【一轮复习】四川省成都市双流区棠湖中学2020-2021学年高三(上)开学数学试卷 (文科)(解析版)
四川省棠湖中学2020届高三数学上学期开学考试试题文
四川省棠湖中学2020届高三数学上学期开学考试试题文第I卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)????21?xx?1,0,1,2?,BA? 1.已知集合,则??BA????????0,1,21,0,10,1?1,1? D. B.A. C.=2.B. ﹣i ﹣1C. 1D. iA.3.甲、乙、丙三个学生中有一人申请了去新疆支教,当他们被问到谁申请了去新疆支教时,乙说:甲没有申请;丙说:乙申请了;甲说:乙说对了.如果这三人中有两人说的是真话,一人说了假话,那么申请去新疆支教的学生是A. 甲B. 乙C. 丙D.不确定 4.的最小正周期为函数 D. 2C. A. B.满足约束条件,则的最小值为,5.已知实数C. A. B.D.rr a=(0,2),b=(3,1)a,b的夹角等于,则6. 设向量?????? D.B.C.A.6336,则“”的, 7.设”是“A.充分不必要条件B.充要条件D. 既不充分也不必要条件必要不充分条件C.) ,则8.若 D.B. C. A.- 1 -,且一个焦点与抛物线的焦点相同,则此双曲设双曲线的离心率为9. 线的方程是 D. C.B. A.的公差则数列,为等差数列的前项和,,已知10.若 B. 3A. 4 D. 1C. 2,则的最大值为,中,11.在 D.A.C.B.ABC 12.,在三棱锥中,,且三棱锥平面的四个顶点都在同一球面上,则该球的表面积为,若三棱锥的体积为 B.C.A.D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13.某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为______.在点 14.已知函数处的切线方程为,则.,则______.15.角的终边与单位圆相交于16.如图所示,平面BCCB⊥平面ABC,ABC=120,四边形BCCB为正方形,且AB=BC=2,1111则异面直线BC与AC所成角的余弦值为_____.1三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17 ~ 21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)17.(本大题满分12分)- 2 -某机构用“10分制”调查了各阶层人士对某次国际马拉松赛事的满意度,现从调查人群中随名,如图茎叶图记录了他们的满意度分数16以小数点前的一位数字为茎,小数点后机抽取的一位数字为叶:(1)指出这组数据的众数和中位数;)若满意度不低于分,则称该被调查者的满意度为“极满意”,求从这216人中随机选(取3人,至少有2人满意度是“极满意”的概率;18(本大题满分12分),.满足:数列的通项公式;)求(1.的最小正整数项和为)设的前,数列(2,求满足分)1219.(本大题满分,为矩形,,底面在四棱锥平面中,平面.、分别为线段、且,,,上一点,- 3 -)证明:;(1.的体积,并求三棱锥平面(2)证明:分)20.(本大题满分12为自然对数的底数.设函数,其中; 的单调区间求)若(1, :)若(2,求证无零点.分)(本大题满分1221.2Cx?y4C:FMF为曲点,椭圆已知抛物线的中心在原点,为其右焦点,的焦点为215CC?|MF|.和线在第一象限的交点,且212C(的标准方程;)求椭圆12- 4 -y?xCP(3,2)B,ADAB上,上的两个动点,且使得线段在直线为抛物线的中点(2)设1?PAB面积的最大值.为定点,求(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程](10分)在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立,直线的极坐标方程为的参极坐标系,曲线分别交于数方程为,直线为参数与曲线. 两点,求的极坐标为的值;1()若点(2)求曲线的内接矩形周长的最大值.[选修4-5:不等式选讲]23.(10分)已知,.(1)求的最小值- 5 -)证明:.2(- 6 -2019-2020学年度秋四川省棠湖中学高三开学考试文科数学试题答案1.A2.A3.C4.D5.A6.A7.A8.C9.D 10.B 11.A12.D16.15. 13.6 14.486.,中位数17.由茎叶图可知:这组数据的众数为.人其满意度分别为被调查者的满意度为“极满意”共有4,,,人是“极满意”的概率人中随机选取3人,至少有2.从这16)∵18.(1.a 4n=1时,可得,=1n≥2.时,.与n,1)+1=2n两式相减可得=(2﹣.时,也满足,∴∴.n=1)=(2S∴,可得n>9,,又n.为可得最小正整数n10MDAMAD=319.(1)∵=,=3,222ADMDAMADAM⊥+,∴∴=,ADABCDMADMADABCD=,平面∩平面∵平面⊥平面,ABCDAM,∴⊥平面BDBDABCDAM?,∴又⊥平面.NDADN)在棱(2上取一点,使得=1,- 7 -ADNDBCCECE,又=1,∴,=∵∥ABENNDABCDEC,又∥∥,∴,∴AMFN∥∵,=,∴ENFEFNENFMABFNEN平面∥平面∵,又∩,=?,∴平面MABEF∥平面∴,AMFDMDAMABCD,=∵=⊥平面,且,3dFABCD到平面的距离=∴,VV=∴1=.=ADEDFAEF﹣﹣∴则,.20.(1)若,,,则令,即单调递增时当,,,又, ,∴当单调递减时单调递增.当时,.,的单调递减区间为单调递增区间为∴)当2(时,,显然无零点.当时,当时,,显然无零点.(i)当,,∴时,易证(ii)∴.令,则,令,得,- 8 -时,,;当当时,.,显然故无零点,从而 ,综上无零点.22yx c C0)?1(a?b??)设椭圆.的方程为,半焦距为21.(1222ba(1,0)F1c?.由已知,点,则351|?x?x,y?0)|MFM(x,y)(?x?1x?由已知,设点,则..,据抛物线定义,得00000002236?4xy?6)M(,从而,所以点.002237??1,0)E(?E?1??6|ME|?.设点,为椭圆的左焦点,则??22??576??|MF|??2a?|ME|3?a.,则据椭圆定义,得2222yxC2221??8c?b?a?从而的标准方式是.,所以椭圆28922)yx,,y)B(A(x)mD(m,x4y??4x,y,则(2)设点,.,221121124?yy21?22)y?y?4(x?xDAB的中点,则.因为两式相减,得,即为线段2121yy?x?x2112m?2y?y.21244???kAB所以直线.的斜率m2my?y2122)x?my??m(0??2x?my?mm2AB从而直线,即的方程为.m2?0?2mmx?my??2?222m?4myy?202?4mmy?2m?y??联立.,得,则212x?4y??2m1222所以.4?m?m?)?4yy1??4m?y(|?||AB?|yy1??y?22112124k2|?mm|6?4?dd PAB到直线的距离为设点.,则24m?1122|??mSm?|?4dAB||?mm?64.所以PAB?22-9 -23ttt?|6t|6?(0?t?2)4?0?m2?S?204m?m?.令.由,,得则t4m?m?PAB?2232t??t366t(0?t?2)?(t)?f(ft)?.设,则22?0t()f?)f(t (2,2](0,2)上是减函数,由在,得.从而上是增函数,在2?t0?222)?)(t?f(f PAB?面积的最大值为.所以,故22max+3代入得到,将)由x=ρcosθ,y=ρsinθ=12,22.(1C,化为直角坐标为(-2,0)=12,所以曲线的直角坐标方程为+3的极坐标为tl的参数方程为:为参数),由直线(Pl),且倾斜角为的直线,-2知直线,是过点 0(C得,把直线的参数方程代入曲线.tPMPNt|=4.|所以||?|=|21C)由曲线,的方程为(2C,不妨设曲线上的动点P为顶点的内接矩形周长则以l,l)≤1,则又由sin≤16;(θ因此该内接矩形周长的最大值为16.,,123.()因为,所以,即.时等号成立,此时取得最小值当且仅当32()- 10 -.- 11 -。
四川省棠湖中学2020届高三英语上学期开学考试试题
四川省棠湖中学2020届高三英语上学期开学考试试题本试卷分第Ⅰ卷(选择题,共100分)和第Ⅱ卷(非选择题,共50分)两部分。
总分150分,考试时间120分钟。
第Ⅰ卷选择题(100分)注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。
并检查条形码粘贴是否正确。
2.1-60小题选出答案后,用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,将答题卡收回。
第一部分:听力(共两节,满分30分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What does the man need?A. Coffee.B. Sprite.C. Orange juice.2.How much will the woman pay?A. $15.B. $20.C. $25.3.Which flight will the man take?A. 10: 45.B. 12: 00.C. 14: 50.4.Where does this conversation probably take place?A. At a bus stop.B. On the street.C. At an information desk5.What are the speakers mainly talking about?A. The woman's paper.B. The weekend plan.C. Outdoor activities.第二节(共15小题;每小题1.5分,满分22.5分)听下面5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
2020-2021学年成都市双流县棠湖中学高三英语第一次联考试题及答案解析
2020-2021学年成都市双流县棠湖中学高三英语第一次联考试题及答案解析第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项AIt’s the time of year when we start hiking. As you pack, remember to bring your smartphone. Whether you’re going on a short walk or a long trip, there are a handful of apps that can help.MapMyHikeThis app tracks where you're hiking so you have a mapof your route at the end of the hike. It can also track other fitness information like the distance traveled, speed, pace, and even calories burned. You can save the data for your hike, so you can always access the route you look as well as track improvements to your workout. GaiaGPSYou don't always have cellphone service when hiking, but you always want to know where you are. The GaiaGPS app provides that information. Download maps of different parts of the world, and access the GaiaGPS app in the middle of even the most remote trails. The GPS function makes using the maps simple, and the app will also point to areas of interest.Backpacking ChecklistOne of the worst things is being way out on a trail only to discover you left behind something important. That's why checklists are the best. This checklist app helps you build a customized(定制的) list of things to take with you. Organize different lists based on trail lengths or requirements. Track all your essential items by weight and where you can find them.WildObsUsing WildObs, you can record your observations of plants and animals and add them to the database. You can ask the community to help you identify something and keep track of everything you've met, and most importantly, you can become a citizen scientist. By recording what you've seen with this app, you're helping scientists keep track of what's happening to the natural world.1. What can you do with MapMyHike?A. Record your walking speed.B. Design a suitable hiking route.C. Locate popular tourist attractions.D. Store the data of your daily activities.2. What is WildObs intended to do?A. To provide survival skills.B. To lead the way.C. To identify wildlife.D. To help make preparations.3. Which app is most useful before hiking?A. GaiaGPS.B. MapMyHike.C. WildObs.D. Backpacking Checklist.BIn the northern part ofAustin there once lived an honest family by the name of Smothers. The family had John Smothers, his wife and their five-year-old daughter.One night after supper the little girl was ill with a serious stomachache, and John Smothers hurried downtown to get some medicine. He never came back. The mother was very sad over her husband's disappearance, and it was nearly three months before she married again, and moved to San Antonio. The little girl recovered and in time grew up to womanhood. After a few years had rolled around, the little girl also married in time, and she also had a little girl of five years. She still lived in the same house where theydweltwhen her father had left and never returned.By an unbelievable coincidence her little girl was taken with the same stomachache on the same night of the disappearance of John Smothers, who would now have been her grandfather if he had been alive. “I will go downtown and get some medicine for her,” said John Smith(for it was he whom she had married). “No, no, dear John,” cried his wife. “You, too, might disappear forever, and then forget to come back.” So John Smith did not go, and together they sat by the bedside of little Pansy. After a little while Pansy seemed to grow worse, and John Smith again wanted to go for medicine, but his wife would not let him.Just then, the door suddenly opened and an old man with long white hair entered the room. “Hello, here is grandpa,” said Pansy. She had recognized him before any of the others. The old man drew a bottle of medicine from his pocket and gave Pansy a spoonful. She got well immediately. “I was a little late,” said John Smothers, “as I waited for a street car.”4. What happened after John Smothers disappeared?A. His daughter took some medicine.B. His wife left for San Antonio.C. Pansy immediately had a stomachache.D. John Smith went for medicine.5. What does the underlined word “dwelt” in paragraph 2 probably mean?A. Lived.B. Left.C. Returned.D. Married.6. What is the relationship between John Smothersand Pansy?A. Husband and wife.B. Father and daughter.C. Grandfather and granddaughter.D. Father and son.7. How could Pansy's mother feel when she saw John Smothers?A. Worried.B. Sad.C. Uninterested.D. Surprised.CImust have always known reading was very important because the first memories I have as a child deal with books. There was not one night that I don’t remember mom reading me a storybook by my bedside. I was extremely inspired by the wonderful way the words sounded.I always wanted to know what my mom was reading. Hearing mom say, “I can’t believe what’s printed in the newspaper this morning,” made me want to grab it out of her hands and read it myself. I wanted to be like my mom and know all of the things she knew. So I carried around a book, and each night, just to be like her, I would pretend to be reading.This is how everyone learned to read. We would start off with sentences, then paragraphs, and then stories. It seemed an unending journey, but even as a six-year-old girl I realized that knowing how to read could open many doors. When mom said, “The C-A-N-D-Y is hidden on the top shelf,” I knew where the candy was. My progress in reading raised my curiosity, and I wanted to know everything. I often found myself telling my mom to drive more slowly, so that I could read all of the road signs we passed.Most of my reading through primary, middle and high school was factual reading. I read for knowledge, and to make A’s on my tests. Sometimes, I would read a novel that was assigned, but I didn’t enjoy this type of reading.I liked facts, things that are concrete. I thought anything abstract left too much room for argument.Now that I’m growing and the world I once knew as being so simple is becoming more complex, I find myself needing a way to escape. By opening a novel, I can leave behind my burdens and enter into a wonderful and mysterious world where I am now a new character. In these worlds I can become anyone. I don’t have to write down what happened or what technique the author was using when he or she wrote this. I just read to relax.We’re taught to read because it’s necessary for much of human understanding. Reading is an important part of my life. Reading satisfies my desire to keep learning. And I’ve found that the possibilities that lie within books are limitless.8. Why did the author want to grab the newspaper out of mom’s hands?A. She wanted mom to read the news to her.B. She couldn’t wait to tear the newspaper apart.C. She couldn’t help but stopmom from reading.D. She was eager to know what had happened.9. According to Paragraph 3, the author’s reading of road signs shows___________.A. her own way to find herselfB. her eagerness to develop her reading abilityC. her growing desire to know the world around herD. her effort to remind mom to obey traffic rules10. The author takes novel reading as a way to___________.A. explore a mysterious landB. develop an interest in learningC. get away from a confusing worldD. learn about the adult world11. What could be the best title for the passage?A The Pleasure of Reading B. Growing Up with ReadingC. The Magic of ReadingD. Reading Makes a Full ManDOnce a rich and clever boy had practically everything a boy could want, so he was not interested in most toys. But he couldn't get a very old mirror, and heconvinced his parents to buy it from mysterious(神秘的)old man. When the mirror arrived home, the boy went to see his reflection in it. His face looked very sad indeed. He tried smiling and making funny faces, but his reflection continued with its sad expression. "What a terrible mirror! It's the first time I've seen a mirror that didn't work properly!" the boy jumped violently.That same afternoon he went into the street to play and bought a few toys, but on his way to the park he saw a little girl who was crying her heart out. The girl was crying so much and looked so lonely that the rich boy went over to help her and to see what had happened. The little girl told him that she had lost her parents.Together the two set off in search of the parents. As the little girl wouldn't stop crying, the boy spent his money buying her sweets to cheer her up. Finally, after much walking, they found her parents who were much worried and were looking for her everywhere.The rich boy said goodbye to them. As it was getting late, he decided to head for home, without being able to play. At home, he went to his room, and noticed a shining light in the corner, the same corner he had left themirror in. Seeing this, he went over to the mirror, and realised that the light was coming from his own body, so radiant(闪亮的)with happiness he had become.And so he understood the mystery of that mirror, the only mirror which could faithfully reflect the true joy of its owner. He realised it was true. He felt very happy at having helped that little girl. And since then, each morning when he looked in that mirror and failed to see a special shine, he knew what he had to do to bring it back.12. How did the boy feel when he first looked into the mirror?A. Embarrassed.B. Angry.C. Worried.D. Delighted.13. Why was the little girl crying so hard?A. She couldn't find her parents.B. She couldn't get the mysterious mirror.C. Her parents couldn't buy toys for her.D. The boy refused to give his toys to her.14. What could the boy see in the mirror after he went back from the park?A. A shining toy.B. A broken mirror.C. His happy face.D. The lovely girl.15. What is the purpose of this text?A. To tell us a horrible story.B. To introduce to us a strange mirror.C. To warn us not to be selfish.D. To encourage us to help others.第二节(共5小题;每小题2分,满分10分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
