却)器要通入少量的水预冷,加热釜要通少量的蒸汽预热;6.设备内的氧含量应符合投料的要求;7.做好前后工段(或岗位)的联系工作,特别要联系好原料的来源供应及产品的贮存、输送,通知分析室准备取样分析。
二、精馏塔开车有哪些步骤?开车是生产中十分重要的环节,它是建设一套装置花费的人力、物力和财力即将形成为生产力的转折点。
开车的目标是缩短开车时间,节省开车费用,避免可能发生的事故,尽快取得合格产品。
精馏塔开车一般步骤:1.制定出合理的开车步骤,时间表和必须的预防措施;准备好必要的原材料和水电汽供应;配备好人员编制,并完成相应的培训工作等。
2.此时,塔的结构必须符合设计要求,塔中整洁,无固体杂物,无堵塞,并清除了一切不应存在的物质,例如塔中含氧量和水分含量必须符合规定;机泵和仪表调试正常;安全措施已调整好。
第5章 精馏塔的控制
![第5章 精馏塔的控制](https://img.taocdn.com/s3/m/ebfa8f1e0722192e4436f622.png)
102
衡
塔的正常操作 F
影响产品质量
LT 101 LC 101
LR
分 馏 c塔
Vs
FT 101 FC 101
TT 101
TC
H
101
PC 101
LT 102 LC 102
D
B
⑴ 操作压力大于大气压
① 液相采出,馏出物中含有大量不凝物
PT PC
PC
101 101
PT
101
101
LR
D
适合气体流经冷凝器的阻力变化 较小,回流罐的压力基本代表塔 顶压力。
精馏塔原理示意图
5.2 精馏塔受控变量的选择
控制的目的:保证产品质量。 研究的问题:① 检测变量的选择;
② 检测点的位置。 按质量指标:产品成分(直接变量)。 成分分析仪表的特点:周期长、反应慢、滞后大; 故常选择表征成分的间接变量。
常用的间接变量:温度
5.2 精馏塔受控变量的选择
⑴ 测温点的选择 ① 测温点尽量选择在通道滞后较小的点(压力一定)。 ② 采用塔顶回流控制温度时,选择顶部塔板液相温度。 灵敏板:在扰动作用下,达到新的稳态时,温度变化最大塔板。 灵敏板的优点:动态响应较快。 灵敏板的位置:根据分馏塔的模型逐坂计算确定。
液相采出,馏出物中含有大量不凝物
PT PC
PC
101 101
PT
101
101
LR
D
适合气体流经冷凝器的阻力变化较小, 回流罐的压力基本代表塔顶压力。
LR
D
冷凝器的阻力较大时,回流罐 压力不能代表塔顶压力。
液相采出,馏出物中含有少量不凝物
当塔顶气相中不凝性气体量小于塔顶气
6 精馏系统
![6 精馏系统](https://img.taocdn.com/s3/m/18d8d5ec580216fc710afd35.png)
精馏系统一、工艺流程简介脱丁烷塔是大型乙烯装置中的一部分。
本塔将来自脱丙烷塔釜的烃类混合物(主要有C4、C5、C6、C7等),根据其相对挥发度的不同,在精馏塔内分离为塔顶C4馏分,含少量C5馏分,塔釜主要为裂解汽油,即C5以上组分的其他馏分。
来自脱丙烷塔的釜液,压力为0.78MPa,温度为65℃(由TI-1指示),经进料手操阀V01和进料流量控制FIC-1,从脱丁烷塔(DA-405)的第21块塔板进入(全塔共有40块板)。
在本塔提馏段第32块塔板处设有灵敏板温度检测及塔温调节器TIC-3(主调节器)与塔釜加热蒸汽流量调节器FIC-3(副调节器)构成的串级控制。
塔釜液位由LIC-1控制。
塔釜液一部分经LIC-1调节阀作为产品采出,采出流量由FI-4指示,一部分经再沸器(EA-405A/B)的管程汽化为蒸汽返回塔底,使轻组分上升。
再沸器采用低压蒸汽加热,釜温由TI-4指示。
设置两台再沸器的目的是釜液可能含烯烃,容易聚合堵管。
万一发生此种情况,便于切换。
再沸器A的加热蒸汽来自FIC-3所控制的0.35MPa低压蒸汽,通过入口阀V03进入壳程,凝液由阀V04排放。
再沸器B的加热蒸汽亦来自FIC-3所控制的0.35MPa低压蒸汽,入口阀为V08,排凝阀为V09。
塔釜设排放手操阀V24,当塔釜液位超高但不合格不允许采出时排放用(排放液回收)。