四川省成都市双流棠湖中学2020届高三数学上学期开学考试试题理(含解析)
四川省成都市双流棠湖中学2020届高三数学上学期开学考试试题 理(含解析)一、选择题(在每个小题所给出的四个选项中,只 有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1.已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =I ( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A 【解析】 【分析】先求出集合B 再求出交集. 【详解】21,x ≤∴Q 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =-I , 故选A .【点睛】本题考查了集合交集的求法,是基础题. 2.121211i ii i-+++-=( ) A. ﹣1 B. ﹣iC. 1D. i【答案】A 【解析】 【分析】根据复数的除法运算得到结果即可. 【详解】12i 12i 11i i -+++-=1313 1.2i i---+=- 故答案为:A.【点睛】这个题目考查了复数的除法运算,题目比较简单.3.已知实数,x y 满足约束条件30202x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则3z x y =+的最小值为( )A. -5B. 2C. 7D. 11【答案】A 【解析】 【分析】根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件30202x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,画出可行域ABC △如图3z x y =+变为3y x z =-+为斜率为-3的一簇平行线,z 为在y 轴的截距, ∴z 最小的时候为过C 点的时候,解3020x y x y -+=⎧⎨+=⎩得21x y =-⎧⎨=⎩所以()2,1C -,此时()33215z x y =+=⨯-+=- 故选A 项[Failed to download image :/QBM/2019/4/4/2174961318174720/2175426196512769/EXPLANATION/b87d4482fef64ebcba958e832af003c8.png] 【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.4.设向量(0,2),a b ==r r ,则,a b rr 的夹角等于( )A.3π B.6π C.23π D.56π 【答案】A 【解析】试题分析:∵(0,2),a b ==r r,∴1cos ,2a b a b a b⋅===⋅r r r r r r ,∴,a b r r 的夹角等于3π,故选A 考点:本题考查了数量积的坐标运算点评:熟练运用数量积的概念及坐标运算求解夹角问题是解决此类问题的关键,属基础题5.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件D. 既不充分也不必要条件 【答案】A 【解析】由2()0a b a -<一定可得出a b <;但反过来,由a b <不一定得出2()0a b a -<,如0a =,故选A.【考点定位】本小题主要考查充分必要条件、不等式的性质等基础知识,熟练这两部分的基础知识是解答好本类题目的关键.6.已知随机变量ξ服从正态分布(4N ,)26,(5)0.89P ξ≥=,则(3)P ξ≥=( )A. 0.89B. 0.78C. 0.22D. 0.11【答案】D 【解析】 【分析】根据正态分布的对称性,可求得(3)P ξ≥的值. 【详解】由于正态分布4μ=,(3)(5)P P ξξ≤=≥, 所以(3)1(5)10.890.11P P ξξ≥=-≥=-=,故选D. 【点睛】本小题主要考查正态分布的对称性,属于基础题.7.若2sin 43πθ⎛⎫-= ⎪⎝⎭,则sin 2θ=( )A.3B.59C.19D. 19±【答案】C 【解析】 【分析】利用诱导公式求得 sin 4πθ⎛⎫-⎪⎝⎭的值,再利用诱导公式、二倍角公式求得sin2θ的值. 【详解】若2sin 43πθ⎛⎫-= ⎪⎝⎭,则 2sin 43πθ⎛⎫-=- ⎪⎝⎭, 241sin2cos 212sin 122499ππθθθ⎛⎫⎛⎫∴=-=--=-⋅= ⎪ ⎪⎝⎭⎝⎭,故选:C .【点睛】本题主要考查诱导公式、二倍角公式的应用,属于基础题.8.在ABC V 中,AB 2=,πC 6=,则AC +的最大值为( )A. B. C.【答案】A 【解析】 【分析】利用正弦定理得出ABC V 的外接圆直径,并利用正弦定理化边为角,利用三角形内角和关系以及两角差正弦公式、配角公式化简,最后利用正弦函数性质可得出答案. 【详解】ABC V 中,AB 2=,πC 6=,则AB2R 4sinC==,()5πAC 4sinB 4sin A 2cosA A θ6⎛⎫=+=-+=+=+ ⎪⎝⎭,其中sin θsin θ14==由于5π0A 6<<,π0θ2<<所以4π0A θ3<+<,所以最大值为 故选:A .【点睛】本题考查正弦定理以及两角差正弦公式、配角公式,考查基本分析计算能力,属于中等题.9.已知n S 为等差数列{}n a 的前n 项和,若3625a a +=,540S =,则数列{}n a 的公差d =( ) A. 4 B. 3C. 2D. 1【答案】B 【解析】 【分析】设等差数列{}n a 的首项为1a ,公差为d ,由3625a a +=及540S =列方程组即可求解。
2020-2021学年四川省成都市双流区棠湖中学高三(上)开学物理试卷
2020-2021学年四川省成都市双流区棠湖中学高三(上)开学物理试卷一、选择题(共8小题,每小题6分,满分48分)1. 管道高频焊机可以对由钢板卷成的圆管的接缝实施焊接。
焊机的原理如图所示,圆管通过一个接有高频交流电源的线圈,线圈所产生的交变磁场使圆管中产生交变电流,电流产生的热量使接缝处的材料熔化将其焊接。
焊接过程中所利用的电磁学规律的发现者为()A.霍尔B.库仑C.法拉第D.洛伦兹2. 若一均匀球形星体的密度为ρ,引力常量为G,则在该星体表面附近沿圆轨道绕其运动的卫星的周期是()A.√4πGρB.√3πGρC.√14πGρD.√13πGρ3. 甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示。
已知甲的质量为1kg,则碰撞过程两物块损失的机械能为()A.4JB.3JC.6JD.5J4. 如图,一同学表演荡秋千。
已知秋千的两根绳长均为10m,该同学和秋千踏板的总质量约为50kg。
绳的质量忽略不计。
当该同学荡到秋千支架的正下方时,速度大小为8m/s,此时每根绳子平均承受的拉力约为()A.400NB.200NC.800ND.600N 5. 用卡车运输质量为m的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所示,两斜面Ⅰ、Ⅱ固定在车上,倾角分别为30∘和60∘.重力加速度为g,当卡车沿平直公路匀速行驶时,圆筒对斜面Ⅰ、Ⅱ压力的大小分别为F1、F2,则()A.F1=√32mg,F2=√33mg B.F1=√33mg,F2=√32mgC.F1=12mg,F2=√32mg D.F1=√32mg,F2=12mg6. 如图甲所示,物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图乙所示,木板的速度v与时间t的关系如图丙所示.木板与实验台之间的摩擦可以忽略.重力加速度取10m/s2.由题给数据可以得出()A.2s∼4s内,力F的大小为0.4NB.木板的质量为1kgC.0∼2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.27. 如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响下落的速度和滑翔的距离,某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v−t图像如图(b)所示,t1和t2是他落在倾斜雪道上的时刻,则()A.第二次滑翔过程中在水平方向上的位移比第一次的大B.第二次滑翔过程中在竖直方向上的位移比第一次的小C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大8. 空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示,一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上。
四川省棠湖中学2021届高三数学上学期开学考试试题理
四川省棠湖中学2021-2021学年高三上学期开学考试数学(理)试题考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部份, 满分150分.考试时间为120分钟.(2)第I 卷、第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷(选择题, 共60分.)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列复数是纯虚数的是 A .33i - B .20181i+ C .2019iD .41i2.某校共有500名高二学生,在一次考试中全校高二学生的语文成绩X 服从正态散布()()2110,0>N σσ,若()1001100.3≤≤=P X ,则该校高二学生语文成绩在120分以上的人数大约为A .70B .80C .90D .100 3.已知集合},|{2R x x x x A ∈>=,},221|{R x x x B ∈<<=,则=)(B A C R A .}121|{≤≤x x B .}221|{<<x x C .1|{≤x x 或}2≥x D .21|{≤x x 或}1≥x4.已知命题p :00>∃x ,使得1)2(00<+x ex ,则p ⌝为A .0≤∀x ,总有1)2(≥+xe x B .00>∃x ,使得1)2(00≤+x e x C .0>∀x ,总有1)2(≥+xe x D .00≤∃x ,使得1)2(00≤+x ex5.若x ,y 知足约束条件202301x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最小值是A .1-B .3- C.133-D .5- 6.一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个,蓝球4个,绿球3个.现从盒子中随机掏出两个球,记事件A 为“掏出的两个球颜色不同”,事件B 为“掏出一个黄球,一个绿球”,则(|)P B A = A .1247 B .211 C .2047 D .15477.方程0122=++x ax 至少有一个负根的充要条件是A .10≤<aB .1<aC .1≤aD .10≤<a 或0<a 8.设0.13592,ln,log 210a b c ===,则,,a b c 的大小关系是 A. a b c >> B. a c b >> C. b a c >> D. b c a >> 9.底面是边长为1的正方形,侧面是等边三角形的四棱锥的外接球的体积为 A.π322 B.π33 C .π332 D .π3210.在平面直角坐标系中,A ,B 别离是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为 A.π54 B.π43 C .π)526(- D.π45 11.若0,0a b >>,1++=b a ab ,则b a 2+的最小值为A .B .3C .3+.712.已知函数()e ,()0)x f x g x a ==≠,若函数)(x f y =的图象上存在点),(00y x P ,使得)(x f y =在点),(00y x P 处的切线与)(x g y =的图象也相切,则a 的取值范围是A .(0,1]B .C .D .2e]第Ⅱ卷(非选择题, 共90分.)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上.) 13.二项式7)21(xx +的展开式中含x 项的系数为 . 14.《九章算术》是我国古代内容较为丰硕的数学名著,书中有如下问题:“今有圆堡壔,周四丈八尺,高一丈一尺,问积几何?答曰:二千一百一十二.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡壔(圆柱体)的体积V =112×(底面的圆周长的平方×高),则该问题中圆周率π的取值为________.(注:一丈=10尺)15.已知f (x )=log 12(x 2-ax +3a )在区间[2,+∞)上为减函数,则实数a 的取值范围是______________.16.已知F 是椭圆C :2212516x y +=的右核心,P 是椭圆上一点,36(0,)5A ,当△APF 周长最大时,该三角形的面积为__________________.三、解答题(本大题共6小题,共70分,解承诺写出文字说明,证明进程或演算步骤.) 17.(本题满分12分)如图,△ABC 是等边三角形,D 是BC 边上的动点(含端点),记∠BAD=α,∠ ADC =β. (I )求βαcos cos 2-的最大值; (II )若BD =1,71cos =β,求△ABD 的面积.18.(本小题满分12分)哈三中2016级高二期中考试中,某班共50名学生,数学成绩的优秀率为20%,物理成绩大于90分的为优秀,物理成绩的频率散布直方图如图. (I )这50名学生在本次考试中,数学、物理优秀的人数别离为多少?(II )若是数学、物理都优秀的有6人,补全下列22⨯列联表,并按照列联表,判断是不是有%5.99以上的把握以为数学优秀与物理优秀有关?物理优秀物理非优秀总计物理成绩/67891O0.00.00.00.0频率/组附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.0k2.072 2.7063.841 5.024 6.635 7.879 10.828 ()20P K k ≥0.150.100.050.025 0.010 0.005 0.00119.(本题满分12分)如图1,ABC ∆是边长为6的等边三角形,E ,D 别离为AB ,AC 靠近B ,C 的三等分点,点G 为BC 边的中点,线段AG 交线段ED 于F 点,将AED ∆沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB ,AC ,AG 形成如图2所示的几何体. (Ⅰ) 求证:BC ⊥平面AFG ; (Ⅱ) 求二面角 B AE D --的余弦值.20.(本题满分12分)已知动点M 到定点)0,1(-F 和定直线4-=x 的距离之比为12,设动点M 的轨迹为曲线C .(I )求曲线C 的方程;(II )设)0,4(-P ,过点F 作斜率不为0 的直线l 与曲线C 交于两点,A B ,设直线,PA PB 的斜率别离是12,k k ,求12k k +的值.数学优秀 6 数学非优秀 总计21.(本题满分12分)设函数()()21mx g x x e mx =--,()()(2)mx f x g x x e =+-,(其中m ∈R ). (I )当1m =时,求函数()g x 的极值;(II )求证:存在(0,1)m ∈,使得()0f x ≥在(0,)+∞内恒成立,且方程()0f x =在(0,)+∞内有唯一解.请考生在2二、23题中任选一题作答,若是多做,则按所做的第一题计分,作答时请写清题号.22.(本小题10分)已知直线⎪⎪⎩⎪⎪⎨⎧=+=ty t x l 22221:(t 为参数),曲线⎩⎨⎧==θθsin 3cos 2:1y x C (θ为参数).(I )求直线l 与曲线1C 的普通方程;(II )已知点)0,1(),0,1(1-F F ,若直线l 与曲线1C 相交于B A ,两点(点A 在点B 的上方),求||||11B F A F -的值.23.(本小题10分)已知关于x 的不等式|2x +1|-|x -1|≤log 2a (其中a >0). (I )当a =4时,求不等式的解集; (II )若不等式有解,求实数a 的取值范围.四川省棠湖中学2021-2021学年高三上学期开学考试数学(理)答案1.C2.D3.C4.C5.B6.D7.C8.A9.D 10.A 11.D 12.B 13.835 14.3 15.(]4,4-∈a 16.5144 17.解:(1)由△ABC 是等边三角形,得β=α+π3,0≤α≤π3,故2cos α-cos β=2cos α-cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫α+π3, 故当α=π6,即D 为BC 中点时,原式取最大值 3. (2)由cos β=17,得sin β=437,故sin α=sin ⎝ ⎛⎭⎪⎫β-π3=sin βcos π3-cos βsin π3=3314,由正弦定理ABsin ∠ADB =BDsin ∠BAD ,故AB =sin βsin αBD =4373314×1=83,故S △ABD =12AB ·BD ·sin B =12×83×1×32=233.18.(1)10,12 (2)28.882K ≈ 有19.解:(Ⅰ)证明:在图1中,由△ABC 是等边三角形,E ,D 别离为AB ,AC 的三等分点,点G 为BC 边的中点,则DE ⊥AF ,DE ⊥GF ,DE ∥BC .在图2中,因为DE ⊥AF ,DE ⊥GF ,AF ∩FG =F ,所以DE ⊥平面AFG . 又DE ∥BC ,所以BC ⊥平面AFG . (Ⅱ)解:因为平面AED ⊥平面BCDE ,平面AED ∩平面BCDE =DE ,AF ⊥DE , 所以,AF ⊥ 平面BCDE 又因为DE ⊥GF ,所以FA ,FD ,FG 两两垂直.以点F 为坐标原点,别离以FG ,FD ,FA 所在的直线为x ,y ,z 轴,成立如图所示的空间直角坐标系F -xyz .则A (0,0,23),B (3,-3,0),E (0,-2,0),所以AB →=(3,- 3,-23),BE →=(-3,1,0).设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·BE →=0,即⎩⎨⎧3x -3y -23z =0,-3x +y =0,取x =1,则y =3,z =-1,则n =(1,3,-1). 显然m =(1,0,0)为平面ADE 的一个法向量,所以 cos 〈m ,n 〉=m ·n |m |·|n |=55. 由图形可知二面角B -AE -D 为钝角,所以,二面角B -AE -D 的余弦值为-55.20.解:(I )设(),M x y ,则依题意有214)1(22=+++x y x ,整理得22143x y +=,即为曲线C 的方程. (Ⅱ)设直线)0(1:≠-='t ty x l ,则),1(),,1(2211y ty B y ty A -- 由⎩⎨⎧=+-=1243122y x ty x 联立得:096)43(22=--+ty y t439,436221221+-=+=+t y y t t y y∴12k k +=0963963)9(29)(3)(323322121221212211=+⨯+-⨯+-=+++++=+++t t t tt t y y t y y t y y t y ty ty y ty y ;即120k k +=21.解:(I )当1m =时, ()()21x g x x e x =--,()()()'1222x x x x g x e x e x xe x x e =+--=-=-令()'0g x =,得10x =,2ln 2x =,当x 转变时,()'(),g x g x 的转变如下表:由表可知,()2(ln 2)ln 22ln 22g x g ==+-极小;()(0)1g x g ==-极大;(II )设0m >,2()mx f x e mx =-,(0)10f =>,若()0f x =要有解,需()f x 有单减区间,则'()0f x <要有解'()2(2)mx mx f x me mx m e x =-=-,由0m >,'(0)0f m =>,记''()f x 为函数'()f x 的导数则''()f x =(2)mx m me -,当0m >时''()f x 单增,令''()0f x =,由0m >,得012ln x m m =,需考察0x 与区间(0,)+∞的关系:①当2m ≥时,2ln 0m≤,00x <,在(0,)+∞上0''()''()0f x f x >=,'()f x 单增,'()'(0)0f x f m >=>故()f x 单增,()(0)1f x f >=,()0f x =无解;②当2m <,时,2ln 0m >,012ln 0x m m=>,因为''()f x 单增,在0(0,)x 上''()0f x <,在0(,)x +∞上''()0f x > 当0x x =时,min 0'()'()f x f x =12ln 1222222(2ln )(ln )22ln 2(1ln )m m mm em m m m m m m m⋅=-=-=-=- (i )若21ln 0m -≥,即22m e ≤<时,min '()0f x ≥,()f x 单增,()(0)1f x f >=,()0f x =无解;(ii )若21ln 0m -<,即2m e<,min 0'()'()0f x f x =<,在0(0,)x 上,''()0f x <,'()f x 单减;'(0)0f m =>,0'()0f x <,'()0f x =在区间0(0,)x 上有唯一解,记为1x ;在0(,)x +∞上,''()0,'()f x f x >单增 ,0'()0f x <,当x →+∞时'()f x →+∞,故'()0f x =在区间0(,)x +∞上有唯一解,记为2x ,则在1(0,)x 上'()0f x >,在12(,)x x 上'()0f x <,在2(,)x +∞上'()0f x >,当2x x =时,()f x 取得最小值2()f x ,此时20m e<<若要()0f x ≥恒成立且()0f x =有唯一解,当且仅当2()0f x =,即2220mx e mx -=,由2'()0f x =有2220mx e x -=联立两式22222020mx mx e mx e x -=⎧⎨-=⎩解得22x m =.综上,当20m e <<时,2()()0f x f x ≥=22.解:(1)由直线已知直线1,2:,2x l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),消去参数t 得:10x y --=曲线12cos ,:,x C y θθ=⎧⎪⎨=⎪⎩(θ为参数)消去参数θ得:13422=+y x .(2)设⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+221122,221,22,221t t B t t A 将直线l 的参数方程代入13422=+y x 得:0182672=-+t t 由韦达定理可得: 718,7262121-=⋅-=+t t t t结合图像可知0,021<>t t , 由椭圆的概念知:11F A F B FB FA -=-;()21127FB FA t t t t -=--=-+=. 23.解:(1)当a =4时,log 2a =2,①当x <-12时,-x -2≤2,得-4≤x <-12;②当-12≤x ≤1时,3x ≤2,得-12≤x ≤23;③当x >1时,此时x 不存在.所以不等式的解集为{x |-4≤x ≤23}.(2)设f (x )=|2x +1|-|x -1|=⎩⎪⎨⎪⎧-x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1,由f (x )的图象知f (x )≥-32,∴f (x )min =-32.∴log 2a ≥-32,∴a ≥24.所以实数a 的取值范围是[24,+∞).。
四川省棠湖中学2021届高三上学期开学考试 数学(理)(含答案)
7 A. 3
127 B. 64
321 C. 32
385 D. 64
E:
11.已知 F 为双曲线
x2 a2
y2 b2
1(a
0, b
0)
的左焦点,过点
F
的直线与圆
O : x2 y2 1 (a2 b2)
2
于 A,B 两点(A 在 F,B 之间),与双曲线 E 在第一象限的交点为 P,
O 为坐标原点,若 FA BP , AOB 120 则双曲线的离心率为
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.在某技能测试中,甲乙两人的成绩(单位:分)记录在如下的茎叶图中,其中甲的某次成绩不
清晰,用字母 a 代替.已知甲乙成绩的平均数相等,那么甲乙成绩的中位数分别为
A.20 20
B.21 20
C.20 21
D.21 21
4.已知 a
R
,则“
tan
2
sin 2
(1)求证:平面 AA1D1D 平面 ABCD ; (2)求平面 B1CD1 与平面 ABCD 所成的锐二面角的余弦值.
20.(12
分)已知椭圆
:
x a
2 2
y2 b2
1(a
b 0) 的离心率为
2 2 ,过椭圆 的焦点且垂直于 x 轴的
侧面积为 13,则该三棱锥外接球的表面积为______.