塔顶和塔底分别设有取压阀V06和V07,引压至差压指示仪PDI-3,及时反映本塔的阻力降。
此外塔顶设压力调节器PRC-2,塔底设压力指示仪PI-4,也能反映塔压降。
塔顶的上升蒸汽出口温度由TI-2指示,经塔顶冷凝器(EA-406)全部冷凝成液体,冷凝液靠位差流入立式回流罐(FA-405)。
冷凝器以冷却水为冷剂,冷却水流量由FI-6指示,受控于PRC-2的调节阀,进入EA-406的壳程,经阀V23排出。
回流罐液位由LIC-2控制。
其中一部分液体经阀V13进入主回流泵GA405A,电机开关为G5A。
精馏塔回流罐液位控制系统
![精馏塔回流罐液位控制系统](https://img.taocdn.com/s3/m/cda66e6667ec102de3bd8948.png)
1 概述随着现代工业生产过程向着大型,连续和强化方面发展,对控制系统的控制品质提出了日益增长的要求。
次设计的关注的精馏塔就是一个多输入多输出的多变量过程,内在机理较复杂,动态响应迟缓,变量之间相互关联,对其的控制提出了较高的要求,其中对回流罐液位的调节影响着精馏塔顶部的压力及温度的平衡,起着对精馏过程中的缓冲及保护作用,对回流罐液位的调节对精馏过程的稳定进行起着不可忽视的作用,所以确定回流罐液位的控制方案是相当重要的。
本次设计的总目标,就是在可能获得的条件下,以最经济的途径和方法监测及调节回流罐中的液位,所以需要在充分了解声场过程的工艺流程的基础上选择合适的控制方法,从而实现目标。
2 精馏塔的工艺流程根据本次设计条件及要求,我们必须精馏及精馏塔有一定的了解。
精馏的基本原理是将液体混合物部分气化,利用其中各组分挥发度不同的特性,实现分离的目的的单元操作。
蒸馏按其操作方法可分为:简单蒸馏,闪蒸,精馏和特殊精馏等。
精馏塔是一种进行精馏的塔式气液接触装置,蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断的向蒸汽中转移,蒸汽中的难挥发(高沸点)组分不断的向下降液中转移,蒸汽愈接近塔顶,其易挥发组分愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
由塔顶上升的蒸汽进入冷凝器,冷凝的液体一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体作为残液取出。
一般精馏装置由精馏塔,再沸器,冷凝器,回流罐等设备组成。
精馏塔是一个多输入多输出的多变过程,内在机理较复杂,动态响应迟缓,变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题。
而从能耗的角度来看,精馏塔是三传一反典型单元操作中能耗最大的设备,因此,精馏塔的节能控制也是十分重要的。
下图是一典型的精馏塔结构图。
3 精馏塔的控制3.1精馏塔的控制目标精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总效益最大,成本最小。
精馏塔前馈-反馈控制系统
![精馏塔前馈-反馈控制系统](https://img.taocdn.com/s3/m/40b5b3573c1ec5da50e270c4.png)
第1章精馏塔前馈-反馈控制系统概述1.1 精馏及精馏塔概述精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。
精馏的目的是利用各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。
精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。
按需分离组分的多少可分为二元精馏和多元精馏;按混合物中组分挥发度的差异,可分为一般精馏和特殊精馏。
精馏过程通过精馏塔、再沸器、冷凝器等设备完成。
再沸器为混合物液相中轻组分的转移提供能量;冷凝器将塔顶来的上升蒸汽冷凝为液相,并提供精馏所需的回流。
精馏塔是实现混合物组分分离的主要设备,一般为圆柱体,内部装有提供汽液分离的塔板或填料,塔身设有混合物进料口和产品出料口。
随着石油化工的迅速发展,精馏操作的应用越来越广,分离物料的组分越来越多,分离的产品纯度要求越来越高,对精馏过程的控制也提出了越来越高的要求,也越来越被人们所重视。
精馏过程是一个复杂的传质传热过程,表现为:过程变量多,被控变量多,可操纵变量也多;过程动态和机理复杂,例如,非线性、时变、关联;控制方案多样,例如,同一被控变量可以采用不同的控制方案,控制方案的适应面光等。
1.2 精馏塔的扰动分析和其他化工过程一样,精馏过程是在一定物料平衡和能量平衡基础上进行的。
一切影响精馏塔操作的因素均通过物料平衡和能量平衡进行。
影响物料平衡的因素主要包括进料量和进料成分的变化、顶部馏出物及底部出料的变化。
影响能量平衡的因素主要包括进料温度或热焓的变化、再沸器加热量和冷凝器冷却量的变化及塔的环境温度变化等。
物料平衡和能量平衡之间相互影响。
各种扰动因素有可控的,也有不可控的。
1.进料流量和进料成分进料流量是上工序的出料,因此,通常不可控但可测,当进料流量较大时,对精馏塔的操作会造成很大的影响。
这时,可将进料流量作为前馈信号,引入到控制系统中,组成前馈-反馈控制系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 概述随着现代工业生产过程向着大型,连续和强化方面发展,对控制系统的控制品质提出了日益增长的要求。
次设计的关注的精馏塔就是一个多输入多输出的多变量过程,内在机理较复杂,动态响应迟缓,变量之间相互关联,对其的控制提出了较高的要求,其中对回流罐液位的调节影响着精馏塔顶部的压力及温度的平衡,起着对精馏过程中的缓冲及保护作用,对回流罐液位的调节对精馏过程的稳定进行起着不可忽视的作用,所以确定回流罐液位的控制方案是相当重要的。
本次设计的总目标,就是在可能获得的条件下,以最经济的途径和方法监测及调节回流罐中的液位,所以需要在充分了解声场过程的工艺流程的基础上选择合适的控制方法,从而实现目标。
2 精馏塔的工艺流程根据本次设计条件及要求,我们必须精馏及精馏塔有一定的了解。
精馏的基本原理是将液体混合物部分气化,利用其中各组分挥发度不同的特性,实现分离的目的的单元操作。
蒸馏按其操作方法可分为:简单蒸馏,闪蒸,精馏和特殊精馏等。
精馏塔是一种进行精馏的塔式气液接触装置,蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断的向蒸汽中转移,蒸汽中的难挥发(高沸点)组分不断的向下降液中转移,蒸汽愈接近塔顶,其易挥发组分愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
由塔顶上升的蒸汽进入冷凝器,冷凝的液体一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体作为残液取出。
一般精馏装置由精馏塔,再沸器,冷凝器,回流罐等设备组成。
精馏塔是一个多输入多输出的多变过程,内在机理较复杂,动态响应迟缓,变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题。
而从能耗的角度来看,精馏塔是三传一反典型单元操作中能耗最大的设备,因此,精馏塔的节能控制也是十分重要的。
下图是一典型的精馏塔结构图。
3 精馏塔的控制3.1精馏塔的控制目标精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总效益最大,成本最小。
精馏过程是在一定的约束条件下进行的。
因此,精馏塔的控制要求可从质量指标、产品质量、能量消耗和约束条件四方面考虑。
1)质量指标控制。
精馏塔的质量指标是指塔顶或塔底的纯度。
通常,满足一端的产品质量,即塔顶或塔底产品之一达到规定纯度,而另一端产品的纯度维持在规定范围内。
所谓的产品纯度,就二元精馏来说,其质量指标是指塔顶产品中轻组分含量和塔底产品中重组分含量。