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个 试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。
17.(12 分)在 A ABC 中,角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,且 cos A
四川省棠湖中学2020┄2021届高三上学期开学考试英语试题 Word版含答案
英语试题第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Which street will the man probably go to?A. 3rd Street.B. 22nd Street.C. 24th Street.2. Where does the conversation probably take place?A. In the supermarket.B. In the dentist’s.C. In the barber’s.3. What is the relationship between the two speakers?A. Boss and employee.B. Waiter and customer.C. Visitor and receptionist.4. When will the package be delivered?A. On Tuesday.B. On Wednesday.C. On Thursday.5. Where did Mr. Wood leave his wallet?A. In the garage.B. In the bank.C. In the post office.第二节(共15小题;每小题1.5分,满分22. 5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听下面一段对话,回答第6和第7两个小题。
6. When was the flight supposed to take off?A. At 9 a. m.B. At 10 a. m.C. At 1 p. m.7. What will the speakers fail to do because of the flight delay?A. T our the city.B. Attend a meeting.C. Meet some friends.请听第7段材料,回答第8、9题。
2020-2021学年四川省成都市双流区棠湖中学高三(上)开学数学试卷(理科)
2020-2021学年四川省成都市双流区棠湖中学高三(上)开学数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A ={1, 2, 3},B ={3, 4, 5},则A ∩B =( ) A.{3} B.{2, 5} C.{2, 3, 4} D.{1, 2, 4, 5}2. 已知复数z 满足z(2+3i)=13,则在复平面内z ¯对应的点位于( ) A.第一象限 B.第二象限C.第三象限D.第四象限3. 在某技能测试中,甲乙两人的成绩(单位:分)记录在如图的茎叶图中,其中甲的某次成绩不清晰,用字母a 代替.已知甲乙成绩的平均数相等,那么甲乙成绩的中位数分别为( )A.20 20B.21 20C.20 21D.21 214. 已知α∈R ,则“tan α=2”是“sin 2α=45”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5. 已知实数x ,y 满足约束条件{x −2y +3≥0,2x −y −3≥0,x +y ≥0,则z =x −y( )A.有最小值0B.有最大值2C.有最大值0D.无最小值6. 设0<a <12,随机变量X 的分布列是:则当D(X)最大时的a 的值是( ) A.14 B.316C.15D.3257. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:cm 2)是( )A.16+2√3B.16+2√6C.18+2√3D.18+2√68. 如图,正方体ABCD −A 1B 1C 1D 1的棱长为2,点O 为底面ABCD 的中心,点P 在侧面BB 1C 1C 的边界及其内部运动.若D 1O ⊥OP ,则△D 1C 1P 面积的最大值为( )A.2√55B.4√55C.√5D.2√59. 已知定义在R 上的函数f(x)=3sin x −2x +1,则f(x)的最大值与最小值之和等于( ) A.0 B.1C.2D.310. 已知数列{a n }的前n 项和S n 满足S n +a n =2n(n ∈N ∗),则a 7=( ) A.73 B.12764C.32132D.3856411. 已知F 为双曲线E:x2a 2−y 2b 2=1(a >0,b >0)的左焦点,过点F 的直线与圆O:x 2+y 2=12(a 2+b 2)于A ,B 两点(A 在F ,B 之间),与双曲线E 在第一象限的交点为P ,O 为坐标原点,若FA =BP ,∠AOB =120∘,则双曲线的离心率为( )A.√133B.√143C.√13+√23D.√14+√2312. 已知实数a ,b 满足log 2a =log 3b ,给出五个关系式:其中不可能成立的关系式有( ) ①a b <b a;②a a =b b ; ③a b >b a ; ④a b <a a ; ⑤b b <b a .A.1个B.2个C.3个D.4个二、填空题:本题共4小题,每小题5分,共20分.已知(x +1)4(x +b)=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,其中a 4=13,则b =________.某团队派遣甲、乙、丙、丁四人分别完成一项任务,已知甲完成任务的概率为14,乙完成任务的概率为12,丙、丁完成任务的概率均为23,若四人完成任务与否相互独立,则至少2人完成任务的概率为________.过P(1, 2)的直线l 把圆x 2+y 2−4x −5=0分成两个弓形,当其中劣弧最短时直线l 的方程为________.在三棱锥B −ACD 中,BA ,BC ,BD 两两垂直,BC =2,BD =4,三棱锥的侧面积为13,则该三棱锥外接球的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且cos A =√55. (1)若a =5,c =2√5,求b 的值;(2)若B =π4,求cos 2C 的值.某公司A 产品生产的投入成本x (单位:万元)与产品销售收入y (单位:十万元)存在较好的线性关系,如表记录了该公司最近8次该产品的相关数据,且根据这8组数据计算得到y 关于x 的线性回归方程为y ̂=b̂x +0.7604.(1)求b ̂的值(结果精确到0.0001),并估计公司A 产品投入成本30万元后产品的销售收入(单位:十万元).(2)该公司B 产品生产的投入成本u (单位:万元)与产品销售收入v (单位:十万元)也存在较好的线性关系,且v 关于u 的线性回归方程为v ̂=0.15u +0.5. (i)估计该公司B 产品投入成本30万元后的毛利率(毛利率=收入−成本收入×100%); (ii)判断该公司A ,B 两个产品都投入成本30万元后,哪个产品的毛利率更大.如图1所示,EFGH 为矩形,四边形ABCD 为正方形.ADD 1A 1与BCC 1B 1为全等的等腰梯形,其中AB =2AE =2AA 1=2DH =2A 1D 1=4,沿着AB ,BC ,CD ,DA 折成如图2所示的几何体ABCD −A 1B 1C 1D 1,使A 1,B 1,C 1,D 1分别与E ,F ,G ,H 重合.(1)求证:平面AA 1D 1D ⊥平面ABCD ;(2)求平面B 1CD 1与平面ABCD 所成的锐二面角的余弦值.已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆Γ的焦点且垂直于x 轴的直线被椭圆Γ截得的弦长为√2.(1)求椭圆Γ的方程;(2)设点A ,B 均在椭圆Γ上,点C 在抛物线y 2=12x 上,若△ABC 的重心为坐标原点O ,且△ABC 的面积为3√64,求点C 的坐标.已知函数f(x)=12x 2+ax,g(x)=(a +1)ln x(a <0).(1)若点P(x0, y0)为函数f(x)与g(x)图象的唯一公共点,且两曲线存在以点P为切点的公共切线,求a的值:(2)若函数ℎ(x)=f(x)−g(x)有两个零点,求实数a的取值范围.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy中,曲线C1的参数方程为{x=√32ty=m−√32t(t为参数,m∈R).以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=33−2cos2θ(0≤θ≤π).(1)写出曲线C1的普通方程和曲线C2的直角坐标方程:(2)已知m<−√3,点P是曲线C2上一点,点P到曲线C1的最大距离为2√2,求m的值.[选修4-5:不等式选讲](10分)已知不等式|2x+2|−|x−2|>2的解集为M.(1)求集合M;(2)已知t为集合M中的最小正整数,若a>1,b>1,c>1,且(a−1)(b−1)(c−1)=t,求证:abc≥8.参考答案与试题解析2020-2021学年四川省成都市双流区棠湖中学高三(上)开学数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】 A【考点】 交集及其运算 【解析】利用交集定义直接求解. 【解答】∵ 集合A ={1, 2, 3},B ={3, 4, 5}, ∴ A ∩B ={3}. 2.【答案】 A【考点】复数的代数表示法及其几何意义 【解析】把已知等式变形,利用复数代数形式的乘除运算化简,求出z ¯的坐标得答案. 【解答】由z(2+3i)=13,得z =132+3i =13(2−3i)(2+3i)(2−3i)=2−3i , ∴ z ¯=2+3i ,∴ 在复平面内z ¯对应的点的坐标为(2, 3),位于第一象限. 3. 【答案】 B【考点】 茎叶图众数、中位数、平均数【解析】甲乙成绩的平均数相同,得a =4,易得甲乙成绩的中位数. 【解答】解:甲乙成绩的平均数相同, 由茎叶图知,16(16+18+18+a +20+24+28) =16(18+18+20+20+24+28),解得a =4, 甲的中位数为:18+242=21,乙的中位数为20.故选B . 4. 【答案】 A【考点】充分条件、必要条件、充要条件 【解析】 由tan α=2=sin αcos α,sin 2α+cos 2α=1,解得sin α,cos α,反之不成立,即可判断出结论.【解答】∵ tan α=2=sin αcos α,sin 2α+cos 2α=1, ∴ sin α=√5,cos α=√5;sin α=√5,cos α=√5.∴ sin 2α=2sin αcos α=45. 反之不成立,由sin 2α=2sin αcos αsin α+cos α=45,∴tan αtan α+1=25,即2tan 2α−5tan α+2=0,解得tan α=12或2.∴ tan α=2”是“sin 2α=45”的充分不必要条件. 5.【答案】A【考点】求线性目标函数的最值 简单线性规划【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案. 【解答】解:由约束条件约束条件{x −2y +3≥0,2x −y −3≥0,x +y ≥0,作出可行域如图,易得A(3, 3),化目标函数z =x −y 为y =x −z ,由图可知,当直线y =x −z 过A 时,z min =3−3=0. 故选A . 6.【答案】 D【考点】离散型随机变量及其分布列 离散型随机变量的期望与方差 【解析】由随机变量X 的分布列推导出E(X)=5a 2,E(X 2)=1+32a ,从而D(X)=E(X 2)−E 2(X)=1+32a −25a 24,由此能求出当D(X)最大时的a 的值. 【解答】由随机变量X 的分布列知:E(X)=−1×(12−a)+1×(12+a2)+2×a2=5a 2,E(X 2)=1×(12−a)+1×(12+a2)+4×a2=1+32a , D(X)=E(X 2)−E 2(X)=1+32a −25a 24=−254(a −325)2+109100,∵ 0<a <12,∴ 当D(X)最大时的a 的值是325. 7.【答案】 【考点】由三视图求体积 【解析】首先把三视图转换为直观图,进一步求出几何体的表面积. 【解答】根据几何体的三视图转换为直观图为:该几何体为由棱长为2的正方体切去一个正三棱锥体A −BCD 构成的不规则几何体. 如图所示:所以:S =4×6−3×12×2×2+12×2√2×2√2×√32=18+2√3.故选:C . 8.【答案】 C【考点】点、线、面间的距离计算 直线与平面垂直的判定【解析】由题意画出图形,由直线与平面垂直的判定可得P 的轨迹,求出P 到棱C 1D 1 的最大值,代入三角形面积公式求解. 【解答】 解:如图,由正方体性质知,当P 位于C 点时,D 1O ⊥OC ,当P 位于BB 1 的中点P 1 时,由已知得,DD 1=2,DO =BO =√2, BP 1=B 1P 1=1,B 1D 1=2√2,求得OD 1=√4+2=√6,OP 1=√2+1=√3,D 1P 1=√8+1=3. ∴ OD 12+OP 12=D 1P 12,得OD 1⊥OP 1.又OP 1∩OC =O ,∴ D 1O ⊥平面OP 1 C ,得到P 的轨迹在线段P 1C 上. 由C 1P 1=CP 1=√5,可知∠C 1CP 1 为锐角,而CC 1=2<√5, 知P 到棱C 1D 1 的最大值为√5.则△D 1C 1P 面积的最大值为12×2×√5=√5. 故选C . 9.【答案】C【考点】函数奇偶性的性质函数奇偶性的判断【解析】根据题意,设g(x)=f(x)−1=3sin x−2x,分析可得g(x)为奇函数,由奇函数的性质可得g(x)max+g(x)min =0,进而可得[f(x)max−1]+[g(x)min−1]=f(x)max+f(x)min−2=0,变形分析可得答案.【解答】解:根据题意,设g(x)=f(x)−1=3sin x−2x,有g(−x)=3sin(−x)−2(−x)=−(3sin x−2x)=−g(x),即函数g(x)为奇函数,其图象关于原点对称,则g(x)max+g(x)min=0,则有[f(x)max−1]+[f(x)min−1]=f(x)max+f(x)min−2=0,变形可得f(x)max+f(x)min=2,即f(x)的最大值与最小值之和等于2.故选C.10.【答案】B【考点】数列递推式【解析】由已知数列递推式求得首项,且得到2a n−a n−1=2(n≥2),构造等比数列得2(a n−2)=a n−1−2,进而求得{a n}通项,即可求解.【解答】解:由S n+a n=2n,得a1=1,当n≥2时,S n−1+a n−1=2(n−1),得2a n−a n−1=2,∴2(a n−2)=a n−1−2,故{a n−2}是首项为a1−2=−1,公比为12的等比数列,∴a n=−(12)n−1+2,故a7=2−164=12764.故选B.11.【答案】D【考点】双曲线的离心率圆与圆锥曲线的综合问题双曲线的定义【解析】由题意画出图形,由圆的方程求得圆的半径,得到圆心到直线的距离,进一步求得P到双曲线右焦点的距离,再由双曲线定义及勾股定理求解.【解答】解:如图,由圆O的方程x2+y2=12(a2+b2)=12c2,得圆O的半径为OA=OB=√22c.过O作AB的垂线OH,则H为AB的中点,又FA=BP,∴H为FP的中点,设双曲线的右焦点为F1,连接PF1,则OH为三角形FF1P的中位线,可得OH // PF1,则PF1⊥PF,由∠AOB=120∘,可得OH=12OA=√24c.∴PF1=√22c,则PF=√22c+2a,在Rt△PFF1中,由勾股定理可得:(√22c+2a)2+(√22c)2=4c2,整理得:3e2−2√2e−4=0.解得:e=√14+√23或e=√2−√143(舍).故选D.12.【答案】B【考点】不等式的基本性质对数的运算性质【解析】由log2a=log3b,知1<a<b或a=b=1或0<b<a<1,然后分情况验证个关系式即可.【解答】解:由log2a=log3b,知1<a<b或a=b=1或0<b<a<1,当a=b=1时,②成立,其他的不成立;当0<b<a<1时,a b>b a,a b>a a,b b>b a,③成立,④⑤不成立;当1<a<b时,取a=2,b=3,则a b=23=8<9=32=b a,①成立,a b>a a,b b>b a,④⑤不成立,综上,只有④⑤不可能成立.故选B.二、填空题:本题共4小题,每小题5分,共20分.【答案】3【考点】二项式定理及相关概念【解析】由题意利用二项展开式的通项公式,求出b的值.【解答】∵(x+1)4(x+b)=x5+a1x4+a2x3+a3x2+a4x+a5,其中a4=C44+b⋅C43=1+4b=13,∴b=3,【答案】5372【考点】相互独立事件相互独立事件的概率乘法公式【解析】先求出4个人都没有完成任务的概率和4个人中有3个没有完成任务的概率,由此利用对立事件概率计算公式能求出至少2人完成任务的概率.【解答】4个人都没有完成任务的概率为34×12×13×13=124,4个人中有3个没有完成任务的概率为:1 4×12×13×13+34×12×13×13+34×12×C21×23×13=29,故至少2人完成任务的概率为1−124−29=5372.【答案】x−2y+3=0【考点】直线与圆相交的性质圆的标准方程两条直线垂直与倾斜角、斜率的关系【解析】先把圆方程化为标准方程,就可求出圆心坐标和半径,因为只有当直线l与圆相交所得弦的中点为P点时,两个弓形中较小弓形面积最小,此时直线l与PC垂直,就可求出直线l的斜率.用点斜式写出直线l的方程.【解答】解:圆x2+y2−4x−5=0可化为(x−2)2+y2=9,∴圆心C的坐标为(2, 0),半径为3.设直线l与圆x2+y2−4x−5=0交于点A,B,则当P为AB中点时,两个弓形中较小弓形面积最小,此时P点与圆C的连线垂直于直线l,∵k PC=2−01−2=−2,∴k l=12,∴直线l的方程是y−2=12(x−1),化为一般式为x−2y+3=0.故答案为:x−2y+3=0.【答案】29π【考点】球内接多面体球的表面积和体积【解析】由三棱锥的侧面积及所给的棱长可得AB的值,再由题意将该三棱锥放在长方体中,由长方体的对角线的长度等于其外接球的直径(2R)可得4R2的值,进而求出外接球的表面积.【解答】解:三棱锥B−ACD的侧面积:S=S△ABD+S△ABC+S BCD=12(AB⋅BD+AB⋅BC+BC⋅CD)=12(4AB+2AB+2×4)=13,解得:AB=3.将此三棱锥放在长方体中可得,三棱锥的外接球与长方体的外接球为同一个,且长方体的外接球的直径2R等于长方体的对角线的长度,所以(2R)2=AB2+BC2+BD2=32+22+42=29,即4R2=29,所以外接球的表面积S表=4πR2=29π.故答案为:29π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.【答案】在△ABC中,由余弦定理a2=b2+c2−2bc cos A,得,b2+20−2×2√5×√55b=25,即b2−4b−5=0,解得b=5或b=−1(舍),所以b=5;由cos A=√55及0<A<π得,sin A=√1−cos2A=(√55)=2√55,所以cos C=cos(π−(A+B))=−cos(A+π4)=−√22(cos A−sin A)=√1010,所以cos2C=2cos2C−1=2(√1010)2−1=−45【考点】余弦定理 【解析】(1)由已知结合余弦定理即可求解b ,(2)由已知结合同角平分关系可求sin A ,然后结合诱导公式及和差角公式及二倍角公式可求. 【解答】在△ABC 中,由余弦定理a 2=b 2+c 2−2bc cos A , 得,b 2+20−2×2√5×√55b =25,即b 2−4b −5=0,解得b =5或b =−1(舍), 所以b =5; 由cos A =√55及0<A <π得,sin A =√1−cos 2A =√1−(√55)2=2√55, 所以cos C =cos (π−(A +B))=−cos (A +π4)=−√22(cos A −sin A)=√1010, 所以cos 2C =2cos 2C −1=2(√1010)2−1=−45 【答案】解:(1)∵ x ¯=12,y ¯=16.58=2.0625,∴ 2.0625=12b̂+0.7604, 解得b̂=0.1085. 当x =30时,y ̂=0.1085×30+0.7604=4.0154.(单位:十万元) (2)(i)当u =30时,v ̂=5, B 产品对应的毛利率为50−3050×100%=40%.(ii)当x =30时,y ̂=4.0154,A 产品对应的毛利率为40.154−3040.154×100%=10.15440.154×100%<40%,故B 产品的毛利率更大.【考点】求解线性回归方程 【解析】(1)求出样本中心的坐标,定义回归直线方程,即可求b 的值.然后代入投入成本30万元后,求解产品的销售收入即可.(2)(ⅰ)通过u 的线性回归方程为v =0.15u +0.5,估计该公司B 产品投入成本30万元后的毛利率求解即可. (ⅱ)当x =30时,y =4.0154,A 产品对应的毛利率与B 产品的毛利率半径大小,即可得到结果. 【解答】解:(1)∵ x ¯=12,y ¯=16.58=2.0625,∴ 2.0625=12b̂+0.7604, 解得b̂=0.1085. 当x =30时,y ̂=0.1085×30+0.7604=4.0154.(单位:十万元) (2)(i)当u =30时,v ̂=5,B 产品对应的毛利率为50−3050×100%=40%.(ii)当x =30时,y ̂=4.0154,A 产品对应的毛利率为40.154−3040.154×100%=10.15440.154×100%<40%,故B 产品的毛利率更大.【答案】证明:∵ 四边形ABCD 是正方形,∴ AB ⊥AD ,∵ 四边形ABB 1A 1是矩形, ∴ AB ⊥AA 1,又∵ AD ∩AA 1=A ,AA 1⊂平面AA 1D 1D , ∴ AB ⊥平面AA 1D 1D .又因为AB ⊂平面ABCD , ∴ 平面AA 1D 1D ⊥平面ABCD .由(1)知平面ABCD ⊥平面ADD 1A 1. 过A 1作A 1O ⊥AD 于点O ,∵ 平面ABCD ⊥平面ADD 1A 1, 平面ABD ∩平面ADD 1A 1=AD , ∴ A 1O ⊥平面ABCD .过O 作ON // AB ,且交BC 于点N , ∴ OA 1,OD ,ON 两两垂直,分别以OD ,ON ,OA 1为x 轴,y 轴,z 轴,建空间直角坐标系 【考点】二面角的平面角及求法 平面与平面垂直【解析】(1)推导出AB ⊥AD ,AB ⊥AA 1,得到AB ⊥平面AA 1D 1D ,由此能证明平面AA 1D 1D ⊥平面ABCD .(2)过A 1作A 1O ⊥AD 于点O ,得到A 1O ⊥平面ABCD ,过O 作ON // AB ,且交BC 于点N ,则OA 1,OD ,ON 两两垂直,分别以OD ,ON ,OA 1为x 轴,y 轴,z 轴,建空间直角坐标系,利用向量法能求出平面B 1CD 1与平面ABCD 所成的锐二面角的余弦值. 【解答】证明:∵ 四边形ABCD 是正方形,∴ AB ⊥AD ,∵ 四边形ABB 1A 1是矩形, ∴ AB ⊥AA 1,又∵ AD ∩AA 1=A ,AA 1⊂平面AA 1D 1D , ∴ AB ⊥平面AA 1D 1D .又因为AB ⊂平面ABCD , ∴ 平面AA 1D 1D ⊥平面ABCD .由(1)知平面ABCD ⊥平面ADD 1A 1. 过A 1作A 1O ⊥AD 于点O ,∵ 平面ABCD ⊥平面ADD 1A 1, 平面ABD ∩平面ADD 1A 1=AD , ∴ A 1O ⊥平面ABCD .过O 作ON // AB ,且交BC 于点N , ∴ OA 1,OD ,ON 两两垂直,分别以OD ,ON ,OA 1为x 轴,y 轴,z 轴,建空间直角坐标系 【答案】解:(1)根据题意得{ca=√22,2b 2a =√2,又因为b2=a2−c2,解得a2=2,则b2=1,所以椭圆Γ的方程为:x 22+y2=1;(2)设AB:x=my+t,联立椭圆方程x2+2y2=2,可得(2+m2)y2+2mty+t2−2=0,Δ=4m2t2−4(2+m2)(t2−2)=8(m2−t2+2)>0①,设A(x1, y1),B(x2, y2),y1+y2=−2mt2+m2,可得y C=−(y1+y2)=2mt2+m2,x C=−(x1+x2)=−[m(y1+y2)+2t]=−4t2+m2,由C在抛物线y2=12x上,可得(2mt2+m2)2=12⋅(−4t2+m2),则m2=−22t+1②(t<−12),由S△ABO=12|OA|⋅|OB|⋅sin∠AOB=1√|OA|2⋅|OB|2−(|OA|⋅|OB|⋅cos∠AOB)2=12√(x12+y12)(x22+y22)−(x1x2+y1y2)2=12|x1y2−x2y1|,则S△ABC=3S△ABO=32|x1y2−x2y1|=32|(my1+t)y2−(my2+t)y1|=32|t(y1−y2)|=32|t⋅2√2⋅√m2−t2+22+m|=3√64,可得|t⋅√m2−t2+22+m2|=√34③,将②代入③整理可得[t(2t+1)]2−4t(2t+1)+3=0,解得t=−1或−32,相应的m2=2或1.所以C(1, ±√22),或C(2, ±1).【考点】椭圆中的平面几何问题直线与椭圆结合的最值问题椭圆的标准方程【解析】(1)运用离心率公式和垂直于x轴的弦长公式,以及a,b,c的关系解方程可得a,b,进而得到所求椭圆方程;(2)设AB:x=my+t,联立椭圆方程,运用韦达定理和中点坐标公式、三角形的重心坐标,可得C的坐标,代入抛物线方程,结合三角形的面积公式,计算可得C的坐标.【解答】解:(1)根据题意得{ca=√22,2b2a=√2,又因为b2=a2−c2,解得a2=2,则b2=1,所以椭圆Γ的方程为:x22+y2=1;(2)设AB:x=my+t,联立椭圆方程x2+2y2=2,可得(2+m2)y2+2mty+t2−2=0,Δ=4m2t2−4(2+m2)(t2−2)=8(m2−t2+2)>0①,设A(x1, y1),B(x2, y2),y1+y2=−2mt2+m2,可得y C=−(y1+y2)=2mt2+m2,x C=−(x1+x2)=−[m(y1+y2)+2t]=−4t2+m2,由C在抛物线y2=12x上,可得(2mt2+m2)2=12⋅(−4t2+m2),则m2=−22t+1②(t<−12),由S△ABO=12|OA|⋅|OB|⋅sin∠AOB=12√|OA|2⋅|OB|2−(|OA|⋅|OB|⋅cos∠AOB)2=12√(x12+y12)(x22+y22)−(x1x2+y1y2)2=12|x1y2−x2y1|,则S△ABC=3S△ABO=32|x1y2−x2y1|=32|(my 1+t)y 2−(my 2+t)y 1| =32|t(y 1−y 2)| =32|t⋅2√2⋅√m 2−t 2+22+m 2|=3√64, 可得|t⋅√m 2−t 2+22+m 2|=√34③, 将②代入③整理可得[t(2t +1)]2−4t(2t +1)+3=0, 解得t =−1或−32,相应的m 2=2或1.所以C(1, ±√22),或C(2, ±1). 【答案】由题意可知,y =f(x)与y =g(x)(x >0)图象的在唯一公共点处的切线相同, 又因为f′(x)=x +a ,g ′(x)=a+1x,所以f(x 0)=g(x 0),f′(x 0)=g′(x 0),即{12x 02+ax 0=(a +1)ln x 0x 0+a =a+1x, 由x 0+a =a+1x 0可得x 0=1或x 0=−a −1,由点P 唯一可得−a −1=1或−a −1≤0, 即a =−2或a ≥−1,由12x 02+ax 0=(a +1)ln x 0可得a =−12, 综上可得,a =−12;由ℎ(x)=f(x)−g(x)=12x 2+ax −(a +1)ln x ,x >0,则ℎ′(x)=x +a −a+1x=(x−1)(x+a+1)x,(i)若a +1>0即0>a >−1时,ℎ(x)在(0, 1)上单调递减,在(1, +∞)上单调递增, 因为x →0时,ℎ(x)→+∞,且ℎ(2)=2+2a −(a +1)ln 2>2+2a −2(a +1)=0, 故要使得ℎ(x)有2个零点,只有ℎ(1)<0即−1<a <−12, 当a =−1时,ℎ(x)=12x 2−x 只有一个零点, 故−1<a <−12(ii)若a +1<0,即a <−1时,①当a =−2时,ℎ(x)在(0, +∞)上单调递增,不符合题意;②当−2<a <−1时,ℎ(x)在(0, −a −1)上单调递增,在(−a −1, 1)上单调递减,在(1, +∞)上单调递增,且x →0时,ℎ(x)→−∞,且ℎ(1)=a +12<0,ℎ(e 2)=12e 4+ae 2−(a +1)ln e 2>12e 4+ae 2>0,故要使得ℎ(x)有2个零点,则ℎ(−a −1)=12(a +1)2−a(a +1)−(a +1)ln (−a −1)=0,即1−a 2−ln (−a −1)=0,令m(a)=1−a 2−ln (−a −1),−2<a <−1,则m ′(a)=−12−1a+1=−a+32(a+1)>0,故m(a)在(−2, −1)上单调递增,且m(−2)=32>0,故m(a)>0在(−2, −1)上恒成立,不可能有2个零点,③当a <−2时,ℎ(x)在(0, 1)上单调递增,在(1, −a −1)上单调递减,在(−a −1, +∞)上单调递增,且ℎ(1)=a +12<0,故ℎ(x)不可能有2个零点, 综上−1<a <−12.【考点】利用导数研究函数的极值利用导数研究曲线上某点切线方程【解析】(1)先分别对函数求导,然后结合导数的几何意义即可求解;(2)先对ℎ(x)求导,然后结合导数与单调性关系分析函数的特征性质,然后结合函数性质及零点判定定理可求出符合要求的a 的范围. 【解答】由题意可知,y =f(x)与y =g(x)(x >0)图象的在唯一公共点处的切线相同, 又因为f′(x)=x +a ,g ′(x)=a+1x,所以f(x 0)=g(x 0),f′(x 0)=g′(x 0),即{12x 02+ax 0=(a +1)ln x 0x 0+a =a+1x 0,由x 0+a =a+1x 0可得x 0=1或x 0=−a −1,由点P 唯一可得−a −1=1或−a −1≤0, 即a =−2或a ≥−1,由12x 02+ax 0=(a +1)ln x 0可得a =−12,综上可得,a =−12;由ℎ(x)=f(x)−g(x)=12x 2+ax −(a +1)ln x ,x >0, 则ℎ′(x)=x +a −a+1x=(x−1)(x+a+1)x,(i)若a+1>0即0>a>−1时,ℎ(x)在(0, 1)上单调递减,在(1, +∞)上单调递增,因为x→0时,ℎ(x)→+∞,且ℎ(2)=2+2a−(a+1)ln2>2+2a−2(a+1)=0,故要使得ℎ(x)有2个零点,只有ℎ(1)<0即−1<a<−12,当a=−1时,ℎ(x)=12x2−x只有一个零点,故−1<a<−12(ii)若a+1<0,即a<−1时,①当a=−2时,ℎ(x)在(0, +∞)上单调递增,不符合题意;②当−2<a<−1时,ℎ(x)在(0, −a−1)上单调递增,在(−a−1, 1)上单调递减,在(1, +∞)上单调递增,且x→0时,ℎ(x)→−∞,且ℎ(1)=a+12<0,ℎ(e2)=12e4+ae2−(a+1)ln e2>12e4+ae2>0,故要使得ℎ(x)有2个零点,则ℎ(−a−1)=12(a+1)2−a(a+1)−(a+1)ln(−a−1)=0,即1−a2−ln(−a−1)=0,令m(a)=1−a2−ln(−a−1),−2<a<−1,则m′(a)=−12−1a+1=−a+32(a+1)>0,故m(a)在(−2, −1)上单调递增,且m(−2)=32>0,故m(a)>0在(−2, −1)上恒成立,不可能有2个零点,③当a<−2时,ℎ(x)在(0, 1)上单调递增,在(1, −a−1)上单调递减,在(−a−1, +∞)上单调递增,且ℎ(1)=a+12<0,故ℎ(x)不可能有2个零点,综上−1<a<−12.[选修4-4:坐标系与参数方程](10分)【答案】曲线C1的参数方程为{x=√32ty=m−√32t(t为参数,m∈R).转换为直角坐标法方程为x+y−m=0.曲线C的极坐标方程为ρ2=33−2cos2θ(0≤θ≤π),根据{x=ρcosθy=ρsinθx2+y2=ρ2转换为直角坐标方程为x23+y2=1(0≤y≤1).设点P(√3cosθ,sinθ)是曲线C2上一点,则点P到曲线C1的距离d=√3cos√2=|2sin(α+π3)−m|√2,由于0≤α≤π,所以sin(α+π3)∈[−√32,1],则:2sin(α+π3)−m∈[.由点P到曲线C1的最大距离为2√2,所以|2cos(α−π6)−m|的最大值为4,由于m<−√3,所以−m−√3>0,则2−m=4,即m=−2,故m=−2.【考点】参数方程与普通方程的互化圆的极坐标方程【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.【解答】曲线C1的参数方程为{x=√32ty=m−√32t(t为参数,m∈R).转换为直角坐标法方程为x+y−m=0.曲线C的极坐标方程为ρ2=33−2cos2θ(0≤θ≤π),根据{x=ρcosθy=ρsinθx2+y2=ρ2转换为直角坐标方程为x23+y2=1(0≤y≤1).设点P(√3cosθ,sinθ)是曲线C2上一点,则点P到曲线C1的距离d=√3cos√2=|2sin(α+π3)−m|√2,由于0≤α≤π,所以sin(α+π3)∈[−√32,1],则:2sin(α+π3)−m∈[.由点P到曲线C1的最大距离为2√2,所以|2cos(α−π6)−m|的最大值为4,由于m<−√3,所以−m−√3>0,则2−m=4,即m=−2,故m=−2.[选修4-5:不等式选讲](10分)【答案】(1)解:|2x+2|−|x−2|>2等价为{x≤−1,−2x−2−(2−x)>2或{−1<x<2,2x+2−(2−x)>2或{x≥2,2x+2−(x−2)>2,解得x<−6或23<x<2或x≥2,则M=(−∞, −6)∪(23, +∞).(2)证明:由(1)可得t=1,又a>1,b>1,c>1,且(a−1)(b−1)(c−1)=1,则a=(a−1)+1≥2√a−1>0(当且仅当a=2时等号成立),b=(b−1)+1≥2√b−1>0(当且仅当b=2时等号成立),c=(c−1)+1≥2√c−1>0(当且仅当c=2时等号成立),则abc≥8√(a−1)(b−1)(c−1)=8(当且仅当a=b=c=2时等号成立),即abc≥8.【考点】不等式的证明绝对值不等式的解法与证明【解析】(1)由零点分区间法和绝对值的意义,去绝对值,解不等式,求并集,可得所求解集;(2)由(1)可得a>1,b>1,c>1,且(a−1)(b−1)(c−1)=1,再由a=(a−1)+1,b=(b−1)+1,c=(c−1)+1,运用基本不等式和不等式的可乘性,即可得到证明.【解答】(1)解:|2x+2|−|x−2|>2等价为{x≤−1,−2x−2−(2−x)>2或{−1<x<2,2x+2−(2−x)>2或{x≥2,2x+2−(x−2)>2,解得x<−6或23<x<2或x≥2,则M=(−∞, −6)∪(23, +∞).(2)证明:由(1)可得t=1,又a>1,b>1,c>1,且(a−1)(b−1)(c−1)=1,则a=(a−1)+1≥2√a−1>0(当且仅当a=2时等号成立),b=(b−1)+1≥2√b−1>0(当且仅当b=2时等号成立),c=(c−1)+1≥2√c−1>0(当且仅当c=2时等号成立),则abc≥8√(a−1)(b−1)(c−1)=8(当且仅当a=b=c=2时等号成立),即abc≥8.。
{高中试卷}四川省2021年上学期棠湖中学高三数学理开学考试试题答案[仅供参考]
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:四川省2021年上学期棠湖中学高三数学理开学考试试题答案1.A2.A3.B4.A5.A6.D7.C8.C9.C10.B11.D12.B 13.314.537215.230x y -+=16.29π 17.解:(1)在ABC 中,由余弦定理2222cos a b c bc A =+-,得,220225b +-⨯=,即2450b b --=, 解得5b =或1b =-(舍), 所以5b =;(2)由cos A =及0A π<<得,sin A =,所以cos cos(())cos()sin )4C A B A A A π=π-+=-+=-=所以224cos 22cos 115C C =-=-=- 18.(1)依题意6781112141721128x +++++++==,1.2 1.5 1.722.2 2.4 2.6 2.9 2.06258y +++++++==,(),x y 代入回归直线方程0.7604y bx =+,得2.0625120.7604b =⨯+,解得0.1085b =,所以0.1086450.70y x =+,令30x =,可得 4.0154y =(单位:十万元)(2)(i )由于0.150.5v u =+,所以当30u =时,0.15300.55v =⨯+=(单位:十万元),故毛利率为5030100%40%50-⨯=. (ii )由(1)得当30x =时, 4.0154y =(单位:十万元),故毛利率为40.15430100%28.764%40.154-⨯≈所以B 产品的毛利率更大.19.(1)证明:∵四边形ABCD 是正方形,∴AB AD ⊥,∵四边形11ABB A 是矩形,∴1AB AA ⊥,又∵1AD AA A ⋂=,1AA ⊂平面11AA D D ,∴AB ⊥平面11AA D D .又因为AB 平面ABCD ,∴平面11AA D D ⊥平面ABCD .(2)由(1)知平面ABCD ⊥平面11ADD A . 过1A 作1A O AD ⊥于点O , ∵平面ABCD ⊥平面11ADD A ,平面ABD ⋂平面11ADD A AD =, ∴1A O ⊥平面ABCD .过O 作//ON AB ,且交BC 于点N ,∴1OA ,OD ,ON 两两垂直, 分别以OD ,ON ,1OA 为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示:则()3,4,0C ,()12,0,3D ,()10,4,3B ,()11,4,3CD =--,()13,0,3CB =-,设平面11B CD 的一个法向量为(),,n x y z =,则由110,0,CD n CB n ⎧⋅=⎪⎨⋅=⎪⎩得430,330.x y z x z ⎧--+=⎪⎨-+=⎪⎩令3z =,得11,,32n ⎛⎫= ⎪⎝⎭.又平面ABCD 的一个法向量()0,0,1m =,∴251cos ,17m n m n m n⋅==, 所以平面11B CD 与平面ABCD 所成的锐二面角的余弦值为25117.20.(1)根据题意得2222c a b a⎧=⎪⎪⎨⎪=⎪⎩,又因为222b a c =-,解得22a =,则21b =, 所以椭圆Γ的方程为:2212x y +=;(2)设:AB x my t =+,联立椭圆方程2222x y +=,可得222()2220m y mty t +++-=,22222244228()()()20m t m t m t ∆=-+-=-+>①设1122(,),(,)A x y B x y ,12222mty y m+=-+, 可得122()22C mty y y m =-+=+,12122()[()]422C tx x x m y y t m=-+=-++=-+, 由C 在抛物线212y x =上,可得222214222mt t m m ⎛⎫⎛⎫=⋅- ⎪ ⎪++⎝⎭⎝⎭, 则2221m t =-+②(1)2t <-, 由sin ABO S OA OB AOB ∆=⋅⋅∠=122112x y x y ==-, 则12211221|||(333)(|22)ABC ABO S S x y x y my t y my t y ∆∆==-=+-+1232|4()|t y y =+===()()22142130t t t t +-⎦+⎤+⎣=⎡, 解得1t =-或32-,相应的22m =或1.所以1,2C ⎛⎫± ⎪ ⎪⎝⎭,或1(2,)C ±.21.(1)由题意可知,()y f x =与()(0)y g x x =>图象的在唯一公共点处的切线相同,又因为()f x x a '=+,1()a g x x+'=, 所以00()()f x g x =,00()()f x g x '=',即2000001(1)21x ax a lnx a x a x ⎧+=+⎪⎪⎨+⎪+=⎪⎩,由001a x a x ++=可得01x =或01x a =--,由点P 唯一可得11a --=或10a --, 即2a =-或1a -,由20001(1)2x ax a lnx +=+可得12a =-,综上可得,12a =-; (2)由21()()()(1)2h x f x g x x ax a lnx =-=+-+,0x >, 则1(1)(1)()a x x a h x x a x x+-++'=+-=, ()i 若10a +>即01a >>-时,()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,因为0x →时,()h x →+∞,且h (2)22(1)2222(1)0a a ln a a =+-+>+-+=,故要使得()h x 有2个零点,只有h (1)0<即112a -<<-, 当1a =-时,21()2h x x x =-只有一个零点,故112a -<<- ()ii 若10a +<,即1a <-时,①当2a =-时,()h x 在(0,)+∞上单调递增,不符合题意;②当21a -<<-时,()h x 在(0,1)a --上单调递增,在(1,1)a --上单调递减,在(1,)+∞上单调递增,且0x →时,()h x →-∞,且h (1)102a =+<,24224211()(1)022h e e ae a lne e ae =+-+>+>,故要使得()h x 有2个零点,则21(1)(1)(1)(1)(1)02h a a a a a ln a --=+-+-+--=, 即1(1)02aln a ----=, 令m (a )1(1)2aln a -=---,21a -<<-, 则113()0212(1)a m a a a +'=--=->++, 故m (a )在(2,1)--上单调递增,且3(2)02m -=>, 故m (a )0>在(2,1)--上恒成立,不可能有2个零点,③当2a <-时,()h x 在(0,1)上单调递增,在(1,1)a --上单调递减,在(1,)a --+∞上单调递增,且h (1)102a =+<,故()h x 不可能有2个零点,综上112a -<<-. 22.(1)曲线1C的参数方程为2(2x t t y m t ⎧=⎪⎪⎨⎪=-⎪⎩为参数,)m R ∈. 转换为直角坐标法方程为0x y m +-=.曲线C 的极坐标方程为223(0)32cos ρθπθ=-,根据222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩转换为直角坐标方程为221(01)3x y y +=.(2)设点,sin )P θθ是曲线2C 上一点,则点P 到曲线1C的距离d ==由于0απ,所以sin()[3πα+∈,则:2sin()[,2]3m m m πα+-∈-.由点P 到曲线1C 的最大距离为2cos()6m πα--的最大值为4,由于m <,所以0m ->,则24m -=,即2m =-, 故2m =-.23.(1)2222x x +-->等价于122(2)2x x x ≤-⎧⎨---->⎩或1222(2)2x x x -<<⎧⎨+-->⎩或222(2)2x x x ≥⎧⎨+-->⎩, 解得6x <-或223x <<或2x ≥,则2(,6),3M ⎛⎫=-∞-+∞ ⎪⎝⎭; (2)证明:由(1)可得1t =,1a >,1b >,1c >,且(1)(1)(1)1a b c ---=,则(1)10a a =-+≥>,(当且仅当2a =时等号成立),(1)10b b =-+≥>,(当且仅当2b =时等号成立),(1)10c c =-+≥>,(当且仅当2c =时等号成立),则8abc ≥=,(当且仅当2a b c ===时等号成立),即8abc ≥.。
四川省棠湖中学2020届高三英语上学期开学考试试题(最新整理)
19。When did King graduate from college?