对于多元精馏而言,则以关键组分的含量来表示。
关键组分是指对产品质量影响较大的组分。
产品组分含量非越纯越好,原因是,纯度越高,对控制系统的偏离度要求越高,操作成本的提高和产品的价格并不成比例增加,因此纯度要求应与使用要求相适应。
2)物料平衡控制。
进出物料平衡,即塔顶、塔底采出量应和进料量相平衡,维持塔的正常平稳操作,以及上下工序的协调工作。
物料平衡的控制是以冷凝罐(回流罐)与塔釜液位一定为目标的。
3)能量平衡控制。
要保证精馏塔产品质量、产品产量的同时,考虑降低能量的消耗,使能量平衡,实现较好的经济性。
4)约束控制条件。
精馏过程是复杂传质和传热过程。
为了满足稳定和安全操作的要求,对精馏塔操作参数有一定的约束条件。
气相速度限:精馏塔上升蒸汽速度的最大限。
当上升速度过高时,造成雾沫带,塔板上的液体不能向下流,下层塔板的气相组分倒流到上层塔板,出现液泛现象。
最小气相速度限:指精馏塔上升蒸汽速度的最小限值。
当上升蒸汽速度过低时,上升蒸汽不能托起上层的液相,造成漏夜,使塔板效率下降,精馏操作不能正常进行。
操作压力限:每一个精馏塔都存在最大操作压力限制。
临界温度限:保证精馏塔的正常传热需要、保证合适的回流温度,使精馏塔能够正常操作。
3.2精馏塔的扰动分析影响物料平衡的因素包括精料量和进料成分的变化、塔顶馏出物及底部出料量的变化。
影响能量平衡的因素主要包括进料温度的变化、再沸器加热量和冷凝器冷却量的变化及塔的环境温度变化等。
(1)精料量和进料成分:进料流量通常不可控大但可测。
当进料流量变化较大时,对精馏塔的操作会造成很大的影响。
这时可将进料流量作为前馈信号,引到控制系统中组成前馈-反馈控制系统。
进料成分影响物料平衡和能量平衡,但进料成分通常不可控,多数情况下也是难以测量的。
(2)进料温度和进料热焓值:进料温度和热焓值影响精馏塔的能量平衡。
控制策略是采用蒸汽压力(或流量)定值控制,或根据提馏段产品的质量指标,组成串级控制。
(3)再沸器加热蒸汽压力:再沸器加热蒸汽压力影响精馏塔的能量平衡。
控制策略是组成塔压的定值控制,或将冷却水压力作为串级控制系统的付被控变量进行控制。
(4)冷却水压力和温度:冷却水温度的变化通常不大,对冷却水可不进行控制。
使用风冷式控制时策略是根据塔压进行浮动塔压控制。
(5)环境温度:环境温度的变化较小,且变化幅度不大,因此,一般不用控制。
4.回流罐液位控制的设计4.1 回流罐工作原理及分析回流指在精馏操作中,从精馏塔顶部引出的上升蒸汽经冷凝器冷凝后,一部分液体作为馏出液(塔顶产品)送出塔外,另一部分液体送回塔内,后者称为回流。
精馏塔回流罐相当于一个缓冲罐,回流罐保持塔顶来的冷凝液和送出回流液的平衡就可以了,通常流量最大,也即停留时间最短的时间为刚开车时的全回流状态。
采用立式或卧式都可以,主要是回流罐的容积足够即可,由于回流罐一般设置在精馏厂房里,高度有限,所以容积较大的一般采用卧式以满足储罐的空间高度限制,对于小型的回流罐则可以采用立式的,以节省占地面积。
回流罐的装填系统与一般的储罐没有什么差别,可以取到0.8-0.85.化工厂是普遍采用卧式回流罐,也叫塔顶冷凝受槽,优点一:是方便外操作人员读取温度、液位、压力等指标;优点二:卧式更利于冷凝液在其中分层,一部分回流,一部分作为输出介质。
优点三:降低重心,安装方便。
立式受槽应该是气液分离器居多,利用重力沉降等原理,更有利于分离。
4.2 回流罐液位控制方式的选择通过对精馏塔整体控制系统的分析,发现精馏塔是一个多变量被控对象,需要对主要的次要的干扰提前发现及控制,而串级控制能够很好的满足回流罐液位的控制。
故本次设计采用串级控制方法来控制回流罐的液位。
对于回流罐来说包括两个变量,温度变化和液位变化,通过这两个变量影响控制器控制液位,精馏塔属于大型生产设备,变量变化慢,惯性大,具有一定的纯滞后,又为了防止精馏塔产生较大的超调而超过回流罐上限温度,需要提前对精馏塔温度进行控制,在安全温度的前提下控制液位,使用串级控制系统能取得较好的结果。