A。 In1970。B. In1971。C. In 1974.
20.What is surprising about the novel Carrie?
2.1—60小题选出答案后,用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,将答题卡收回.
第一部分:听力(共两节,满分30分)
听下面5段对话。每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题.每段对话仅读一遍。
9。What will the man do right now?
A。 Rent a movie。B. Report to the class。C. Participate in the party
听第8段材料,回答第10-12题。
10.Why does the man call the woman?
四川省棠湖中学2020届高三英语上学期开学考试试题
本试卷分第Ⅰ卷(选择题,共100分)和第Ⅱ卷(非选择题,共50分)两部分。总分150分,考试时间120分钟.
第Ⅰ卷 选择题(100分)
注意事项:
1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。并检查条形码粘贴是否正确。
A. It didn’t make much money.
四川省棠湖中学2021届高三上学期开学考试数学(文)试题
四川省棠湖中学2021届高三上学期开学考试数学(文)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}1,2,3A =,{}3,4,5B =,则A B =( )A .{}3B .{}2,5C .{}2,3,4D .{}1,2,4,52.已知复数z 满足()2313z i +=,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.在某技能测试中,甲乙两人的成绩(单位:分)记录在如下的茎叶图中,其中甲的某次成绩不清晰,用字母a 代替.已知甲乙成绩的平均数相等,那么甲乙成绩的中位数分别为( )A .20 20B .21 20C .20 21D .21 214.已知a R ∈,则“tan 2α=”是“4sin 25α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知实数x ,y 满足约束条件2302300x y x y x y -+≥⎧⎪--≥⎨⎪+≥⎩,则z x y =-( )A .有最小值0B .有最大值C .有最大值0D .无最小值6.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .347.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:2cm )可以是( )A .16+B .1626C .18+D .18+8.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A B C D .9.已知定义在R 上的函数()3sin 21f x x x =-+,则在[5,5]-上,()f x 的最大值与最小值之和等于( ) A .0 B .1 C .2D .310.已知数列{a n }的前n 项和S n 满足S n +a n =2n (n ∈N *),则a 7=( )A .73B .12764 C .32132D .3856411.已知F 为双曲线2222:1(0,0)x y E a b a b-=>>的左焦点,过点F 的直线与圆22221:()2O x y a b +=+于A ,B 两点(A 在F ,B 之间),与双曲线E 在第一象限的交点为P ,O 为坐标原点,若FA BP =,120AOB ∠=︒则双曲线的离心率为( ) AB.3CD12.已知实数a 、b 满足23log log a b =,给出五个关系式:其中不可能成立的关系式有( ) ①b a a b <; ②a b a b =; ③b a a b >; ④b a a a <; ⑤a b b b <. A .1个 B .2个C .3个D .4个二、填空题13.已知等比数列{}n a 中,21a =,58a =-,则{}n a 的前5项和为______.14.若x ,y 满足约束条件10,{0,40,x x y x y -≥-≤+-≤则yx的最大值 .15.过P (1,2)的直线l 把圆22450x y x +--=分成两个弓形,当其中劣孤最短时直线l的方程为_________.16.在三棱锥B ACD -中,BA ,BC ,BD 两两垂直,2BC =,4BD =,三棱锥B ACD -的侧面积为13,则该三棱锥外接球的表面积为______.三、解答题17.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c,且cos A =. (1)若5a =,c =,求b 的值; (2)若4B π=,求cos 2C 的值.18.某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.(1)求,m n 的值;(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列22⨯列联表,并判断是否有99%的把握认为消费金额与性别有关?(3)分析人员对抽取对象每周的消费金额y 与年龄x 进一步分析,发现他们线性相关,得到回归方程ˆ5yx b =-+.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)22⨯列联表300消费金额300<临界值表:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++19.如图,四棱锥S ABCD -的侧面SAD 是正三角形,//AB CD ,且AB AD ⊥,24AB CD ==,E 是SB 中点.(1)求证://CE 平面SAD ;(2)若平面SAD ⊥平面ABCD,且=SB SACE 的体积.20.已知椭圆2222:1(0)x y a b a b Γ+=>>的离心率为2,过椭圆Γ的焦点且垂直于x 轴的直线被椭圆Γ. (1)求椭圆Γ的方程;(2)设点,A B 均在椭圆Γ上,点C 在抛物线212y x =上,若ABC ∆的重心为坐标原点O ,且ABC ∆,求点C 的坐标. 21.已知函数()212f x x ax =+,()()()1ln 0g x a x a =+<. (1)若点()00,P x y 为函数()f x 与()g x 图象的唯一公共点,且两曲线存在以点P 为切点的公共切线,求a 的值:(2)若函数()()()h x f x g x =-有两个零点,求实数a 的取值范围.22.在平面直角坐标系xOy 中,曲线1C的参数方程为(x t y m ⎧=⎪⎪⎨⎪=⎪⎩为参数,)m R ∈.以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为223(0)32cos ρθπθ=-.(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程:(2)已知m <点P 是曲线2C 上一点,点P 到曲线1C的最大距离为求m 的值.23.已知不等式2222x x +-->的解集为M.(1)求集合M ;(2)已知t 为集合M 中的最小正整数,若1a >,1b >,1c >,且(1)(1)(1)a b c t ---=,求证:8abc ≥.参考答案1.A 【分析】根据集合交集的运算性质,直接计算,即可得解. 【详解】由集合{}1,2,3A =,{}3,4,5B =, 则{}3A B ⋂=. 故选:A 【点睛】本题考查了集合交集的运算,属于基础题. 2.A 【分析】首先化简复数z 和z ,再根据复数的几何意义判断对应的点所在的象限. 【详解】()()()13231323232323i z i i i i -===-++- 23z i ∴=+,复数z 在复平面内对应的点是()2,3,在第一象限.故选:A 【点睛】本题考查复数的运算,复数的几何意义,属于基础题型. 3.B 【分析】先由题中数据,根据题意,求出4a =,将甲乙的成绩都从小到大排序,即可得出中位数. 【详解】由题中数据可得:甲的平均数为118181620242812466a ax +++++++==,乙的平均数为218182020242812866x +++++==,因为甲乙成绩的平均数相等,所以12412866a +=,解得:4a =,所以甲的成绩为:16,18,18,24,24,28,其中位数为1824212+=, 乙的成绩为:18,18,20,20,24,28,其中位数为2020202+=. 故选:B. 【点睛】本题主要考查由茎叶图计算中位数,属于基础题型. 4.A 【分析】利用二倍角和同角三角函数的基本关系整理得22tan sin 2tan 1ααα=+,再利用充分性和必要性进行判断即可得出结论. 【详解】2222sin cos 2tan sin 2sin cos tan 1ααααααα==++, 当tan 2α=时,4sin 25α=,所以“tan 2α=”是“4sin 25α=”的充分条件;当4sin 25α=时,故22tan 4tan 15αα=+,得tan 2α=或1tan 2α=,所以“tan 2α=”是“4sin 25α=”的不必要条件;则“tan 2α=”是“4sin 25α=”的充分不必要条件.故选:A. 【点睛】本题主要考查充分和必要条件的概念以及二倍角和同角三角函数的基本关系.属于较易题. 5.A 【分析】先画出不等式组表示的可行域,然后画出直线y x =,通过平移直线求出目标函数的取值范围. 【详解】解:不等式组表示的区域如图所示的阴影部分,由z x y =-得y x z =-,作出直线y x =,过点A 时截距最大,z 取得最小值,当把直线y x =向下平移时,截距变小,z 的值变大,由图可知z 无最大值,由230230x y x y -+=⎧⎨--=⎩得33x y =⎧⎨=⎩,所以点A 的坐标为(3,3),所以z x y =-的最小值为0,无最大值, 故选:A 【点睛】此题考查了线性规划的应用,利用了数形结合,通过图像平移求出目标函数的最值,属于基础题. 6.B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等. 7.C 【分析】先还原几何体,再根据各表面形状,求得表面积. 【详解】由三视图还原几何体如图1,图2,所以其表面积为2213(22)32182⨯⨯⨯+⨯=+或2112(22)2(22)2822⨯⨯⨯+⨯⨯⨯+⨯=+故选:C 【点睛】本题考查三视图、几何体表面积,考查空间想象能力以及基本求解能力,属基础题. 8.C 【分析】取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解. 【详解】取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2,所以11B F BF ==,DO BO OC ===,111D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以1OD ==OF =13D F ==,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥, 由OCOF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF ,又112C F C C ==>=,所以11D C P △面积的最大值11111222S C F D C =⋅=⨯=. 故选:C. 【点睛】本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题. 9.C 【分析】根据题意,设()()13sin 2g x f x x x =-=-,[5,5]x ∈-,分析可得()y g x =为奇函数,由奇函数的性质可得max min ()()0g x g x +=,进而可得max max ()()f x f x +的值.根据题意,设()()13sin 2g x f x x x =-=-,[5,5]x ∈-, 有()3sin()2()(3sin 2)()g x x x x x g x -=---=--=-, 即函数()y g x =为奇函数,其图象关于原点对称,则max min ()()0g x g x +=,则有[][]max min max min ()1()1()()20f x f x f x f x -+-=+-=, 变形可得max max ()()2f x f x +=,所以,当[5,5]x ∈-时,函数()y f x =的最大值与最小值之和等于2. 故选:C . 【点睛】本题主要考查函数的奇偶性的性质以及应用,还考查了转化求解问题的能力,属于中档题. 10.B 【分析】由S n +a n =2n ,可得当n ≥2时,S n -1+a n -1=2n -2,两式相减可得{a n -2}是首项为a 1-2,公比为12的等比数列,从而可得结果. 【详解】当n ≥2时,S n -1+a n -1=2n -2,又S n +a n =2n , 所以2a n -a n -1=2,所以2(a n -2)=a n -1-2, 故{a n -2}是首项为a 1-2,公比为12的等比数列, 又S 1+a 1=2,故a 1=1,所以a n =-112n -⎛⎫ ⎪⎝⎭+2,故a 7=2-164=12764,故选:B. 【点睛】本题主要考查利用推关系求数列通项公式,考查了等比数列通项公式,考查计算推理能力,是基础题【分析】由题意画出图形,由圆的方程求得圆的半径,得到圆心到直线的距离,进一步求得P 到双曲线右焦点的距离,再由双曲线定义及勾股定理求解. 【详解】 解:如图,由圆O 的方程2222211()22x y a b c +=+=,得圆O 的半径为OA OB =.过O 作AB 的垂线OH ,则H 为AB 的中点,又FA BP =,H ∴为FP 的中点,设双曲线的右焦点为1F ,连接1PF , 则OH 为三角形1FF P 的中位线,可得1//OH PF ,则1PF PF ⊥,由120AOB ∠=︒,可得12OH OA =.∴12PF =,则22PF a =+,由勾股定理可得:2222))4a c ++=,整理得:2340e --=.解得:e 或e =(舍). 故选:D . 【点睛】本题考查双曲线的简单性质,考查数形结合的解题思想方法与数学转化思想方法,考查运算求解能力,属于中档题. 12.B 【分析】由23log log a b =,知1a b << 或1a b == 或01b a <<<,然后分情况验证个关系式即可. 【详解】由23log log a b =,知1a b << 或1a b == 或01b a <<<, 当1a b ==时,②成立,其他的不成立;当01b a <<<时,b a a b >,a b a a >,b a b b >,③成立,④⑤不成立;当1a b <<时,取2a =,3b =,则322893b a a b ==<==,①成立,a b a a >,b a b b >,④⑤不成立,综上,只有④⑤不可能成立. 故选:B 【点睛】本题考查了不等式的基本性质,考查了分类讨论思想,属中档题. 13.112-【分析】先由题意求出等比数列的公比,再由等比数列的求和公式,即可得出结果. 【详解】设等比数列{}n a 的公比为q , 因为21a =,58a =-,所以2358a q a ==-,解得2q =-, 所以{}n a 的前5项和为()()()5512132111131221a q q q q a q+===---⨯---. 故答案为:112-. 【点睛】本题主要考查等比数列前n 项和基本量的运算,熟记等比数列的求和公式即可,属于基础题型. 14.3 【解析】作出可行域如图中阴影部分所示,由斜率的意义知,y x 是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.考点:线性规划解法15.230x y -+= 【分析】首先根据圆的几何性质,可分析出当点()1,2P 是弦的中点时,劣弧最短,利用圆心和弦的中点连线与直线l 垂直,可求得直线方程. 【详解】当劣弧最短时,即劣弧所对的弦最短,当点()1,2P 是弦的中点时,此时弦最短,也即劣弧最短, 圆:()2229x y -+=,圆心()2,0C ,20212CP k -==--,12l k ∴= ,∴直线方程是()1212y x -=-,即230x y -+=,故填:230x y -+=. 【点睛】本题考查了直线与圆的位置关系,以及圆的几何性质,属于基础题型. 16.29π 【分析】根据侧面积计算得到3AB =,再计算半径为2R =,代入表面积公式得到答案.【详解】三棱锥B ACD -的侧面积为111242413222AB AB ⨯⨯+⨯⨯+⨯⨯=,所以3AB =故该三棱锥外接球的半径为:R ==,球的表面积为2429R ππ=. 故答案为:29π 【点睛】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力. 17.(1)5b =;(2)45-. 【分析】(1)由已知结合余弦定理即可求解b ,(2)由已知结合同角平方关系可求sin A ,然后结合诱导公式及和差角公式及二倍角公式可求. 【详解】解:(1)在ABC 中,由余弦定理2222cos a b c bc A =+-,得,220225b +-⨯=,即2450b b --=, 解得5b =或1b =-(舍), 所以5b =;(2)由cos 5A =及0A π<<得,sin A ===,所以cos cos(())cos()sin )4C A B A A A π=π-+=-+=- 所以224cos 22cos 1)1105C C =-=-=- 【点睛】本题主要考查了余弦定理在求解三角形中的应用,还考查了和差角公式,同角平方关系,二倍角公式的应用,属于中档试题.18.(1)0.0035m =,0.0025n =(2)详见解析(3)395元 【分析】(1)根据频率分布直方图可得0.006m n +=,结合0.00152m n +=可得,m n 的值.(2)根据表格数据可得28.249K ≈,再根据临界值表可得有99%的把握认为消费金额与性别有关.(3)由频率分布直方图可得调查对象的周平均消费,从而得到520b =,利用线性回归方程可计算年龄为25岁的年轻人每周的平均消费金额. 【详解】(1)由频率分布直方图可知,0.010.001520.0010.006m n +=-⨯-=, 由中间三组的人数成等差数列可知0.00152m n +=, 可解得0.0035m =,0.0025n =(2)周平均消费不低于300元的频率为()0.00350.00150.0011000.6++=⨯,因此100人中,周平均消费不低于300元的人数为1000.660⨯=人. 所以22⨯列联表为300消费金额300<22100(20152540)8.249 6.63545556040K ⨯-⨯=≈>⨯⨯⨯所以有99%的把握认为消费金额与性别有关. (3)调查对象的周平均消费为0.151500.252500.353500.154500.10550330⨯+⨯+⨯+⨯+⨯=,由题意330538b =-⨯+,∴520b =525520395y =-⨯+=.∴该名年龄为25岁的年轻人每周的平均消费金额为395元. 【点睛】(1)频率分布直方图中,各矩形的面积之和为1,注意直方图中,各矩形的高是频率组距; (2)两类变量是否相关,应先计算2K 的值,再与临界值比较后可判断是否相关.(3)线性回归方程对应的直线必经过(),x y .19.(1)证明见解析;(2. 【分析】(1)取SA 的中点F ,连接EF ,证明四边形EFDC 是平行四边形,得出//EC FD ,//CE 平面SAD ;(2)取AD 中点G ,连接SG ,证明SG ⊥平面ABCD ,求出点E 到平面ABCD 的距离,计算多面体SACE 的体积. 【详解】解:(1)取SA 的中点F ,连接EF ,因为E 是SB 中点,所以//EF AB ,且2AB EF =, 又因为//AB CD ,2AB CD =, 所以//EF DC ,EF DC =, 即四边形EFDC 是平行四边形, 所以//EC FD ,又因为EC ⊂/平面SAD ,FD ⊂平面SAD , 所以//CE 平面SAD ;(2)取AD 中点G ,连接SG , 因为SAD 是正三角形,所以⊥SG AD , 因为平面SAD ⊥平面ABCD ,且交线为AD , 所以SG ⊥平面ABCD ,因为AB AD ⊥,所以AB ⊥平面SAD , 所以AB SA ⊥,故4==SA,=SG因为E 是SB 中点,所以点E 到平面ABCD 的距离等于12SG , 所以多面体SACE 的体积为:---=--SACE S ABCD S ACD E ABC V V V V11113332ABCD ACDABCS SG S SG SSG =-- 1241113(44244)32222+=⨯⨯-⨯⨯-⨯⨯⨯ =. 【点睛】本题考查了空间中的平行与垂直关系应用问题,也考查了运算求解能力,属于中档题.20.(1)2212x y +=;(2)1,2C ⎛⎫± ⎪ ⎪⎝⎭,或1(2,)C ±. 【分析】(1)运用离心率公式和垂直于x 轴的弦长公式,以及,,a b c 的关系解方程可得,a b ,进而得到所求椭圆的方程;(2)设:ABx my t =+,联立椭圆方程,运用韦达定理和中点坐标公式、三角形的重心坐标公式,可得C 的坐标,代入抛物线方程,结合三角形的面积公式,计算可得C 的坐标. 