4.3 回流罐传递函数的确定回流罐的模型与水箱模型类似,进料口相当于水箱的流入端,回流与顶端产品的流出相当于水箱的流出。
流入量与流出量之间的差值等于储存量的变化率:(4-1) 式中A为横截面积,是由控制阀开度变化引起的,即:(4-2)阀门1、2的流出量为:∆Q1=∆hR1, ∆Q2 =∆hR2(4-3)式中R为流出侧负载阀门的阻力(液阻),可知两阀门的液阻基本不变:将式(3-1)、式(3-2)、带入式(3-3),得:R1 R2A d∆hR1+(R1+R2)∆h=k R1R2∆u(4-4) 令T=R1R2, K=k R1R2上式即可写成:T d∆hdt +(R1+R2)∆h=K∆u(4-5) i12d hQ Q Q=Adt∆∆-∆-∆iQ∆iQ=k u∆∆于是求得传递函数为:G (s )=∆H(s)∆U(s)=K Ts+R 1+R 2 (4-6)4.4 串级控制部分设计串级控制系统的一般采用两个控制器,一个控制器称为主控制器,另一个控制器称为副控制器。
控制器的输出作为副控制器的设定,然后由副控制器的输出去操纵调节阀。
在串级控制系统中通常要有两个被控对象,即主对象(本次设计中为拱顶温度)和副对象(本次设计中为空气流量对象),相应的有两个被控参数,主被控参数(本次设计中为检测的拱顶温度)和副被控参数(本次设计中为检测的空气流量)。
主被控参数的信号送往主控制器控制煤气切断阀和放风阀的开度,而副被控参数的信号被送往副控制器作为测量,这样就构成了两个闭合回路,即主回路(外环)和副回路(内环)。
下图是一典型串级系统控制结构图。
若G c1(s ),G C2(s)是主副调节器传递函数;G P1(s ),G p2(s) 是主、副对象传递函数;G m1(s ),G m2(s)是主、副变送器传递函数,G v (s )是调节阀传递函数。
G d2(s )是二次干扰通道的传递函数。
()()12Y s Y s 、是主副控制参数。
()12s D s D 、()是一、二次干扰。
串级系统主要是用来克服进入副回路的二次干扰的。
对图4-1所示的方框图进行分析可知,内环具有快速作用,它能够有效的克服二次干扰的影响。
当二次干扰经过干扰通道环节()d2G s 后进入复环,首先影响副参数2y ,于是副调节器立即动作,力图消弱干扰对2y 的影响。
显然,干扰经过复环的抑制后在进入主环,对1y 的影响有较大的减弱。
按图4-1所示的串级系统,可以写出二次干扰2D 至主参数1y 的传递函数是:由式(4-1)(4-2)比较可知单回路系统比串级系统少了一项()c2s G ()v s G ()p2s G ()m2s G 。
在串级系统主环工作频率下,这项乘机的数值比较大,而且随着副调节器比例增益的增大而加大;而分母第二项串级又多一个()c2s G 。
一般情况下,副调节器的比例增益是大于1的。
因此可以说,串级控制系统的结构使二次干扰对主参数这一通道的动态增益明显减小。
当二次干扰出现时,很快就被副调节器所克服。
由于内环起了改善对象动态特性的作用,因此可以加大主调节器的增益,提高系统的工作频率。
本设计采用串级控制系统有比较显著地有点:改善了对象特征,起了超前控制的作用;改善了对象动态特性,提高了工作频率,提高了控制器总放大倍数,增强了抗干扰能力;具有一定的自适应能力,适合负荷和操作条件的变化。
串级控制系统的设计原则:在选择副参数时,必须把主要干扰包含在副回路中,并力求把更多的干扰包含在副回路中;选择副参数时,进行副回路的设计时,应使主、副对象的时间常数适当匹配;方案应考虑工艺上的合理性、可能性和经济性。
主控制器:主环是一个定值控制系统,主控制器的控制规律的选择与简单控制系统类似。
但采用串级控制系统的主变量往往是比较重要的参数,工艺要求严格,一般不允有余差。
因此,通常都采用比例积分控制规律,但是由于本设计滞后较大,采用比例积分微分控制规律。
副控制器:副环是一个随动系统,副变量的控制可以有余差。
因此,副控制器一般采用比例控制规律即可,而且比例度通常取得很小,这样比例增益大,控制作用强,余差也不大。
如果引入积分作用,会使控制作用趋势变缓,并可能带来积分饱和现象。