【详解】(1)根据题意得22c a b a⎧=⎪⎪⎨⎪=⎪⎩,又因为222b a c =-,解得22a =,则21b =,所以椭圆Γ的方程为:2212x y +=;(2)设:AB x my t =+,联立椭圆方程2222x y +=,可得222()2220m y mty t +++-=,22222244228()()()20m t m t m t ∆=-+-=-+> ①设1122(,),(,)A x y B x y ,12222mty y m +=-+,可得122()22C mty y y m =-+=+,12122()[()]422C tx x x m y y t m=-+=-++=-+, 由C 在抛物线212y x =上,可得222214222mt t m m ⎛⎫⎛⎫=⋅- ⎪ ⎪++⎝⎭⎝⎭, 则2221m t =-+ ②(1)2t <-, 由sin ABO S OA OB AOB ∆=⋅⋅∠=122112x y x y ==-, 则12211221|||(333)(|22)ABC ABO S S x y x y my t y my t y ∆∆==-=+-+1232|()|t y y =+===()()22142130t t t t +-⎦+⎤+⎣=⎡, 解得1t =-或32-,相应的22m=或1. 所以1,2C ⎛± ⎝⎭,或1(2,)C ±.【点睛】涉及椭圆的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法. 21.(1)12a =-;(2)11,2⎛⎫-- ⎪⎝⎭.【分析】(1)根据题意可得出()()()()0000f x g x f x g x ⎧==''⎪⎨⎪⎩,解方程组可得出实数a 的值;(2)求得()()()11x x a h x x-++'=,对实数a 的取值进行分类讨论,利用导数分析函数()y h x =的单调性,由该函数有两个零点可得出实数a 所满足的不等式组,由此可解得实数a 的取值范围.【详解】(1)由题意可知,()y f x =与()()0y g x x =>的图象在唯一公共点处的切线相同, 又因为()f x x a '=+,()1a g x x+'=, 所以()()()()0000f x g x f x g x ⎧==''⎪⎨⎪⎩,即()002000111ln 2a x a x x ax a x +⎧+=⎪⎪⎨⎪+=+⎪⎩, 由001a x a x ++=得()20010x ax a +-+=,可得01x =或01x a =--. 由点P 唯一可得11a --=或10a --≤,即2a =-或1a ≥-,所以01x =,由()200011ln 2x ax a x +=+可得102a +=,可得12a =-,合乎题意. 综上可得,12a =-; (2)由()()()()211ln 2h x f x g x x ax a x =-=+-+,0x >, 则()()()()21111x ax a x x a a h x x a x x x+-+-+++'=+-==. (i )若10a +>即10a -<<时,当01x <<时,()0h x '<;当1x >时, ()0h x '>. 函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增,因为0x →时,()h x →+∞,且()()()2221ln 222210h a a a a =+-+>+-+=, 故要使得()y h x =有2个零点,只有()1102h a =+<,解得112a -<<-; (ii )当1a =-时,令()2102h x x x =-=,0x ,解得2x =,不合乎题意; (iii )若10a +<,即1a <-时.①当2a =-时,()()210x h x x -'=≥对任意的0x >恒成立,所以,函数()y h x =在()0,∞+上单调递增,不符合题意;②当21a -<<-时,则011a <--<,当01x a <<--或1x >时,()0h x '>;当11a x --<<时,()0h x '<.所以,函数()y h x =在()0,1a --上单调递增,在()1,1a --上单调递减,在()1,+∞上单调递增,且0x →时,()h x →-∞,且()1102h a =+<,()()242242111ln 022h e e ae a e e ae =+-+>+>, 故要使得函数()y h x =有2个零点,则()()()()()211111ln 102h a a a a a a --=+-+-+--=,即()1ln 102a a ----=, 令()()1ln 12a m a a -=---,21a -<<-,则()()11302121a m a a a +'=--=->++, 故函数()m a 在()2,1--上单调递增,且()3202m -=>, 故()0m a >在()2,1--上恒成立,不可能有2个零点,③当2a <-时,11a -->.当01x <<或1x a >--时,()0f x '>;当11x a <<--时,()0h x '<.所以,函数()y h x =在()0,1上单调递增,在()1,1a --上单调递减,在()1a --+∞,上单调递增,且()1102h a =+<,故函数()y h x =不可能有2个零点. 综上所述,实数a 的取值范围是11,2⎛⎫-- ⎪⎝⎭.【点睛】本题考查利用两函数图象的公切线求参数值,同时也考查了利用函数的零点个数求参数,考查分类讨论思想的应用,属于难题.22.(1)1:C 0x y m +-=;2:C 221(01)3x y y +=;(2)2m =-. 【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.【详解】(1)曲线1C的参数方程为(x t y m ⎧=⎪⎪⎨⎪=-⎪⎩为参数,)m R ∈. 转换为直角坐标法方程为0x y m +-=.曲线C 的极坐标方程为223(0)32cos ρθπθ=-, 根据222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩转换为直角坐标方程为221(01)3x y y +=. (2)设点,sin )P θθ是曲线2C 上一点,则点P 到曲线1C的距离d == 由于0απ,所以sin()[3πα+∈,则:2sin()[,2]3m m m πα+-∈-.由点P 到曲线1C的最大距离为2cos()6m πα--的最大值为4,由于m <,所以0m ->,则24m -=,即2m =-,故2m =-.【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.(1)2(,6),3M ⎛⎫=-∞-+∞ ⎪⎝⎭;(2)证明见解析 【分析】(1)分类讨论,去绝对值,进而解不等式即可;(2)由(1)可得1a >,1b >,1c >,且(1)(1)(1)1a b c ---=,再由(1)1a a =-+,(1)1b b =-+,(1)1c c =-+,运用基本不等式和不等式的可乘性,即可证明结论成立.【详解】(1)2222x x +-->等价于122(2)2x x x ≤-⎧⎨---->⎩或1222(2)2x x x -<<⎧⎨+-->⎩或222(2)2x x x ≥⎧⎨+-->⎩, 解得6x <-或223x <<或2x ≥, 则2(,6),3M ⎛⎫=-∞-+∞ ⎪⎝⎭; (2)证明:由(1)可得1t =,1a >,1b >,1c >,且(1)(1)(1)1a b c ---=,则(1)10a a =-+≥>,(当且仅当2a =时等号成立),(1)10b b =-+≥>,(当且仅当2b =时等号成立),(1)10c c =-+≥>,(当且仅当2c =时等号成立),则8abc ≥=,(当且仅当2a b c ===时等号成立), 即8abc ≥.【点睛】本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式的证明,注意运用基本不等式和不等式的性质,考查运算能力和推理能力,属于中档题.。
2021届四川省棠湖中学高三上学期开学考试数学(文)试题 解析
2021届四川省棠湖中学高三上学期开学考试数学(文)试题一、单选题1.已知集合{}1,2,3A =,{}3,4,5B =,则A B =( )A .{}3B .{}2,5C .{}2,3,4D .{}1,2,4,5答案:A根据集合交集的运算性质,直接计算,即可得解. 解:由集合{}1,2,3A =,{}3,4,5B =, 则{}3A B ⋂=. 故选:A 点评:本题考查了集合交集的运算,属于基础题.2.已知复数z 满足()2313z i +=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限答案:A首先化简复数z 和z ,再根据复数的几何意义判断对应的点所在的象限. 解:()()()13231323232323i z i i i i -===-++-23z i ∴=+,复数z 在复平面内对应的点是()2,3,在第一象限.故选:A 点评:本题考查复数的运算,复数的几何意义,属于基础题型.3.在某技能测试中,甲乙两人的成绩(单位:分)记录在如下的茎叶图中,其中甲的某次成绩不清晰,用字母a 代替.已知甲乙成绩的平均数相等,那么甲乙成绩的中位数分别为( )A .20 20B .21 20C .20 21D .21 21答案:B先由题中数据,根据题意,求出4a =,将甲乙的成绩都从小到大排序,即可得出中位数. 解:由题中数据可得:甲的平均数为118181620242812466a ax +++++++==,乙的平均数为218182020242812866x +++++==,因为甲乙成绩的平均数相等,所以12412866a +=,解得:4a =, 所以甲的成绩为:16,18,18,24,24,28,其中位数为1824212+=, 乙的成绩为:18,18,20,20,24,28,其中位数为2020202+=. 故选:B. 点评:本题主要考查由茎叶图计算中位数,属于基础题型. 4.已知a R ∈,则“tan 2α=”是“4sin 25α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:A利用二倍角和同角三角函数的基本关系整理得22tan sin 2tan 1ααα=+,再利用充分性和必要性进行判断即可得出结论. 解:2222sin cos 2tan sin 2sin cos tan 1ααααααα==++,当tan 2α=时,4sin 25α=,所以“tan 2α=”是“4sin 25α=”的充分条件;当4sin 25α=时,故22tan 4tan 15αα=+,得tan 2α=或1tan 2α=, 所以“tan 2α=”是“4sin 25α=”的不必要条件; 则“tan 2α=”是“4sin 25α=”的充分不必要条件. 故选:A. 点评:本题主要考查充分和必要条件的概念以及二倍角和同角三角函数的基本关系.属于较易题.5.已知实数x ,y 满足约束条件2302300x y x y x y -+≥⎧⎪--≥⎨⎪+≥⎩,则z x y =-( )A .有最小值0B .有最大值C .有最大值0D .无最小值答案:A先画出不等式组表示的可行域,然后画出直线y x =,通过平移直线求出目标函数的取值范围. 解:解:不等式组表示的区域如图所示的阴影部分,由z x y =-得y x z =-,作出直线y x =,过点A 时截距最大,z 取得最小值,当把直线y x =向下平移时,截距变小,z 的值变大,由图可知z 无最大值, 由230230x y x y -+=⎧⎨--=⎩得33x y =⎧⎨=⎩,所以点A 的坐标为(3,3),所以z x y =-的最小值为0,无最大值, 故选:A点评:此题考查了线性规划的应用,利用了数形结合,通过图像平移求出目标函数的最值,属于基础题.6.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .34答案:B试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.7.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:2cm )可以是( )A .1623+B .1626C .1823+D .186+答案:C先还原几何体,再根据各表面形状,求得表面积. 解:由三视图还原几何体如图1,图2,所以其表面积为22133(22)32(22)18232⨯⨯⨯+⨯+⨯=+ 或21132(22)2(22)(22)2843224⨯⨯⨯+⨯⨯⨯+⨯⨯=+ 故选:C 点评:本题考查三视图、几何体表面积,考查空间想象能力以及基本求解能力,属基础题. 8.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A .25B .55C 5D .5答案:C取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解.解:取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2, 所以11B F BF ==,2DO BO OC ===,11122D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以22116OD OD DD =+=223OF OB BF =+=2211113D F D B B F =+=,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥, 由OCOF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF , 又221111152C F B C B F C C =+=>=,所以11D C P △面积的最大值1111125522S C F D C =⋅=⨯=. 故选:C. 点评:本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题.9.已知定义在R 上的函数()3sin 21f x x x =-+,则在[5,5]-上,()f x 的最大值与最小值之和等于( ) A .0B .1C .2D .3答案:C根据题意,设()()13sin 2g x f x x x =-=-,[5,5]x ∈-,分析可得()y g x =为奇函数,由奇函数的性质可得max min ()()0g x g x +=,进而可得max max ()()f x f x +的值. 解:根据题意,设()()13sin 2g x f x x x =-=-,[5,5]x ∈-, 有()3sin()2()(3sin 2)()g x x x x x g x -=---=--=-, 即函数()y g x =为奇函数,其图象关于原点对称,则max min ()()0g x g x +=,则有[][]max min max min ()1()1()()20f x f x f x f x -+-=+-=, 变形可得max max ()()2f x f x +=,所以,当[5,5]x ∈-时,函数()y f x =的最大值与最小值之和等于2. 故选:C . 点评:本题主要考查函数的奇偶性的性质以及应用,还考查了转化求解问题的能力,属于中档题.10.已知数列{a n }的前n 项和S n 满足S n +a n =2n (n ∈N ),则a 7=( )A .73B .12764 C .32132D .38564答案:B由S n +a n =2n ,可得当n ≥2时,S n -1+a n -1=2n -2,两式相减可得{a n -2}是首项为a 1-2,公比为12的等比数列,从而可得结果. 解:当n ≥2时,S n -1+a n -1=2n -2,又S n +a n =2n , 所以2a n -a n -1=2,所以2(a n -2)=a n -1-2, 故{a n -2}是首项为a 1-2,公比为12的等比数列, 又S 1+a 1=2,故a 1=1,所以a n =-112n -⎛⎫ ⎪⎝⎭+2,故a 7=2-164=12764,故选:B. 点评:本题主要考查利用推关系求数列通项公式,考查了等比数列通项公式,考查计算推理能力,是基础题11.已知F 为双曲线2222:1(0,0)x y E a b a b-=>>的左焦点,过点F 的直线与圆22221:()2O x y a b +=+于A ,B 两点(A 在F ,B 之间),与双曲线E 在第一象限的交点为P ,O 为坐标原点,若FA BP =,120AOB ∠=︒则双曲线的离心率为( ) A .133B .143C .1323+ D .1423+ 答案:D由题意画出图形,由圆的方程求得圆的半径,得到圆心到直线的距离,进一步求得P 到双曲线右焦点的距离,再由双曲线定义及勾股定理求解. 解: 解:如图,由圆O 的方程2222211()22x y a b c +=+=,得圆O 的半径为22OA OB ==.过O 作AB 的垂线OH ,则H 为AB 的中点,又FA BP =,H ∴为FP 的中点,设双曲线的右焦点为1F ,连接1PF , 则OH 为三角形1FF P 的中位线,可得1//OH PF ,则1PF PF ⊥, 由120AOB ∠=︒,可得122OH OA =.∴12PF =,则22PF a =+,由勾股定理可得:222(2)()422a c ++=,整理得:2340e --=.解得:e 或e =). 故选:D . 点评:本题考查双曲线的简单性质,考查数形结合的解题思想方法与数学转化思想方法,考查运算求解能力,属于中档题.12.已知实数a 、b 满足23log log a b =,给出五个关系式:其中不可能成立的关系式有( ) ①b a a b <; ②a b a b =; ③b a a b >; ④b a a a <; ⑤a b b b <. A .1个 B .2个C .3个D .4个答案:B由23log log a b =,知1a b << 或1a b == 或01b a <<<,然后分情况验证个关系式即可. 解:由23log log a b =,知1a b << 或1a b == 或01b a <<<, 当1a b ==时,②成立,其他的不成立;当01b a <<<时,b a a b >,a b a a >,b a b b >,③成立,④⑤不成立;当1a b <<时,取2a =,3b =,则322893b a a b ==<==,①成立,a b a a >,b a b b >,④⑤不成立,综上,只有④⑤不可能成立. 故选:B 点评:本题考查了不等式的基本性质,考查了分类讨论思想,属中档题.二、填空题13.已知等比数列{}n a 中,21a =,58a =-,则{}n a 的前5项和为______. 答案:112-先由题意求出等比数列的公比,再由等比数列的求和公式,即可得出结果. 解:设等比数列{}n a 的公比为q ,因为21a =,58a =-,所以2358a q a ==-,解得2q =-, 所以{}n a 的前5项和为()()()5512132111131221a q q q q a q+===---⨯---. 故答案为:112-. 点评:本题主要考查等比数列前n 项和基本量的运算,熟记等比数列的求和公式即可,属于基础题型.14.若x ,y 满足约束条件10,{0,40,x x y x y -≥-≤+-≤则yx的最大值 .答案:3作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.【考点】线性规划解法15.过P (1,2)的直线l 把圆22450x y x +--=分成两个弓形,当其中劣孤最短时直线l的方程为_________. 答案:230x y -+=首先根据圆的几何性质,可分析出当点()1,2P 是弦的中点时,劣弧最短,利用圆心和弦的中点连线与直线l 垂直,可求得直线方程. 解:当劣弧最短时,即劣弧所对的弦最短,当点()1,2P 是弦的中点时,此时弦最短,也即劣弧最短, 圆:()2229x y -+=,圆心()2,0C ,20212CP k -==--,12l k ∴= ,∴直线方程是()1212y x -=-,即230x y -+=,故填:230x y -+=. 点评:本题考查了直线与圆的位置关系,以及圆的几何性质,属于基础题型.16.在三棱锥B ACD -中,BA ,BC ,BD 两两垂直,2BC =,4BD =,三棱锥B ACD -的侧面积为13,则该三棱锥外接球的表面积为______.答案:29π根据侧面积计算得到3AB =,再计算半径为R =,代入表面积公式得到答案. 解:三棱锥B ACD -的侧面积为111242413222AB AB ⨯⨯+⨯⨯+⨯⨯=,所以3AB =故该三棱锥外接球的半径为:R ==,球的表面积为2429R ππ=. 故答案为:29π 点评:本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.三、解答题17.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且cos 5A =.(1)若5a =,c =,求b 的值; (2)若4B π=,求cos 2C 的值.答案:(1)5b =;(2)45-. (1)由已知结合余弦定理即可求解b ,(2)由已知结合同角平方关系可求sin A ,然后结合诱导公式及和差角公式及二倍角公式可求. 解:解:(1)在ABC 中,由余弦定理2222cos a b c bc A =+-,得,220225b +-⨯=,即2450b b --=, 解得5b =或1b =-(舍), 所以5b =;(2)由cos 5A =及0A π<<得,sin A ===,所以cos cos(())cos()sin )4C A B A A A π=π-+=-+=- 所以224cos 22cos 1)1105C C =-=-=- 点评:本题主要考查了余弦定理在求解三角形中的应用,还考查了和差角公式,同角平方关系,二倍角公式的应用,属于中档试题.18.某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.(1)求,m n 的值;(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列22⨯列联表,并判断是否有99%的把握认为消费金额与性别有关?(3)分析人员对抽取对象每周的消费金额y 与年龄x 进一步分析,发现他们线性相关,得到回归方程ˆ5yx b =-+.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)22⨯列联表男性女性合计 消费金额300消费金额300<合计临界值表:20()P K k ≥0.050 0.010 0.0010k3.841 6.635 10.82822()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++答案:(1)0.0035m =,0.0025n =(2)详见解析(3)395元(1)根据频率分布直方图可得0.006m n +=,结合0.00152m n +=可得,m n 的值. (2)根据表格数据可得28.249K ≈,再根据临界值表可得有99%的把握认为消费金额与性别有关.(3)由频率分布直方图可得调查对象的周平均消费,从而得到520b =,利用线性回归方程可计算年龄为25岁的年轻人每周的平均消费金额. 解:(1)由频率分布直方图可知,0.010.001520.0010.006m n +=-⨯-=, 由中间三组的人数成等差数列可知0.00152m n +=, 可解得0.0035m =,0.0025n =(2)周平均消费不低于300元的频率为()0.00350.00150.0011000.6++=⨯,因此100人中,周平均消费不低于300元的人数为1000.660⨯=人. 所以22⨯列联表为300消费金额300<22100(20152540)8.249 6.63545556040K ⨯-⨯=≈>⨯⨯⨯所以有99%的把握认为消费金额与性别有关. (3)调查对象的周平均消费为0.151500.252500.353500.154500.10550330⨯+⨯+⨯+⨯+⨯=,由题意330538b =-⨯+,∴520b =525520395y =-⨯+=.∴该名年龄为25岁的年轻人每周的平均消费金额为395元. 点评:(1)频率分布直方图中,各矩形的面积之和为1,注意直方图中,各矩形的高是频率组距; (2)两类变量是否相关,应先计算2K 的值,再与临界值比较后可判断是否相关.(3)线性回归方程对应的直线必经过(),x y .19.如图,四棱锥S ABCD -的侧面SAD 是正三角形,//AB CD ,且AB AD ⊥,24AB CD ==,E 是SB 中点.(1)求证://CE 平面SAD ;(2)若平面SAD ⊥平面ABCD ,且42=SB ,求多面体SACE 的体积.答案:(1)证明见解析;(2)83. (1)取SA 的中点F ,连接EF ,证明四边形EFDC 是平行四边形,得出//EC FD ,//CE 平面SAD ;(2)取AD 中点G ,连接SG ,证明SG ⊥平面ABCD ,求出点E 到平面ABCD 的距离,计算多面体SACE 的体积. 解:解:(1)取SA 的中点F ,连接EF ,因为E 是SB 中点,所以//EF AB ,且2AB EF =, 又因为//AB CD ,2AB CD =, 所以//EF DC ,EF DC =, 即四边形EFDC 是平行四边形, 所以//EC FD ,又因为EC ⊂/平面SAD ,FD ⊂平面SAD ,所以//CE 平面SAD ;(2)取AD 中点G ,连接SG , 因为SAD 是正三角形,所以⊥SG AD , 因为平面SAD ⊥平面ABCD ,且交线为AD , 所以SG ⊥平面ABCD ,因为AB AD ⊥,所以AB ⊥平面SAD , 所以AB SA ⊥,故4==SA ,=SG因为E 是SB 中点,所以点E 到平面ABCD 的距离等于12SG , 所以多面体SACE 的体积为:---=--SACE S ABCD S ACD E ABC V V V V11113332ABCD ACDABCS SG S SG SSG =-- 1241113(44244)32222+=⨯⨯-⨯⨯-⨯⨯⨯3=. 点评:本题考查了空间中的平行与垂直关系应用问题,也考查了运算求解能力,属于中档题.20.已知椭圆2222:1(0)x y a b a b Γ+=>>的离心率为2,过椭圆Γ的焦点且垂直于x 轴的直线被椭圆Γ. (1)求椭圆Γ的方程;(2)设点,A B 均在椭圆Γ上,点C 在抛物线212y x =上,若ABC ∆的重心为坐标原点O ,且ABC ∆,求点C 的坐标.答案:(1)2212x y +=;(2)1,C ⎛ ⎝⎭,或1(2,)C ±. (1)运用离心率公式和垂直于x 轴的弦长公式,以及,,a b c 的关系解方程可得,a b ,进而得到所求椭圆的方程;(2)设:AB x my t =+,联立椭圆方程,运用韦达定理和中点坐标公式、三角形的重心坐标公式,可得C 的坐标,代入抛物线方程,结合三角形的面积公式,计算可得C 的坐标. 解:(1)根据题意得22c a b a⎧=⎪⎪⎨⎪=⎪⎩,又因为222b a c =-,解得22a =,则21b =,所以椭圆Γ的方程为:2212x y +=;(2)设:AB x my t =+,联立椭圆方程2222x y +=,可得222()2220m y mty t +++-=,22222244228()()()20m t m t m t ∆=-+-=-+> ①设1122(,),(,)A x y B x y ,12222mty y m +=-+,可得122()22C mty y y m =-+=+,12122()[()]422C tx x x m y y t m=-+=-++=-+, 由C 在抛物线212y x =上,可得222214222mt t m m ⎛⎫⎛⎫=⋅- ⎪ ⎪++⎝⎭⎝⎭, 则2221m t =-+ ②(1)2t <-, 由sin ABO S OA OB AOB ∆=⋅⋅∠=122112x y x y ==-, 则12211221|||(333)(|22)ABC ABO S S x y x y my t y my t y ∆∆==-=+-+1232|()|t y y =+===()()22142130t t t t +-⎦+⎤+⎣=⎡, 解得1t =-或32-,相应的22m =或1. 所以1,C ⎛ ⎝⎭,或1(2,)C ±.点评:涉及椭圆的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法. 21.已知函数()212f x x ax =+,()()()1ln 0g x a x a =+<. (1)若点()00,P x y 为函数()f x 与()g x 图象的唯一公共点,且两曲线存在以点P 为切点的公共切线,求a 的值:(2)若函数()()()h x f x g x =-有两个零点,求实数a 的取值范围. 答案:(1)12a =-;(2)11,2⎛⎫-- ⎪⎝⎭.(1)根据题意可得出()()()()0000f x g x f x g x ⎧==''⎪⎨⎪⎩,解方程组可得出实数a 的值;(2)求得()()()11x x a h x x-++'=,对实数a 的取值进行分类讨论,利用导数分析函数()y h x =的单调性,由该函数有两个零点可得出实数a 所满足的不等式组,由此可解得实数a 的取值范围. 解:(1)由题意可知,()y f x =与()()0y g x x =>的图象在唯一公共点处的切线相同, 又因为()f x x a '=+,()1a g x x+'=, 所以()()()()0000f x g x f x g x ⎧==''⎪⎨⎪⎩,即()002000111ln 2a x a x x ax a x+⎧+=⎪⎪⎨⎪+=+⎪⎩,由001a x a x ++=得()20010x ax a +-+=,可得01x =或01x a =--. 由点P 唯一可得11a --=或10a --≤,即2a =-或1a ≥-, 所以01x =,由()200011ln 2x ax a x +=+可得102a +=,可得12a =-,合乎题意.综上可得,12a =-;(2)由()()()()211ln 2h x f x g x x ax a x =-=+-+,0x >, 则()()()()21111x ax a x x a a h x x a x x x+-+-+++'=+-==. (i )若10a +>即10a -<<时,当01x <<时,()0h x '<;当1x >时, ()0h x '>. 函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增,因为0x →时,()h x →+∞,且()()()2221ln 222210h a a a a =+-+>+-+=, 故要使得()y h x =有2个零点,只有()1102h a =+<,解得112a -<<-;(ii )当1a =-时,令()2102h x x x =-=,0x ,解得2x =,不合乎题意;(iii )若10a +<,即1a <-时. ①当2a =-时,()()210x h x x-'=≥对任意的0x >恒成立,所以,函数()y h x =在()0,∞+上单调递增,不符合题意; ②当21a -<<-时,则011a <--<,当01x a <<--或1x >时,()0h x '>;当11a x --<<时,()0h x '<.所以,函数()y h x =在()0,1a --上单调递增,在()1,1a --上单调递减,在()1,+∞上单调递增,且0x →时,()h x →-∞,且()1102h a =+<,()()242242111ln 022h e e ae a e e ae =+-+>+>,故要使得函数()y h x =有2个零点,则()()()()()211111ln 102h a a a a a a --=+-+-+--=,即()1ln 102a a ----=, 令()()1ln 12a m a a -=---,21a -<<-,则()()11302121a m a a a +'=--=->++,故函数()m a 在()2,1--上单调递增,且()3202m -=>, 故()0m a >在()2,1--上恒成立,不可能有2个零点,③当2a <-时,11a -->.当01x <<或1x a >--时,()0f x '>;当11x a <<--时,()0h x '<.所以,函数()y h x =在()0,1上单调递增,在()1,1a --上单调递减,在()1a --+∞,上单调递增, 且()1102h a =+<,故函数()y h x =不可能有2个零点. 综上所述,实数a 的取值范围是11,2⎛⎫-- ⎪⎝⎭. 点评:本题考查利用两函数图象的公切线求参数值,同时也考查了利用函数的零点个数求参数,考查分类讨论思想的应用,属于难题.22.在平面直角坐标系xOy 中,曲线1C的参数方程为(x t y m ⎧=⎪⎪⎨⎪=⎪⎩为参数,)m R ∈.以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为223(0)32cos ρθπθ=-.(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程:(2)已知m <点P 是曲线2C 上一点,点P 到曲线1C的最大距离为,求m 的值.答案:(1)1:C 0x y m +-=;2:C 221(01)3x y y +=;(2)2m =-. (1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果. 解:(1)曲线1C的参数方程为(2x t y m ⎧=⎪⎪⎨⎪=-⎪⎩为参数,)m R ∈. 转换为直角坐标法方程为0x y m +-=.曲线C 的极坐标方程为223(0)32cos ρθπθ=-, 根据222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩转换为直角坐标方程为221(01)3x y y +=. (2)设点,sin )P θθ是曲线2C 上一点,则点P 到曲线1C的距离d == 由于0απ,所以sin()[32πα+∈-,则:2sin()[,2]3m m m πα+-∈-.由点P 到曲线1C的最大距离为2cos()6m πα--的最大值为4,由于m <,所以0m ->,则24m -=,即2m =-,故2m =-.点评:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.已知不等式2222x x +-->的解集为M .(1)求集合M ;(2)已知t 为集合M 中的最小正整数,若1a >,1b >,1c >,且(1)(1)(1)a b c t ---=,求证:8abc ≥.答案:(1)2(,6),3M ⎛⎫=-∞-+∞ ⎪⎝⎭;(2)证明见解析 (1)分类讨论,去绝对值,进而解不等式即可;(2)由(1)可得1a >,1b >,1c >,且(1)(1)(1)1a b c ---=,再由(1)1a a =-+,(1)1b b =-+,(1)1c c =-+,运用基本不等式和不等式的可乘性,即可证明结论成立. 解:(1)2222x x +-->等价于122(2)2x x x ≤-⎧⎨---->⎩或1222(2)2x x x -<<⎧⎨+-->⎩或222(2)2x x x ≥⎧⎨+-->⎩, 解得6x <-或223x <<或2x ≥, 则2(,6),3M ⎛⎫=-∞-+∞ ⎪⎝⎭; (2)证明:由(1)可得1t =,1a >,1b >,1c >,且(1)(1)(1)1a b c ---=,则(1)10a a =-+≥>,(当且仅当2a =时等号成立),(1)10b b =-+≥>,(当且仅当2b =时等号成立),(1)10c c =-+≥>,(当且仅当2c =时等号成立),则8abc ≥=,(当且仅当2a b c ===时等号成立), 即8abc ≥.点评:本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式的证明,注意运用基本不等式和不等式的性质,考查运算能力和推理能力,属于中档题.。
四川省棠湖中学2020届高三英语上学期开学考试试题
四川省棠湖中学2020届高三英语上学期开学考试试题本试卷分第Ⅰ卷(选择题,共100分)和第Ⅱ卷(非选择题,共50分)两部分。
总分150分,考试时间120分钟。
第Ⅰ卷选择题(100分)注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。
并检查条形码粘贴是否正确。
2.1-60小题选出答案后,用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,将答题卡收回。
第一部分:听力(共两节,满分30分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What does the man need?A. Coffee.B. Sprite.C. Orange juice.2.How much will the woman pay?A. $15.B. $20.C. $25.3.Which flight will the man take?A. 10: 45.B. 12: 00.C. 14: 50.4.Where does this conversation probably take place?A. At a bus stop.B. On the street.C. At an information desk5.What are the speakers mainly talking about?A. The woman's paper.B. The weekend plan.C. Outdoor activities.第二节(共15小题;每小题1.5分,满分22.5分)听下面5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
四川省棠湖中学2020届高三英语上学期开学考试试题
四川省棠湖中学2020届高三英语上学期开学考试试题本试卷分第Ⅰ卷(选择题,共100分)和第Ⅱ卷(非选择题,共50分)两部分。
总分150分,考试时间120分钟。
第Ⅰ卷选择题(100分)注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。
并检查条形码粘贴是否正确。
2.1-60小题选出答案后,用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,将答题卡收回。
第一部分:听力(共两节,满分30分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What does the man need?A. Coffee.B. Sprite.C. Orange juice.2.How much will the woman pay?A. $15.B. $20.C. $25.3.Which flight will the man take?A. 10: 45.B. 12: 00.C. 14: 50.4.Where does this conversation probably take place?A. At a bus stop.B. On the street.C. At an information desk5.What are the speakers mainly talking about?A. The woman's paper.B. The weekend plan.C. Outdoor activities.第二节(共15小题;每小题1.5分,满分22.5分)听下面5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
四川省棠湖中学2020届高三英语上学期开学考试试题
四川省棠湖中学2020届高三英语上学期开学考试试题本试卷分第Ⅰ卷(选择题,共100分)和第Ⅱ卷(非选择题,共50分)两部分。
总分150分,考试时间120分钟。
第Ⅰ卷选择题(100分)注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。
并检查条形码粘贴是否正确。
2.1-60小题选出答案后,用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,将答题卡收回。
第一部分:听力(共两节,满分30分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What does the man need?A. Coffee.B. Sprite.C. Orange juice.2.How much will the woman pay?A. $15.B. $20.C. $25.3.Which flight will the man take?A. 10: 45.B. 12: 00.C. 14: 50.4.Where does this conversation probably take place?A. At a bus stop.B. On the street.C. At an information desk5.What are the speakers mainly talking about?A. The woman's paper.B. The weekend plan.C. Outdoor activities.第二节(共15小题;每小题1.5分,满分22.5分)听下面5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年四川省成都市双流区棠湖中学高三(上)开学数学试卷(文科)一、选择题(共12小题).1.已知集合A={1,2,3},B={3,4,5},则A∩B=()A.{3} B.{2,5} C.{2,3,4} D.{1,2,4,5}2.已知复数z满足z(2+3i)=13,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.在某技能测试中,甲乙两人的成绩(单位:分)记录在如图的茎叶图中,其中甲的某次成绩不清晰,用字母a代替.已知甲乙成绩的平均数相等,那么甲乙成绩的中位数分别为()A.20 20 B.21 20 C.20 21 D.21 214.已知α∈R,则“tanα=2”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知实数x,y满足约束条件,则z=x﹣y()A.有最小值0 B.有最大值C.有最大值0 D.无最小值6.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.7.某几何体的三视图如图所示(单位:cm),则该几何体的表面积(单位:cm2)是()A.B.C.D.8.如图,正方体ABCD﹣A1B1C1D1的棱长为2,点O为底面ABCD的中心,点P在侧面BB1C1C的边界及其内部运动.若D1O⊥OP,则△D1C1P面积的最大值为()A.B.C.D.9.已知定义在R上的函数f(x)=3sinx﹣2x+1,则在[﹣5,5]上f(x)的最大值与最小值之和等于()A.0 B.1 C.2 D.310.已知数列{a n}的前n项和S n满足S n+a n=2n(n∈N*),则a7=()A.B.C.D.11.已知F为双曲线的左焦点,过点F的直线与圆于A,B两点(A在F,B之间),与双曲线E在第一象限的交点为P,O为坐标原点,若FA=BP,∠AOB=120°,则双曲线的离心率为()A.B.C.D.12.已知实数a、b满足log2a=log3b,给出五个关系式:其中不可能成立的关系式有()①a b<b a;②a a=b b;③a b>b a;④a b<a a;⑤b b<b a.A.1个B.2个C.3个D.4个二、填空题:本题共4小题,每小题5分,共20分.13.已知等比数列{a n}中,a2=1,a5=﹣8,则{a n}的前5项和为.14.若x,y满足约束条件.则的最大值为.15.过P(1,2)的直线l把圆x2+y2﹣4x﹣5=0分成两个弓形,当其中劣孤最短时直线l的方程为.16.在三棱锥B﹣ACD中,BA,BC,BD两两垂直,BC=2,BD=4,三棱锥B﹣ACD的侧面积为13,则该三棱锥外接球的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.在△ABC中,角A、B、C的对边分别为a、b、c,且.(1)若a=5,,求b的值;(2)若,求cos2C的值.18.某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制右图所示频率分布直方图,已知中间三组的人数可构成等差数列.(1)求m,n的值;(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列2×2列联表,并判断是否有99%的把握认为消费金额与性别有关?(3)分析人员对抽取对象每周的消费金额y与年龄x进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)2×2列联表男女合计消费金额≥300消费金额<300合计临界值表:P(K2≥k0)0.050 0.010 0.001k0 3.841 6.635 10.828,其中n=a+b+c+d19.如图,四棱锥S﹣ABCD的侧面SAD是正三角形,AB∥CD,且AB⊥AD,AB=2CD=4,E是SB中点.(Ⅰ)求证:CE∥平面SAD;(Ⅱ)若平面SAD⊥平面ABCD,且,求多面体SACE的体积.20.已知椭圆Γ>0)的离心率为,过椭圆Γ的焦点且垂直于x轴的直线被椭圆Γ截得的弦长为.(1)求椭圆Γ的方程;(2)设点A,B均在椭圆Γ上,点C在抛物线上,若△ABC的重心为坐标原点O,且△ABC的面积为,求点C的坐标.21.已知函数.(1)若点P(x0,y0)为函数f(x)与g(x)图象的唯一公共点,且两曲线存在以点P为切点的公共切线,求a的值:(2)若函数h(x)=f(x)﹣g(x)有两个零点,求实数a的取值范围.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为为参数,m∈R).以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)写出曲线C1的普通方程和曲线C2的直角坐标方程:(2)已知,点P是曲线C2上一点,点P到曲线C1的最大距离为,求m的值.[选修4-5:不等式选讲]23.已知不等式|2x+2|﹣|x﹣2|>2的解集为M.(1)求集合M;(2)已知t为集合M中的最小正整数,若a>1,b>1,c>1,且(a﹣1)(b﹣1)(c﹣1)=t,求证:abc≥8.参考答案一、选择题(共12小题).1.已知集合A={1,2,3},B={3,4,5},则A∩B=()A.{3} B.{2,5} C.{2,3,4} D.{1,2,4,5}【分析】利用交集定义直接求解.解:∵集合A={1,2,3},B={3,4,5},∴A∩B={3}.故选:A.2.已知复数z满足z(2+3i)=13,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把已知等式变形,利用复数代数形式的乘除运算化简,求出的坐标得答案.解:由z(2+3i)=13,得z=,∴=2+3i,∴在复平面内对应的点的坐标为(2,3),位于第一象限.故选:A.3.在某技能测试中,甲乙两人的成绩(单位:分)记录在如图的茎叶图中,其中甲的某次成绩不清晰,用字母a代替.已知甲乙成绩的平均数相等,那么甲乙成绩的中位数分别为()A.20 20 B.21 20 C.20 21 D.21 21【分析】甲乙成绩的平均数相同,得a=4,易得甲乙成绩的中位数.解:甲乙成绩的平均数相同,由在一次模拟测试中两人成绩的茎叶图,知:(16+18+18+a+20+24+28)=(18+18+20+20+24+28),解得a=4,甲的中位数为:=21,乙的中位数为20.故选:B.4.已知α∈R,则“tanα=2”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由tanα=2=,sin2α+cos2α=1,解得sinα,cosα,反之不成立,即可判断出结论.解:∵tanα=2=,sin2α+cos2α=1,∴sinα=,cosα=;sinα=﹣,cosα=﹣.∴sin2α=2sinαcosα=.反之不成立,由sin2α==,∴=,即2tan2α﹣5tanα+2=0,解得tanα=或2.∴tanα=2”是“”的充分不必要条件.故选:A.5.已知实数x,y满足约束条件,则z=x﹣y()A.有最小值0 B.有最大值C.有最大值0 D.无最小值【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.解:由约束条件约束条件作出可行域如图,易得A(2,3),由可得B(0,2)化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过B时,直线在y轴上的截距最大,⇒B(3,3)z有最小值为3﹣3=0.没有最大值.故选:A.6.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:D.7.某几何体的三视图如图所示(单位:cm),则该几何体的表面积(单位:cm2)是()A.B.C.D.【分析】首先把三视图转换为直观图,进一步求出几何体的表面积.解:根据几何体的三视图转换为直观图为:该几何体为由棱长为2的正方体切去一个正三棱锥体A﹣BCD构成的不规则几何体.如图所示:所以:.故选:C.8.如图,正方体ABCD﹣A1B1C1D1的棱长为2,点O为底面ABCD的中心,点P在侧面BB1C1C的边界及其内部运动.若D1O⊥OP,则△D1C1P面积的最大值为()A.B.C.D.【分析】由题意画出图形,由直线与平面垂直的判定可得P的轨迹,求出P到棱C1D1的最大值,代入三角形面积公式求解.解:如图,由正方体性质知,当P位于C点时,D1O⊥OC,当P位于BB1的中点P1时,由已知得,DD1=2,DO=BO=,BP1=B1P1=1,,求得,OP1=,.∴,得OD1⊥OP1.又OP1∩OC=O,∴D1O⊥平面OP1 C,得到P的轨迹在线段P1C上.由C1P1=CP1=,可知∠C1CP1为锐角,而CC1=2,知P到棱C1D1的最大值为.则△D1C1P面积的最大值为.故选:C.9.已知定义在R上的函数f(x)=3sinx﹣2x+1,则在[﹣5,5]上f(x)的最大值与最小值之和等于()A.0 B.1 C.2 D.3【分析】根据题意,设g(x)=f(x)﹣1=3sinx﹣2x,x∈[﹣5,5],分析可得g(x)为奇函数,由奇函数的性质可得g(x)max+g(x)min=0,进而可得[f(x)max﹣1]+[g(x)min ﹣1]=f(x)max+f(x)min﹣2=0,变形分析可得答案.解:根据题意,设g(x)=f(x)﹣1=3sinx﹣2x,x∈[﹣5,5];有g(﹣x)=3sin(﹣x)﹣2(﹣x)=﹣(3sinx﹣2x)=﹣g(x),即函数g(x)为奇函数,其图象关于原点对称,则g(x)max+g(x)min=0,则有[f(x)max﹣1]+[g(x)min﹣1]=f(x)max+f(x)min﹣2=0,变形可得f(x)max+f(x)min=2;即f(x)的最大值与最小值之和等于2;故选:C.10.已知数列{a n}的前n项和S n满足S n+a n=2n(n∈N*),则a7=()A.B.C.D.【分析】由已知数列递推式求得首项,且得到2a n﹣a n﹣1=2(n≥2),构造等比数列得2(a n ﹣2)=a n﹣1﹣2,进而求得{a n}通项,即可求解.解:由S n+a n=2n,得a1=1,当n≥2时,S n﹣1+a n﹣1=2(n﹣1),得2a n﹣a n﹣1=2,∴2(a n﹣2)=a n﹣1﹣2,故{a n﹣2}是首项为a1﹣2=﹣1,公比为的等比数列,∴,故.故选:B.11.已知F为双曲线的左焦点,过点F的直线与圆于A,B两点(A在F,B之间),与双曲线E在第一象限的交点为P,O为坐标原点,若FA=BP,∠AOB=120°,则双曲线的离心率为()A.B.C.D.【分析】由题意画出图形,由圆的方程求得圆的半径,得到圆心到直线的距离,进一步求得P到双曲线右焦点的距离,再由双曲线定义及勾股定理求解.解:如图,由圆O的方程,得圆O的半径为OA=OB=.过O作AB的垂线OH,则H为AB的中点,又FA=BP,∴H为FP的中点,设双曲线的右焦点为F1,连接PF1,则OH为三角形FF1P的中位线,可得OH∥PF1,则PF1⊥PF,由∠AOB=120°,可得OH=.∴,则PF=,在Rt△PFF1中,由勾股定理可得:,整理得:.解得:e=或e=(舍).故选:D.12.已知实数a、b满足log2a=log3b,给出五个关系式:其中不可能成立的关系式有()①a b<b a;②a a=b b;③a b>b a;④a b<a a;⑤b b<b a.A.1个B.2个C.3个D.4个【分析】由log2a=log3b,知1<a<b 或 a=b=1 或 0<b<a<1,然后分情况验证个关系式即可.解:由log2a=log3b,知1<a<b 或 a=b=1 或 0<b<a<1,当a=b=1时,②成立,其他的不成立;当0<b<a<1时,a b>b a,a b>a a,b b>b a,③成立,④⑤不成立;当1<a<b时,取a=2,b=3,则a b=23=8<9=32=b a,①成立,a b>a a,b b>b a,④⑤不成立,综上,只有④⑤不可能成立.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.已知等比数列{a n}中,a2=1,a5=﹣8,则{a n}的前5项和为﹣.【分析】根据题意,设等比数列{a n}的公比为q,由等比数列的通项公式可得q3==﹣8,计算可得q与a1的值,由等比数列的前n项和公式计算可得答案.解:根据题意,设等比数列{a n}的公比为q,若a2=1,a5=﹣8,则有q3==﹣8,则q=﹣2;则a1==﹣则{a n}的前5项和S5==﹣,故答案为:﹣.14.若x,y满足约束条件.则的最大值为 3 .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),k OA==3,即的最大值为3.故答案为:3.15.过P(1,2)的直线l把圆x2+y2﹣4x﹣5=0分成两个弓形,当其中劣孤最短时直线l的方程为x﹣2y+3=0 .【分析】先把圆方程化为标准方程,就可求出圆心坐标和半径,因为只有当直线l与圆相交所得弦的中点为P点时,两个弓形中较小弓形面积最小,此时直线l与PC垂直,就可求出直线l的斜率.用点斜式写出直线l的方程.解:圆x2+y2﹣4x﹣5=0可化为(x﹣2)2+y2=9,∴圆心C的坐标为(2,0),半径为3.设直线l与圆x2+y2﹣4x﹣5=0交于点A,B,则当P为AB中点时,两个弓形中较小弓形面积最小,此时P点与圆C的连线垂直于直线l,∵k PC==﹣2∴k l=,∴直线L的方程是y﹣2=(x﹣1),化为一般式为x﹣2y+3=0故答案为:x﹣2y+3=0.16.在三棱锥B﹣ACD中,BA,BC,BD两两垂直,BC=2,BD=4,三棱锥B﹣ACD的侧面积为13,则该三棱锥外接球的表面积为29π.【分析】由三棱锥的侧面积及所给的棱长可得AB的值,再由题意将该三棱锥放在长方体中,由长方体的对角线的长度等于其外接球的直径(2R)可得4R2的值,进而求出外接球的表面积.解:三棱锥B﹣ACD的侧面积S=S△ABD+S△ABC+S BCD=(AB•BD+AB•BC+BC•CD)=(4AB+2AB+2×4)=13,解得:AB=3,将此三棱锥放在长方体中可得,三棱锥的外接球与长方体的外接球为同一个,且长方体的外接球的直径2R等于长方体的对角线的长度,所以(2R)2=AB2+BC2+BD2=32+22+42=29,即4R2=29,所以外接球的表面积S表=4πR2=29π,故答案为:29π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.在△ABC中,角A、B、C的对边分别为a、b、c,且.(1)若a=5,,求b的值;(2)若,求cos2C的值.【分析】(1)由已知结合余弦定理即可求解b,(2)由已知结合同角平分关系可求sinA,然后结合诱导公式及和差角公式及二倍角公式可求.解:(1)在△ABC中,由余弦定理a2=b2+c2﹣2bccosA,得,,即b2﹣4b﹣5=0,解得b=5或b=﹣1(舍),所以b=5;(2)由及0<A<π得,,所以,所以cos2C=2cos2C﹣1==18.某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制右图所示频率分布直方图,已知中间三组的人数可构成等差数列.(1)求m,n的值;(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列2×2列联表,并判断是否有99%的把握认为消费金额与性别有关?(3)分析人员对抽取对象每周的消费金额y与年龄x进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)2×2列联表男女合计消费金额≥300消费金额<300合计临界值表:P(K2≥k0)0.050 0.010 0.001k0 3.841 6.635 10.828,其中n=a+b+c+d【分析】(1)由频率分布直方图的面积和为1,得到m,n(2)根据题目所给的数据填写2×2列联表即可;计算K的观测值K2,对照题目中的表格,得出统计结论.(3)由频率分布直方图计算中位数,平均数即可.解:(1)由频率分布直方图可知,m+n=0.01﹣0.0015×2﹣0.001=0.006,由中间三组的人数成等差数列可知m+0.0015=2n,可解得m=0.0035,n=0.0025(2)周平均消费不低于300元的频率为(0.0035+0.0015+0.001)×100=0.6,因此100人中,周平均消费不低于300元的人数为100×0.6=60人.所以2×2列联表为男性女性总计消费金额≥300 20 40 60消费金额<300 25 15 40总计45 55 100 K2=≈8.249>6.635所以有99%的把握认为消费金额与性别有关.(3)调查对象的周平均消费为0.15×150+0.25×250+0.35×350+0.15×450+0.10×550=330,由题意330=﹣5×38+b,∴b=520,y=﹣5×25+520=395.19.如图,四棱锥S﹣ABCD的侧面SAD是正三角形,AB∥CD,且AB⊥AD,AB=2CD=4,E是SB中点.(Ⅰ)求证:CE∥平面SAD;(Ⅱ)若平面SAD⊥平面ABCD,且,求多面体SACE的体积.【分析】(Ⅰ)取SA的中点F,连接EF,证明四边形EFDC是平行四边形,得出EC∥FD,CE∥平面SAD;(Ⅱ)取AD中点G,连接SG,证明SG⊥平面ABCD,求出点E到平面ABCD的距离,计算多面体SACE的体积.解:(Ⅰ)取SA的中点F,连接EF,因为E是SB中点,所以EF∥AB,且AB=2EF,又因为AB∥CD,AB=2CD,所以EF∥DC,EF=DC,即四边形EFDC是平行四边形,所以EC∥FD,又因为EC⊄平面SAD,FD⊂平面SAD,所以CE∥平面SAD;(Ⅱ)取AD中点G,连接SG,因为SAD是正三角形,所以SG⊥AD,因为平面SAD⊥平面ABCD,且交线为AD,所以SG⊥平面ABCD,因为AB⊥AD,所以AB⊥平面SAD,所以AB⊥SA,故,,因为E是SB中点,所以点E到平面ABCD的距离等于,所以多面体SACE的体积为:V SACE=V S﹣ABCD﹣V S﹣ACD﹣V E﹣ABC===.20.已知椭圆Γ>0)的离心率为,过椭圆Γ的焦点且垂直于x轴的直线被椭圆Γ截得的弦长为.(1)求椭圆Γ的方程;(2)设点A,B均在椭圆Γ上,点C在抛物线上,若△ABC的重心为坐标原点O,且△ABC的面积为,求点C的坐标.【分析】(1)运用离心率公式和垂直于x轴的弦长公式,以及a,b,c的关系解方程可得a,b,进而得到所求椭圆方程;(2)设AB:x=my+t,联立椭圆方程,运用韦达定理和中点坐标公式、三角形的重心坐标,可得C的坐标,代入抛物线方程,结合三角形的面积公式,计算可得C的坐标.解:(1)根据题意得,又因为b2=a2﹣c2,解得a2=2,则b2=1,所以椭圆Γ的方程为:;(2)设AB:x=my+t,联立椭圆方程x2+2y2=2,可得(2+m2)y2+2mty+t2﹣2=0,△=4m2t2﹣4(2+m2)(t2﹣2)=8(m2﹣t2+2)>0①设A(x1,y1),B(x2,y2),y1+y2=﹣,可得y C=﹣(y1+y2)=,x C=﹣(x1+x2)=﹣[m(y1+y2)+2t]=﹣,由C在抛物线y2=x上,可得()2=•(﹣),则m2=﹣②(t<﹣),由S△ABO=|OA|•|OB|•sin∠AOB===|x1y2﹣x2y1|,则S△ABC=3S△ABO=|x1y2﹣x2y1|=|(my1+t)y2﹣(my2+t)y1|=|t(y1+y2)|=||=,可得||=③,将②代入③整理可得[t(2t+1)]2﹣4t(2t+1)+3=0,解得t=﹣1或﹣,相应的m2=2或1.所以C(1,±),或C(2,±1).21.已知函数.(1)若点P(x0,y0)为函数f(x)与g(x)图象的唯一公共点,且两曲线存在以点P为切点的公共切线,求a的值:(2)若函数h(x)=f(x)﹣g(x)有两个零点,求实数a的取值范围.【分析】(1)先分别对函数求导,然后结合导数的几何意义即可求解;(2)先对h(x)求导,然后结合导数与单调性关系分析函数的特征性质,然后结合函数性质及零点判定定理可求出符合要求的a的范围.解:(1)由题意可知,y=f(x)与y=g(x)(x>0)图象的在唯一公共点处的切线相同,又因为f′(x)=x+a,,所以f(x0)=g(x0),f′(x0)=g′(x0),即,由可得x0=1或x0=﹣a﹣1,由点P唯一可得﹣a﹣1=1或﹣a﹣1≤0,即a=﹣2或a≥﹣1,由可得a=﹣,综上可得,a=﹣;(2)由h(x)=f(x)﹣g(x)=,x>0,则=,(i)若a+1>0即0>a>﹣1时,h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,因为x→0时,h(x)→+∞,且h(2)=2+2a﹣(a+1)ln2>2+2a﹣2(a+1)=0,故要使得h(x)有2个零点,只有h(1)<0即﹣1<a<﹣,当a=﹣1时,h(x)=只有一个零点,故﹣1<a<﹣(ii)若a+1<0,即a<﹣1时,①当a=﹣2时,h(x)在(0,+∞)上单调递增,不符合题意;②当﹣2<a<﹣1时,h(x)在(0,﹣a﹣1)上单调递增,在(﹣a﹣1,1)上单调递减,在(1,+∞)上单调递增,且x→0时,h(x)→﹣∞,且h(1)=a+<0,h(e2)=>0,故要使得h(x)有2个零点,则h(﹣a﹣1)==0,即,令m(a)=,﹣2<a<﹣1,则=﹣>0,故m(a)在(﹣2,﹣1)上单调递增,且m(﹣2)=>0,故m(a)>0在(﹣2,﹣1)上恒成立,不可能有2个零点,③当a<﹣2时,h(x)在(0,1)上单调递增,在(1,﹣a﹣1)上单调递减,在(﹣a﹣1,+∞)上单调递增,且h(1)=a+<0,故h(x)不可能有2个零点,综上﹣1<a<﹣.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为为参数,m∈R).以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)写出曲线C1的普通方程和曲线C2的直角坐标方程:(2)已知,点P是曲线C2上一点,点P到曲线C1的最大距离为,求m的值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.解:(1)曲线C1的参数方程为为参数,m∈R).转换为直角坐标法方程为x+y﹣m=0.曲线C的极坐标方程为,根据转换为直角坐标方程为(0≤y≤1).(2)设点P()是曲线C2上一点,则点P到曲线C1的距离d==,由于0≤α≤π,所以,则:[.由点P到曲线C1的最大距离为,所以的最大值为4,由于,所以,则2﹣m=4,即m=﹣2,故m=﹣2.[选修4-5:不等式选讲]23.已知不等式|2x+2|﹣|x﹣2|>2的解集为M.(1)求集合M;(2)已知t为集合M中的最小正整数,若a>1,b>1,c>1,且(a﹣1)(b﹣1)(c﹣1)=t,求证:abc≥8.【分析】(1)由零点分区间法和绝对值的意义,去绝对值,解不等式,求并集,可得所求解集;(2)由(1)可得a>1,b>1,c>1,且(a﹣1)(b﹣1)(c﹣1)=1,再由a=(a﹣1)+1,b=(b﹣1)+1,c=(c﹣1)+1,运用基本不等式和不等式的可乘性,即可得到证明.解:(1)|2x+2|﹣|x﹣2|>2等价为或或,解得x<﹣6或<x<2或x≥2,则M=(﹣∞,﹣6)∪(,+∞);(2)证明:由(1)可得t=1,a>1,b>1,c>1,且(a﹣1)(b﹣1)(c﹣1)=1,则a=(a﹣1)+1≥2>0,(当且仅当a=2时等号成立),b=(b﹣1)+1≥2>0,(当且仅当b=2时等号成立),c=(c﹣1)+1≥2>0(当且仅当c=2时等号成立),则abc≥8≥8(当且仅当a=b=c=2时等号成立),即abc≥8.21。